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Brief Communications

Hilar Mossy Cells Provide the First Glutamatergic Synapses
to Adult-Born Dentate Granule Cells

Jessica H. Chancey,1 David J. Poulsen,2 Jacques I. Wadiche,1 and Linda Overstreet-Wadiche1

1McKnight Brain Institute and Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294 and 2Department of

Biomedical & Pharmaceutical Sciences, University of Montana, Missoula, Montana 59812

Adult-generated granule cells (GCs) in the dentate gyrus must establish synapses with preexisting neurons to participate in network

activity. To determine the source of early glutamatergic synapses on newborn GCs in adult mice, we examined synaptic currents at the

developmental stage when NMDA receptor-mediated silent synapses are first established. We show that hilar mossy cells provide initial

glutamatergic synapses as well as disynaptic GABAergic input to adult-generated dentate GCs.

Key words: adult neurogenesis; circuit; dentate gyrus; GABA; glutamate; synaptic

Introduction
Synaptic integration of adult-generated granule cells (GCs) has
been well characterized as a multistage process that occurs over
many weeks. Newborn GCs first receive synapses from local
GABAergic interneurons in the first week after mitosis followed
by glutamatergic synapses during the second and third postmi-
totic week (Espósito et al., 2005; Ge et al., 2006; Kumamoto et al.,
2012). GABAergic innervation by interneurons that generate
slow postsynaptic currents, like Ivy/Neurogliaform cells (Mark-
wardt et al., 2011), is followed by innervation by perisomatic-
projecting interneurons around the time when glutamatergic
innervation is strengthening and outputs onto hilar neurons and
CA3 pyramidal cells is established (Espósito et al., 2005; Faulkner
et al., 2008; Gu et al., 2012). Synaptic integration continues over
subsequent weeks, eventually resulting in functional connectivity
that is indistinguishable from GCs generated in the postnatal
period (Laplagne et al., 2006). Due to the role of the earliest
synaptic connections in activity-dependent maturation and sur-
vival, recent attention has focused on the cellular identity of the
initial synaptic partners (Markwardt et al., 2011; Song et al., 2012;
Vivar et al., 2012; Deshpande et al., 2013).

Here we identify the source of early glutamatergic synapses on
adult-generated neurons. Pro-opiomelanocortin-enhanced green
florescent protein (POMC-EGFP) reporter mice label newborn
GCs at an early developmental stage when the first NMDA recep-
tor (NMDAR)-only silent synapses are established (Chancey et
al., 2013). POMC-EGFP newborn GCs are �11–12 d postmitotic

(Overstreet-Wadiche et al., 2006a), consistent with retroviral la-
beling studies demonstrating that glutamatergic synapse forma-
tion initiates in the second week after retroviral infection (Ge et
al., 2006; Kumamoto et al., 2012). POMC-EGFP newborn GCs
have dendrites mainly restricted to the inner molecular layer
(IML; Overstreet-Wadiche et al., 2006a,b); thus, glutamatergic
terminals could arise from (1) hilar mossy cells (MCs) that form
the associational/commissural pathway located in the IML, (2)
projection neurons in the medial entorhinal cortex (MEC) that
comprise the medial perforant path (MPP) located in the middle
molecular layer (MML) that may also impinge into the IML, or
(3) mossy fibers (MFs) from mature GCs (Vivar et al., 2012). We
use pharmacology and optogenetics to distinguish between these
possibilities.

Materials and Methods
Adult (�8 weeks old) female hemizygous POMC-EGFP transgenic mice
(Cowley et al., 2001; Overstreet et al., 2004) were maintained on a
C57BL/6J background. Animal procedures followed the Guide for the
Care and Use of Laboratory Animals, U.S. Public Health Service, and were
approved by the University of Alabama at Birmingham Institutional
Animal Care and Use Committee. Mice were housed in an enriched
environment.

