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Abstract

This paper presents a thorough microscopic simulation investigation of a recently pro-

posed methodology for highway traffic estimation with mixed traffic, i.e., traffic compris-

ing both connected and conventional vehicles, which employs only speed measurements

stemming from connected vehicles and a limited number (sufficient to guarantee observ-

ability) of flow measurements from spot sensors. The estimation scheme is tested using

the commercial traffic simulator Aimsun under various penetration rates of connected

vehicles, employing a traffic scenario that features congested as well as free-flow condi-

tions. The case of mixed traffic comprising conventional and connected vehicles equipped

with adaptive cruise control, which feature a systematically different car-following beha-

vior than regular vehicles, is also considered. In both cases, it is demonstrated that the

estimation results are satisfactory, even for low penetration rates.
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1 Introduction

Traffic congestion is a significant problem for the majority of large cities in the modern world
(Papageorgiou et al., 2007). While the number of vehicles has been increasing steadily during
the past decades (Dargay et al., 2007), a corresponding expansion of road networks is not
deemed feasible for various reasons. On the other hand, traffic management represents a
valid alternative allowing to improve the performance of traffic systems with fairly moderate
effort. For this reason, traffic authorities and automobile industries are currently focusing
on the development of innovative methods for traffic monitoring (Bishop, 2005).

Real-time traffic state estimation utilizing limited traffic data is of major importance,
not only for traffic monitoring but also for traffic control. In conventional traffic, real-time
traffic data are provided by spot sensors positioned at appropriate locations on the highway.
Since the cost of installation and maintenance of a sufficient number of spot sensors that
guarantees accurate traffic monitoring is high, several studies deal with the development of
traffic estimation algorithms employing a limited amount of sensors, such as, for example,
Muñoz et al. (2003), Alvarez-Icaza et al. (2004), Wang and Papageorgiou (2005), Hegyi et al.
(2006), Mihaylova et al. (2007), Morbidi et al. (2014), to name only a few.

The eminent need for improvement of traffic conditions, for enhancement of driver safety
and comfort, and for reduced operation cost of traffic systems has led to the introduction of
various Vehicle Automation and Communication Systems (VACS). VACS capabilities can be
exploited for the development of novel traffic estimation and control methodologies (Diakaki
et al., 2015). Traffic control in the presence of VACS is the subject of numerous papers, such
as, for example, Varaiya (1993), Rao and Varaiya (1994), Rajamani and Shladover (2001),
Bose and Ioannou (2003), Kesting et al. (2008), Shladover et al. (2012), Ge and Orosz (2014),
Wang et al. (2014), Roncoli et al. (2015), Roncoli et al. (2016).

The problem of traffic estimation in the presence of VACS is addressed in numerous
studies, such as, for example, Work et al. (2008), De Fabritiis et al. (2008), Herrera et al.
(2010), Rahmani et al. (2010), Treiber et al. (2011), Gayah and Dixit (2013), Yuan et al.
(2012), Ramezani and Geroliminis (2012), Yuan et al. (2014), Piccoli et al. (2015), Seo
et al. (2015), Bekiaris-Liberis et al. (2016), Roncoli et al. (2016) to name only a few. Note
that in Yuan et al. (2012, 2014) an extended Kalman filter that utilizes both Eulerian and
Lagrangian measurements is employed, based on the Lagrangian coordinates model (where
state variables move with the traffic stream) proposed by Leclercq et al. (2007). Typically,
such traffic state estimation algorithms employ data stemming from connected vehicles, i.e.,
vehicles that can provide real-time information to a central or local authority (Turksma,
2000). Connected vehicle data can be utilized as a low-cost and efficient, complementary or
primary, source of traffic information towards traffic state estimation (Treiber and Kesting,
2013).

In addition to vehicle communication systems, automated vehicle systems play an im-
portant role in modern intelligent transportation systems. While fully automated highways,
an innovation that would affect traffic conditions significantly (Kesting et al., 2007), are
unlikely to come into existence in the near future, partially automated highways are already
part of reality. One of the crucial components of such automated systems is Adaptive Cruise
Control (ACC), which was already introduced into modern vehicles by the automobile in-
dustry (Darbha and Rajagopal, 1999; Wang et al., 2014). ACC-equipped vehicles aim at
increased driver safety and improved comfort (Dragutinovic et al., 2005) and may have a
different car-following behavior than manually driven cars, thus changing the traffic flow
characteristics accordingly. Since a high penetration rate of ACC-equipped vehicles is not
yet a reality, the effect of various percentages of such vehicles on traffic conditions is typically
examined utilizing microscopic simulation platforms, see, e.g., Treiber and Helbing (2001),
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Marsden et al. (2001), VanderWerf et al. (2001), Rajamani et al. (2005), van Arem et al.
(2006), Kesting et al. (2007), Ntousakis et al. (2015).

In this paper, we continue and extend our research on the validation of the scheme de-
veloped in Bekiaris-Liberis et al. (2016) for estimation of densities and ramp flows, which is
based on a simple but exact macroscopic model for traffic density and employs mainly speed
measurements obtained from connected vehicles (equipped with ACC or not). The distin-
guishing characteristic of this estimation scheme, compared to virtually all previous related
developments, is that it is only based on the conservation-of-vehicles equation, without the
resort of fundamental diagrams or other empirical relationships, which would call for appro-
priate and tedious model validation procedures, before field application. We test the per-
formance of the estimation scheme under mixed traffic conditions, where connected vehicles,
equipped with ACC or not, are present at various penetration rates. We utilize for our test-
ing the microscopic simulation software Aimsun (Transport Simulation Systems, 2014) in
which we build a highway stretch that includes several on-ramps and off-ramps, and employ
a scenario in which both congested and free-flow traffic conditions occur. We also evaluate
the performance of the estimation scheme when, for some instances, a very limited (or liter-
ally zero) number of speed measurements from connected vehicles are available, and propose
simple algorithms for resolving the problem of lack of reliable segment speed measurements.
Moreover, it is demonstrated that density estimation is highly insensitive to the choice of
the filter parameters, while ramp flow estimation is more sensitive.

