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Abstract. In this paper we analyze the Hilbert boundary-value problem of the theory

of analytic functions for an (N + 1)-connected circular domain. An exact series-form

solution has already been derived for the case of continuous coefficients. Motivated

by the study of the Hall effect in a multiply connected plate we extend these results

by examining the case of discontinuous coefficients. The Hilbert problem maps into

the Riemann-Hilbert problem for symmetric piece-wise meromorphic functions invariant

with respect to a symmetric Schottky group. The solution to this problem is derived in

terms of two analogues of the Cauchy kernel, quasiautomorphic and quasimultiplicative

kernels. The former kernel is known for any symmetric Schottky group. We prove the

existence theorem for the second (quasimultiplicative) kernel for any Schottky group (its

series representation is known for the first class groups only). We also show that the

use of an automorphic kernel requires the solution to the associated real analogue of

the Jacobi inversion problem, which can be bypassed if we employ the quasiautomorphic

and quasimultiplicative kernels. We apply this theory to a model steady-state problem

on the motion of charged electrons in a plate with N + 1 circular holes with electrodes

and dielectrics on the walls when the conductor is placed at a right angle to the applied

magnetic field.

1. Introduction. Let D(� ∞) be an (N + 1)-connected domain, a complex z-plane

with N +1 holes bounded by Lyapunov contours Lν (ν = 0, 1, . . . , N), and let a(t), b(t),

and c(t) be some prescribed real functions Hölder-continuous on the contour L = ∪N
ν=0Lν .
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564 Y. A. ANTIPOV AND V. V. SILVESTROV

The second fundamental boundary-value problem of the theory of analytic functions, the

Hilbert problem, requires the finding of all functions φ(z) that are single-valued and

analytic in D, Hölder-continuous up to the boundary L = ∪N
ν=0Lν , and that satisfy the

boundary condition

Re[f(t)φ(t)] = c(t), t ∈ L, (1.1)

where f(t) = a(t) + ib(t).

If at least one of the contours Lν is not a circle, and N ≥ 1, then the Hilbert problem

cannot be solved exactly. In this case, by the method of the regularizing Schwarz factor

[22], [15], it can be reduced to a system of singular integral equations. Alternatively,

the solution can be expressed through a basis of N +1 complex harmonic measures [26].

This method, in addition to the Schwarz factor, uses the theory of the Riemann-Hilbert

problem on a Riemann surface and requires the solution to a real analogue of the classical

Jacobi inversion problem.

In the case when all the contours Lν are circles, and the functions a(t), b(t), and c(t)

are Hölder-continuous on L, the Hilbert problem admits an exact solution in a series

form [1], [2], [20]. One of the ways to solve the problem in this case is to convert

the original Hilbert problem into a Riemann-Hilbert problem for symmetric piece-wise

meromorphic functions invariant with respect to a Schottky group of symmetric Möbius

transformations [20]. This idea was used in the study of steady-state flow around N + 1

cylinders with porous walls [4]. Its solution requires the analysis of a Riemann-Hilbert

problem with continuous coefficients. Recently [5], the method was extended to free

boundary problems on supercavitating flow in multiply connected domains. The key

step in the solution procedure is the determination of a conformal mapping in terms

of the solutions to two Hilbert problems for a multiply connected circular domain. The

first problem has continuous coefficients, whilst the second one is a homogeneous problem

with the coefficient

G(ξ) =

{
−1, ξ ∈ L′

j ,

1, ξ ∈ L′′
j ,

j = 0, 1, . . . , N, (1.2)

where Lj = L′
j ∪ L′′

j and Lj are circles.

In the present paper, motivated by an electromagnetic problem for a Hall semicon-

ductor with N + 1 circular holes, we analyze the general case of the Hilbert problem

(1.1) with discontinuous functions a(t), b(t), and c(t). The actual physical problem is

homogeneous, and the coefficients a(t) and b(t) are discontinuous functions. The discon-

tinuity is caused by the presence of electrodes and dielectrics on the walls of the holes.

Due to the generalized Ohm’s law describing the Hall effect, the boundary conditions

on the electrodes and the dielectrics, Eτ = 0 and Jn = 0, respectively, and the Maxwell

equations give rise to a particular case of the Hilbert problem with piece-wise continuous

coefficients a(t) and b(t). Here Eτ is the tangent component of the electric field intensity,

and Jn is the normal component of the current intensity.