The pAAV-hSyn-hChR2(H134)-mCherry construct from K. Deis-
seroth (Stanford University, Stanford, CA) was purchased from Ad-
dgene (plasmid 26976) and packaged into recombinant adeno-
associated virus (AAV8) with a titer of 6 � 10 13 genomic particles/ml.
Approximately 1.5 � 10 7 HEK 293T cells were seeded in complete
DMEM (Cellgro) with 10% fetal bovine serum, 1 mM MEM sodium
pyruvate, 0.1 mM MEM nonessential amino acids solution, and 0.05%
Penicillin-Streptomycin (5000 U/ml). After 24 h, media was changed
to culture media containing 5% fetal bovine serum, and cells were
transfected with three plasmids: Adeno helper plasmid (pF�6), AAV
helper encoding serotype 8 (pAR-8 obtained from Miguel Senna Es-
tevez (University of Massachusetts Medical School, Worcester, MA)
(Broekman et al., 2006), and the AAV transgene vector containing the
hSyn-hChR2(H134)-mCherry expression cassette flanked by the
AAV2 inverted terminal repeats. Plasmids were transfected using
Polyfect (Qiagen). Cultures were incubated at 37°C, 5% CO2 for 72 h,
and then pelleted by centrifugation and resuspended in 10 mM Tris,
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pH 8.0. Cells were lysed by three freeze-thaw
cycles in a dry ice-ethanol bath followed by
treatment with 50 U benzonase (Novagen)
and 0.5% sodium deoxycholate for 30 min at
37°C, and then three sonication cycles. Virus
was purified by density gradient centrifuga-
tion in iodixinol according to the method of
Zolotukhin et al. (1999). Purified virus prep-
arations were concentrated and desalted in
sterile artificial CSF (ACSF) by centrifuga-
tion in Millipore Ultrafree 15 filter devices.
The titer of each virus (genomic particles/
ml) was determined by quantitative reverse
transcriptase-PCR using primers and a probe
specific for the WPRE (woodchuck hepatitis
post-transcriptional regulatory element) se-
quence. The AAV2-hSyn-hChR2(H134)-
EYFP (10 12 titer) from K. Deisseroth was
purchased from the University of North Car-
olina Vector Core.

Mice were anesthetized with ketamine (50
mg/kg) and medetomide (0.5 mg/kg). Coordi-
nates from bregma to target the hilus were 3.00
mm posterior and 2.50 –2.70 mm lateral, and
0.2 �l of virus was injected at each of two
depths: 3.00 and 2.70 mm from dura. Coordi-
nates to target the MEC were 3.80 mm poste-
rior, 4.00 mm lateral, and 3.40 and 3.20 mm deep. Mice were given
intraperitoneal injections of Buprenex (0.1 mg/kg) and Atipamezole
(0.25 mg/kg), and 1 ml of warm saline subcutaneously.

Three to 8 weeks after injections, horizontal hippocampal slices
were prepared (Chancey et al., 2013). Slices were bathed in �32°C
ACSF containing the following (in mM): 125 NaCl, 2.5 KCl, 1.25
Na2PO4, 2 CaCl2, 1 MgCl2, 25 NaHCO3, and 25 D-glucose bubbled
with 95% O2/5% CO2, at a rate of �2 ml/min. For most experiments,
whole-cell recording pipettes contained the following (in mM): 120
Cs-gluconate, 17.5 CsCl, 4 MgCl2, 10 HEPES, 4 Mg-ATP, 0.3 Na-
GTP, 7 phosphocreatine, and 10 EGTA, pH 7.2. The [CsCl] was re-
duced to 1.2 mM for experiments (see Fig. 4). For channelrhodopsin
(ChR2)-expressing cells (see Fig. 2A), patch pipettes contained the
following (in mM): 150 K gluconate, 1 MgCl2, 1.1 EGTA, 5 HEPES, 10
phosphocreatine, 0.2% biocytin, pH 7.2. Synaptic stimulation was
delivered using a patch pipette filled with ACSF and a constant cur-
rent stimulator (Digitimer, Ltd.). Initial experiments used full-field
illumination controlled by a Smart Shutter (Sutter Instruments) and
a mercury lamp with a GFP filter set (Semrock; see Fig. 2). Subsequent
experiments used a 455 nm LED mounted in the epifluorescence light
path controlled by an external driver (DC2100; ThorLabs). Series
resistance was uncompensated (8 –35 M�), and junction potentials
were not corrected. Recordings were filtered at 2 kHz and sampled at
10 kHz (MultiClamp 700B; Molecular Devices). Data were acquired
and analyzed with AxoGraph X (AxoGraph Scientific) and Prism
(GraphPad Software).

After recordings, slices were processed as described previously
(Markwardt et al., 2011; Chancey et al., 2013) using a combination of
streptavidin-Alexa Fluor 647 (1:1000; Life Technologies), Living Col-
ors DsRed polyclonal antibody (1:1000; Clontech), anti-GFP Alexa
Fluor 488 (1:1000; Life Technologies), and goat anti-rabbit Alexa
Fluor 568 (1:400; Life Technologies).