The rest of the paper is structured as follows. Section 2 presents the estimation scheme
employed. Section 3 describes the details of the microscopic simulation configuration as
well as the traffic network and scenario employed. Section 4 presents the results of the
estimation in mixed traffic, i.e., traffic comprising conventional and connected vehicles. Sec-
tion 5 presents the results of the estimation in mixed traffic comprising conventional and
ACC-equipped connected vehicles. Finally, Section 6 concludes the paper.

2 Traffic state estimation exploiting VACS capabilities

2.1 Innovative features of VACS

2.1.1 Connected vehicles

Data stemming from connected vehicles may contain a wide variety of traffic information, but
the most commonly used are vehicle position (longitude, latitude, and altitude) and vehicle
speed. The most popular way of acquiring a vehicle’s position is via the Global Positioning
Systems (GPS), see, e.g., De Fabritiis et al. (2008), Rahmani et al. (2010), Herrera et al.
(2010), although cellular positioning is also utilized, usually with less accurate results, see,
e.g., Yim and Cayford (2001), Bar-Gera (2007). GPS is a low-cost, efficient solution to
gather traffic data, with a reported position error of 5–15 m in older studies (Zito et al.,
1995; Turksma, 2000), whereas recently, with the employment of Differential GPS (DGPS)
and map-matching algorithms, position accuracy up to 1–5 m can be achieved (Waterson and
Box, 2012). Speed measurement error is mostly reported to be as low as 1 km/h (Zito et al.,
1995), reaching 5 km/h in some studies (Zhao et al., 2011). Data from connected vehicles
are mainly transmitted to a central traffic authority, which reflects the so called Vehicle to
Infrastructure (V2I) communication, typically via a GPRS/GSM network (Bishop, 2005). In
parallel, vehicles can send data to one another, via Vehicle to Vehicle (V2V) communication,
usually utilizing WiFi 802.11 (Waterson and Box, 2012). Connected vehicle data are usually

8



small in size, thus low-delay transmissions are possible (Messelodi et al., 2009). Reporting
periods vary among different experiments and commercial systems, most frequently ranging
between a few seconds and a few minutes, see, e.g., Bishop (2005), Zhang et al. (2007),
Messelodi et al. (2009), Herrera et al. (2010).

2.1.2 Automated vehicles

As part of the Advanced Driver Assistance Systems (ADAS), earlier cruise control systems
were designed to merely maintain a certain speed set by the driver. However, novel ACC
systems are able, additionally to the cruise control feature, to preserve a predefined safety
time-gap to the leading vehicle (Bishop, 2005). Usually, the desired ACC time-gap ranges
between 0.9 and 2.5 s (Kesting et al., 2007), but might go as low as 0.5 s (van Arem et al.,
2006). The objective of the ACC system is to compute and apply the appropriate acceleration
or deceleration according to the driver settings and the surrounding conditions. In order
for this to happen, information about the vehicle ahead is required, more specifically, the
distance (space gap) and speed difference of the two vehicles, which can be obtained via
on-board sensors (Kesting et al., 2007). Using this information, the ACC system calculates
the necessary acceleration or deceleration and transforms it to actual throttling or breaking
commands. Since the ACC system acquires knowledge of the preceding vehicle’s position and
speed (e.g., by measuring via on-board sensors the spacing and relative speed with respect
to the preceding vehicle as well as its own position and speed), this information could be
used to enhance the traffic information reported by an ACC-equipped connected vehicle,
thus providing two speed measurements to the central authority instead of one. For more
information on available ACC models and technologies, see, e.g., Bishop (2005), Rajamani
et al. (2005), Diakaki et al. (2015), Ntousakis et al. (2015).

2.2 Traffic estimation using average speed measurements

2.2.1 Traffic density dynamics as an LPV system

We subdivide the highway into segments (e.g. of some 500 m in length) and consider the
density ρi(k) of highway segment i at time step k to be the number of vehicles in the
segment divided by the segment length ∆i. The dynamics of the density can be described
by the following discrete-time equations

ρi(k + 1) = ρi(k) +
T

∆i
(qi−1(k)− qi(k) + ri(k)− si(k)) , (1)

where i = 1, . . . , N is the index of the specific highway segment of the network, N being the
number of segments on the highway, k is the discrete time index, ∆i is the length of segment
i (km), qi is the flow (veh/h) at the end of segment i, and T is the time-discretization step
(h); ri and si are the vehicle inflow and outflow (veh/h) at on-ramps and off-ramps included
in the upstream part of the specific segment, respectively. Typically, a highway segment can
contain no more than one ramp in total (either an on-ramp or an off-ramp). Given that

qi(k) = ρi(k)υi(k),
1 (2)

1Formula (2) may not be exact, but was found in according tests to be the most accurate simple (non-

switching) modeling approach for flows. Note, however, that the corresponding error is accounted for in the

estimation model via additive process and measurement noise.
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where υi(k) is the average vehicle speed of segment i at time k, we can rewrite (1) as

ρi(k + 1) =
T

∆i
υi−1(k)ρi−1(k) +

(

1−
T

∆i
υi(k)

)

ρi(k) +
T

∆i
(ri(k)− si(k)) . (3)

In order for the discrete-time relations (2), (3) to be sufficiently accurate, the following
inequality must hold

max
i,k

T

∆i
vi(k) < 1. (4)

As it is common practice in estimation applications while addressing unknown quantities
(see, e.g., Wang and Papageorgiou (2005)), we assume that any unmeasured on-ramp and
off-ramp flows are constant, or, effectively, slowly varying, so that the unmeasured ramp flow
dynamics may be reflected by a random walk, i.e.,

θi(k + 1) = θi(k) + ξθi (k), (5)

where ξθi is zero-mean white Gaussian noise and

θi =

{

T
∆i

rni
, if ni ∈ Lr

T
∆i

sni
, if ni ∈ Ls

, (6)

for all i = 1, . . . , lr + ls. We consider Lr = {n1, . . . , nlr} and Ls = {nlr+1, . . . , nlr+ls} to be
the sets of segments, denoted by ni, which have an on-ramp or an off-ramp, respectively,
whose flows are not directly measured. Moreover, lr and ls are the numbers of unmeasured
on-ramp flows and off-ramp flows, respectively. Note that, since segments are specified such
that they may contain either no ramp at all or one ramp in total, which may be an on-ramp
or an off-ramp, there can be no more than one ramp (either an on-ramp or an off-ramp) with
unmeasured flow in a segment.

