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Hilbert modular forms and p-adic Hodge theory

Takeshi Saito

Abstract

For the p-adic Galois representation associated to a Hilbert modular form, Carayol has
shown that, under a certain assumption, its restriction to the local Galois group at
a finite place not dividing p is compatible with the local Langlands correspondence.
Under the same assumption, we show that the same is true for the places dividing p,
in the sense of p-adic Hodge theory, as is shown for an elliptic modular form. We also
prove that the monodromy-weight conjecture holds for such representations.

1. Introduction

We consider the p-adic Galois representation associated to a Hilbert modular form. Carayol has
shown that, under assumption (C) of Theorem 2.1, its restriction to the local Galois group at a
finite place not dividing p is compatible with the local Langlands correspondence, see [Car86b].
In this paper, under the same assumption (C), we show that the same is true for the places
dividing p, in the sense of p-adic Hodge theory [Fon94], as is shown for an elliptic modular form
in [Sai97] complemented in [Sai00]. We also prove that the monodromy-weight conjecture holds
for such representations.

We prove the compatibility by comparing the p-adic and `-adic representations, for it is
already established for `-adic representations [Car86b]. More precisely, we prove it by comparing
the traces of Galois actions and proving the monodromy-weight conjecture. The first task is to
construct the Galois representation in a purely geometric way in terms of étale cohomology
of an analogue of the Kuga–Sato variety and algebraic correspondences acting on it. Then
we apply the comparison theorem of p-adic Hodge theory [Tsu99] and the weight spectral
sequences [Mok93, RZ82] to compute the traces and the monodromy operators in terms of the
reduction modulo p. We obtain the required equality between traces by applying the Lefschetz
trace formula which has the same form for `-adic and for crystalline cohomologies. We deduce the
monodromy-weight conjecture from the Weil conjecture and a certain vanishing of global sections.
The last vanishing result is an analogue of the vanishing of the fixed part (Symk−2T`E)SL2(Z`)

for k > 2 for the universal elliptic curve E over a modular curve in positive characteristic.
We state the main compatibility result, Theorem 2.2, and the monodromy-weight conjecture,

Theorem 2.4, in § 2 after briefly recalling the basic terminology on the `-adic representation
associated to a Hilbert modular form. We recall a cohomological construction of the `-adic
representation in § 3. After introducing Shimura curves in § 4 and recalling their modular
interpretation in § 5, we give a geometric construction of the `-adic representation in § 6. We
extend the geometric construction to semi-stable models in § 7 and prove Theorems 2.2 and 2.4
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in § 8, admitting Proposition 8.3 on the vanishing. The last § 9 is devoted to the proof of
Proposition 8.3.

The strategy of the proof is the same as in the previous work in [Sai97] complemented
in [Sai00]. An essential part of the work consists of understanding the papers [Car86a, Car86b]
of Carayol.

2. The `-adic representation associated to a Hilbert modular form: main results

Let F be a totally real number field of degree g > 1 and I = {σ1, . . . , σg} be the set of real
embeddings F ↪→ R. We fix a multiweight

k = (k1, . . . , kg, w) ∈ Ng+1 (2.1)

satisfying the conditions ki > 2 and ki ≡ w mod 2.
We recall some terminology on the `-adic representation associated to a Hilbert modular form.

Let π =
⊗

v πv be a cuspidal automorphic representation of the adele group GL2(AF ) such that,
for the infinite places, the σi-component πσi is a holomorphic discrete series representation Dki .
The finite part π∞ =

⊗
p -∞ πp is an admissible representation of the finite adeles GL2(A∞F ),

where A∞F = F ⊗Z Ẑ. Let n⊂OF be the level of π.
Let L be a sufficiently large number field of finite degree over Q such that π∞ admits

an L-structure π∞L . The fixed part (π∞L )K1(n ) is of dimension 1 and generated by an eigen
newform f . Let π∞L =

⊗
p πp ,L be the factorization into the tensor product of irreducible

admissible representations π∞p ,L of GL2(Fp ) over L. To attach an L-rational representation of
the Weil–Deligne group to the L-representation πp ,L of GL2(Fp ), we briefly recall the local
Langlands correspondence.

To an irreducible admissible representation π of GL2(Fp ) defined over L, the local Langlands
correspondence associates an L-rational F -semi-simple representation σ(π) of the Weil–Deligne
group ′W (F̄p /Fp ) of degree two. An F -semi-simple representation of the Weil–Deligne group is a
pair of a semi-simple representations (ρ, V ) of the Weil group W (F̄p /Fp ) with open kernel and
a nilpotent endomorphism N of V satisfying ρ(σ)Nρ(σ)−1 = (qp )n(σ)N . Here qp is the norm of p

and n :W (F̄p /Fp )→ Z is the canonical surjection sending a geometric Frobenius in W (F̄p /Fp )
to 1. A representation (ρ′, N) of the Weil–Deligne group is called unramified if ρ′ is unramified
and N = 0. Among several ways to normalize the local Langlands correspondence, we consider
the so-called Hecke correspondence: π 7→ σh(π) (see [Del73]).

We apply the construction π 7→ σh(π) to the local component πp ,L of a cuspidal automorphic
representation and further take the dual representation σ̌h(π). Thus, we obtain an F -semi-simple
L-rational representation σ̌h(πp ) of the Weil–Deligne group ′W (F̄p /Fp ). For a finite place p - n,
the representation πp is an unramified principal series and hence the L-factor Lp (π, T ) ∈ L[T ]
is equal to the characteristic polynomial det(1− Frp T : σ̌h(πp )) of the geometric Frobenius Frp
and is of degree two.

Let λ be a finite place of L and ρ : Gal(F̄ /F )→GL2(Lλ) be a continuous representation of
degree two. We say that ρ is attached to π if, at almost all finite place p - n, the representation ρ
is unramified and we have an equality

det(1− ρ(Frp )T ) = Lp (π, T ). (2.2)

The finite subset of places to be omitted actually consists of those dividing the product n` of
the level n of f and the prime ` below λ.
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The existence is established by an accumulation of works of many people: [BR93, Car86b,
Oht82, RT83, Tay89]. Since it is known to be irreducible by [Tay95, Proposition 3.1], Chebotarev
density implies the uniqueness. In the following, we recall a theorem of Carayol (see [Car86b])
which asserts not only the existence but also gives a precise description of the restriction to the
decomposition group Gal(F̄p /Fp ) at finite places p - ` including those dividing the level n.

To an `-adic representation of the local Galois group GFp = Gal(F̄p /Fp ), we attach a
representation of the Weil–Deligne group ′W (F̄p /Fp ). First we consider the case where p - `.
Let Lλ be a finite extension of Q`. Let ρ :GFp →GLLλ(V ) be a continuous `-adic representation.
Take a lifting F̃ ∈W (F̄p /Fp ) of the geometric Frobenius and an isomorphism Z`(1)→ Z` and
identify them. Let t` : Ip → Z`(1)→ Z` be the canonical surjection. Then, by the monodromy
theorem of Grothendieck, there is a representation ′ρ= (ρ′, N) of the Weil–Deligne group
′W (F̄p /Fp ) characterized by the condition

ρ(F̃nσ) = ρ′(F̃nσ) exp(t`(σ)N)

for n ∈ Z and σ ∈ Ip . The isomorphism class of the representation (ρ′, N) of the Weil–Deligne
group is independent of the choice of the lifting F̃ or the isomorphism Z`(1)→ Z` and is
determined by ρ.

For an `-adic representation ρ of Gal(F̄ /F ), let ρp denote the restriction to Gal(F̄p /Fp ).
Let ′ρp denote the representation of the Weil–Deligne group attached to ρp and let ′ρF -ss

p denote
its F -semi-simplification.

Theorem 2.1 [Car86b]. Let f be an eigen newform of multiweight k and λ|` be a finite place
of the number field L. We assume the following condition is satisfied.

(C) If the degree g = [F : Q] is even, there exists a finite place v such that the v-factor πf,v lies
in the discrete series.

Then there exists an `-adic representation

ρ= ρf,λ : Gal(F̄ /F ) // GLLλ(Vf,λ) (2.3)

satisfying the following property.

For a finite place p - `, there is an isomorphism

′ρF -ss
f,λ,p ' σ̌h(πf,p ) (2.4)

of representations of the Weil–Deligne group ′W (F̄p /Fp ).

Remark. Since the right-hand side is L-rational, Theorem 2.1 implies that so is the left-hand
side. For p - n`, the isomorphism means that we have an equality

det(1− Frp T : Vf,λ) = det(1− Frp T : σ̌h(π)) = Lp (f, T ). (2.5)

Hence Vf,λ in Theorem 2.1 is the `-adic representation associated to f .

In this paper, we study the case where p divides `. Let p be the characteristic of a finite
place p of F . Let Fp ,0 denote the maximal absolutely unramified subfield in Fp .

We describe the construction attaching a representation of the Weil–Deligne group to a p-adic
representation of the local Galois group due to Fontaine [Fon94]. Let Bst be the ring defined by
Fontaine. It is an F̂ nr

p ,0-algebra and it admits a natural action of the absolute Galois group GFp ,
a semi-linear action of the Frobenius ϕ and an action of the monodromy operator N . For an
open subgroup J ⊂ I of the inertia, the fixed part BJ

st is the completion F̂ nr
p ,0 of a maximal

1083

https://doi.org/10.1112/S0010437X09004175 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004175


T. Saito

unramified extension of Fp ,0. In this paper, we neglect the filtration. Let Lµ be a finite extension
of Qp and consider a continuous p-adic representation Gal(F̄p /Fp )→GLLµ(V ) of finite degree.
Let L̂nr

µ denote the completion of the maximum unramified extension of Lµ. We choose an
arbitrary factor of F̂ nr

p ,0 ⊗Qp Lµ. This is the same thing as fixing an embedding F̂ nr
p ,0→ L̂nr

µ . For
an Lµ-representation GFp →GLLµ(V ) of finite degree, we put

D(V ) =Dpst(V ) =
⋃
J⊂I

(Bst ⊗ V )J ⊗
(F̂nr

p ,0⊗QpLµ)
L̂nr
µ . (2.6)

Here J runs through the open subgroups of the inertia subgroup I = Ip and −J denotes the
J-fixed part. The union

⋃
J⊂I(Bst ⊗ V )J is an F̂ nr

p ,0 ⊗Qp Lµ-module since BJ
st = F̂ nr

p ,0. It is known
that D(V ) is an L̂nr

µ -vector space of finite dimension and dim
L̂nr
µ
D(V ) 6 dimLµ V . We say V is

potentially semi-stable (pst for short) if we have the equality dim
L̂nr
µ
D(V ) = dimLµ V .

For a pst-representation V , Fontaine defines a natural representation on D(V ) of the Weil–
Deligne group ′W (F̄p /Fp ) as follows (see [Fon94]). By the Galois actions on Bst and on V , the
quotient GFp /J acts on the J-fixed part (Bst ⊗ V )J for a normal subgroup J ⊂GFp . Passing to
the limit, we obtain an action of Gal(F̄ /F ) on the F̂ nr

p ,0 ⊗Qp Lµ-module
⋃
J⊂I(Bst ⊗ V )J . The

kernel is open in the inertia Ip . This Galois action is semi-linear with respect to its natural
action on F̂ nr

p ,0 and the trivial action on Lµ. We modify it by using the Frobenius ϕ to get a
F̂ nr

p ,0 ⊗Qp Lµ-linear action of the Weil group W (F̄p /Fp ) as follows.

Let Fp denote the residue field of p. Recall that the Weil group W (F̄p /Fp ) is the inverse
image of the inclusion Z→Gal(Fp /Fp ) sending 1 to the geometric Frobenius Frp by the
canonical map Gal(F̄p /Fp )→Gal(Fp /Fp ). Let n :W (F̄p /Fp )→ Z be the canonical map and
qp = pf be the norm of p. Then by letting σ ∈W (F̄p /Fp ) act on D(V ) by (ϕf ·n(σ) ⊗ 1) ◦
σ ⊗ σ, we get a F̂ nr

p ,0 ⊗Qp Lµ-linear action. Taking the L̂nr
µ -component, we obtain an L̂nr

µ -linear
representationD(V ) of the Weil groupW (F̄p /Fp ). The monodromy operatorN onBst induces an
L̂nr
µ -linear nilpotent operator on D(V ) satisfying σN = (qp )n(σ)Nσ since ϕN = pNϕ. Thus

an L̂nr
µ -linear action ′ρµ,π,v of the Weil–Deligne group on D(V ) is defined.

We apply the construction V 7→D(V ) (2.6) to the restriction ρf,µ,p of the p-adic representa-
tion associated to πf , to the decomposition group Gal(F̄p /Fp ) for a place p|p. Thus we obtain an
L̂nr
µ -representation ′ρf,µ,p of the Weil–Deligne group ′W (F̄p /Fp ). Our main result is the following.

Theorem 2.2. Let the assumptions including (C) be the same as in Theorem 2.1 and let µ be
a place of L dividing the characteristic of a prime p of F . Then, the representation ρf,µ,p of
Gal(F̄p /Fp ) is potentially semi-stable and there is an isomorphism

′ρF -ss
f,µ,p ' σ̌h(πf,p ) (2.7)

of representations of the Weil–Deligne group ′W (F̄p /Fp ).

Remark. By the semi-stability of ρf,µ,p , the representation ′ρf,µ,p is of degree two. Similarly as
in the `-adic case, Theorem 2.2 implies that the left-hand side ′ρF -ss

f,µ,p is L-rational.

Since the Dpst-functor of Fontaine does not preserve the integral structure, the author does
not know how to remove the assumption (C) in Theorem 2.2 and in Theorem 2.4 below, by trying
to apply for example the congruence argument as in [Tay89]. A partial result in this direction
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was recently obtained by Kisin (see [Kis08]). More recently, Liu has announced a proof in the
general case [Liu09].

By the argument using a quadratic base change as in [Car86b], we may assume that the finite
place v in the condition (C) is different from p in the case where g = [F : Q] is even.

We will prove Theorem 2.2 by comparing p-adic cohomology with `-adic cohomology. Let λ
be a place of L dividing a prime ` 6= p. By Theorem 2.1 applied to ρf,λ,p , it is enough to compare
′ρf,λ,p with ′ρf,µ,p . More precisely, we prove the following.

Claim 2.3. Let the notation be as in Theorem 2.2. Let p|p be a finite place of F and let λ|` 6= p
and µ|p be places of L. Then the following hold.

(i) The representation ρf,µ,p is potentially semi-stable.

(ii) For σ ∈W+ = {σ ∈W (F̄p /Fp ) | n(σ) > 0}, we have an equality in some finite extension
of L,

Tr ′ρf,λ,p (σ) = Tr ′ρf,µ,p (σ). (2.8)

(iii) Let Nλ and Nµ be the nilpotent monodromy operators for ′ρλ,π,p and ′ρµ,π,p respectively.
Then Nλ = 0 if and only if Nµ = 0.