Results
Pharmacological identification of IML- and
MPP-evoked EPSCs
To confirm the pharmacological signature of glutamate release
from MCs and MPP terminals, we first recorded EPSCs from
mature GCs while stimulating in the IML or MML, respec-
tively. MPP terminals contain Group II mGluRs that decrease
release probability (Macek et al., 1996; Kilbride et al., 2001;

Chiu and Castillo, 2008). Thus, the Group II mGluR agonist
(2S,20 R,30 R)-2-[20,30-dicarboxycyclopropyl]glycine (DCG-
IV; 1 �M) reduced MML-evoked EPSCs and increased the
paired-pulse ratio (PPR; Fig. 1A; 69 � 4% reduction; PPR:
0.87 � 0.07 to 1.35 � 0.10, p � 0.01, paired t test). IML-
evoked EPSCs, however, were minimally affected by DCG-IV
(21 � 11% reduction, p � 0.001 compared with MML EPSCs,
ANOVA with post hoc Bonferroni; PPR: 0.92 � 0.11 to 0.94 �

0.14, p 	 0.45). Conversely, MC terminals contain presynaptic
type I cannabinoid (CB1) receptors (Chiu and Castillo, 2008).
The CB1 agonist WIN 55,212–2 (WIN; 5 �M) selectively
reduced IML-evoked EPSCs compared with MML-evoked EPSCs
(Fig. 1B; 61 � 10% reduction compared with 20 � 9%, respectively,
p � 0.01), and increased the PPR of IML-evoked EPSCs (IML:
0.90 � 0.04 to 1.36 � 0.19, p � 0.05; MML: 0.88 � 0.06 to 0.94 �

0.10, p 	 0.25, data not shown). Pharmacologically isolated
NMDAR mediated ESPCs evoked by IML stimulation (recorded at

40 mV) were blocked by WIN to a similar extent (78 � 3% block,
n 	 4, p � 0.05; data not shown). Thus, sensitivity to DCG-IV and
WIN can be used to distinguish between glutamate release from
MPP and MC terminals.

We next tested the pharmacological sensitivity of gluta-
mate release onto POMC-EGFP newborn GCs. Since glutama-
tergic transmission at this stage is primarily mediated by
NMDARs (Chancey et al., 2013), we monitored glutamatergic
release at 
40 mV in response to focal stimulation near new-
born GC dendrites. We detected small-amplitude NMDAR
EPSCs in 50 of 92 cells (8.7 � 1.3 pA). NMDAR EPSCs were
relatively insensitive to the mGluR agonist DCG-IV (Fig. 1A;
21 � 5% reduction, p � 0.05 compared with IML EPSCs in
mature GCs) but were reduced by the CB1 agonist WIN (Fig.
1B; 61 � 4% reduction, p � 0.05 compared with IML-evoked
EPSCs in mature GCs). In addition, WIN increased the PPR
from 0.78 � 0.09 to 1.21 � 0.19 ( p � 0.05), whereas DCG-IV
had no effect on PPR (0.74 � 0.06 to 0.70 � 0.05, p 	 0.32).
These results suggest that the initial glutamatergic input to
adult-born GCs is from MCs. Since MF synapses from mature
GCs also express Group II mGluRs (Manzoni et al., 1995;
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Figure 1. Pharmacology suggests innervation by mossy cells. A, Left, AMPA EPSCs from mature GCs before (black) and after

(red) DCG-IV in response to IML or MML stimulation. Right, NMDAR EPSCs in newborn GCs. Bottom, DCG-IV reduced MML-evoked

EPSCs (black, n 	 9), but not IML-evoked EPSCs (gray, n 	 9) in mature GCs or newborn GCs (green, n 	 10). B, EPSCs before and

after WIN 55 212-2 application (red). Bottom, WIN reduced IML-evoked EPSCs in mature GCs (n 	 9) and newborn GCs (n 	 15),

but did not affect MML-evoked EPSCs in mature GCs (n 	 11).
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Kwon and Castillo, 2008), these results also argue against the
possibility that the earliest innervation arises from neighbor-
ing mature GCs (Vivar et al., 2012).

Optogenetic activation of MCs and MPP
To selectively activate MCs, we injected AAV carrying synapsin
promoter-driven ChR2 tagged with either mCherry (ChR2-

mCherry) or EYFP (ChR2-EYFP) into the
right hilus of POMC-EGFP mice. Many
cells near the injection site were infected,
including MCs, interneurons, and GCs
(Fig. 2A). MCs that expressed ChR2 were
identified by characteristic morphology in-
cluding thorny excrescences and physiolog-
ical properties including a high frequency of
spontaneous EPSPs and nonaccommodat-
ing action potentials (APs) with little after-
hyperpolarization (Scharfman and Myers,
2012). ChR2-expressing MCs depolarized
in response to brief pulses of blue light
and fired APs (Fig. 2A, inset). AP firing,
but not ChR2-mediated depolarization,
was blocked by TTX (data not shown).