Assuming that the average speed of conventional vehicles is roughly equal to the average
speed of connected vehicles, and hence it is available with the traffic authority, one can
consider that υi, i = 1, . . . , N , are measured. Therefore, defining the state

x = (ρ1, . . . , ρN , θ1, . . . , θlr+ls)
T , (7)

the deterministic part of the dynamics of segment densities given in (3) and of θi given in
(5) can be written in the form of a Linear Parameter-Varying (LPV) system as

x(k + 1) = A (υ(k))x(k) +Bu(k), (8)

where

A (υ(k)) =



































aij =
T
∆i

vi−1(k), if i− j = 1 and i ≥ 2

aij = 1− T
∆i

vi(k), if i = j

anij = 1, if ni ∈ Lr and j = N + i
anij = −1, if ni ∈ Ls and j = N + i
aij = 1, if N < i ≤ N1 and j = i
aij = 0, otherwise

(9)

B =











bij =
T
∆i

, if i = 1 and j = 1

bmij =
T

∆mi

, if mi /∈ L̄, 1 ≤ mi ≤ N , 1 ≤ i ≤ N2, and j = i+ 1

bij = 0, otherwise

(10)

u(k) =

{

ui = q0(k), if i = 1
ui+1 = rmi

− smi
, if mi /∈ L̄

, (11)
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with L̄ = Lr∪Ls being the set of segments which have an on-ramp or an off-ramp whose flows
are not directly measured, N1 = N + lr+ ls, N2 = N − lr− ls, A ∈ R

N1×N1 , B ∈ R
N1×(N2+1).

We denote with mi the segment where the i-th measured ramp is positioned and thus, entries
of B matrix that correspond to a measured ramp are set equal to T

∆mi

if j = i + 1. Note

that q0 is the total flow of vehicles at the entry of the considered highway stretch and acts
as a measured input to (8); along with any directly measured on-ramp and off-ramp flows,
ri and si, i /∈ Lr, i /∈ Ls, respectively; while vi, i = 1, . . . , N , are viewed as time-varying
parameters of (8). LPV systems are a well-studied subclass of linear time-varying systems,
whose dynamics vary as a result of the variation of certain parameters.

Regarding the measured outputs, we assume that the flow at the mainstream exit of the
highway, namely qN , is available via a fixed flow detector, hence, the last segment’s density
can be computed as

ρN =
qN
υN

, (12)

where υN is the speed of the last segment, as reported by connected vehicles, and be used
as a system output.

If there is exactly one unmeasured ramp within the considered highway stretch, then no
additional measurements are necessary for flow observability. On the other hand, if there
are more than one unmeasured ramps within the stretch, we need (for flow observability)
one mainstream measurement at any highway segment, say j, between every two consecutive
unmeasured ramps. Again, the corresponding flow, namely qj , can be obtained by fixed flow
sensors, and the corresponding density be computed as

ρj =
qj
υj

, (13)

where υj is the speed of segment j, as reported by connected vehicles, and be used as a
system output.

In summary, the measured outputs associated with (8)–(11) are the density (or, equival-
ently, the flow) at the exit of the considered highway stretch and at one highway segment
between every two consecutive ramps whose flows are not measured. Therefore,

y(k) = Cx(k), (14)

where C ∈ R
(lr+ls)×(N+lr+ls) is defined as

C =







cij = 1, for all i = 1, . . . , lr + ls − 1 and some n∗

i ≤ j ≤ n∗

i+1 − 1
cij = 1, if i = lr + ls and j = N
cij = 0, otherwise

, (15)

where L̄∗ =
{

n∗

1, n
∗

2, . . . , n
∗

lr+ls

}

is the set L̄ ordered by <.
Although it is physically intuitive that the system described in (8)–(11), (14), (15) is

observable, the related detailed proof for certain cases, such as, for example, when a fixed
sensor is placed on the mainstream at every segment immediately before an unmeasured
ramp, can be found in Bekiaris-Liberis et al. (2016).

We summarize below the measurement requirements for the proposed estimation al-
gorithm.

• The average speed of all vehicles at a segment of the highway equals the average speed
of connected vehicles at the same segment, and hence, it can be obtained from regularly
received messages by connected vehicles and employed by the estimator.

• The flow of vehicles at the entry of the considered highway stretch, q0, is available via
a fixed flow sensor.
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• The flow at the exit of the considered highway stretch, qN , as well as additional main-
stream flow measurements qj , where j corresponds to any highway segment between
two consecutive unmeasured ramps, are available via corresponding fixed flow sensors.

2.2.2 Kalman filter

We utilize a Kalman filter, see, e.g., Anderson and Moore (1979), in order to estimate the
traffic state of the network. Defining

x̂ =
(

ρ̂1, . . . , ρ̂N , θ̂1, . . . , θ̂lr+ls

)T

, (16)

as the system state estimate, the filter equations are (see, e.g., Anderson and Moore (1979))

x̂(k + 1) = A (υ(k)) x̂(k) +Bu(k) +A (υ(k))K(k) (z(k)− Cx̂(k)) (17)

K(k) = P (k)CT
(

CP (k)CT +R
)−1

(18)

P (k + 1) = A (υ(k)) (I −K(k)C)P (k)A (υ(k))T +Q, (19)

where the measurement z is a noisy version of y, and Q = QT > 0, R = RT > 0 are tuning
parameters. In the ideal case in which there is additive, zero-mean Gaussian white noise in
the state and output equations, Q and R represent the covariance matrices of the process and
measurement noise, respectively. The initial conditions of the filter described by (17)–(19)
are

x̂(k0) = µ (20)

P (k0) = H, (21)

where µ and H = HT > 0, in the ideal case in which x(k0) is a Gaussian random variable,
represent the mean and auto covariance matrix of x(k0), respectively.