By [Sai97, Lemma 1], Theorem 2.2 follows from Claim 2.3. In assertion (ii), we may allow a
finite extension since we already know that the left-hand side is in L.

The assertion (i) is a special case of assertion (ii) where σ = 1. We deduce the assertion (iii)
from assertion (ii) together with the monodromy-weight conjecture, Theorem 2.4 below, asserting
that the monodromy filtration coincides with the weight filtration up to a shift.

Let V be a representation of the Weil–Deligne group ′Wp . We assume N2 = 0. Then
0⊂W−1V = Image N ⊂W0V = KerN ⊂W1V = V is a filtration by subrepresentations of V .
It is called the monodromy filtration. We put GrW1 (V ) = V/KerN,GrW0 (V ) = KerN/Image N
and GrW−1(V ) = Image N . Then each graded piece is a representation of the Weil group. The
monodromy operator N induces an isomorphism GrW1 (V )(1)→GrW−1(V ). For a lifting F̃ of
the geometric Frobenius Fr, the eigenvalues, up to roots of unity, are independent of the choice
of the lifting. We say an algebraic number is pure of weight n if the complex absolute value of its
conjugates are (qp )n/2 where qp denotes the norm of p. Then, for an integer n ∈ Z, we say that
the monodromy filtration of V is pure of weight n, if the eigenvalues of a lifting F̃ of Fr acting
on GrWi for each i are algebraic numbers of weight n+ i.

Theorem 2.4. Let the notation be as in Claim 2.3. Then the monodromy filtration of the
representations ′ρf,λ,p and ′ρf,µ,p of the Weil–Deligne group are pure of weight w − 1. In other

words, the eigenvalues α of ′ρf,λ,p (F̃ ) and of ′ρf,µ,p (F̃ ) for an arbitrary lifting F̃ ∈W (F̄p /Fp ) of
the geometric Frobenius is of weight n, where

n=


w − 1 if N = 0,
w − 2 if N 6= 0 and α is the eigenvalue on KerN,
w if N 6= 0 and α is the eigenvalue on CokerN.

(2.9)

Remark. The assertion for the case N 6= 0 is easy since we know the determinant and N :
GrW1 (V )(1)→GrW−1(V ) is an isomorphism.

We show that Theorem 2.4 and the assertion Claim 2.3(ii) imply Claim 2.3(iii). In fact, by
assertion (ii), the eigenvalues of a lifting F̃ of Frobenius are the same for λ and µ. By Theorem 2.4,
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we distinguish the two cases N = 0 and N 6= 0 by their absolute values. Thus assertion (iii) follows
from assertion (ii) and Theorem 2.4. Thus Theorem 2.2 is reduced to the assertion Claim 2.3(ii)
and Theorem 2.4.

3. Cohomological construction of the `-adic representation

Carayol constructs an `-adic representation associated to a Hilbert modular form by decomposing
the étale cohomology H1(MK,F̄ , Fλ) of a Shimura curve with coefficient sheaf Fλ. Here, we briefly
recall the construction with a slight modification. Using that construction, we state Claim 3.2,
which implies the main results.

First, we recall the definition of the Shimura curve. We fix a real place τ1 of the totally real
field F and regard F as a subfield of R⊂ C by τ1. If the degree g = [F : Q] is even, we also fix a
finite place v. Let B be a quaternion algebra over F ramifying exactly at the other real places
{τ2, . . . , τg} if g = [F : Q] is odd and at {τ2, . . . , τg, v} if g is even.

Let G= ResF/QB× denote the Weil restriction to Q of the algebraic group B× over F . Here
and in the following, we identify algebraic groups over Q and their Q-valued points. Let X be
the G(R)-conjugacy class of the map

h : C× → G(R) = (B ⊗Q R)× ' GL2(R)×H× · · · ×H×,

a+ b
√
−1 7→

((
a b
−b a

)−1

, 1, . . . , 1

)
.

(3.1)

The conjugacy classX is naturally identified with the union P1(C)− P1(R) of the upper and lower
half planes. Let M =M(G, X) = (MK)K be the canonical model of the Shimura variety defined
for G and X. Here and in what follows, we call a projective system of varieties simply a variety,
using a standard abuse of terminology. The Shimura varietyM = (MK)K is defined over the reflex
field F . Here K runs through the open compact subgroups of G(A∞) = (B ⊗F A∞F )×. Each MK

is a proper and smooth, but not necessarily geometrically connected, curve over F . Since the
reciprocity map F×→Gab = F× is the identity, the constant field FK of MK is the abelian
extension of F corresponding to the compact open subgroup NrdB/FK ⊂ A∞ ×F . The projective
system (MK)K has a natural right action of the finite adeles G(A∞). For g ∈G(A∞) and open
compact subgroups K, K ′ ⊂G(A∞) such that g−1Kg ⊂K ′, we have g :MK →MK′ . The set of
C-valued points MK(C) are identified with the set of double cosets G(Q)\X ×G(A∞)/K. The
action of G(Q) =B× on X is induced by B×→ (B ⊗F,τ1 R)× 'GL2(R). For g, K, K ′ as above,
the map g :MK(C)→MK′(C) is induced by (x, g1) 7→ (x, g1g).

We will define a smooth Lλ-sheaf F (k)
λ on the Shimura curve M . It is the dual of the sheaf

denoted Fλ in [Car86b]. We prefer the dual because it is related directly to a direct summand of a
cohomology sheaf as we will see in later sections. Let k = (k1, . . . , kg, w) ∈ Ng+1 be a multiweight
as in (2.1) and put n= n(k) =

∏
i(ki − 1). The algebraic group denoted Gc in [Mil90, ch. III]

for our group G=B× is the quotient of G by Ker(NF/Q : F×→Q×). Here we identify algebraic
groups over Q and their Q-valued points, and F× ⊂B× denotes the center of G.

In order to define the sheaf F (k)
λ , we take a number field L⊂ C splitting F and B and we fix an

isomorphism B ⊗Q L'M2(L)I . We identify {τi : F → L}= {τi : F → C} by the inclusion L→ C.
We define a representation ρ= ρ(k) :G→GLn defined over L. We have B ⊗Q C'M2(C)I where
I = {τ1, . . . , τg} is the set of embeddings F → C. It induces an isomorphism GC

'→GLI2,C. We
define the morphism ρ= ρ(k) :G→GLn to be the composite of this isomorphism with the tensor
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product
⊗

i∈I((Symki−2 ⊗ det (w−ki)/2) ◦ p̌ri). Here p̌ri denotes the contragradient representation
of the ith projection pri :GLI2,C→GL2,C. Since the restriction to the center F× is the

multiplication by N−(w−2)
F/Q , it factors through the quotient ρ(k) :Gc→GLn. The representation

ρ(k) :G→GLn is defined over L.

We define the smooth Lλ-sheaf F (k)
λ on M to be the Lλ-component of the smooth L⊗Q`-

sheaf V`(ρ(k)) attached to the representation ρ(k) [Mil90, ch. III, § 7]. We consider the inductive
limit

H1(MF̄ , F
(k)
λ ) = lim−→

K

H1(MK,F̄ , F
(k)
K,λ). (3.2)

By the natural action of G(A∞) on the projective system (MK , F (k)
K,λ)K , it is a representation of

G(A∞)×Gal(F̄ /F ). The structure as a birepresentation is described as follows.

Lemma 3.1. Let k be a multiweight as in (2.1) and let L⊂ C be a number field splitting F
and B. If the degree g = [F : Q] is even, let v be a finite place of F .

Then, we have the following.

(i) Let π be a cuspidal automorphic representation of GL2(AF ) of multiweight k such that
the finite part π∞ is defined over a number field L. Assume, if the degree g = [F : Q] is
even, that the v-factor πf,v lies in the discrete series. Then the finite part π′∞ of the
representation π′ of G(A) corresponding to π by the Jacquet–Langlands correspondence
has an L-structure π′∞L .

(ii) There exists an isomorphism

H1(MF̄ , F
(k)
λ )'

⊕
f ′

(
π′∞f ′,L(f ′) ⊗L(f ′)

⊕
λ′|λ

Vλ′,f ′

)
(3.3)

of representations of G(A∞)×Gal(F̄ /F ) over Lλ. Here f ′ runs through the conjugacy
classes over L, up to scalar multiplication, of eigen newforms of multiweight k, such that,
if g = [F : Q] is even, the v-component πf ′,v lies in the discrete series. The extension of L
generated by the Hecke eigenvalues acting on f ′ is denoted by L(f ′) and λ′ runs finite places
of L(f ′) above λ.

Although the proof of Lemma 3.1 is well-known to specialists, we include it here for the sake
of completeness.

First we define an admissible representation SL of G(A∞) over L. We define the automorphic
vector bundle (see [Mil90, ch. III]) V(J ) associated to a Gc-equivariant vector bundle J = J (k)

on the compact dual X̌ and its canonical model V(J )L. Then SL is defined as the limit of the
spaces of global sections

SL = Γ(M ⊗F L, Ω1
M ⊗ V(J )L) = lim−→

K

Γ(MK ⊗F L, Ω1
M ⊗ V(J )L). (3.4)

We use the notation of [Mil90, ch. III] The compact dual X̌ is P1
C in our case. We define a

Gc-equivariant vector bundle J = J (k) on X̌ in the following way. Let ω be the dual of the
tautological quotient bundle on X̌ = P1

C. We put J (k) = ω⊗k1−2 ⊗
⊗g

i=2 Symki−2(C⊕2).We define
the action of GC =GL2,C

I on J (k) by giving the action of each factor in the following way.
The first factor GL2,C acts on X̌ in the natural way. On ω⊗k1−2, we consider det−(w−k1)/2

times the natural action. For i 6= 1, the ith factor GL2,C acts on X̌ trivially. On Symki−2(C⊕2),
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we consider det−((w−ki)/2) times the action induced by the contragradient action of GL2. By
taking the tensor product, we obtain a GC-equivariant bundle J = J (k). Since the center GI

m

acts by the inverse of (w − 2)nd power of the product character, it defines a GcC-equivariant
bundle. It is clearly defined over the number field L⊃ F . Hence by [Mil90, Theorem 5.1(a),
ch. III], we obtain a G(A∞)-equivariant vector bundle V(J )L on ML. Thus the representation
SL = Γ(M ⊗ L, Ω1

M ⊗ V(J )L) is defined.
By the Jacquet–Langlands correspondence (see [JL70]), we have an isomorphism

SL ⊗L C'
⊕
f ′

π′f ′ (3.5)

as a representation of G(A∞) over C where f ′ runs cuspidal automorphic representation of
GL2(A∞F ) of multiweight k such that, if [F : Q] is even, the v-component πf ′,v is in the discrete
series.

Attached to the representation ρ(k) :Gc→GLn defined over L, we have a local system
F (k) = V (ρ(k)) of L-vector spaces on M(C). We construct a Hodge decomposition, which is
a generalization of the Eichler–Shimura isomorphism. Let F (k)

C = F (k) ⊗L C. We regard it as a
local system of R-vector spaces endowed with a ring homomorphism C→ End(F (k)

C ). We consider
the filtration on F (k)

C ⊗R OM(C) defined by ρ ◦ hx. It defines on F (k)
C a structure of variation of

polarizable R-Hodge structures of weight w − 2.

We put F (k)
C ⊗C OM(C) = V(k)(= V(ρ(k))) and let σ :M(C)→M(C) denote the complex

conjugate. We identify F (k)
C ⊗R OM(C) = V(k) ⊕ σ∗V(k). The Hodge filtration Fw−2(V(k) ⊕

σ∗V(k)) is given by V(J (k))⊕ σ∗V(J (k)). Hence the Hodge decomposition gives a G(A∞)-
equivariant isomorphism

H1(M(C), F (k)
C ) ' H1(M(C), Ω•M ⊗ V(k))

' H0(M(C), Ω1
M ⊗ V(J (k)))⊕ σ∗H0(M(C), Ω1

M ⊗ V(J (k))). (3.6)

We have SC =H0(M(C), Ω1
M ⊗ V(J (k))) by definition and its complex conjugate σ∗H0(M(C),

Ω1
M ⊗ V(J (k))) is identified with H0(M(C), Ω1

M ⊗ V(σ∗J (k))). The G(A∞)-equivariant
bundle J (k) on X̌ is isomorphic to its complex conjugate σ∗J (k) since the GL2-action on the
tautological quotient bundle on P1 is defined over R, and the standard representation H×→GL2

defined over C is GL2(C)-conjugate to its complex conjugate. Thus, we obtain an isomorphism

H1(MF̄ , F (k))⊗L C' S⊕2
L ⊗L C (3.7)

as a representation of G(A∞) over C.

Proof of Lemma 3.1. (i) We show π′f ′ is defined over L(f ′). If g = [F : Q] is odd, we have
G(A∞)'GL2(A∞F ) and πf ′ = π′f ′ , and there is nothing to prove. We show the case where g is
even. It is enough to show that each factor π′f ′,r of π′f ′ =

⊗
v π
′
f ′,r is defined over L(f ′). Let n

be the level of f ′ and K1(n) =K1(n)r ·K1(n)r ⊂GL2(A∞F ). Then the representation πf ′,r is given
as the fixed subspace πf ′,r = π

K1(n )r

f ′ and is defined over L(f ′). For r 6= v, we have πf ′,r = π′f ′,r
and it is defined over L(f ′). Finally we consider the case r = v. Then by the isomorphism (3.5), we
see that the intertwining space HomG(A∞v )(

⊗
r 6=v π

′
f ′,r ,L(f ′), SL ⊗L L(f ′)) is an L(f ′)-structure

of π′f ′,v .
(ii) In [Car86b], it is shown that for Fλ, we have a direct sum decomposition of the

form H1(MF̄ , Fλ)'
⊕

π′ π
′ ⊗ σ̌h(π′) over L̄λ. Since F (k)

λ here is the dual of Fλ there and
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since σ̌h(π̌′)' σh(π′)(−1), we have an isomorphism H1(MF̄ , F
(k)
λ )'

⊕
π′ π

′ ⊗ σh(π′) over L̄λ
by Poincaré duality. Since the Gal(F̄ /F )-representation

Vf ′,λ′ = HomG(A∞),L(f ′)λ′
(π′f ′,L(f ′) ⊗L(f ′) L(f ′)λ′ , H1(MF̄ , F

(k)
λ )) (3.8)

gives an L(f ′)λ′-structure, the assertion follows. 2

Using Lemma 3.1, we reduce Theorems 2.2 and 2.4 to a statement below, Claim 3.2, on
the cohomology. Let K ⊂G(A∞) be a sufficiently small open compact subgroup. We take an
integral ideal n of OF , divisible by p and by v if g is even. We assume K to be of the form
K =KnK

n . Here Kn ⊂
∏

r |n B
×
r is an open compact subgroup and Kn =

∏
r -n GL2(OFr ) for

some isomorphism
∏′

r -n Br '
∏′

r -n M2(Fr ). Let T n = L[Tr ; r - n] be the free L-algebra generated

by the Hecke operators Tr for r - n. We consider H1(MK,F̄ , F
(k)
λ ) as a T n -module. In the following

statement, the letter D denotes Fontaine’s Dpst-functor (2.6).