MCs project axons along the septo-
temporal axis to distal areas of the ipsilateral
dentate gyrus (DG; associational pathway)
and to the contralateral DG (Ribak et al.,
1985; Ratzliff et al., 2004; Scharfman and
Myers, 2012; commissural pathway). We
found robust ChR2 expression in the hilus
and IML of the contralateral (left) DG (Fig.
2B). In the presence of the GABAA receptor
antagonist picrotoxin (PTX), blue light
pulses (1 or 10 ms) evoked EPSCs in mature
GCs (Fig. 2C). Light-evoked EPSCs were
blocked by WIN to a degree similar to that
of electrically evoked IML EPSCs (70 �

6% reduction; n 	 4; p � 0.05). Further-
more, light-activated NMDAR EPSCs
recorded at 
40 mV were blocked by
WIN to a similar extent (67 � 10%
block, n 	 4, p � 0.05; data not shown).

We also injected AAV-ChR2 into the
entorhinal cortex to drive expression in
the MPP, resulting in axonal labeling in
the MML of the ipsilateral DG (Fig. 2D,E).
Light-evoked EPSCs in mature GCs were
sensitive to DCG-IV to an extent similar
to electrically evoked MML EPSCs (Fig.
2F, 66% reduction, n 	 3, p � 0.05). Thus,
ChR2 can be used to selectively activate
extrahippocampal and intrahippocam-
pal excitatory inputs (Kumamoto et al.,
2012).

Mossy cells innervate newborn GCs
To determine whether selective activa-
tion of MCs could evoke EPSCs in new-
born GCs, we first found contralateral
slices with sufficient MC axonal ChR2
expression to evoke light-activated EP-
SCs in mature GCs (as in Fig. 2B,C).
Light-evoked EPSCs were smaller than

electrically evoked EPSCs (Fig. 3A; 34 � 6 pA and 128 � 27
pA, respectively; p � 0.01, paired t test, n 	 15), suggesting
that not all IML fibers expressed ChR2. After testing for ChR2
expression by first recording from mature GCs, we subsequently
identified neighboring newborn GCs that had electrically evoked
NMDAR EPSCs (Fig. 3A, bottom). Under these conditions, we
found light-activated EPSCs in 62% of newborn GCs (13 of 21
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cells), confirming MCs provide early glu-
tamatergic inputs. Light-activated re-
sponses in newborn GCs were blocked by
NBQX and AP5 (n 	 3; data not shown),
as well as WIN (n 	 4). Unlike mature
GCs, light-activated EPSCs in newborn
GCs had the same amplitude as electri-
cally evoked EPSCs (12 � 2 pA and 15 � 3
pA; p 	 0.3, paired t test, n 	 9), indicative
of the largely all-or-none nature of the ini-
tial glutamatergic inputs (Chancey et al.,
2013).

To determine whether MPP also
contributes to glutamate release to new-
born GCs, we followed the same exper-
imental paradigm with MEC-injected
mice. We first found ipsilateral slices
with sufficient MPP ChR2 expression to
induce light-evoked EPSCs in mature
GCs (Fig. 3B; 30 � 11 pA compared with
145 � 20 pA for electrically evoked EP-
SCs; n 	 14, p � 0.001). In neighboring
newborn GCs that had EPSCs evoked by
electrical stimulation, we never detected
light-activated EPSCs (Fig. 3B, bottom;
0 of 14 cells). In addition, ChR2 expres-
sion in the lateral perforant path did not
drive EPSCs in newborn GCs (n 	 0 of 6;
data not shown), suggesting that connec-
tivity to the perforant path was not yet
established.

Mossy cells drive GABA release onto
newborn GCs
Although the MPP does not innervate
POMC-EGFP
 newborn GCs, MPP
stimulation can provide depolarization
through feedforward GABA release
(Overstreet Wadiche et al., 2005). We
therefore asked whether MCs could also
provide GABA release to newborn GCs. In
contralateral slices from AAV-ChR2
hilar-injected mice (in the absence of
PTX), we first found that light evoked
both EPSCs (recorded at EGABA 	 �70
mV) and IPSCs (recorded at Eglutamate 	 0

mV) in mature GCs. Consistent with MC-

evoked disynaptic inhibition of GCs

(Jinde et al., 2012), light-evoked IPSCs were completely blocked

by either NBQX or PTX (Fig. 4A; n 	 4 and 3, respectively).

Neighboring newborn GCs also showed light-evoked disynaptic

GABAA receptor-mediated PSCs that were blocked by either

NBQX or PTX (Fig. 4B; n 	 3 and 4, respectively). In PTX,

subsequent recording at 
40 mV revealed monosynaptic

NMDA EPSCs (Fig. 4B, bottom). Thus, MCs generate both

monosynaptic glutamate and disynaptic GABA release to new-

born GCs. As expected, the latency of disynaptic GABA PSCs

was longer than that of monosynaptic NMDAR EPSCs (6.7 �

1.4 ms vs 3.4 � 0.5 ms, p � 0.05). Yet, the duration of GABA

PSCs and NMDA EPSCs was similar (Fig. 4C; decay � 	 78 �

15 vs 81 � 11 ms, p 	 0.8; n 	 7 and 10), suggesting that

MC-evoked GABAergic depolarization could potentially con-

tribute to relief of the voltage-dependent Mg 2
 block at ini-
tially silent MC synapses (Chancey et al., 2013).