3 Microscopic simulation setup for testing the proposed traffic

estimation methodology

In order to thoroughly examine the effectiveness, sensitivity and further aspects of the estim-
ation scheme described in Section 2.2 in a microscopic environment, the microscopic traffic
simulation software Aimsun by Transport Simulation Systems (Transport Simulation Sys-
tems, 2014) is employed. In particular, we exploit the features provided by Aimsun API
and microSDK, to extract data and results of the simulation or configure the simulation
parameters and vehicle models. The default car-following model implemented by Aimsun is
Gipps model (Gipps, 1981, 1986), which is used to model the dynamics of conventional and
connected vehicles without ACC capabilities. The setup of the microscopic simulation-based
testing of the proposed estimation methodology is shown in Fig. 1. Upstream demand and
on-ramp flow data are fed to the microscopic model along with certain parameters; based on
which the model produces the evolving traffic conditions for the employed scenarios. Specific
traffic measurements are produced via realistically emulated detection procedures and are
provided to the Kalman filter, whose parameters have been appropriately tuned; the Kalman
filter then estimates the desired traffic quantities, namely ρi and θi, which may be confronted
to the “ground truth” of the simulator.

Place Fig. 1 around here
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3.1 Traffic network configuration

For the evaluation of the estimation procedure, a highway stretch of 10 km is utilized, as
shown in Fig. 2. The stretch has 3 lanes and is divided into 20 homogenous segments. Three
on-ramps and three off-ramps are positioned at segments 8, 12, 16 and 10, 14, 18, respect-
ively; acceleration lanes at on-ramp locations and deceleration lanes at off-ramp locations
are 100 m in length. The utilized network parameters are summarized in Table 1.

Place Fig. 2 around here

Place Table 1 around here

3.2 Employed scenario

For the purpose of testing the estimation scheme in free-flow as well as congested traffic
conditions, we employ a 3-hour simulation horizon, setting the simulation step as well as the
reaction time of all vehicles τ at 1 s. Inflows at the network entrance and at on-ramps are
the product of an exponential distribution, with a specified mean value. The inflow at the
network entrance q0 is chosen, on average, as trapezoidal. The on-ramps at segments 8 and
16 feature, on average, a constant flow of 600 veh/h for the whole simulation time; whereas
the on-ramp flow at segment 12 is also on average trapezoidal. We show the demand profiles
in Fig. 3. Turning rates at each off-ramp are constant at 10% of the mainstream flow of the
corresponding segment.

Place Fig 3 around here

3.3 Measurement configuration

We consider a measurement step T = 10 s, which corresponds to the detection interval of
flow sensors, as well as the interval for calculating average segment speeds.

3.3.1 Flow measurements

A conventional spot sensor is placed at the entrance of the network, providing measurements
of inflow q0; additional spot sensors are placed at the exit of the network as well as at
segments 8, 10, 12, 14, and 16 (in order to guarantee observability, see Bekiaris-Liberis et al.
(2016)), providing measurements of the flows q20, q8, q10, q12, q14, and q16, respectively. All
flows are computed by counting the number of vehicles that cross the corresponding detector
within the time interval (kT, (k + 1)T ].

3.3.2 Speed measurements

Segment speeds are derived from reports of a sub-population of vehicles that are connected
and hence, have the ability to report their position and instant speed to the central authority
at a specific frequency. In order to simulate a realistic scenario, “asynchronous” reports are
considered, that is, vehicles report their speeds at different frequencies. This is implemented
as follows. Upon entering the network, connected vehicles are assigned randomly a reporting
frequency f , taken from a uniform distribution over the interval [0.1, 1] Hz. This way, at
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every simulation step (1 s), only a portion of connected vehicles report their instant speed,
depending on their reporting frequency. Eventually, all individual instant speed reports
of connected vehicles from each segment within time interval ((k − 1)T, kT ] are averaged
arithmetically and provide the average segment speed at time kT , namely, υi(k). Note that
individual reports are considered as distinct measurements regardless of the vehicle that is
reporting. This way, within an interval of T = 10 s, a vehicle that reports every 1 s, supplies
the central authority with more measurements than a vehicle that reports every 9 s, thus
contributing more in the calculation of the corresponding average segment speed.

3.4 Measurement errors

Since all measurements produced by the simulation are error-free, we add to all measurements
a zero-mean Gaussian white measurement noise. Thus, mainstream flow measurements as
well as individual vehicle speed measurements obtained from connected vehicles are affected
by additive noise with a Standard Deviation (SD) shown in Table 2. Considering the speed
measurement accuracy of GPS mentioned in Section 2.1.1, adding noise with an SD of 5 km/h
is a realistic choice, which in fact covers the worst-case scenario. Moreover, the GPS po-
sitional error, which could potentially result in a decreased speed measurements accuracy
due to an erroneous determination of the segment that a vehicle is on, is, as mentioned in
Section 2.1.1, extremely small compared to the length of a segment, and thus, its effect on
the estimation performance is deemed negligible. Note that in case the transmitting device is
also connected with the vehicle’s electronic system, the speed measurements can be retrieved
from the tachometer, whose measurements are substantially more accurate (Zito et al., 1995)
(resulting in a smaller SD of the speed measurement error). However, we choose an error
that is representative of GPS devices since devices equipped with GPS (e.g., smartphones,
navigation systems) seem to be the most widespread devices that enable the acquisition of
speed information by the central authority (Bishop, 2005). Thus, since GPS feature larger
measurement error than tachometers, we actually test the performance of the estimation in
worst-case-error scenarios. As for the infrastructure-based mainstream flow sensors, an error
of about 10% is reported to be realistic, see, e.g., Yue (2009). Since the average inflow is
around 5000 veh/h we consider an error with an SD of 500 veh/h.

Place table 2 here

3.5 Ground truth generation

The ground truth in our experiments, considered for evaluating the performance of the
proposed estimation scheme, is represented by the density of each segment and the ramp
flows (see Section 3.3.1). A segment density ρi(k) is calculated by dividing the number of
vehicles in a segment at time kT with the segment length (0.5 km), while ramp flows are
calculated in the same way as mainstream flows. However, since flows calculated in time
intervals as small as 10 s are very oscillatory, we consider a moving average of the last 6 flow
measurements as ground truth. Aggregated one-minute data may also be used as ground
truth without affecting the estimation performance. With respect to segment speeds, in
order to assess the accuracy of speed measurements from connected vehicles, we consider as
ground truth the average of instant speeds of all segment vehicles every 1 s and then obtain
the average for T = 10 s.
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Fig. 2: The highway stretch used in the experiment. Red vertical lines indicate fixed flow

sensors positioned at the network entry and exit, as well as at the end of segments between

subsequent unmeasured ramps.
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Network Number Number Segment length Free speed

length (km) of segments N of lanes ∆i (km) υf (km/h)