Claim 3.2. Let K ⊂G(A∞) be a sufficiently small open compact subgroup and let n⊂OF be
an integral ideal. We assume K =KnK

n as above. Then the following hold.

(i) The representation Hq(MK,F̄ , F
(k)
µ ) of GFp for q = 0, 1, 2 is potentially semi-stable.

(ii) For σ ∈W+ and T ∈ T n , we have equalities in a finite extension of L,
2∑
q=0

(−1)q Tr(σ ◦ T |Hq(MK,F̄ , F
(k)
λ )) =

2∑
q=0

(−1)q Tr(σ ◦ T |D(Hq(MK,F̄ , F (k)
µ ))). (3.9)

(iii) For the representations H1(MK,F̄ , F
(k)
λ ) and D(H1(MK,F̄ , F

(k)
µ )) of the Weil–Deligne group

′WFp , their monodromy filtrations are pure of weight w − 1.

We prove that the assertions in Claim 3.2 imply the corresponding assertions (i) and (ii)
in Claim 2.3 and Theorem 2.4. Let f be a normalized eigen new cuspform of multiweight k.
By Lemma 3.1, the finite part π′∞f is defined over L(f). Replacing L by L(f) if necessary, we
may assume L= L(f). Let K be a sufficiently small open compact subgroup satisfying π′Kf 6= 0

and Claim 3.2. The representations Vf,λ and Vf,µ are direct summands of H1(MK,F̄ , F
(k)
λ ) and

H1(MK,F̄ , F
(k)
µ ) by Lemma 3.1 respectively. Hence the assertion Claim 3.2(i) implies the assertion

Claim 2.3(i) and the assertion Claim 3.2(iii) implies Theorem 2.4.
We show that the equality (3.9) of the traces implies the equality (2.8). First we show that

the equality (3.9) for the alternating sum implies the equality for each piece

Tr(σ ◦ T |Hq(MK,Ē , F
(k)
λ )) = Tr(σ ◦ T |D(Hq(MK,Ē , F (k)

µ ))) (3.10)

for q = 0, 1, 2. In fact, it is sufficient to show the equality (3.10) for q = 0, 2.
We show that H0 =H2 = 0 if k 6= (2, . . . , 2, w). The fundamental group π1(MK,F̄ ) of the

geometric fiber is isomorphic to Ker(NrdB/F :K→ Ô×F ). Hence its Lie algebra generates B0 =
Ker(TrdB/F :B→ F ) over F . The Lie algebra B0 ⊗Q L' sl2(Lλ)g is also generated by the Lie
algebra of π1(MK,F̄ ) over L. It follows easily from this that the representation of π1(MK,F̄ )
corresponding to the sheaf Fλ, hence the sheaf itself, is irreducible. Hence its largest geometrically
constant subsheaf and quotient sheaves are zero, unless k = (2, . . . , 2, w).

We assume k = (2, . . . , 2, w) and we show the equality (3.10) for q = 0, 2. Then the
sheaf F (k)

λ is defined by the character N
−(w−2)/2
F/Q ◦NrdB/F :G→Gm and is isomorphic to
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the Tate twist Lλ(−(w − 2)/2). It is sufficient to show the assertion for H0 since H2 'H0(−1).
Let FK = Γ(MK ,OMK

) be the constant field of MK . Then there is an isomorphism

H0(MF̄ , F
(k)
λ )' lim←−

K

H0

(
FK ⊗F F̄ , Lλ

(
−w − 2

2

))
(3.11)

of Gal(F̄ /F )×G(A∞)-module. On the right-hand side, the Galois action is the natural one.
The action of G(A∞) is defined by that induced by its action on lim←−K Spec FK multiplied by
the character

G(A∞)
N

(w−2)/2
F/Q ◦NrdB/F

// A∞ ×/Q+× ∼ // Ẑ× // Z×` ⊂ L
×
λ .

From this, we easily deduce the equality (3.10) for q = 0.
We deduce the equality (3.9) from the equality (3.10) for q = 1. By the strong multiplicity one

theorem, the image of the Hecke algebra T n in EndL(SKL ), where SKL denotes the K-fixed part,
is
∏
f ′ L(f ′) where f ′ runs the conjugacy class of eigen newforms f ′ as in Lemma 3.1 such that

π′Kf ′ 6= 0. Let e ∈ T n be an element whose image is the idempotent corresponding to f ′ = f . Then

if we put d= dim π′Kf , we see that e ·H1(MK,F̄ , F
(k)
λ ) is isomorphic to the direct sum σ̌h(π)⊕d

by Lemma 3.1(ii). Hence we have

d · Tr ′ρλ,f,p (σ) = Tr(σ ◦ e|H1(MK,F̄ , F
(k)
λ )),

d · Tr ′ρµ,f,p (σ) = Tr(σ ◦ e|D(H1(MK,F̄ , F (k)
µ ))).

Thus the equality (2.8) follows from (3.9). It is clear that the assertion Claim 3.2(iii) implies
Theorem 2.4. Therefore Theorems 2.2 and 2.4 are reduced to Claim 3.2.

4. Shimura curves and sheaves on them

The construction of the sheaf F (k)
λ in the last section is geometric in the sense that it is defined

by using a Barsotti–Tate group on M . However, it is not geometric enough in a stricter sense
that it is not a part of a higher direct image of a proper, smooth family of varieties parametrized
by M . This is due to the fact that M is a so-called exotic model and is not a Shimura variety of
PEL-type (polarization, endomorphism and level structure). However, the argument, by Carayol
in [Car86a], showing that the Barsotti–Tate group extends to the integral model of M , enables
a geometric construction, in the stricter sense.

To give this geometric construction, we introduce two more Shimura curves M ′ and M ′′

in what follows that are related to each other in the diagram (4.4) below. We show in § 5
that the Shimura variety M ′ has a modular interpretation and we construct the required sheaf
using the universal family of abelian varieties in § 6.1. After extending the family to M ′′ in § 6.2,
we complete the construction on M in § 6.3.

First, we recall the definition of several Shimura varieties introduced in [Car86a]. We take
an imaginary quadratic field E0 = Q(

√
−a). We fix an embedding E0 ⊂ C. We assume that

the prime p splits in E0 and we also fix an embedding E0 ⊂Qp defined by a prime ideal q0

of OE0 above p. We put E = FE0 = F ⊗Q E0 and D =B ⊗F E =B ⊗Q E0. We consider the
reductive group G′′ =B× ×F× E× 'B× · E× ⊂D×. We keep the abuse of notation to use its
Q-valued points G(Q) to denote an algebraic group G over Q. As in [Car86a], the notation
B× ×F× E× does not mean the fiber product but the amalgamate sum. Let G′ be the inverse
image of Q× ⊂ F× by the map ν = NrdB/F ×NE/F :G′′→ F×. We also consider tori T = E×
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and T0 = E×0 . We consider the G′(R)-conjugacy class X ′ (respectively G′′(R)-conjugacy class X ′′)
of the morphism

h′ : C× → G′(R)⊂
G′′(R) = GL2(R) · C× ×H× · C× × · · · ×H× · C×,

z = x+
√
−1y 7→

((
x y
−y x

)−1

⊗ 1, 1⊗ z−1, . . . , 1⊗ z−1

)
.

(4.1)

We also consider morphisms

hE : C×→ T (R) = C× × C× × · · · × C×, z 7→ (z−1, 1, . . . , 1),
h0 : C×→ T0(R) = C×, z 7→ z−1.

(4.2)

The conjugacy classes X ′, X ′′ have natural structures of complex manifolds and are isomorphic
to the upper half plane X+ and to the union of upper and lower half planes X, respectively.
Let M ′ =M(G′, X ′), M ′′ =M(G′′, X ′′), N =M(T, hE) and N0 =M(T0, h0) be the canonical
models of the Shimura varieties defined over the reflex fields E, E, E and E0, respectively. The
reciprocity map E×→ E× is the identity for (T, hE). For an open compact subgroup K ⊂ A∞ ×E ,
the canonical model NK is the spectrum of the abelian extension EK corresponding to K by
class field theory. The same thing holds for the canonical model of N0.

We define morphisms between Shimura curves. We consider the morphism α :G× T →G′′

of algebraic groups inducing

B× × E×→G′′(Q)⊂ (B ⊗ E)× : (b, e)→ b⊗NE/E0
(e) · e−1 (4.3)

on Q-valued points. Since h′ = α ◦ (h× hE), it induces a homomorphism of Shimura varieties
M ×N →M ′′ defined over E. We let α also denote the morphism M ×N →M ′′. The inclusion
G′→G′′ induces a natural map M ′→M ′′ of Shimura varieties over E. Let β :G× T → T0 be
the morphism inducing NE/E0

◦ pr2 :B× × E×→ E×0 on Q-valued points. Since h0 =NE/E0
◦ h,

a homomorphism of Shimura varieties M ×N →N0 defined over E is thus induced. We also let
the map M ×N →N0 be denoted by β. We consider the diagram

M M ×N α //pr1oo

β
��

M ′′ M ′oo

N0

(4.4)

of (weakly) canonical models of Shimura varieties over E.

We define an Lλ-sheaf F ′′(k)
λ on M ′′ analogous to F (k)

λ . Let k = (k1, . . . , kg, w) be the
multiweight and put n= n(k) =

∏
i(ki − 1). The algebraic group denoted G′′c in [Mil90, ch. III]

for the group G′′ is the quotient of G′′ by Ker(NF/Q : F×→Q×). Here F× is regarded as a
subgroup of the center Z(G′′) = E×. We define a representation of algebraic group ρ= ρ′′(k) :
G′′→GLn factoring the quotient G′′c as follows. Recall that we have an isomorphism B ⊗Q C'
M2(C)I . It induces an injection G′′C→ (GL2,C ×GL2,C)I . For each i ∈ I, the first component
corresponds to the inclusion E0→ C and the second one corresponds to its complex conjugate.
We define the morphism ρ′′ = ρ′′(k) :G→GLn to be the composite of the injection with the
tensor product

⊗
i∈I((Symki−2 ⊗ det (w−ki)/2) ◦ p̌r2,i). Here p̌r2,i denotes the contragradient

representation of the (2, i)th projection (GL2,C ×GL2,C)I →GL2,C. Since the restriction to
the subgroup F× ⊂G′′ is the scalar multiplication by N

−(w−2)
F/Q , it factors through the quotient
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ρ′′(k) :G′′c→GLn. The morphism ρ′′ = ρ′′(k) :G→GLn is defined over the composite field LE0.
Replacing L by LE0 if necessary, we assume it is defined over L.

We may also define it as follows. Let p2 :G′′→G be the map defined over E0 induced by the
second projection on (D ⊗Q E0)× =D× ×D× corresponding to the conjugate E0→ E0. Then
we have ρ′′(k) = ρ(k) ◦ p2.

We define the smooth Lλ-sheaf F ′′(k)
λ on M ′′ to be the Lλ-component of the smooth L⊗Q`-

sheaf V`(ρ′′(k)) attached to the representation ρ′′(k) [Mil90, ch. III, § 6]. By restriction, we obtain
a smooth Lλ-sheaf F ′(k)

λ on M ′ attached to the representation ρ′(k) = ρ′′(k)|G′ .
We also define a sheaf F(χ)λ on N0. The algebraic group T c0 in [Mil90, ch. III] is T0 itself.

We define a character χ : T0→Gm. Over C, we have T0,C 'Gm ×Gm. Here the first component
corresponds to the inclusion E0→ C and the second one corresponds to its complex conjugate.
We define the morphism χ : T0→Gm to be the inverse of the first projection. We also define
the morphism χ̄ to be the inverse of the second projection. Their product χ0 = χχ̄ is the inverse
of the norm map χ0 =N−1

E/Q : T0→Gm. They are defined over E0 ⊂ L. We define the smooth
Lλ-sheaf F(χ) on N0 to be the Lλ-component of the smooth L⊗Q`-sheaf V`(χ) attached to the
representation χ. The sheaf F(χ0) is defined similarly.

We have ρ′′(k) ◦ α= (ρ(k) ◦ pr1)× (χ̄(w−2)(g−1) ◦NE/E0
◦ pr2). In other words, we have a

commutative diagram

G× T
α×β //

ρ(k)◦pr1
��

G′′ × T0

ρ′′(k)×χ(g−1)(w−2)χ
−(g−1)(w−2)
0

��
GLn GLn ×Gmproduct

oo

(4.5)

of homomorphisms defined over L. By the commutativity of the diagram, we obtain an
isomorphism of smooth Lλ-sheaves

pr∗1F (k) ⊗ β∗F(χ0)⊗(g−1)(w−2) ' α∗F ′′(k) ⊗ β∗F(χ)⊗(g−1)(w−2) (4.6)

on M ×N . The isomorphism is equivariant with respect to the action of G(A∞)× T (A∞).
The sheaf β∗F(χ0) together with the action of T (A∞) on it is identified as follows. Let

β1 :N →N0 denote the map induced by NE/E0
. It is sufficient to describe β∗1F(χ0). If we forget

the action, it is just the Tate twist Lλ(−1). The action of T (A∞) is that induced by the natural
action of T (A∞) on N multiplied by the character

T (A∞)
NE/Q // A∞ ×/Q+× Ẑ×

∼oo // Z×` ⊂ L
×
λ . (4.7)

Thus the geometric construction of pr∗1F (k) is reduced to that of F ′′(k) and that of F(χ).
Before constructing F ′′(k) geometrically in the next section, we will study its restriction F ′(k)

to M ′. We prepare some notations. We consider the representation

ρ′ :G′ ⊂G′′ ⊂D× b7→b̄−1
// D× ⊂GL(D) (4.8)

defined over Q. Since the algebraic group G′c for G′ is equal to G′ itself, the representation ρ′ gives
rise to a smooth `-adic sheaf F ′` on M ′ for each prime `. It is a smooth sheaf of D ⊗Q Q`-modules
of rank one.