Discussion
Hilar MCs are innervated by the perforant path, CA3 pyrami-
dal cells, and GC MFs and, in turn, provide translaminar ex-
citatory connections in the septo-temporal axis to ipsilateral
and contralateral GCs and interneurons (Williams et al., 2007;
Scharfman and Myers, 2012; Jinde et al., 2013). Our results
show that MCs are poised to translate intrahippocampal and
extrahippocampal activity to adult-born neurons during a
critical period for survival when the first excitatory synapses
are established (Chancey et al., 2013).

Consistent with our findings, Kumamoto et al. (2012) re-
ported EPSCs arising from both MCs and perforant path ax-
ons in newly generated GCs at 14 d post-retroviral labeling.
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PTX revealed NMDA EPSCs blocked by AP5 (50 �M; green, n 	 2). C, The NMDA EPSC and GABA PSC from the same newborn GC are

overlaid to show the similar time course.
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Rabies virus-mediated trans-synaptic tracing also reveals
time-dependent innervation from multiple cell types and
brain areas. Vivar et al. (2012) show trans-synaptic labeling
from 21-d-old GC cells in hilar MCs, local interneurons, as-
trocytes, and the entorhinal cortex. Surprisingly, they also
found evidence for transient innervation from mature GCs
and CA3 pyramidal cells. We found no functional evidence for
innervation by mature GCs, but we cannot rule out a potential
contribution by CA3 cells that can project to the IML (Li et al.,
1994). Our results are consistent with trans-synaptic viral la-
beling of hilar MCs during the second postmitotic week fol-
lowed by MEC labeling in the third postmitotic week
(Deshpande et al., 2013). Since mechanisms of viral tracing are
unclear and synaptic signaling can occur via spillover from
distantly located release sites (Markwardt et al., 2009, 2011;
Capogna and Pearce, 2011; Coddington et al., 2013), a com-
bination of functional and anatomical approaches provides
the clearest understanding of synaptic communication.

Our results suggest that MCs play an important role in regu-
lating neurogenesis by providing early glutamatergic synapses to
newly generated GCs. At this developmental stage, GABAergic
depolarization allows NMDAR activation required for AMPA
receptor incorporation at silent synapses (Chancey et al., 2013),
suggesting a need for coordinated GABAergic and glutamatergic
signaling. MC-evoked disynaptic GABA signaling to newborn
GCs thus potentially provides the circuitry to synchronize gluta-
mate and GABA release for activity-dependent synapse unsilenc-
ing (Chancey et al., 2013). Interestingly, selective loss of MCs
impairs pattern separation (Jinde et al., 2012), a DG-associated
task that has been linked to adult-born neurons (Clelland et al.,
2009; Sahay et al., 2011; Nakashiba et al., 2012; Niibori et al.,
2012). MC innervation of adult-generated neurons could also
promote the participation of adult-generated neurons in DG net-
work activity.

References
Broekman ML, Comer LA, Hyman BT, Sena-Esteves M (2006) Adeno-

associated virus vectors serotyped with AAV8 capsid are more efficient
than AAV-1 or -2 serotypes for widespread gene delivery to the neo-
natal mouse brain. Neuroscience 138:501–510. CrossRef Medline

Capogna M, Pearce RA (2011) GABAA,slow: causes and consequences.
Trends Neurosci 34:101–112. CrossRef Medline

Chancey JH, Adlaf EW, Sapp MC, Pugh PC, Wadiche JI, Overstreet-Wadiche
LS (2013) GABA depolarization is required for experience-dependent
synapse unsilencing in adult-born neurons. J Neurosci 33:6614 – 6622.
CrossRef Medline

Chiu CQ, Castillo PE (2008) Input-specific plasticity at excitatory synapses
mediated by endocannabinoids in the dentate gyrus. Neuropharmacol-
ogy 54:68 –78. CrossRef Medline

Clelland CD, Choi M, Romberg C, Clemenson GD Jr, Fragniere A, Tyers P,
Jessberger S, Saksida LM, Barker RA, Gage FH, Bussey TJ (2009) A
functional role for adult hippocampal neurogenesis in spatial pattern
separation. Science 325:210 –213. CrossRef Medline