10 20 3 0.5 120

Table 1: Network parameter values
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Noise γqi γυi

SD 500 veh/h 5 km/h

Table 2: Measurement noise (SD) of individual vehicle speeds reported by connected vehicles

and of flow gathered by mainstream flow detectors.
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4 Mixed traffic estimation results in the presence of conven-

tional and connected vehicles

4.1 Experimental configuration

We consider the traffic network and scenario described in Section 3 to simulate a case con-
sidering mixed traffic, comprising both conventional and connected vehicles. Within this
section, the attributes of both types of vehicles, such as desired speed, maximum accelera-
tion and deceleration etc., are given by a distribution with the same mean and SD, and as
a result, their behavior is statistically identical. In this environment, we will evaluate the
performance of the estimation scheme for a variety of penetration rates of connected vehicles.
Currently, the penetration rate of connected vehicles is quite low, however it is expected to
increase substantially in the future (Diakaki et al., 2015). To account for a variety of possible
current and future traffic scenarios, we evaluate the performance of the estimation scheme for
a wide range of penetration rates of connected vehicles, more specifically, 2%, 5%, 10%, 20%,
and 50%. Given that the microscopic model parameters (such as demand, destination, and
vehicle attributes) are stochastic, we consider 10 simulation replications for each penetration
rate.

Conventional and connected vehicles have identical statistical behavior, thus the traffic
conditions for different penetration rates and different replications are very similar. Fig. 4
shows the traffic conditions in the scenario with a 20% penetration rate of connected vehicles.
For the first hour, the inflows at the entry of the network and at all on-ramps are low, as
presented in Fig. 3, and thus, free-flow conditions prevail in the whole network. During
the second hour, the flows at the network entrance and at on-ramp 12 start increasing. As
a result, congestion is created at segment 12 and segment 8, which propagates upstream
reaching segment 4. Mild congestion is also created in segment 16, where the third on-ramp
is present. At the beginning of the third hour of the simulation, since the inflows at the
network entry and at on-ramp 12 are decreased, congestion gradually dissolves, and free-flow
conditions are restored until the end of the simulation time, as shown in Fig. 4.

Place Fig 4 here

In order to evaluate the estimation results, the following performance index, known as
Coefficient of Variation (CV) of the estimated density ρ̂i with respect to the ground truth
density ρi, is used

CVρ =

√

1
KN

∑K
k=1

∑N
i=1[ρ̂i(k)− ρi(k)]2

1
KN

∑K
k=1

∑N
i=1 ρi(k)

. (22)

Similarly, for the unmeasured ramp flows estimation, the CV of the estimated ramp flows
∆i

T
θ̂i (see (6)), with respect to the corresponding ground truth ramp flows ∆i

T
θi, is given by

the following equation

CVr,s =

√

1
K(lr+ls)

∑K
k=1

∑lr+ls
i=1 ∆i

2[θ̂i(k)− θi(k)]2

1
K(lr+ls)

∑K
k=1

∑lr+ls
i=1 ∆iθi(k)

. (23)
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4.2 Computation of the measurements utilized by the estimator

As mentioned in Section 2.2, the estimation scheme is developed based on the assumption
that the average of connected vehicles speed roughly equals the average of conventional
vehicles speed. Since the driving statistics for all vehicles (connected or not) are the same, this
assumption implies that the average speed of a small sample (depending on the penetration
rate) of (connected) vehicles is representative for the average speed of the whole vehicle
population in a segment. The accuracy of this assumption depends on the variance of
individual vehicle speeds, e.g. in dependence of the average speed, see e.g., Garber and
Gadirau (1989). In this section, we investigate this issue within our simulation setup in
order to gain some insights on the accuracy level of the assumption above.

When calculating the average segment speed from reports by connected vehicles, two are
the main problems that may degrade the estimation performance:

• For low penetration rates, when only few vehicles are present in a segment, the indi-
vidual speed reports may be non-representative of the overall segment speed, due to,
for example, an accidental vehicle breaking or stopping at the time of the report; or
because all reports happen to originate from vehicles driving in a slow or in a fast lane,
which would be lower or higher, respectively, compared to the average speed of vehicles
in all lanes.

• In some cases, a low penetration rate may result in no connected vehicle being present
in a segment during a time interval of T = 10 s. The blue line in Fig. 5 shows the
percentage of time intervals of T = 10 s that feature no connected vehicle report, aver-
aged over all segments and replications. It is evident from Fig. 5 that for penetration
rates of 10% or lower a substantial percentage of time intervals are bare of reports from
connected vehicles. In fact, this percentage reaches 50% for a penetration rate of 2%.

Place Fig 5 here

To address these problems, we feed the filter with a moving average of the available
speed measurements. More specifically, for every time step k, we feed the filter with a
moving average of the n latest measurements, i.e., with

υi(k) =
n−1
∑

j=0

νi(k − j)

n
, (24)

where υi(k) is the speed that we feed the filter at time step k, and νi(k) is the average speed
computed from connected vehicles reports at segment i and time step k. Moreover, if there are
no connected vehicle reports at all at segment i during time interval ((k − 1)T, kT ], we take
the speed νi(k) equal to the speed reported at the previous time step, i.e., νi(k) = νi(k− 1).
Note that an alternative but more complex methodology for obtaining potentially more
accurate measurements of the overall speed via connected vehicle reports is via application
of traffic modeling as in Treiber et al. (2011), Rempe and Bogenberger (2016).

A reasonable choice for n in (24) is n = 6, since 60 s intervals are quite common for
aggregation of data stemming from connected vehicles in literature, see, e.g., Rahmani et al.
(2010), Lovisari et al. (2015). However, in our experiments, at very low penetration rates
and light traffic, it is often the case that very few connected vehicles travel on a segment
during 6 consecutive time intervals (i.e., 60 s). As a result, the filter may use speed meas-
urements originating from very few (or even just one) connected vehicles, which may not be
representative of the current segment speed. In order to tackle this issue, we also test a lar-
ger time window for computing the average segment speeds from connected vehicle reports,
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employing (24) with n = 12. In fact, a complete absence of connected vehicle reports over
the last 12 time intervals is very rare in our experiments.