Recall that we have an isomorphism

D ⊗Q L' (M2(L)×M2(L))I . (4.9)
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For each i ∈ I, the first component corresponds to the embedding E0 ⊂ L⊂ C and the second to
its conjugate. For each i ∈ I, let ei ∈D ⊗Q L denote the idempotent whose (2, i)th component is(

1 0
0 0

)
and the other components are zero under the isomorphism (4.9). For each finite place λ|`, we

regard the Lλ-sheaf F ′ ⊗Q` Lλ as a D ⊗Q L' (M2(L)×M2(L))I -module. For each i ∈ I, let F ′i
denote the ei-part ei(F ′ ⊗Q` Lλ). It is easy to see that

F ′(k) =
⊗
i∈I

(Symki−2F ′i ⊗ (det F ′i)⊗(w−ki)/2) (4.10)

as a smooth Lλ-sheaf on M ′ with an action of G′(A∞).
In § 6.1, we will construct the sheaf F ′ and the idempotents ei after recalling a modular

interpretation of M ′ in § 5. We will also construct F(χ) on N0 in a similar way. After that, we
study the relation between M ′ and M ′′ and extend F ′ to M ′′ in § 6.2.

5. Modular interpretations of M ′ and N0

We recall the modular interpretation of the Shimura curve M ′ on the category of schemes over E
(see [Car86a, 2.3]). In the notation of [Del71, (4.9) and (4.13)], we put L= V =D. Let the
involution ∗ on D =B ⊗F E be the tensor product of the main involution of B and the conjugate
of E and let ψ be the non-generate alternating form on D defined by

ψ(x, y) = TrE/Q(
√
−aTrdD/Exy

∗). (5.1)

Then the group G in [Del71, (4.9)] is G′ here and G1 in [Del71, (4.13)] is G′′ here.
We prepare some terminology to formulate a moduli problem for M ′. Let OD be a maximal

order in D stable under the involution ∗. An abelian scheme A over a scheme S is called an
OD-abelian scheme over S when a ring homomorphism m :OD→ EndS(A) is given. Let Lie A
denote the locally free OS-module Lie(A/S) = HomOS (0∗Ω1

A/S ,OS), where 0 : S→A denotes
the 0-section. When S is a scheme over Spec E, for an OD-abelian scheme A on S, we define
direct summands Lie2A⊃ Lie1,2A of the OD ⊗Z OS =D ⊗Q OS-module Lie A as follows. The
submodule Lie2A is defined to be the submodule on which the action of E0 ⊂D and that of
E0 ⊂OS are conjugate to each other over Q. Similarly Lie1,2A is the submodule where the
action of E ⊂D and that of E ⊂OS are the conjugate to each other over F . They are the same
as the tensor products Lie2A= Lie A⊗E0⊗E0 E0, Lie1,2A= Lie A⊗E⊗E E and hence are direct
summands. If A is an OD-abelian scheme, the dual A∗ is considered as an OD-abelian scheme
by the composite map

m∗ :OD
∗ // Oopp

D
m // End(A)opp ∗ // End(A∗)

where opp denotes the opposite ring. A polarization θ ∈Hom(A, A∗)sym of an OD-abelian
scheme A is called an OD-polarization if it is OD-linear.

Let K ⊂ Ô×D ⊂G′(A∞) be a sufficiently small compact open subgroup. Take a maximal order
OD of D and let ÔD =OD ⊗ Ẑ⊂D ⊗ A∞ be the corresponding maximal order. We assume
K ⊂ Ô×D. Let T̂ ⊂D ⊗ A∞ be an ÔD-lattice satisfying ψ(T̂ , T̂ )⊂ Ẑ. We define a functor M ′

K′,T̂

on the category of schemes over E as follows. For a scheme S over E, let M ′
K′,T̂

(S) be the set of

isomorphism classes of the triples (A, θ, k̄) consisting of the following data.

(i) An OD-abelian scheme A on S of dimension 4g such that Lie2A= Lie1,2A and that it is a
locally free OS-module of rank two.
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(ii) An OD-polarization θ ∈Hom(A, A∗)sym of A.

(iii) A K-equivalent class k̄ of an OD ⊗ Ẑ-linear isomorphism k : T̂ (A)→ T̂ such that there exists
a Ẑ-linear isomorphism k′ making the diagram

T̂ (A)× T̂ (A)
(1,θ∗) //

k×k
��

T̂ (A) × T̂ (A∗) // Ẑ(1)

k′

��
T̂ × T̂ Tr ψ

// Ẑ

(5.2)

commutative.

Only in this section, changing the notation from previous sections, k will denote a level structure
k : T̂ (A)→ T̂ as in property (iii) above. It is shown in [Car86a, (2.3), (2.6.2)], that the scheme
M ′K′ represents the functor M ′

K′,T̂
. It is easily checked that the functor is independent of the

choice of T̂ up to unique canonical isomorphism. Let AK′,T̂ denote the universal abelian scheme
over MK′ . They form a projective system A= (AK′,T̂ )K′,T̂ .

We give a modular interpretation of the action of G′(A∞) on M ′ and on A. Let g ∈G′(A∞)
and K, K ′ ⊂G′(A∞) be sufficiently small open subgroups satisfying g−1Kg ⊂K ′. We take a
maximal order OD and let T̂ and T̂ ′ be a K-stable OD ⊗ Ẑ-lattice and a K ′-stable OgD ⊗ Ẑ-
lattice of V ⊗ A∞ satisfying g−1T̂ ⊂ T̂ ′ and ψ(T̂ , T̂ ), ψ(T̂ ′, T̂ ′)⊂ Ẑ. The functor

g∗ :MK →MK′ , [(A, θ, k)] 7→ [(A′, θ′, k′)] (5.3)

is described as follows. (Ind-)étale locally on S, we take an isomorphism k̃ : T̂ → T̂ (A) in the
K-equivalent class k and identify T̂ (A) with T̂ by k̃. Let g∗ :A→A′ be the isogeny of OD-
abelian schemes such that T̂ (A′) = gT̂ ′ ⊃ T̂ = T̂ (A). The K ′-equivalent class k′ is the class of
the isomorphism g : T̂ ′→ gT̂ ′ = T̂ (A′). The pair (A′, k′) is independent of the choice of k̃. The
polarization θ′ on A′ is the map making the diagram

A
ν+(g)θ//

g∗
��

A∗

A′
θ′

// A′∗

tg∗

OO

(5.4)

commutative. Here ν+ :G′(A∞)→Q×+ is the composite

G′(A∞) ν // A∞×→ A∞×/Ẑ× Q×+.
∼oo (5.5)

We have the universal OD-isogeny g :AK,T̂ → g∗AK′,T̂ ′ and a commutative diagram.

AK,T̂
g∗ //

��

AK′,T̂ ′

��
M ′K g

// M ′K′

(5.6)

For later use, we will extend the action of G′(A∞) on M ′ and on A to a larger
subgroup G̃⊂G′′(A∞). Let G′′(R)+ be the inverse image of GL2(R)+C× ⊂GL2(R)C× by
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the first projection G′′(R)→GL2(R) · C× and let G′′(Q)+ =G′′(Q) ∩G′′(R)+ = {γ ∈G′′(Q) |
ν(γ) is totally positive}. We put

G̃=G′′(Q)+ ·G′(A∞)⊂G′′(A∞). (5.7)

We extend the action of G′(A∞) on M ′ to an action of G̃. For g ∈G′′(A∞) and open compact
subgroups K ′ ⊂G′(A∞) and K ′′ ⊂G′′(A∞) such that g−1K ′g ⊂K ′′, let g :M ′K′ →M ′′K′′ denote
the composite M ′K′ →M ′′gK′′g−1

g→M ′′K′′ . For g ∈ G̃ and open compact subgroups K ′1, K
′
2 ⊂

G′(A∞) such that g−1K ′1g ⊂K ′2, the map g :M ′K′1 →M ′K′2
is defined as follows. We may take an

open compact subgroup K ′′ ⊃K ′2 of G′′(A∞) such that the canonical map M ′K′2
→M ′′K′′ is

an open immersion (see Lemma 6.1 in § 6.2). Then since M ′K′(C) =G′(Q)\G′(A∞)×X ′/K ′ =
G′′(Q)+\G̃×X ′/K ′, the image of g :M ′K′1 →M ′′K′′ is contained in M ′K′2 . Hence the required map

M ′K′1
→M ′K′2

is thus induced. The modular interpretation of the action of G̃ on M ′ is described

in the same way as above. The only modification is that ν+ is extended to G̃ as the composite.

G̃
ν // F×+A∞×Q → F×+A∞×Q /Ẑ× F×+∼oo (5.8)

Similarly, we have a modular interpretation for N0 in terms of elliptic curves with complex
multiplication by OE0 . Let H ⊂ Ô×E0

be a sufficiently small open subgroup. We take a fractional
ideal R⊂ E0 satisfying TrE0/Q(

√
−aRR̄)⊂ Z. Let R̂=R⊗ ÔE be the corresponding ideal. We

define a functor N0,H,R̂ on the category of schemes over E0 as follows. For a scheme S over E0,
let N0,H,R̂(S) be the set of isomorphism classes of the pairs (A, k̄) of the following data.

(i) An elliptic curve A endowed with a ring homomorphism OE0 → EndS(A) such that the
induced homomorphism OE0 → EndOS (Lie A) =OS is the same as that defined by
the structure morphism S→ Spec E0.

(ii) An H-equivalent class k̄ of an ÔE0-isomorphism k : T (A)→ T such that there exists a
Ẑ-isomorphism k′ making the diagram

T̂ (A)× T̂ (A)

k×k
��

// Ẑ(1)

k′

��
R̂× R̂

(x,y)7→TrE0/Q(
√
−axȳ)

// Ẑ

(5.9)

commutative.

It is easily checked that the functor N0,H,R̂ is independent of the choice of R up to unique
canonical isomorphism.

By the theory of complex multiplication, for a sufficiently small H, the functor N0,H,R̂ is
represented by NH = Spec E0,H where E0,H is the abelian extension corresponding to the open
subgroup H ⊂ A∞×E0

by the isomorphism A∞×E0
/E× 'Gal(Eab

0 /E0) of class field theory. Similarly
as above, a natural action of T0(A∞) = A∞×E0

on the projective systems N = (NK)K and on the
universal CM elliptic curve b :A0 = (A0,T̂ ,K)T̂ ,K →N is defined.

6. Geometric constructions

In this section, we construct the sheaves F ′, F ′′ etc. geometrically, using the modular
interpretation. In §§ 6.1, 6.2 and 6.3, we study M ′, M ′′ and M , respectively.
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6.1 Geometric construction on M ′, N0

We show that the direct image R1a∗Q` of the universal abelian scheme a :A→M ′ gives the
sheaf F ′. Using it, we construct the sheaf F ′(k) on M ′ in a purely geometric way. We will also
define geometrically F(χ) on N0.

Let K ′ ⊂ Ô×D, T̂ and the universal OD-abelian scheme aK′ :AK′,T̂ →M ′K′ be as in the
modular interpretation in § 5. By the ring homomorphism OD→ EndM ′

K′
(AK′,T̂ ), we regard

the direct image R1aK′∗Q` as a sheaf of D ⊗Q`-modules for every `. It is independent
of the choice of lattice T̂ . A canonical action of G′(A∞) is defined on the system of sheaves
R1a∗Q` = (R1aK′∗Q`)K′ . By the modular interpretation, it is easy to see that the sheaf R1a∗Q`

is isomorphic to the sheaf F ′ with the action of G′(A∞) defined at the end of § 5. We will identify
them in the following.

For each i ∈ I, let ei ∈D ⊗Q L be the idempotent defined at the end of § 5. We regard
R1a∗Lλ as a sheaf of D ⊗Q L-modules. Then ei ∈D ⊗Q L acts on it as a projector and the
ei-part ei ·R1a∗Lλ is isomorphic to F ′i . Since D is generated by 1 + pOD, we may write each ei
as an L-linear combination of elements in 1 + pOD. Therefore ei is an L-linear combination of
endomorphisms of A over M ′ whose degrees are prime to p.

One finds easily an idempotent e(ki) ∈Q[Sw−2] of the group algebra of a symmetric group
such that the e(ki)-part e(ki) · F ′i

⊗w−2 is equal to Symki−2F ′i ⊗ (det F ′i)⊗(w−ki)/2. The action of the
symmetric group Sw−2 on F ′i

⊗w−2 is induced by its action on the fiber product aw−2 :Aw−2→M ′

over M ′ as permutations. One can also find easily a Q-linear combination e1 of the multiplications
by prime-to-p integers on A such that e1R1a∗Q` =R1a∗Q` and e1Rqa∗Q` = 0 for q 6= 1.

Taking their product, we obtain an algebraic correspondence e′ on the (w − 2)g-fold self-fiber
product A(w−2)g of A→M ′ with coefficients in L satisfying the following conditions.

(i) It is an L-linear combination of permutations in Sg(w−2) and endomorphisms of A(w−2)g as
an abelian scheme over M ′ whose degrees are prime to p.

(ii) It acts as an idempotent on the cohomology sheaf Rqa(w−2)g
∗ Lλ where a(w−2)g denotes the

map A(w−2)g→M ′. We have e′Rqa(w−2)g
∗ Lλ = F ′(k) for q = (w − 2)g and e′Rqa(w−2)g

∗ Lλ = 0
otherwise.

Similarly, we construct F(χ). Let H ⊂ Ô×E0
, R̂ and the universal OE0-elliptic curve bH :A0,H,R̂→

N0,H be as in the modular interpretation in § 5. We regard the direct image R1bH∗Q` as a
sheaf of E0 ⊗Q`-modules by the ring homomorphism OE0 → EndN0,H

(A0,H,R̂), for every `. It

is independent of the choice of lattice R̂. A canonical action of A∞×E0
is defined on the system

of sheaves R1b∗Q` = (R1bH∗Q`)H . By the modular interpretation, it is easy to see that the
sheaf R1b∗Q` is isomorphic to the sheaf on N0 associated to the inverse of the tautological
representation E×→GLQ(E) : t 7→ t−1 ×−. We will identify them in the following.

Let e0 ∈ E0 ⊗Q L be the idempotent corresponding to the inclusion E0→ L. We regard
R1a0,∗Lλ as a sheaf of E0 ⊗Q L-modules. Then e0 ∈ E0 ⊗Q L acts on it as a projector and the
e0-part e0 ·R1a0,∗Lλ is isomorphic to F(χ). Similarly as above, we may write each e0 as
an L-linear combination of elements in 1 + pOD. Therefore e0 is an L-linear combination of
endomorphisms of A0 over N0 whose degrees are prime to p. Similarly as above, after modifying
e0 if necessary, we also have e0 ·Rqb∗Lλ = 0 for q 6= 1.

1096

https://doi.org/10.1112/S0010437X09004175 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004175


Hilbert modular forms and p-adic Hodge theory

6.2 Geometric construction on M ′′

We extend the geometric construction on M ′ to M ′′. We first study the relation between them.
Recall that G′′ =B× ×F× E× and G′ is the inverse image of Q× ⊂ F× by

ν = NrdB/F ×NE/F :G′′→ F×.