Coddington LT, Rudolph S, Vande Lune P, Overstreet-Wadiche L, Wadiche
JI (2013) Spillover-mediated feedforward inhibition functionally segre-
gates interneuron activity. Neuron 78:1050 –1062. CrossRef Medline

Cowley MA, Smart JL, Rubinstein M, Cerdán MG, Diano S, Horvath TL,
Cone RD, Low MJ (2001) Leptin activates anorexigenic POMC neurons
through a neural network in the arcuate nucleus. Nature 411:480 – 484.
CrossRef Medline

Deshpande A, Bergami M, Ghanem A, Conzelmann KK, Lepier A, Gotz M,
Berninger B (2013) Retrograde monosynaptic tracing reveals the
temporal evolution of inputs onto new neurons in the adult dentate
gyrus and olfactory bulb. Proc Natl Acad Sci U S A 110:E1152–E1161.
CrossRef

Espósito MS, Piatti VC, Laplagne DA, Morgenstern NA, Ferrari CC, Pitossi
FJ, Schinder AF (2005) Neuronal differentiation in the adult hippocam-

pus recapitulates embryonic development. J Neurosci 25:10074 –10086.

CrossRef Medline

Faulkner RL, Jang MH, Liu XB, Duan X, Sailor KA, Kim JY, Ge S, Jones EG,

Ming GL, Song H, Cheng HJ (2008) Development of hippocampal

mossy fiber synaptic outputs by new neurons in the adult brain. Proc Natl

Acad Sci U S A 105:14157–14162. CrossRef

Ge S, Goh EL, Sailor KA, Kitabatake Y, Ming GL, Song H (2006) GABA

regulates synaptic integration of newly generated neurons in the adult

brain. Nature 439:589 –593. CrossRef Medline

Gu Y, Arruda-Carvalho M, Wang J, Janoschka SR, Josselyn SA, Frankland

PW, Ge S (2012) Optical controlling reveals time-dependent roles for

adult-born dentate granule cells. Nat Neurosci 15:1700 –1706. CrossRef

Medline

Jinde S, Zsiros V, Jiang Z, Nakao K, Pickel J, Kohno K, Belforte JE, Nakazawa

K (2012) Hilar mossy cell degeneration causes transient dentate granule

cell hyperexcitability and impaired pattern separation. Neuron 76:1189 –

1200. CrossRef Medline

Jinde S, Zsiros V, Nakazawa K (2013) Hilar mossy cell circuitry controlling

dentate granule cell excitability. Front Neural Circuits 7:14. CrossRef

Medline

Kilbride J, Rush AM, Rowan MJ, Anwyl R (2001) Presynaptic group II

mGluR inhibition of short-term depression in the medial perforant path

of the dentate gyrus in vitro. J Neurophysiol 85:2509 –2515. Medline

Kumamoto N, Gu Y, Wang J, Janoschka S, Takemaru K, Levine J, Ge S (2012)

A role for primary cilia in glutamatergic synaptic integration of adult-

born neurons. Nat Neurosci 15:399 – 405. CrossRef Medline

Kwon HB, Castillo PE (2008) Role of glutamate autoreceptors at hippocam-

pal mossy fiber synapses. Neuron 60:1082–1094. CrossRef Medline

Laplagne DA, Espósito MS, Piatti VC, Morgenstern NA, Zhao C, van Praag H,

Gage FH, Schinder AF (2006) Functional convergence of neurons gen-

erated in the developing and adult hippocampus. PLoS Biol 4:e409.

CrossRef Medline

Li XG, Somogyi P, Ylinen A, Buzsáki G (1994) The hippocampal CA3 net-

work: an in vivo intracellular labeling study. J Comp Neurol 339:181–208.

CrossRef Medline

Macek TA, Winder DG, Gereau, RW 4th, Ladd CO, Conn PJ (1996) Differ-

ential involvement of group II and group III mGluRs as autoreceptors at

lateral and medial perforant path synapses. J Neurophysiol 76:3798 –

3806. Medline

Manzoni OJ, Castillo PE, Nicoll RA (1995) Pharmacology of metabotropic

glutamate receptors at the mossy fiber synapses of the guinea pig hip-

pocampus. Neuropharmacology 34:965–971. CrossRef Medline

Markwardt SJ, Wadiche JI, Overstreet-Wadiche LS (2009) Input-specific

GABAergic signaling to newborn neurons in adult dentate gyrus. J Neu-

rosci 29:15063–15072. CrossRef Medline

Markwardt SJ, Dieni CV, Wadiche JI, Overstreet-Wadiche L (2011) Ivy/

neurogliaform interneurons coordinate activity in the neurogenic niche.