Fig. 6 shows the mean and SD of the error between the actual segment speed (all vehicles)
and the speed that we feed the filter for both cases, i.e., when utilizing (24) with n = 6 and
n = 12. It can be observed that for penetration rates lower than 10%, there is a small bias
in the mean error that is similar for both cases, while the SD of the error is slightly smaller
for n = 12. However, for penetration rates higher than 20%, there is no bias for either of
the two cases, while the SD of the error is slightly smaller for n = 6. Consequently, for low
penetration rates the average speed, calculated via (24), is more representative of the overall
segment speed for n = 12, whereas for higher penetration rates it is more representative for
n = 6, albeit the corresponding differences are deemed minor.

Place Fig 6 here

4.3 Selection of the estimation scheme parameters

While employing the presented estimator in practice, it is important to minimize any neces-
sary tuning effort for the involved parameters. This will certainly be the case if the estimator
performance proves little sensitive to variations of these parameters within a broad range of
values. To investigate this issue, we perform a series of experiments evaluating the sensitivity
of the estimation scheme to the values of the filter parameters Q and R. To this end, we
consider the entry of matrix Q that corresponds to density to be equal to σρ × IN , where
IN denotes the identity matrix of dimension N , whereas the entry of Q that corresponds
to unmeasured ramps is considered equal to σr,s × I(lr+ls). Similarly, matrix R is equal to
σR × I(lr+ls). Consequently, we compare the performance of the estimation when each of
the involved parameters σρ, σr,s, and σR is varied by several orders of magnitude, while the
other two remain constant. The results are shown in Fig. 7, for a variety of penetration rates
of connected vehicles. It is evident in the plots that the performance of density estimation is
highly insensitive to the values of the filter parameters σρ, σr,s, and σR. Ramp flow estim-
ation is shown to be more sensitive, especially for low penetration rates of connected vehicles.

Place Fig 7 here

We make the following choice for the default values. We choose the parameter σρ to be
equal to 1, while σr,s is chosen equal to 0.03 and σR is chosen equal to 100, as shown in
Table 3. Additionally, the initial values µ that correspond to density are set equal to 15,
while entries that correspond to unmeasured ramps are equal to 5; and H = I(N+lr+ls) (see
(20), (21)); note that these initial values have some impact on the estimation results only at
a short warm-up phase (when the filter is switched on), hence they are of minor significance.
From Fig. 7 one can observe that this choice for the parameters Q and R results in quite low
values for the performance indices for our basic scenario of 20% penetration rate of connected
vehicles, as well as for all other investigated penetration rates, hence we keep the same values
for Q and R throughout the paper. However, for very low penetration rates, Fig. 7 may be
exploited, if one desires to obtain a better ramp flow estimation performance (since density
estimation is seen to be insensitive to the choice of Q and R) by elaborating more on the
choice of the parameters Q and R. In particular, according to Fig. 7, the simple rule that
for low penetration rates the value of σρ needs to decrease, whereas the value of σR needs to
increase, may be considered.

Place Table 3 here
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4.4 Performance evaluation for varying penetration rates of connected

vehicles

The results of the estimation of segment densities and ramp flows for a 20% penetration rate
of connected vehicles are shown in Fig. 8 and Fig. 9, respectively, when the speed fed to
the filter is calculated via (24) with n = 6. It is evident from the plots that the proposed
scheme successfully estimates and dynamically tracks both segment densities and ramp flows
under various traffic conditions, including congested and free-flow conditions. Note also the
fast convergence of the estimates towards the real values, starting from remote initial val-
ues, which were deliberately chosen far from the real values in order to test the filter’s
convergence properties. The segment density estimation is characterized by a performance
index CVρ = 17.4%, whereas ramp flow estimation is characterized by a performance index
CVr,s = 39.0%. Note that we employ (22), (23) after the initial transient period of 20 minutes
(due to the initial estimation error) to ensure that this warm-up period is excluded from the
computation of the performance indices.

Place Fig 8 here

Place Fig 9 here

The performance indices of the estimation when the speed utilized by the filter is cal-
culated via (24) with n = 6 and with n = 12 are shown in Fig. 10, for various penetration
rates of connected vehicles. In the first case, the filter can estimate segment densities with
a satisfactory performance even for penetration rates as low as 2%. For unmeasured ramp
flows the results for penetration rates of 5% or lower are less satisfactory. In the second case,
the utilization of the longer moving average improves the estimated segment densities as well
as the unmeasured ramp flows, more evidently for penetration rates of 5% or lower. These
results are in accordance with Fig. 6.

Place Fig 10 here

In order to further investigate and demonstrate the specific contribution of the developed
Kalman filtering (KF) approach, we also developed a less systematic, but still thoughtful
and reasonable, ad-hoc estimation scheme to be used as a baseline for comparison. The
baseline ad-hoc estimator has the same data requirements and is based on similar modeling
assumptions as the KF approach, albeit without the inherent quality properties provided
by the Kalman Filter. Specifically, for the ad-hoc estimator, we subdivide the freeway into
homogeneous parts j = 1, 2, . . . , where each part comprises all segments included between
two ramps. We call these freeway parts “homogeneous” because they include no ramps that
would alter systematically the traffic conditions in the included segments. Thus, referring
to Fig. 2, part 1 comprises segments 1–7, part 2 comprises segments 8 and 9, and so forth.
For each freeway part j, we compute in real time one single corresponding average speed vj
utilizing connected vehicle reports in the same way it is also calculated for the KF estimator.
Thus, the average speed vj is computed by averaging all speed reports from connected
vehicles which are located within each homogeneous freeway part j. Using this speed and
the available fixed-detector-measured total mainstream flow qj of the same freeway part, we
may derive a density estimate for each freeway part j (i.e. for all its segments) from ρj =

qj
vj
.

Fig. 11 compares the density estimation performances of the KF estimator and the ad-hoc
baseline scheme. It may be seen that the KF estimator achieves clearly better density estima-
tion performance at all penetration rates, particularly as the penetration rate increases, where
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the improvement becomes all the more significant. In addition, for the baseline scheme, it is
not clear how one could also be enabled to estimate unmeasured on-ramp or off-ramp flows,
as it is done with the KF scheme. Also, the ad-hoc estimator does not allow for exploitation
of additional on-ramp or off-ramp flow measurements, in cases where such measurements
might be available, to improve the density estimation accuracy. In summary, the baseline
estimator is indeed less accurate, less general and less flexible than the proposed systematic
KF-based estimation scheme.