For an open compact subgroup K ′′ ⊂G′′(A∞) and for g ∈G′′(A∞), we put K ′g =G′(A∞) ∩
gK ′′g−1. Recall that g :M ′K′g →M ′′K′′ denotes the composition M ′K′g →M ′′gK′′g−1

g→M ′′K′′ . The
double coset G̃\G′′(A∞)/K ′′1 = F×+\A∞×F /A∞×A ν(K ′′1 ) is finite where the subgroup G̃⊂G′′(A∞)
is defined in (5.7). If Σ⊂G′′(A∞) is a complete set of representatives, we have a finite étale
surjection q g :

∐
g∈Σ M

′
K′g →M ′′K′′ .

Lemma 6.1. Let K ′′ ⊂G′′(A∞) be a compact open subgroup and put K ′ =K ′′ ∩G′(A∞). Then
for a sufficiently small open subgroup K ′′1 ⊂K ′′ containing K ′ and for a complete set Σ of
representatives of the finite set G̃\G′′(A∞)/K ′′1 , the map

q g :
∐
g∈Σ

M ′K′g →M ′′K′′1
(6.1)

is an isomorphism.

Proof. Since it is an étale surjection, it is enough to show the map is injective on the C-valued
points. Since Σ is a complete set of representatives, it is enough to consider each map g. Let
ν̄ :G′′(A∞)→ A∞×F /A∞×Q denote the map induced by ν. We show the following.

Sublemma 6.2. The equality ν̄(K ′′) ∩ (O×F /Z
×) = ν̄(K ′′ ∩O×E) implies the injectivity of the

map g :M ′K′g(C)→M ′′K′′(C).

We prove Lemma 6.1, admitting Sublemma 6.2. Namely, we prove that for a sufficiently small
open subgroup K ′′1 ⊃K ′ of K ′′, we have an equality ν̄(K ′′1 ) ∩ (O×F /Z

×) = ν̄(K ′′1 ∩O
×
E). Since

NE/F (O×E) is of finite index in O×F , the right-hand side ν̄(K ′′ ∩O×E) is an open subgroup of the

left-hand side ν̄(K ′′) ∩ (O×F /Z
×). Hence, for a sufficiently small open subgroup K1 of K ′′/K ′ '

ν̄(K ′′) we have K1 ∩ (O×F /Z
×) =K1 ∩ ν̄(K ′′ ∩O×E). For the corresponding open subgroup K ′′1 =

K ′′ ∩ ν̄−1(K1), this is nothing but the required equality ν̄(K ′′1 ) ∩ (O×F /Z
×) = ν̄(K ′′1 ∩O

×
E).

We prove Sublemma 6.2. Namely, we assume ν̄(K ′′) ∩ (O×F /Z
×) = ν̄(K ′′ ∩O×E) and prove

the map g :M ′K′g(C)→M ′′K′′(C) is injective. Replacing K ′′ by gK ′′g−1, it is enough to show
that the map M ′K′(C)→M ′′K′′(C) is injective for K ′ =K ′′ ∩G′(A∞) = Ker(ν̄ :K ′′→ Ô×F /Ẑ

×).
We consider the commutative diagram of exact sequences.

K ′′ ∩O×E
//

ν̄
��

K ′′/K ′ //

ν̄ ∩
��

K ′′/(K ′′ ∩O×E)K ′ //

��

1

1 // O×F /Z
× // Ô×F /Ẑ

× // Ô×F /Ẑ
×O×F

The middle vertical arrow is injective by the definition of K ′. By the snake lemma, the equality
ν̄(K ′′) ∩ (O×F /Z

×) = ν̄(K ′′ ∩O×E) is equivalent to the injectivity of the right vertical arrow. Since
Ô×F /Ẑ

×O×F is a subgroup of A∞×F /A∞×Q F×, we get an exact sequence.

K ′/(K ′ ∩O×E) // K ′′/(K ′′ ∩O×E) // A∞×F /A∞×Q F× (6.2)
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We consider the following commutative diagram.

M ′(C) = lim←−K′ M
′
K′(C) //

��

M ′′(C) = lim←−K′′ M
′′
K′′(C)

��
Q×\A∞×Q // F×\A∞×F

The horizontal arrows are injective by [Del71, Variante 1.15.1 and Lemme 1.15.3]. We have
M ′K′(C) =M ′(C)/K ′ and M ′′K′′(C) =M ′′(C)/K ′′. From these facts, it is straightforward to show
that the exactness (6.2) implies the injectivity of the canonical map M ′K′(C)→M ′′K′′(C). 2

We extend the universal OD-abelian scheme A on M ′ to an OD-abelian scheme also denoted
by A on M ′′. Let K ′′ ⊂G′′(A∞) be a sufficiently small open subgroup. We assume that the map
q g :

∐
g∈Σ M

′
K′g →M ′′K′′1

(6.1) is an isomorphism. We take an ÔD-lattice T̂ in D ⊗ A∞. For each

g ∈ Σ, we have a gODg
−1-abelian scheme AK′g ,gT̂ on M ′K′g since gT̂ is K ′g-stable. We define an

abelian schemeAK′′,T̂ onM ′′K′′ to beAK′g ,gT̂ on the image ofM ′K′g . We define anOD-multiplication

on AK′′,T̂ as OD
a7→gag−1

−−−−−−→ gODg
−1→ EndM ′

K′g
(AK′g ,gT̂ ) on M ′K′g . By the action of G̃ described in

§ 5, we see that the abelian scheme AK′g ,gT̂ is independent of the choice of representatives Σ. We

also see by the action of G̃ that, for g ∈G′′(A∞), compact open subgroups K ′′1 , K
′′
2 ⊂G′′(A∞) and

K ′′i -stable ÔD-lattices T̂i satisfying g−1K ′′1 g ⊂K ′′2 , we have an isogeny AK′′1 ,T̂1
→ g∗AK′′2 ,T̂2

. Thus
we obtain an action of G′′(A∞) on the projective system A= (AK′′,T̂ )K′′,T̂ over M ′′ = (M ′′K′′)K′′ .

On the (w − 2)g-fold self-fiber product A(w−2)g of A→M ′′, we define an algebraic
correspondence e′ with coefficients in L exactly in the same way as in the case of M ′. Then,
it is an L-linear combinations of permutations in Sg(w−2) and endomorphisms of A(w−2)g as an
abelian scheme over M ′ whose degrees are prime to p. Further, it acts as an idempotent on the
cohomology sheaf Rqa(w−2)g

∗ Lλ where a(w−2)g denotes the map A(w−2)g→M ′. We have

e′Rqa
(w−2)g
∗ Lλ =

⊗
i

Symki−2(ei ·R1a∗Lλ)⊗ (det ei ·R1a∗Lλ)⊗(w−ki)/2

for q = (w − 2)g, and e′Rqa
(w−2)g
∗ Lλ = 0 otherwise. By the modular interpretation of M ′, we

see that the K ′′-equivalent class of the isomorphism T̂ → T (AK′′,T̂ ) is well-defined. Passing to
the limit, we obtain an isomorphism D ⊗ A∞→R1a∗Q` on lim←−K′′ MK′′ . The isomorphism is
compatible with the action of G′′(A∞). On the left-hand side D ⊗ A∞, the group G′′(A∞)⊂
(D ⊗ A∞)× acts by the multiplication by the inverse of the main involution: t 7→ t̄−1 ×−. Thus
similarly as on M ′, we have

e′R(w−2)ga
(w−2)g
∗ Lλ = F ′′(k). (6.3)

6.3 Geometric construction on M

We will define an analogue c :X →M ×N of the Kuga–Sato variety and an algebraic
correspondence e= e(k) on X with coefficient in L satisfying the following property: it is an
L-linear combination of endomorphisms of X as an abelian scheme over M ×N , whose degrees
are prime to p. The algebraic correspondence e acts as an idempotent on the higher direct
image Rqc∗Q` ⊗ L=

∏
λ|` R

qc∗Lλ. The image of the projector e ·Rqc∗Lλ is a smooth Lλ-sheaf
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isomorphic to

α∗F (k) ⊗ β∗F (χ)⊗(w−2)(g−1) = pr∗1F (k) ⊗ β∗F (χ0)⊗(w−2)(g−1) (6.4)

for q = q0 = (2g − 1)(w − 2) and is zero otherwise.
We define X to be the fiber product

X = α∗Ag(w−2) ×ME×N β∗A
(g−1)(w−2)
0 . (6.5)

Here α∗Ag(w−2) denotes the base change by α :M ×N →M ′′ of the g(w − 2)-fold self fiber
product of A→M ′′. Similarly β∗A

g(w−2)
0 denotes the base change by β :M ×N →N0 of the

(g − 1)(w − 2)-fold self fiber product of A0→N0. The symbol X denotes the projective system
X = (XK,H,T̂ ,R̂)K,H,T̂ ,R̂ of abelian schemes over M ×N = (MK ×NH)K,H .

Next we define an algebraic correspondence e= e(k) on X. We have defined algebraic
correspondences e′ on Ag(w−2) over M ′′ and e0 on A0 over N0 at the end of §§ 6.2 and 6.1
respectively. Let e

⊗(g−1)(w−2)
0 =

∏(g−1)(w−2)
i=1 prie0 be the algebraic correspondence on the

(g − 1)(w − 2)nd self fiber product A(g−1)(w−2)
0 defined as the product of the pull-back of the

algebraic correspondence e0 on A0 by projections. We define an algebraic correspondence e on X
as the product of the pull-back of e′ by α with the pull-back of e⊗(g−1)(w−2)

0 by β. Namely we
put e= α∗e′ × β∗e⊗(g−1)(w−2)

0 . Then it satisfies the required property stated at (6.4).
Let H ⊂ A∞×E be a sufficiently small open compact subgroup. Let m = nOE be a sufficiently

divisible integral ideal of OE . We assume H =Hm ·Hm is the product of the prime-to-m
component Hm =

∏
s -m O×Es

with the m-primary component Hm . Let Tm
0 = L[Ps ; s - m] be the

free L-algebra generated by the class Ps of the inverse of prime element for s - m. We consider
Hq(XK,H,T̂ ,R̂ ⊗E Ē, Lλ) as a T n × Tm

0 -module and H0(NH,Ē , F(χ0)) as a Tm
0 -module.

Applying the Leray spectral sequence to c :XK,H,T̂ ,R̂→MK ×F NH , we obtain the following
lemma.

Lemma 6.3. Let K ⊂G(A∞) and H ⊂ A∞×E be sufficiently small open compact subgroups

and let T̂ ⊂ V ⊗ A∞ and R̂⊂ E0 ⊗ A∞ be an ÔD-lattice and an ÔE0-lattice respectively. Let
X =XK,H,T̂ ,R̂ be the analogue of the Kuga–Sato variety (6.5). Then there is an algebraic
correspondence e on X with coefficients in L satisfying the following properties.

(i) There exists elements ai ∈ L, permutations τi ∈Sg(w−2) of the first g(w − 2)-factors in X
and endomorphisms ϕi ∈ EndMX of degrees prime to p such that

e=
∑
i

aiτiϕi. (6.6)

(ii) For each finite place λ of L, the action of e on Hq(XK,H,T̂ ,R̂ ⊗E Ē, Lλ) is a projector. Put
q0 = (2g − 1)(w − 2). Then, there is an isomorphism

e ·Hq(XK,H,T̂ ,R̂ ⊗E Ē, Lλ)

'Hq−q0(MK ⊗F F̄ , F (k)
λ )⊗Q` H

0(NH ⊗E Ē, F(χ(g−1)(w−2)
0 )). (6.7)

The isomorphism is compatible with the actions of the absolute Galois group GE =
Gal(Ē/E) and of the Hecke algebra T n ⊗ Tm

0 .

Using Lemma 6.3, we state Claim 6.4, in terms of X and e, that implies Claim 3.2 and hence
Theorems 2.2 and 2.4. Recall that we fixed an isomorphism E0,q 0

→Qp. Let q be the place of E
dividing p and q0. The local field Eq is canonically isomorphic to Fp . We identify Fp = Eq by
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the canonical isomorphism. Since we want to prove the assertions on the action of Galois group
Gal(F̄p /Fp ), it is enough to consider the action of Gal(Ēq /Eq ), induced by the isomorphism.

Claim 6.4. We keep the notation in Claim 3.2. Let K ⊂G(A∞) and H ⊂ A∞×E be sufficiently
small open compact subgroups. Let X =XK,H,T̂ ,R̂ denote the analogue of the Kuga–Sato
variety (6.5). Then, the following hold.

(i) The p-adic representation Hq(X ⊗E Ēq ,Qp) of GEq = Gal(Ēq /Eq ) is potentially semi-
stable for all q.

(ii) Let σ ∈W+ = {σ ∈W (Ēq /Eq ) | n(σ) > 0}, T ∈ T n , P ∈ Tm
0 , τ ∈Sg(w−2) and let ψ :X →

X be an endomorphism of degree prime to p. Then for the composite Γ = T ◦R ◦ τ ◦ ψ
as an algebraic correspondence, we have an equality in Q∑

q

(−1)q Tr(σ ◦ Γ|Hq(X ⊗E Ēq ,Q`)) =
∑
q

(−1)q Tr(σ ◦ Γ|D(Hq(X ⊗E Ēq ,Qp))). (6.8)

(iii) Let e be the algebraic correspondence in Lemma 6.3 and let µ|p be a finite place of
L⊃ E0. Then the monodromy filtration of the representations e ·Hq(X ⊗E Ēq , Lλ) and
D(e ·Hq(X ⊗E Ēq , Lµ)) of the Weil–Deligne group ′W (Ēq /Eq ) are pure of weight q.

We deduce each assertion in Claim 3.2 from the corresponding assertion in Claim 6.4. Since
we identify Fp = Eq , it is sufficient to consider the representations of the Weil–Deligne group
′W (Ēq /Eq ). The representation Hq(MĒq

, F (k)
λ ) is a direct summand of e ·Hq+q0(XĒq

, Lλ)
((g − 1)(w − 2)) by Lemma 6.3. Therefore the assertions (i) and (iii) in Claim 3.2 follows from
the assertions (i) and (iii) in Claim 6.4 respectively. We deduce the equality (3.9) from the
equality (6.8). By the definition of F(χ0) given in the middle of § 4, we find easily an element
e◦ ∈ Tm

0 acting as a projector H0(NH ⊗E Ē, F(χ(g−1)(w−2)
0 ))→ Lλ(−(g − 1)(w − 2)). Thus by

Lemma 6.3, there is an isomorphism

e◦ ◦ e ·Hq(XK,K◦ ⊗E Ē, Lλ)→Hq−q0(MK ⊗F F̄ , F (k)
λ )(−(g − 1)(w − 2)) (6.9)

compatible with the actions of the Galois group GE = Gal(Ē/E) and of the Hecke algebra T n .
Hence the equality (6.8) implies the equality (3.9). Thus Theorems 2.2 and 2.4, are reduced to
Claim 6.4.