Nat Neurosci 14:1407–1409. CrossRef Medline

Nakashiba T, Cushman JD, Pelkey KA, Renaudineau S, Buhl DL, McHugh TJ,

Rodriguez Barrera V, Chittajallu R, Iwamoto KS, McBain CJ, Fanselow

MS, Tonegawa S (2012) Young dentate granule cells mediate pattern

separation, whereas old granule cells facilitate pattern completion. Cell

149:188 –201. CrossRef Medline

Niibori Y, Yu TS, Epp JR, Akers KG, Josselyn SA, Frankland PW (2012)

Suppression of adult neurogenesis impairs population coding of sim-

ilar contexts in hippocampal CA3 region. Nat Commun 3:1253.

CrossRef Medline

Overstreet LS, Hentges ST, Bumaschny VF, de Souza FS, Smart JL, Santangelo

AM, Low MJ, Westbrook GL, Rubinstein M (2004) A transgenic marker

for newly born granule cells in dentate gyrus. J Neurosci 24:3251–3259.

CrossRef Medline

Overstreet Wadiche L, Bromberg DA, Bensen AL, Westbrook GL (2005)

GABAergic signaling to newborn neurons in dentate gyrus. J Neuro-

physiol 94:4528 – 4532. CrossRef Medline

Overstreet-Wadiche LS, Bensen AL, Westbrook GL (2006a) Delayed devel-

opment of adult-generated granule cells in dentate gyrus. J Neurosci 26:

2326 –2334. CrossRef Medline

Overstreet-Wadiche LS, Bromberg DA, Bensen AL, Westbrook GL

(2006b) Seizures accelerate functional integration of adult-generated

granule cells. J Neurosci 26:4095– 4103. CrossRef Medline

Ratzliff Ad, Howard AL, Santhakumar V, Osapay I, Soltesz I (2004)

Rapid deletion of mossy cells does not result in a hyperexcitable den-

Chancey et al. • Mossy Cells Innervate Newborn Granule Cells J. Neurosci., February 5, 2014 • 34(6):2349 –2354 • 2353

http://dx.doi.org/10.1016/j.neuroscience.2005.11.057
http://www.ncbi.nlm.nih.gov/pubmed/16414198
http://dx.doi.org/10.1016/j.tins.2010.10.005
http://www.ncbi.nlm.nih.gov/pubmed/21145601
http://dx.doi.org/10.1523/JNEUROSCI.0781-13.2013
http://www.ncbi.nlm.nih.gov/pubmed/23575858
http://dx.doi.org/10.1016/j.neuropharm.2007.06.026
http://www.ncbi.nlm.nih.gov/pubmed/17706254
http://dx.doi.org/10.1126/science.1173215
http://www.ncbi.nlm.nih.gov/pubmed/19590004
http://dx.doi.org/10.1016/j.neuron.2013.04.019
http://www.ncbi.nlm.nih.gov/pubmed/23707614
http://dx.doi.org/10.1038/35078085
http://www.ncbi.nlm.nih.gov/pubmed/11373681
http://dx.doi.org/10.1073/pnas.1218991110
http://dx.doi.org/10.1523/JNEUROSCI.3114-05.2005
http://www.ncbi.nlm.nih.gov/pubmed/16267214
http://dx.doi.org/10.1073/pnas.0806658105
http://dx.doi.org/10.1038/nature04404
http://www.ncbi.nlm.nih.gov/pubmed/16341203
http://dx.doi.org/10.1038/nn.3260
http://www.ncbi.nlm.nih.gov/pubmed/23143513
http://dx.doi.org/10.1016/j.neuron.2012.10.036
http://www.ncbi.nlm.nih.gov/pubmed/23259953
http://dx.doi.org/10.3389/fncir.2013.00014
http://www.ncbi.nlm.nih.gov/pubmed/23407806
http://www.ncbi.nlm.nih.gov/pubmed/11387397
http://dx.doi.org/10.1038/nn.3042
http://www.ncbi.nlm.nih.gov/pubmed/22306608
http://dx.doi.org/10.1016/j.neuron.2008.10.045
http://www.ncbi.nlm.nih.gov/pubmed/19109913
http://dx.doi.org/10.1371/journal.pbio.0040409
http://www.ncbi.nlm.nih.gov/pubmed/17121455
http://dx.doi.org/10.1002/cne.903390204
http://www.ncbi.nlm.nih.gov/pubmed/8300905
http://www.ncbi.nlm.nih.gov/pubmed/8985877
http://dx.doi.org/10.1016/0028-3908(95)00060-J
http://www.ncbi.nlm.nih.gov/pubmed/8532177
http://dx.doi.org/10.1523/JNEUROSCI.2727-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19955357
http://dx.doi.org/10.1038/nn.2935
http://www.ncbi.nlm.nih.gov/pubmed/21983681
http://dx.doi.org/10.1016/j.cell.2012.01.046
http://www.ncbi.nlm.nih.gov/pubmed/22365813
http://dx.doi.org/10.1038/ncomms2261
http://www.ncbi.nlm.nih.gov/pubmed/23212382
http://dx.doi.org/10.1523/JNEUROSCI.5173-03.2004
http://www.ncbi.nlm.nih.gov/pubmed/15056704
http://dx.doi.org/10.1152/jn.00633.2005
http://www.ncbi.nlm.nih.gov/pubmed/16033936
http://dx.doi.org/10.1523/JNEUROSCI.4111-05.2006
http://www.ncbi.nlm.nih.gov/pubmed/16495460
http://dx.doi.org/10.1523/JNEUROSCI.5508-05.2006
http://www.ncbi.nlm.nih.gov/pubmed/16611826