Place Fig 11 here
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Fig. 4: Average speed of all vehicles in the employed simulation scenario of mixed traffic

comprising conventional and connected vehicles.

25



Penetration rate (%)
2 5 10 20 50

T
im

e
in
te
rv
al
s
(%

)

0

20

40

60

80

100

Connected vehicles
ACC-equipped vehicles
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Q σρ σr,s H

diag(σρ × IN , σr,s × I(lr+ls)) 1 0.03 I(N+lr+ls)

R σR µ

diag(σR × I(lr+ls)) 100 (15, . . . , 15, 5, . . . , 5)T

Table 3: Filter parameters used in the simulation.
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Fig. 8: Comparison between real (black line) and estimated (blue line) density per lane in

veh/km for all network segments for mixed traffic with a 20% penetration rate of connected

vehicles.
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5 Mixed traffic estimation results in the presence of conven-

tional and ACC-equipped vehicles

5.1 Model of the ACC-equipped vehicles

In this section, in order to further evaluate the performance of the proposed estimation
scheme under more heterogeneous conditions, we consider a scenario of mixed traffic com-
prising conventional vehicles and connected vehicles equipped with an ACC system. ACC-
equipped connected vehicles can communicate data to the central authority concerning their
state, but feature a different car-following behavior than conventional vehicles. Thus, we
evaluate the performance of our estimation scheme not only when data, gathered from the
central authority, stem from a small fraction of the total vehicle population, but also when
these connected vehicles behave differently than conventional vehicles.

For our experiments, ACC-equipped vehicles are characterized by a different car-following
model than the one used for conventional vehicles. While the default car-following model
implemented in Aimsun is the Gipps model (Gipps, 1981, 1986), we consider the following
Constant Time-Gap (CTG) model for an ACC-equipped vehicle i, used in Rajamani et al.
(2005), similar to the one proposed by Liang and Peng (1999),

ẍi = K1(xi−1 − xi − Li−1 − hdẋi) +K2(ẋi−1 − ẋi), (25)

where index i−1 refers to the vehicle preceding vehicle i; xi, ẋi, and ẍi are the position, speed,
and acceleration of vehicle i, respectively; Li is the length of vehicle i; hd is the desired time-
headway; and K1, K2 are control gains. Moreover, the acceleration ẍ is restricted between
di and αi, which are the maximum deceleration and acceleration of vehicle i, respectively. In
addition, when the speed of vehicle i computed based on (25) surpasses a certain threshold,
say V ∗

i , then it is set equal to this maximum speed. The values for the parameters of the
model described by (25) are given in the next section.

5.2 Experimental configuration

We consider the scenario described in Section 3. The control gains are set at the values
proposed by Liang and Peng (1999), namely K1 = 1.12 and K2 = 1.70. Moreover, the time
headway hd is chosen in the lower side of the typical range (Kesting et al., 2007), randomly
set for each ACC vehicle, according to a bounded, between 0.5 and 2 s, normal distribution
with a mean of 0.8 s and an SD of 0.2 s. Finally, we set the simulation step equal to 0.2 s.

Since ACC-equipped vehicles feature a different behavior than conventional vehicles and,
as mentioned in Section 1, a substantial percentage of ACC-equipped vehicles affects directly
the traffic dynamics, different traffic conditions are expected in a scenario with mixed traffic
comprising conventional and ACC-equipped vehicles than in the case of conventional and
connected vehicles discussed in Section 4. As in Section 4, we evaluate the performance of
the estimation scheme for a variety of penetration rates of ACC-equipped vehicles and con-
sider 10 simulation replications for each penetration rate. Fig. 12 shows the traffic conditions
created for a 20% penetration rate of ACC-equipped vehicles. Comparing Fig. 12 with Fig. 4,
one can see that, due to the presence of ACC-equipped vehicles, congestion is milder than
with conventional vehicles only. In this case, congestion is created during the second hour of
the simulation, at segments 12 and 8, where the first two on-ramps are located, and propag-
ates upstream reaching segment 6. At the location of the third on-ramp, i.e., at segment 16,
some reduction of speed is observed, but without a severe congestion being evident. Halfway
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through the third hour of the simulation, after the inflows at the network entry and at on-
ramp 12 are decreased, free flow conditions are restored until the end of the simulation time.

Place Fig 12 here

5.3 Computation of the measurements utilized by the estimator

As explained in Section 4.2, the developed estimation scheme is based on the assumption
that the average connected vehicles speed roughly equals the average conventional vehicles
speed. However, since the behavior of ACC-equipped vehicles differs from the behavior of
conventional vehicles, we need to re-examine the accuracy of this assumption for the case
of mixed traffic comprising ACC-equipped and conventional vehicles. Similar issues as in
the case of regular connected vehicles described in Section 4.2, appear also when calculating
the average segment speed from reports of ACC-equipped vehicles. Besides the problem of
no ACC-equipped vehicle being present in a segment during a time interval of T = 10 s in
cases of low penetration rates, the different behavior between the two types of vehicles also
increases the inaccuracy in the computation of the average segment speed. The black line
in Fig. 5 shows the percentage of time intervals of T = 10 s that feature no ACC-equipped
vehicle report, averaged over all segments and replications. The results are very similar
with the conventional connected vehicles case, showing that for penetration rates of 10%
or lower a substantial percentage of time intervals are bare of reports from ACC-equipped
vehicles. Consequently, we need to employ (24) for computing the speed that is utilized by
the estimator.

Fig. 13 shows the mean and SD of the error between the actual segment speed (all vehicles)
and the speed that we feed the filter for the case of mixed traffic featuring conventional and
ACC-equipped vehicles when utilizing (24) with n = 6 and n = 12. It is evident in the plots
that for penetration rates lower than 10% there is a bias in the mean error that is similar for
both cases, while the SD of the error is smaller for n = 12. For penetration rates higher than
20%, there is a smaller bias for both cases, while the SD of the error is slightly smaller for
n = 6. The results exhibit a similar pattern with the conventional connected vehicles case,
however, both the bias and SD of the error are larger in the ACC-equipped vehicles case,
indicating that the speed that we feed the filter is less representative of the overall segment
speed than in the connected vehicles case.