We may deduce the assertion Claim 6.4(i) using alterations [dJo96]. We will give a proof
without using alterations by constructing a semi-stable model of X.

For later use, we describe the Hecke operators Tr ∈ T n and Ps ∈ Tm
0 for primes r - n of OF

and s - m of OE respectively. Write X =XK,H,T̂ ,T̂ ◦ and M ×N =MK ×NH for short. For r, it
is defined as Tr = p1∗ ◦ q∗ ◦ p∗2 where p1, p2, q are as in the following diagram.

X
p1 //

��

XKg ,H,T̂ ,R̂
q //

��

XKg ,H,gT̂ ,R̂
p2 //

��

X

��
M ×N MKg ×NH

p1oo MKg ×NH
p2 // M ×N

(6.10)

In the diagram, g = gr ∈G(A∞) is an element whose r-component is
(
π−1

r 0
0 1

)
and other

components are 1 and Kg =K ∩ gKg−1. The map p1 is induced by the inclusion Kg→K, the
map p2 = g∗ is induced by g and the left and right squares are cartesian. The map q is an isogeny
corresponding to the inclusion T̂ → gT̂ .
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Similarly for s, the operator is defined as Ps = q∗ ◦ p∗2 where p2, q are as in the following
diagram.

X
q //

��

XK,H,gT̂ ,NE/E0
gR̂

p2 //

��

X

��
M ×N M ×N

p2 // M ×N

(6.11)

In the diagram, g ∈ A∞×E denotes an element whose s-component is the inverse of a prime element
π−1

s and the other components are 1. The map p2 = g∗ is induced by g and the right square is
cartesian. The map q is an isogeny corresponding to the inclusions T̂ → gT̂ and R̂→NE/E0

g · R̂.

7. Semi-stable model

In the last section, we defined an analogue of the Kuga–Sato variety as an abelian scheme on a
Shimura curve. The goal of this section, Lemma 7.1, is to extend it to a semi-stable model of
the Shimura curve.

We introduce some terminology. Let K, H, T̂ , R̂ be as in the last section. We assume that each
component of the generic fiber MK ⊗F F̄ is of genus greater than 1. Then by the stable reduction
theorem for curves [DM69], for a sufficiently large finite extension V of the maximal unramified
extension F̂ nr

p , the base change MK,V =MK ⊗F V admits a semi-stable model (not necessarily
connected) over the integer ring OV . We do not need to go to the maximal unramified extension
to get a semi-stable model. However, since we will work over the maximal unramified extension in
the following sections, we state the result as such already in this section. We take the minimal
one among the semi-stable models over OV and denote it by MK,OV . Recall that we identified the
local field Eq with Fp . From now on, we consider V as an extension of Eq by this identification.
Since NH is the disjoint union of the spectrum of finite extensions of E, the base change
(MK ×F NH)⊗E V also admit semi-stable models over the integer ring OV . We also take the
minimal one among them and name it (MK ×F NH)OV . We claim the following.

Lemma 7.1. Let K, H and V be as above.

(i) Let g ∈G(A∞), h ∈ A∞×E and letK1 ⊂ gKg−1, H1 ⊂H be open compact subgroups. Assume
that the groups are of the form K =KpK

p , g−1K1g =Kp (g−1K1g)p , H =HqH
q and

H1 =HqH
q
1 . Then the pull-back of the map (g, h)∗ :MK1 ×F NH1 →MK ×F NH to V

extends uniquely to a finite étale morphism (g, h)∗ : (MK1 ×F NH1)OV → (MK ×F NH)OV
of the minimal semi-stable model.

(ii) Let T̂ , R̂ be as above. Then the pull-back of the abelian scheme XK,H,T̂ ,R̂→MK ×F NH

to the base extension (MK ×F NH)⊗E V extends uniquely to an abelian scheme over a
semi-stable model.

(iii) Let T̂1, R̂1 be sublattices in T̂ and R̂ in assertion (ii), respectively. Assume that their
p-components are the same. Then the pull-back of the isogeny XK,H,T̂1,R̂1

→XK,H,T̂ ,R̂1
on

MK ×F NH to the base extension (MK ×F NH)⊗E V extends uniquely to an étale isogeny
over a semi-stable model.

Proof. (i) We may assume g = 1 and h= 1. Further we may assume H =H1. In fact, the map
NH1 →NH is unramified at q by the assumption that their q-components are the same by class
field theory. Further, it is sufficient to show that the map MK1 →MK extends to a finite étale
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morphism of minimal semi-stable models MK1,OV →MK,OV . In fact, then the fiber product
MK1,OV ×MK,OV

(MK ×NH)OV is a semi-stable model of (MK1 ×NH)V and does not have a
(−1)-curve. Hence it is the minimal semi-stable model (MK1 ×NH)OV and (MK1 ×NH)OV →
(MK ×NH)OV is finite étale.

In the case where the p-components of Kp =K1,p are GL2(OFp ), it is shown in [Car86a,
Propositions 6.1, 6.2] that the canonical map MK1,Fp →MK,Fp extends to a finite étale morphism
MK1,OFp

→MK,OFp
of proper, smooth models. We consider the general case. Let K̄ ⊃K, K̄1 ⊃

K1 be the groups obtained by replacing their p-components Kp =K1,p by GL2(OFp ). First,
we show that the canonical map MK,V →MK̄,V extends to the minimal semi-stable model
MK,OV →MK̄,OV

. In fact, it extends on a suitable blow-up. However, the exceptional divisors
are contracted to points in the image and hence the map is defined on the semi-stable model.
We consider the fiber product MK̄1,OV

×MK̄,OV
MK,OV . It is a semi-stable model of MK1,V and

does not have a (−1)-curve. Hence it is minimal and the assertion is proved.

(ii) We assume there exists an open compact subgroup K ′′ ⊂G′′(A∞) containing K ′′ ⊃KH
and satisfying the following conditions (a) and (b).

(a) The open subgroup K ′′ satisfies the conclusion of Lemma 6.1. Namely for a complete set Σ
of representatives G̃\G′′(A∞)/K ′′, the map qg :

∐
g M

′
K′g
→M ′′K′′ is an isomorphism.

To state the other condition (b), we identify the group G′(Qp). By the assumption that E0 splits
at p, we have an isomorphism

G′(Qp)

∩
��

Q×p × (B ⊗Q Qp)×
∼ //

∩
��

Q×p ×GL2(Fp )× (B ⊗F F p
p )×

G′′(Qp) (F ⊗Qp)× × (B ⊗Q Qp)×

(7.1)

(see [Car86a, (2.6.3)]). Here F p
p denote the product

∏
p ′|p,p ′ 6=p Fp ′ . The second condition is the

following.

(b) The intersection K ′ =K ′′ ∩G′(A∞) is of the form K ′ = Z×p ×GL2(OFp )×K ′pp ×K ′p for
some choice of isomorphism as above.

Here K ′pp denotes
∏

p ′|p,6=p K
′
p ′ . It is shown in [Car86a, Proposition 5.4] using a modular

interpretation that the condition (b) implies that M ′K′g has good reduction over OEq and the
abelian scheme AK′g ,gT̂ on the generic fiber extends to a (unique) proper, smooth model M ′K′g ,OEq

.
We will recall this modular interpretation in § 9. Hence by the condition (a), M ′′K′′ has also
good reduction over OEq and the abelian scheme AK′′,T̂ extends to the proper, smooth model
M ′′K′′,OEq

. By the same argument as in the proof of (i), the map (MK ×NH)V →M ′′K′′,V extends
uniquely to a map (MK ×NH)O→M ′′K′′,OEq

⊗OV . Hence we obtain the extension of an abelian
scheme XK,H,T̂ ,R̂, by taking the pull-back.

(iii) Since (MK ×F NH)OV is normal, an endomorphism on the generic fiber extends to the
integral model by a theorem of Grothendieck (see [Gro66]). 2

In the proof of assertion (iii), we could also use the modular interpretation recalled in § 9.
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8. Proof of Theorems 2.2 and 2.4

We prove Theorems 2.2 and 2.4 by showing the assertions in Claim 6.4. The argument is the same
as in [Sai97] complemented in [Sai00]. Let the notation be as in Claim 6.4. We fix sufficiently
small open compact subgroups K ⊂G(A∞), H ⊂ A∞×E0

, an ÔD-lattice T̂ and ÔE0-lattice R̂. To
simplify the notation, we will write M ×N for MK ×NH and X for XK,H,T̂ ,R̂. Recall that we
identify Eq = Fp .

We prove that the p-adic representation Hq(X ⊗E Ēq ,Qp) of the Galois group Gal(Ēq /Eq )
is potentially semi-stable. Since we have a semi-stable model XOV of the base change XV to an
extension V of Eq by Lemma 7.1, we may apply the Cst-conjecture proved by Tsuji [Tsu99].

We compute D(Hq(X ⊗E Ēq ,Qp)) in terms of the minimal semi-stable model XO of X
defined in Lemma 7.1. Let Y denote the closed fiber of the minimal semi-stable model XO with
the natural log structure. Then further by [Tsu99], we have a canonical isomorphism

D(Hq(X ⊗E Ēq ,Qp))'Hq
log crys(Y/W )⊗Zp Qp. (8.1)

It follows from the functoriality of the comparison isomorphism for finite étale morphism and from
the compatibility with the Poincaré duality that the isomorphism is compatible with the action
of endomorphisms and permutations that appeared in Claim 6.4. We define Hecke operators
on the log crystalline cohomology and compare them with those on the left-hand side of (8.1)
induced by the Hecke operators on the étale cohomology. Let n⊂OF and m⊂OE be sufficiently
divisible ideals as in § 6.3. Let r - n be a prime ideal of OF . Then the projections p1, p2 and the
isogeny q described at (6.10) is extended to a finite étale morphism of the minimal semi-stable
model by Lemma 7.1. On log crystalline cohomology, we define the Hecke operator Tr as the
composite p1∗ ◦ q∗ ◦ p∗2. Similarly we define the Hecke operator Ps for a prime ideal s - m of OE
as the composite q∗ ◦ p∗2, using the description at (6.11) . Then it follows from the functoriality
that the isomorphism is compatible with the Hecke operators thus defined.

We define the Galois action on the log crystalline cohomology and compare it with that
on the left-hand side defined in § 2. We may and do assume that the finite extension V
of Ênr

q is the completion of a Galois extension of Eq . We have a natural action of the Galois
group GEq = Gal(Ēq /Eq ) on V and hence on the base change MV . Since the minimal semi-
stable model is unique, the action of GEq on the generic fiber MV extends to the minimal
semi-stable model MOV . Further it uniquely extends to the abelian scheme XOV . It induces
a semi-linear action of the Weil group Wq on the log crystalline cohomology. By modifying
the action of σ ∈WEq by ϕn(σ) ◦ σ as in § 2 and together with the monodromy operator N , we
define a linear action of the Weil–Deligne group W ′Eq

on the log crystalline cohomology. We verify
the compatibility of the isomorphism with the action of Weil–Deligne group defined above. By
transport of the structure, it is compatible with the semi-linear action of the Weil group before
modification. Since the comparison isomorphism is compatible with the action of F and N , the
compatibility is established.

Therefore, Claim 6.4 is reduced to the following.

Claim 8.1. Let the notation be as in Claim 6.4. Then, the following holds.

(i) Let σ ∈W+ = {σ ∈W (Ēq /Eq ) | n(σ) > 0}, T ∈ T n , R ∈ Tm
0 , τ ∈S

g
w−2 and let ψ :X →X

be an endomorphism of degree prime to p. Then for the composite Γ = T ◦R ◦ τ ◦ ψ as an
algebraic correspondence, we have an equality in Q∑

q

(−1)q Tr(σ ◦ Γ|Hq(X ⊗E Ēq ,Q`)) =
∑
q

(−1)q Tr(σ ◦ Γ|Hq
log crys(Y/W )). (8.2)
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(ii) Let e be the algebraic correspondence in Lemma 6.3 and let λ - p, µ|p be finite places of
L⊃ E0. Then the monodromy filtration of the representations e ·Hq(X ⊗E Ēq , Lλ) and
e · (Hq

log crys(Y/W )⊗ L̂nr
µ ) of the Weil–Deligne group ′W (Ēq /Eq ) are pure of weight q.

In assertion (ii), the tensor product is taken with respect to the map W =O
Ênr

q ,0
⊂ Ênr

q ,0
∼←

F̂ nr
p ,0→ L̂nr

µ where the last map was fixed in § 2. We prove Claim 8.1 by studying the weight
spectral sequences for ` 6= p and for p.

We prove assertion (i). It suffices to apply Lemma 2 of [Sai97]. However, since we will use the
weight spectral sequences in the proof of assertion (ii), we give more details. First, we compute
the `-adic side. We consider the weight spectral sequence [RZ82, Ill94]

Ei,j1 =
⊕

r>max(0,−i)

Hj−2r(Y (i+2r),Q`(−r))⇒H i+j(XV̄ ,Q`) (8.3)

for the semi-stable model XOV . Here Y (i) denotes the disjoint union of i+ 1 by i+ 1 intersections
of the irreducible components of the closed fiber Y =X ⊗O F̄q . The schemes Y (i) are projective
and smooth over F̄q . We have Y (i) = ∅ for i > 1 since the semi-stable model XO is proper smooth
over the semi-stable model (M ×N)O of a curve. The spectral sequence degenerates at E2-terms
as a consequence of the Weil conjecture.

Since the action of the Galois group GEq extends to the semi-stable model XOV , the spectral
sequence is compatible with its action by transport of structure. It is also compatible with the
action of Hecke operators, endomorphisms and permutations by the same argument as in the case
of the p-adic comparison isomorphism (8.1). Hence, from the spectral sequence, we immediately
deduce that the left-hand side of the equality (8.2) is equal to∑

i

(−1)i
i∑

r=0

q
n(σ)r
q

∑
q

(−1)q Tr(σ ◦ Γ|Hq(Y (i),Q`)) (8.4)

where qq denotes the norm of q.
Let σ ∈W+

q be an element in the Weil group with n(σ) > 0. The action of σ on Y (i) is
compatible with the action on the base field F̄q and hence is not geometric. Thus, in order to
apply the Lefschetz trace formula, we modify it and define an endomorphism σgeom of Y (i) to be
σgeom = σ ◦ (abs. Frob.)[Fq :Fp]·n(σ) for each i. It is a geometric endomorphism of a scheme Y (i) over
the base field F̄q . Since the absolute Frobenius acts trivially on étale cohomology Hq(Y (i),Q`),
we have σ∗ = σgeom∗ as an operator acting on it.