tate gyrus: implications for epileptogenesis. J Neurosci 24:2259 –2269.
CrossRef Medline

Ribak CE, Seress L, Amaral DG (1985) The development, ultrastructure and
synaptic connections of the mossy cells of the dentate gyrus. J Neurocytol
14:835– 857. CrossRef Medline

Sahay A, Scobie KN, Hill AS, O’Carroll CM, Kheirbek MA, Burghardt NS,
Fenton AA, Dranovsky A, Hen R (2011) Increasing adult hippocampal
neurogenesis is sufficient to improve pattern separation. Nature 472:466 –
470. CrossRef Medline

Scharfman HE, Myers CE (2012) Hilar mossy cells of the dentate gyrus: a
historical perspective. Front Neural Circuits 6:106. CrossRef Medline

Song J, Zhong C, Bonaguidi MA, Sun GJ, Hsu D, Gu Y, Meletis K, Huang
ZJ, Ge S, Enikolopov G, Deisseroth K, Luscher B, Christian KM, Ming
GL, Song H (2012) Neuronal circuitry mechanism regulating adult

quiescent neural stem-cell fate decision. Nature 489:150 –154.

CrossRef Medline

Vivar C, Potter MC, Choi J, Lee JY, Stringer TP, Callaway EM, Gage FH, Suh

H, van Praag H (2012) Monosynaptic inputs to new neurons in the

dentate gyrus. Nat Commun 3:1107. CrossRef Medline

Williams PA, Larimer P, Gao Y, Strowbridge BW (2007) Semilunar gran-

ule cells: glutamatergic neurons in the rat dentate gyrus with axon

collaterals in the inner molecular layer. J Neurosci 27:13756 –13761.

CrossRef Medline

Zolotukhin S, Byrne BJ, Mason E, Zolotukhin I, Potter M, Chesnut K,

Summerford C, Samulski RJ, Muzyczka N (1999) Recombinant

adeno-associated virus purification using novel methods improves

infectious titer and yield. Gene Ther 6:973–985. CrossRef Medline

2354 • J. Neurosci., February 5, 2014 • 34(6):2349 –2354 Chancey et al. • Mossy Cells Innervate Newborn Granule Cells

http://dx.doi.org/10.1523/JNEUROSCI.5191-03.2004
http://www.ncbi.nlm.nih.gov/pubmed/14999076
http://dx.doi.org/10.1007/BF01170832
http://www.ncbi.nlm.nih.gov/pubmed/2419523
http://dx.doi.org/10.1038/nature09817
http://www.ncbi.nlm.nih.gov/pubmed/21460835
http://dx.doi.org/10.3389/fncir.2012.00106
http://www.ncbi.nlm.nih.gov/pubmed/23420672
http://dx.doi.org/10.1038/nature11306
http://www.ncbi.nlm.nih.gov/pubmed/22842902
http://dx.doi.org/10.1038/ncomms2101
http://www.ncbi.nlm.nih.gov/pubmed/23033083
http://dx.doi.org/10.1523/JNEUROSCI.4053-07.2007
http://www.ncbi.nlm.nih.gov/pubmed/18077687
http://dx.doi.org/10.1038/sj.gt.3300938
http://www.ncbi.nlm.nih.gov/pubmed/10455399

	Hilar Mossy Cells Provide the First Glutamatergic Synapses to Adult-Born Dentate Granule Cells
	Let us know how access to this document benefits you.
	Recommended Citation

	Hilar Mossy Cells Provide the First Glutamatergic Synapses to Adult-Born Dentate Granule Cells
	Introduction
	Materials and Methods
	Results
	Pharmacological identification of IML- and MPP-evoked EPSCs
	Optogenetic activation of MCs and MPP
	Mossy cells innervate newborn GCs
	Mossy cells drive GABA release onto newborn GCs
	Discussion

	References