Place Fig 13 here

5.4 Performance evaluation for varying penetration rates of ACC-equipped

vehicles

We consider the same values for the filter parameters as in the case of regular connected
vehicles, which are shown in Table 3. Moreover, we employ (24) with n = 12 for the speed
utilized by the estimator, since, as shown in Fig. 13, the speed calculated with n = 12 is
more representative of the overall segment speed for most penetration rates. The results of
the segment densities estimation for a penetration rate of 20% of ACC-equipped connected
vehicles are shown in Fig. 14, while results of ramp flows estimation are shown in Fig. 15.
The estimation results appear accurate for segment densities as well as ramp flows, with
resulting performance indices equal to CVρ = 19.1% and CVr,s = 42.3%, respectively. Per-
formance indices of the estimation for various penetration rates are shown in Fig. 16. The
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results of density and ramp flow estimation are satisfactory for penetration rates of 5% or
higher, whereas the estimation results are fair for penetration rates lower than 5%.

Place Fig 14 here

Place Fig 15 here

Place Fig 16 here

5.5 Performance evaluation for varying penetration rates of ACC-equipped

vehicles with a look-ahead speed feature

In this section we test the performance of the proposed estimation scheme in the case of mixed
traffic comprising conventional and ACC-equipped vehicles when ACC-equipped vehicles
report to the central authority the speed of the preceding vehicle besides their own. As
mentioned in Section 2.1.2, ACC-equipped vehicles are capable of acquiring the speed and
position of the preceding vehicle via on-board sensors with a range of up to 200 m (Abou-
Jaoude, 2003). To this end, we implement a system in which, whenever an ACC-equipped
vehicle reports its location and speed to the central authority, it also reports the speed of
the preceding vehicle, if the distance of the latter is lower than 200 m and the preceding
vehicle is not reporting its own speed at the same time. In reality, this may be achieved by
the central authority, which can identify the duplicate information from the two vehicles by
matching their position and discard the unnecessary report.

We consider the traffic network and scenario used in Section 5.4 and we simulate 10
replications for each penetration rate when ACC-equipped vehicles feature extended speed
reports. Remarkably, the performance of the estimation when ACC-equipped vehicles feature
extended reports is found to be virtually identical to the performance of the estimation when
ACC-equipped vehicles feature normal reports, as in Fig. 16.

This can be explained by the fact that the speed of the preceding vehicle is typically very
similar to the ACC-equipped vehicle’s speed (thus no new speed information is provided)
because, in most of the simulation experiments, ACC-equipped vehicles are able to track the
speed of the preceding vehicle, maintaining a specific time-gap between the two vehicles, with
a high precision (although, in general, tracking performance may depend on the parameters
of the ACC model, the specific ACC law, possible actuator delays, etc.). Moreover, in cases
where there are no ACC-equipped vehicles passing through a segment for a specific time
interval, the problem of the lack of information remains regardless of the look-ahead feature,
and thus, there is no improvement in the estimation performance.
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Fig. 12: Average speed of all vehicles in the employed simulation scenario of mixed traffic

comprising conventional and ACC-equipped vehicles.
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Fig. 13: Mean and SD of the error between actual segment speed (all vehicles) and speed

utilized by the estimation scheme averaged over all segments and over 10 simulation rep-

lications against penetration rate of ACC-equipped vehicles when the speed utilized by the

estimator is calculated via (24) for n = 6 (top) and n = 12 (bottom).
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Fig. 14: Comparison between real (black line) and estimated (blue line) densities in

veh/km/lane for all network segments for mixed traffic with a 20% penetration rate of ACC-

equipped vehicles.
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Fig. 15: Comparison between real (black line) and estimated (blue line) ramp flows in veh/h

for all network ramps for mixed traffic with a 20% penetration rate of ACC-equipped vehicles.
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6 Conclusions

The estimation scheme proposed in Bekiaris-Liberis et al. (2016) has been thoroughly tested
in a microscopic simulation platform using the traffic simulator Aimsun of TSS (Transport
Simulation Systems, 2014). A highway stretch that contains on-ramps and off-ramps and fea-
tures a dynamic inflow demand has been employed for testing the estimation performance in
both congested and free-flow conditions for varying penetration rates of connected vehicles,
in two different scenarios. In the first scenario, conventional and connected vehicles have
statistically identical car-following behavior; whereas in the second scenario the connected
vehicles are ACC-equipped and feature a different car-following behavior than conventional
vehicles. In both cases the proposed scheme has proven effective in estimating segment dens-
ities and ramp flows for various penetration rates of connected vehicles. More specifically, in
the case of conventionally-driven connected vehicles, density estimation is very satisfactory
for penetration rates as low as 2%, while ramp flow estimation is very satisfactory for penet-
ration rates of 5% or higher, but fair even at lower penetrations. In the case of ACC-equipped
connected vehicles with strongly different longitudinal behavior compared to conventional
vehicles, density estimation is very satisfactory for penetration rates of 5% or higher, but
fair even at lower penetrations; while ramp flow is very satisfactory for penetration rates of
10% or higher, but fair even at lower penetrations. Moreover, an additional scenario, where
ACC-equipped vehicles can also report the speed of the preceding vehicle, has been tested.
The results have shown that this addition does not improve the estimation performance.

Finally, the density estimation performance was demonstrated to be quite insensitive to
the choice of the filter parameters, whereas ramp flow estimation was more sensitive. The
former indicates that no serious fine-tuning effort will be required in field applications where
priority is given to the availability of density estimates.

The proposed estimation scheme has several advantages for possible future real-world
applications, including its simplicity, the use of a limited amount of fixed sensors, and the
use of connected vehicles data, which constitute a growing source of real-time traffic inform-
ation. Our current research focuses on the development of a multi-lane estimation scheme
for per-lane density estimation, which may provide more detailed information about highway
traffic conditions. Future research includes real-data as well as microscopic simulation-based
testing of the performance of the proposed estimation scheme when it is combined with the
alternative estimation scheme presented in Bekiaris-Liberis et al. (2016) or with the speed
estimation scheme from Rempe and Bogenberger (2016) (aiming at achieving better overall
estimation performance).
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