Let Γσ denote the composite of σgeom with Γ as an algebraic correspondence and let (Γσ,∆) be
the intersection number. We apply the Lefschetz trace formula to a proper, smooth scheme Y (i)

and an algebraic correspondence Γσ. Then we obtain∑
q

(−1)q Tr(σ ◦ Γ|Hq(Y (i),Q`)) = (Γσ,∆). (8.5)

Next we compute the p-adic side. For log crystalline cohomology, we also have the weight
spectral sequence (see [Mok93])

Ei,j1 =
⊕

r>max(0,−i)

Hj−2r
crys (Y (i+2r)/W )(−r)⇒H i+j

log crys(Y/W ). (8.6)

Here the Tate twist (−r) means that we replace the Frobenius ϕ by prϕ. Since the maps
involved in the definitions of the Hecke operators are finite étale, by the same argument as
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in the `-adic case, we see that the spectral sequence is compatible with the action of Hecke
operators, endomorphisms and permutations. It is also compatible with the semi-linear action
of the Galois group and the Frobenius operator. Hence by modifying it in the same way on
both sides, it is also compatible with the linear action of the Weil group. For σ ∈W+, the
modified action σ∗ ◦ Fn(σ)[Fq :Fp] is the same as the action of the geometric endomorphism
σgeom = σ ◦ (abs. Frob.)[Fq :Fp]·n(σ). Hence the right-hand side of (8.2) is equal to∑

i

(−1)i
i∑

r=0

q
n(σ)r
q

∑
q

(−1)q Tr(σgeom∗ ◦ Γ|Hq
crys(Y

(i)/W )) (8.7)

where qq denotes the norm of q. Again by the Lefschetz trace formula (see [GM87, Gro85]),
we have ∑

q

(−1)q Tr(σgeom∗ ◦ Γ|Hq
crys(Y

(i)/W )) = (Γσ,∆). (8.8)

Thus both sides give the same answer and the equality (8.2) is proved.
Finally we prove assertion (ii), the monodromy-weight conjecture. The algebraic

correspondence e in Lemma 6.3 acts as an projector on the spectral sequences. We consider
their e-parts. We compute the E1-terms of the e-parts. Let C denote the closed fiber of the
semi-stable model (M ×N)O. Then the disjoint union C(0) of the components is the same as
the normalization of C and the disjoint union C(1) of the their intersections is the singular locus
of C. To describe the E1-terms, we introduce some sheaves on C(i).

For a place λ|` of L, we define a smooth Lλ-sheaf F (k)
λ to be

⊗
i(Symki−2 ⊗

det(w−ki)/2)(eiR1a∗Lλ)⊗ (e0R
1b∗Lλ)⊗(w−2)(g−1). It is the restriction of the extension of F (k)

λ on
M to MO. Similarly for a place µ|p of L, we define an F -isocrystal E(k)

µ . We consider F -isocrystals
R1a∗Ocrys ⊗W L̂nr

µ and R1b∗Ocrys ⊗W L̂nr
µ where the tensor product is taken as remarked after

Claim 8.1. We regard them as an OD ⊗Z L-module and an OE0 ⊗Z L-module respectively. Then
we define E(k)

µ to be⊗
i

(Symki−2 ⊗ det(w−ki)/2)(eiR1a∗Ocrys ⊗W L̂nr
µ )⊗ (e0R

1b∗Ocrys ⊗W L̂nr
µ )⊗(w−2)(g−1). (8.9)

Similarly as in Lemma 6.3, we have eRqc∗Lλ = F (k)
λ if q = q0 = (w − 2)(2g − 1) and zero

otherwise. Also in the p-adic case, we have eRqc∗Ocrys ⊗W L̂nr
µ = E(k)

µ if q = q0 and zero otherwise.
The e-part of the Leray spectral sequence Ep,q2 =Hp(C(i), Rqc∗Lλ)⇒Hp(Y (i), Lλ) degenerates
at E2-terms and defines an isomorphism Hp(C(i), F (k)

λ ) '→ e ·Hq0+p(Y (i), Lλ) as in Lemma 6.3.
We have a similar assertion in the p-adic case. Since Hp(C(i), F (k)

λ ) is zero except for i= 0, p=
0, 1, 2 and for i= 1, p= 0, there are only five non-vanishing E1-terms

E−1,q0+2
1 E0,q0+2

1

E0,q0+1
1

E0,q0
1 E1,q0

1

(8.10)

where q0 = (2g − 1)(w − 2). Each term is described as follows. In the `-adic setting, we have

E0,q0+q
1 =Hq(C(0), F (k)

λ ), E1,q0
1 = E−1,q0+2

1 (1) =Hq(C(1), F (k)
λ ). (8.11)

In the crystalline setting, we replace F (k)
λ by E(k)

µ . The map d−1,q0+2
1 is the Gysin map and d1,q0

1

is the restriction map.
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By the Weil conjecture, the eigenvalues of a lifting of the geometric Frobenius acting on each
E1-term Ei,j1 are algebraic integers purely of weight j and the spectral sequence degenerates
at E2-terms. Hence the monodromy-weight conjecture is equivalent to the statement that
the monodromy filtration is equal to the filtration defined by the weight spectral sequence.
By the definition of the monodromy filtration, it is further equivalent to the statement that
the monodromy operator induces an isomorphism E−1,q0+2

2 (1)→ E1,q0
2 . Since the monodromy

operator N on the E2-terms is induced by the canonical isomorphism N : E−1,q0+2
1 (1)→

E1,q0
1 [Mok93, RZ82], it is further equivalent to the statement that the isomorphism N on the E1-

term induces an isomorphism on E2-terms. Thus we are reduced to showing the following claim.

Claim 8.2. Let q0 = (2g − 1)(w − 2). The canonical map

N : E−1,q0+2
2 = Ker(E−1,q0+2

1 → E0,q0+2
1 )(1)→ E1,q0

2 = Coker(E0,q0
1 → E1,q0

1 ) (8.12)

is an isomorphism.

First we prove it in the case where the multiweight k is of the form k = (2, 2, . . . , 2, w). In this
case, the sheaves F (k)

λ and E(k)
µ are constant. Let I be the set of irreducible components and J

be the set of singular points. Then it is enough to show that Ker(QJ →QI)→ Coker(QI →QJ)
is an isomorphism. It is proved easily by extending scalars to R.

We assume the multiweight k is not of the form k = (2, 2, . . . , 2, w). To show Claim 8.2, we
prove Proposition 8.3 below in the next section. To state it, we introduce some terminology.
Take a sufficiently small open compact subgroup K ′′ such that M ′′K′′ has a proper, smooth
model M ′′K′′,O and that KH ⊂K ′′. We consider the natural map (M ×N)O→M ′′K′′,O. We say a
component Ci in C = (M ×N)O ⊗O F̄p is ordinary, if it dominates a component C ′′ of the closed
fiber of M ′′K′′,O. Otherwise, we say it is supersingular.

Proposition 8.3. Let Ci be an ordinary irreducible component of (M ×N)O ⊗O F̄p. Then we
have

H0(Ci, F (k)
λ ) =H2(Ci, F (k)

λ ) = 0, (8.13)

H0(Ci, E(k)
µ ) =H2(Ci, E(k)

µ ) = 0 (8.14)

unless k = (2, 2, . . . , 2, w).

The proof will be given in the next section.
We show Claim 8.2, admitting Proposition 8.3. Let Σ⊂ (M ×N)O be the union of the image

of supersingular components and of singular points. Then for each s ∈ Σ the sheaves F (k)
λ and E(k)

µ

are constant in the inverse image. Let Is be the set of supersingular components and Js be the set
of singular points in the inverse image. Then the claim holds if Ker(QJs →QIs)→ Coker(QIs →
QJs) is an isomorphism, which is proved in the same way as in the case k = (2, . . . , 2, w).

9. Vanishing of H0

We prove Proposition 8.3. First we restate it in terms of the closed fiber of the proper, smooth
model of M ′K′ and Tate modules. Let K ′ ⊂G′(A∞) be a sufficiently small open subgroup
satisfying the condition (b) in the proof of Lemma 7.1(ii) in § 7: K ′ = Z×p ×GL2(OFp )×K ′pp ×
K ′p. Then as is recalled there, Carayol has shown that M ′K′ has good reduction and the
abelian variety A′

K′,T̂
extends to the proper, smooth model M ′K′,OEq

. Let C be an irreducible
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component of the geometric closed fiberM ′K′,OEq
⊗ F̄q . We define a smooth `-adic sheaf F∗(k)

λ and

an F -isocrystal E∗(k)
µ on C in a similar way as for F ′(k)

λ : For a place λ|` of L, we define a smooth
Lλ-sheaf F∗(k)

λ to be⊗
i

(Symki−2(eiT`(A)⊗Z` Lλ)⊗ (det(eiT`(A)⊗Z` Lλ))⊗
w−ki

2 ). (9.1)

Here the idempotents ei ∈ EndM ′(A)⊗ L act on T`(A)⊗Z` Lλ by the covariant functoriality of
Tate modules. We define an F -crystal. Let Tp(A) denote the F -crystal associated to the p-
divisible group A[p∞] on M ′. Let µ|p be a place of L. We regard the crystal Tp(A)⊗W L̂nr

µ as an
OD ⊗Z L-module by the covariant functoriality as above. For each i, we define an F -isocrystal Ei
to be ei(Tp(A)⊗W L̂nr

µ ) and put E∗(k)
µ =

⊗
i(Symki−2Ei ⊗ (det Ei)⊗(w−ki)/2).

Proposition 9.1. Let C ′→ C be a finite covering of proper smooth curves and assume the
multiweight k is not of the form (2, 2, . . . , 2, w). For λ|` 6= p, the pull-back to C ′ of the smooth

sheaf F∗(k)
λ has no non-trivial (geometrically) constant subsheaf or quotient smooth sheaf.

For µ|p, the pull-back to C ′ of the underlying isocrystal E∗(k)
µ has no non-trivial constant sub-

isocrystal or quotient isocrystal.

We show that Proposition 9.1 implies Proposition 8.3. Let C ′ = Ci be an ordinary component
as in Proposition 8.3 and C ′′ ⊂M ′′K′′,OEq

⊗ F̄q be the image. By the construction of F (k)
λ and E(k)

µ ,

we may assume that C = C ′′ is in M ′K′,OEq
⊗ F̄q ⊂M ′′K′′,OEq

⊗ F̄q where K ′ is as above. Then,

Proposition 9.1 implies a similar statement where we replace C ′, F∗(k)
λ and E∗(k)

µ by Ci, F (k)
λ

and E(k)
µ . It immediately implies the assertion for H0 in Proposition 8.3. For H2, it suffices to

use Poincaré duality,

Proof of Proposition 9.1 for λ - p. First, we prove the `-adic case. The argument is similar to the
proof of vanishing of H0 and H2 in the reduction of the equality (2.8) to (3.9) given in § 3. It is
enough to show that the image of the action of π1(C) is sufficiently large. We show that the action
on the Tate module defines a surjection π1(C)→ SK ′` = Ker(ν :K ′`→ Z×` × (OE ⊗ Z`)×). Let V
denote the maximal unramified extension of Eq and M ′+K′,OV be the connected component of the
proper smooth model whose closed fiber is C. Since T`(A) is locally constant on M ′+K′,OV , the
map π1(M ′+

K′,V̄
)→ (Ô×D)p factors through a surjection π1(M ′+

K′,V̄
)→ π1(M ′+K′,OV )' π1(C). Since

π1(M ′+
K′,V̄

)' π1(M ′+K′,C)' SK ′`, we obtain the surjection. The rest of the argument is identical
to the reduction to Claim 3.2 in § 3 and we will not repeat it here. 2

To proceed to the crystalline case, we recall the modular interpretation due to Carayol of
the integral model of M ′ over the integer ring O =OEq (see [Car86a]). Let K ′ ⊂G′(A∞) be a
sufficiently small open subgroup satisfying the condition (b) in the proof of Lemma 7.1(ii) in § 7:
K ′ = Z×p ×GL2(OFp )×K ′pp ×K ′p. Recall that K ′pp =

∏
p ′|p,6=p K

′
p ′ . We take an order OD ⊂D

such that K ′ ⊂ Ô×D. We take an ÔD-lattice T̂ ⊂D ⊗ A∞. We assume they satisfy the following
conditions: 

OD is stable under the involution ∗,
OD ⊗Z Zp is maximal in D ⊗Q Qp,

Tr ψ(T̂ , T̂ )⊂ Ẑ,
and Tr ψ(T̂ ⊗ÔE OEp , T̂ ⊗ÔE OEp)→ Zp is perfect.

(9.2)
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We put Ẑp =
∏
q 6=p Zq, ÔpE =OE ⊗Z Ẑp, T̂ p = T̂ ⊗Ẑ Ẑp etc. Then, T̂ p is a free ÔpE-module of rank

four and has a symmetric bilinear form Tr ψ : T̂ p × T̂ p→ Ẑp. We also put Op
F,p =

∏
p ′|p,p ′ 6=p OFp ′ .

We define a free Op
F,p-module T p

p of rank 4 as follows. By the isomorphism OE ⊗ Zp
'→∏

p ′|p(OFp ′ ×OFp ′ ), we have a direct sum decomposition T̂ ⊗ Zp =
∏

p ′|p(T̂p ′1
× Tp ′2

). Here the
first factors correspond to the embedding OE0 → Zp fixed in § 4. We put

T p
p =

∏
p ′|p,6=p

T̂p ′1
. (9.3)

For an OD-abelian scheme A on an OEq -scheme S, we define direct summands Lie2A and
Lie1,2A of Lie A similarly as in § 5. We define T p

p (A) similarly as T̂ p
p in (9.3). On the category

of schemes over OEq , there is a proper, smooth model M ′K′,OEq
of M ′K′ representing the functor

S 7→ {isomorphism classes of (A, θ, k̄)} where the following hold.

(i) An OD-abelian scheme A of dimension 4g such that Lie2A= Lie1,2A and it is a locally free
OS-module of rank two.

(ii) An OD-polarization θ ∈Hom(A, A∗)sym of A.

(iii) A pair k̄ = k̄p
p × k̄p of a K ′pp -equivalent class of a

∏
p ′|p,6=p ODp ′ -isomorphism kp

p : T p
p (A)→

T p
p and a K ′p-equivalent class of a

∏
p ′-p ODp ′ -isomorphism kp : T p(A)→ T p such that there

exists a Ẑp-isomorphism k′ making the diagram

T p(A)× T p(A)
(1,θ∗) //

k×k
��

T p(A) × T p(A∗) // Ẑp(1)

k′

��
T p × T p

Tr ψ
// Ẑp

commutative.

In condition (iii), the OE ⊗ Ẑp-module T p(A) is free of rank four and, by the condition (i), the∏
q ′|p,q ′-q 0,q

′ 6=q OE′q -module T p
p (A) is also free of rank four. As is shown in [Car86a], the generic

fiber M ′K,OEq
⊗OEq

Eq represents the restriction of the functor M ′K to the schemes over Eq .
Hence the smooth, proper scheme M ′K,OEq

is a model of the base change M ′K ⊗E Eq and the
universal abelian scheme A is a unique extension on M ′K,OEq

of the pull-back.

We state Lemmas 9.2 and 9.3 on the p-divisible group A[p∞] on C. We will deduce
Proposition 9.1 in the crystal case from the Lemmas 9.2 and 9.3. As in [Car86a, 2.6.3], we put

T p
p (A) = Tp(A)⊗OE⊗Zp

∏
q ′|p,-q 0,-p

OEq ′ . (9.4)

We identify
∏

q ′|p,-q 0,-p OEq ′ =
∏

p ′|p,6=p OFp =Op
F,p and regard T p

p (A) as an Op
B,p =∏

p ′|p,6=p OBp -module. By the modular interpretation recalled above, it is a smooth étale sheaf
on the proper scheme M ′K′,OEq

of Op
B,p-modules of rank one. Let q2|p, 6= q be the other prime

ideal of OE dividing p. We identify ODq 2
=OBp and take an isomorphism OBp 'M2(OFp ). Let

e ∈ODq 2
be the idempotent corresponding to

(
1 0
0 0

)
'M2(OFp ). Similarly as in [Car86a, 5.4], let

E∞ be the p-divisible group

E∞ = e(A[p∞]⊗OE⊗Zp OEq 2
). (9.5)
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In the terminology of [Car86a, Appendix 1], it is an OFp -divisible group of height 2. As a p-
divisible group, it is of height 2[Fp : Qp] and of dimension one. Let E0 and T p be the F -crystals
associated to the p-divisible group E∞ and to the Tate module T p

p (A), respectively.

The F -isocrystal E∗(k)
µ =

⊗
i(Symki−2Ei ⊗ (det Ei)(w−ki)/2) is related to them in the following

way. We regard E0 and T p as an OFp -module and an Op
F,p-module, respectively, by the covariant

functoriality. Let I1 ⊂ I = {τi : F → L} be the subset I1 = {τi : Fp → Lµ}. Then for i ∈ I1, the
F -isocrystal Ei is isomorphic to E0 ⊗OFp

L̂nr
µ with respect to τi :OFp → L̂nr

µ . Here we identify
OFp with OEq . For i ∈ I − I1, we take an isomorphism B ⊗F L'M2(L) for the tensor product
with respect to τi and let e be the idempotent corresponding to

(
1 0
0 0

)
. Then the F -isocrystal Ei is

isomorphic to e(T p ⊗Op
F,p

L̂nr
µ ) with respect to τi :Op

F,p→ L̂nr
µ . Here we also identify OEq ′ =OFp ′

for primes p′|p, 6= p and q′|p′, - q0.
It is shown in [Car86a, (6.7), (9.4.3)] that there exists a finite nonempty set Σ⊂ C of closed

points satisfying the following condition.

– At each point in Σ, the p-divisible group E∞ is connected. On the complement U = C − Σ,
the p-divisible group E∞ is an extension of an étale p-divisible group Eét

∞ by a connected
p-divisible group E◦∞.

We call a point in Σ a supersingular point and a point in U an ordinary point. The p-divisible
groups Eét

∞ and E◦∞ have natural structures of OFp -modules. The Tate module T (Eét
∞) is a smooth

sheaf of OFp -modules of rank 1.

Lemma 9.2. The morphism π1(U)→O×Fp
×Op×

B,p defined by the smooth sheaf Tp(Eét
∞)× T p

p (A)
of OFp ×O

p
B,p-modules of rank 1 defines a surjection

π1(U)→O×Fp
× SK ′q . (9.6)

Let E ′0 and E ′′0 be the F -crystals associated to the p-divisible groups Eét
∞ and E◦∞ on the

ordinary locus U , respectively. The restriction of E0 on U is an extension

0 // E ′0 // E0
// E ′′0 // 0, (9.7)

since E∞ is an extension.

Lemma 9.3. The extension of the underlying isocrystal

0 // E ′0 ⊗Qp
// E0 ⊗Qp // E ′′0 ⊗Qp

// 0 (9.8)

is non-trivial.

Proof of Proposition 9.1 for µ | p. The argument is similar to that in [Cre92]. First, we prove it,
admitting Lemmas 9.2 and 9.3. It is sufficient to show that, on the inverse image U ′ ⊂ C ′ of the
ordinary locus U , the restriction of E∗(k)

µ has no constant sub-isocrystal or quotient isocrystal.
Before starting the proof, note that an F -(iso)crystal is constant if and only if the underlying
(iso)crystal is constant. In fact, if the underlying (iso)crystal E is constant, the Frobenius pull-
back F ∗E and the Frobenius map F : F ∗E → E defining the structure of F -(iso)crystal is constant.
The ‘only if’ part is trivial.

We put r = [Fp : Qp] and I1 = Hom(Fp , Lµ) = {τ1, . . . , τr} ⊂ I = Hom(F, L) = {τ1, . . . , τg}.
We define a decreasing filtration on the restriction of E∗(k)

µ on U with multi-index ZI1 as follows.
On E0, we define a filtration F • on E0 by F 0E0 = E0, F

1E0 = E ′0, F 2E0 = 0. For each i ∈ I1, it
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induces a filtration on Ei and hence on Symki−2Ei by the isomorphism Ei ' E0 ⊗OFp
Lµ. Taking

symmetric powers and tensor product, we obtain a filtration on E∗(k)
µ =

⊗
i∈I(Symki−2Ei ⊗

(det Ei)⊗(w−ki)/2). We consider the graded piece GrqFE
∗(k)
µ = F qE∗(k)

µ /
∑

q′>q F
q′E∗(k)

µ for each
q = (q1, . . . , qr) ∈ ZI1 .

We deduce from Lemma 9.2 that the isocrystal GrqFE
∗(k)
µ has no constant sub-isocrystal or

quotient isocrystal except for at most one multi-index q = (q1, . . . , qr) satisfying (k1, . . . , kg) =
(2q1 + 2, . . . , 2qr + 2, 2, . . . , 2). In the exceptional case, we will see that the graded piece is in
fact constant. The graded pieces are computed as

GrqFE
∗(k)
µ =

⊗
i∈I1

((det Ei)⊗(w−ki)/2+qi ⊗ (Gr0
FEi)⊗ki−2−2qi)⊗

⊗
i∈I−I1

(Symki−2Ei ⊗ (det Ei)⊗(w−ki)/2)

(9.9)
for 0 6 qi 6 ki − 2 for i ∈ I1 and as zero otherwise. By the Weil pairing of the Drinfeld basis
(see [Car86a, 9.2]), the determinant isocrystal det Ei is geometrically constant for i ∈ I1. Similarly,
but more easily, det Ei is also constant for i ∈ I − I1. Therefore it is sufficient to show that
the isocrystal

⊗
i∈I1(Gr0

FEi)⊗ki−2−2qi ⊗
⊗

i∈I−I1 Symki−2Ei has no non-trivial constant sub-
isocrystal or quotient isocrystal unless (k1, . . . , kg) = (2q1 + 2, . . . , 2qr + 2, 2, . . . , 2).

The F -isocrystals Gr0
FEi for i ∈ I1 and Ei for i ∈ I − I1 are defined by smooth p-adic étale

sheaves on U . Let Li and Fi be the corresponding smooth p-adic sheaves. Since an F -isocrystal
is constant if and only if the underlying crystal is constant, we are reduced to showing that
the smooth p-adic sheaf

⊗
i∈I1 L

⊗ki−2−2qi
i ⊗

⊗
i∈I−I1 Symki−2Fi is irreducible. It follows from

the surjectivity of the map π1(U)→ SK ′p (see Lemma 9.2) by the same argument as in the
`-adic case.

We complete the proof by using Lemma 9.3. We assume that there exists a non-trivial
constant sub-isocrystal of E∗(k)

µ for (k1, . . . , kg) 6= (2, . . . , 2) and deduce a contradiction. The
proof for the quotient is similar and is omitted. By the study of the graded pieces (9.9), the
proof is complete except for the case where ki are even for i ∈ I1 and ki = 2 for i ∈ I − I1.
We put (k1, . . . , kg) = (2q1 + 2, . . . , 2qr + 2, 2, . . . , 2) and assume q = (q1, . . . , qr) 6= 0. By the
computation of the graded pieces, if we had a non-trivial constant sub-isocrystal, it should be
contained in F qE∗(k)

µ and mapped isomorphically to GrqE∗(k)
µ . Namely, the extension F qE∗(k)

µ of
GrqE∗(k)

µ is split. Take an index i ∈ I1 such that qi > 0 and let q′ (respectively q′′) be the multi-
index obtained from q by replacing qi by qi + 1 (respectively by qi + 2). Then the extension

0 // Grq
′E∗(k)
µ

// F qE∗(k)
µ /F q

′′E∗(k)
µ

// GrqE∗(k)
µ

// 0

is also split. Its extension class is qi times the class of the extension (9.8) and hence is non-zero.
Thus we get a contradiction. We have proved that Lemmas 9.2 and 9.3 imply Proposition 9.1. 2

We prove Lemmas 9.2 and 9.3 to complete the proof of Proposition 9.1, hence of Theorems 2.2
and 2.4. We prove Lemma 9.2 using a supersingular point which exists by [Car86a, (9.4.3)].
Lemma 9.3 will be proved using an ordinary point.

Proof of Lemma 9.2. Since T p
p (A) is smooth on the proper, smooth model M ′K′,OEq

, the

same argument as in the `-adic case shows that we have a surjection π1(C)→ SK ′pp . Take a
supersingular point x ∈ Σ 6= ∅ and let Ix denote the inertia group. It is enough to show that the
restriction Ix→O×q is surjective. Let Un be the finite étale covering Un = Isom(OFp /p

n, Eét
n )

of U trivializing the pn-torsion part Eét
n . Here an isomorphism means an isomorphism of
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OFp /p
n-group schemes. The covering Un is an analogue of an Igusa curve. It is sufficient to show

that Un is totally ramified at a supersingular point. Namely, we show the following lemma. 2

Lemma 9.4. Let Kx denote the completion of the function field of C at a supersingular point x.
Then the base change Un ×C SpecKx is the spectrum of a totally ramified extension of Kx.

Proof. Let E denote the formal group associated to the p-divisible group E∞ over the completion
Ĉ = Spec ÔC,x. Let π be a prime element of OFp . For an integer n, let E(n) denote the base
change of E by the (qp )nth power Frobenius and Fn : E→ E(n) be the (qp )nth power relative
Frobenius over Ĉ. Then the multiplication [πn] : E→ E is factorized as [πn] = V n ◦ Fn for a map
V n : E(n)→ E. Outside the closed point x, the map V n is étale and hence Ker V n is a finite flat
group scheme over Ĉ extending the étale quotient Eét

n on the generic point. Let Cn = (Ker V n)×

be the scheme of OFp /p
n-basis of Ker V n in the sense of Drinfeld. Namely, it is a closed subscheme

of Ker V n representing the functor

R 7→
{
s ∈Ker V n(R)

∣∣∣∣ ∑
a∈OFp /p

n

[as] = Ker V n as a divisor in E
(n)
R

}
(9.10)

for a ring over ÔC,x. Outside the closed point, the scheme Cn is the same as the base change
of Un. Therefore, it is sufficient to show that Cn is regular and the inverse image of the closed
point x by Cn→ Ĉ contains only one point. The second assertion is clear since Cn is a closed
subscheme of a local scheme Ker V n. We show that the intersection Cn ∩ [0] of Cn with the
zero-section [0] of the formal group E(n) is equal to Spec κ(x). This will imply that Cn is regular
since the zero section is a divisor in E(n).

Let R= Γ(Cn ∩ [0],O). It is an Artin ÔC,x-algebra. Since [0] is a Cartier divisor of the formal
group E(n), it is sufficient to show that the surjection ÔC,x→R factors through the surjection
ÔC,x→ κ(x). By the assumption, the zero-section is an OFp /p

n-basis of Ker V n. Hence, we
have Ker[πn] = Ker F 2n on R and an isomorphism ER ' E(2n)

R ' E(2mn)
R for m > 1. Since R is

Artinian, for sufficiently large m, the map a→ a(qq )2mn
factors through R→ κ(x)→R and we

obtain ER ' E(2mn)
R ' Ex ⊗κ(x) R. This means that ÔC,x→R factors through κ(x) since E∞

over ÔC,x is the universal deformation of E∞|x, [Car86a, Proposition 5.4]. Thus we have proved
Lemma 9.4 and hence Lemma 9.2. 2

To prove Lemma 9.3, we show the following.

Lemma 9.5. Let Ĉ = Spec ÔC,x be the completion at an ordinary closed point x ∈ U . Let

[E] ∈ Ext1(Eét, E◦) be the class of E as an extension of OFp -divisible groups on Ĉ. Then the
class [E] is not torsion.

We derive it from the following statement proved in [Car86a, Proposition 5.4, App.
Théorème 3].

Lemma 9.6. On the completion Ĉ at an ordinary closed point, the connected part E◦ is
isomorphic to the pull-back of the Lubin–Tate formal group. The étale part Eét is isomorphic
to the constant OFp -divisible group Fp /OFp . The completion Ĉ pro-represents the functor R 7→
ExtR(Fp /OFp , E0) = E0(R) on the category of Artin Fp -algebras R together with a surjection

R→ κ(x). It is isomorphic to E0 as a formal scheme. The extension E on Ĉ = E0 is identified
with the universal extension.
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Proof of Lemma 9.5. We identify the formal schemes E0 = Ĉ. By Lemma 9.6, the universal
extension E corresponds to the identity C→ E0. Hence it is the universal section of the formal
group E0 and is not torsion. 2

Proof of Lemma 9.3. It is enough to prove that the restriction to the completion at an ordinary
closed point is not the trivial extension. Since the p-divisible groups E◦ and Eét are constant
on Ĉ, the F -isocrystals E ′ ⊗Qp, E ′′ ⊗Qp and hence their underlying crystals are constant there.
If the extension of the underlying isocrystal were trivial, the underlying isocrystal and hence the
F -isocrystal E ⊗Qp would be constant. It means that the extension class [E] ∈ Ext1(Eét, E◦) is
torsion and contradicts Lemma 9.5. 2

Thus the proof of Proposition 9.1 and hence of Theorems 2.2 and 2.4 are now complete.
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