Various authors [25], [16], [17], [23], [24], [12] investigated the electrical characteristics

of Hall plates. These papers adopt the method of conformal maps devised by Wick [25]

for simply connected Hall plates. The method of conformal maps was further developed

and numerically implemented in [21], [11] for simply connected polygonal domains. Some

particular cases of a doubly connected Hall plate in the form of an annulus with a pair
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of symmetric electrodes were considered in [16], [12], where exact solutions were derived

in terms of elliptic functions. To the knowledge of the authors, an analytical solution to

the general case of the electromagnetic problem for a circular multiply connected Hall

plate with any finite number of electrodes and dielectrics on the walls is not available in

the literature.

One of the steps of the solution to the Hilbert problem with discontinuous coefficients is

the factorization problem. Its solution was derived [6] for an (N + 1)-connected circular

domain in terms of an automorphic analogue of the Cauchy kernel. The kernel was

expressed through the Schottky-Klein prime function of the associated Schottky double.

This procedure requires eliminating singularities at extra poles of the kernel by solving

a real analogue of the Jacobi inversion problem and normalizing the basis of abelian

integrals.

In this paper we aim to derive an exact solution to the general case of the Hilbert

problem (1.1) with discontinuous coefficients for an (N + 1)-connected circular domain.

First, we shall reduce the Hilbert problem (1.1) to the first fundamental problem of

analytic functions, the Riemann-Hilbert problem for symmetric piece-wise meromorphic

functions invariant with respect to a Schottky group. Next, we shall introduce a multi-

plicative canonical function and derive its representation in terms of a quasiautomorphic

analogue of the Cauchy kernel (Theorem 3.5). It turns out that the use of a quasimul-

tiplicative analogue of the Cauchy kernel for the solution of both the homogeneous and

inhomogeneous problems allows us to bypass the Jacobi inversion problem. Such a kernel

was derived in [20] for the first class groups (Burnside’s classification [7]). Here (Theo-

rem 4.1), by using the Riemann-Roch theorem for multiplicative functions [19], we shall

prove the existence of such a kernel. Then we shall derive the general solution to the

homogeneous and inhomogeneous cases of the Hilbert problem and analyze its solvability

(Theorems 5.2 and 5.3). We shall also specify the solution for the first class groups. In

addition, we shall solve the Hilbert problem (1.1) with discontinuous coefficients in terms

of an automorphic canonical function and the solution to the associated real analogue of

the Jacobi problem. Motivated by applications in electromagnetics we shall present the

solution in the special case for piece-wise constant coefficients. Finally, we shall give an

exact solution to a circular (N + 1)-connected plate with electrodes and dielectrics on

the walls when the applied electric and transverse magnetic fields cause the Hall effect.

The solution will be presented in a series form for the first class Schottky groups.

2. Riemann-Hilbert problem with discontinuous coefficients for piece-wise

automorphic symmetric functions. Let D be an (N + 1)-connected domain which

is a complex z-plane with N + 1 holes bounded by circles Lν = {z ∈ C : |z − δν | = ρν},
ν = 0, 1, . . . , N (Fig. 1). The positive direction on the circle Lν is chosen such that

the exterior of Lν is on the left. Define L = ∪N
ν=0Lν and consider the following Hilbert

problem:

Problem 2.1. Let

a(t) = aν(t) and b(t) = bν(t) (t ∈ Lν , ν = 0, 1, . . . , N) (2.1)
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Fig. 1. The geometry of the problem.

be real functions satisfying the Hölder condition either everywhere on Lν , or everywhere

on Lν except at points tν1, tν2, . . ., tνmν
, ν = 0, 1, . . . , N, where at least one of the

functions (2.1) has a jump discontinuity. Assume that a2ν(t) + b2ν(t) �= 0 everywhere on

all the contours Lν . Let c(t) = cν(t) (t ∈ Lν) be a real Hölder-continuous function on

Lν , ν = 0, 1, . . . , N .

Find all functions φ(z) = u(z) + iv(z), holomorphic in D, Hölder-continuous every-

where inD∪L except at the points tνj (j = 1, 2, . . . ,mν , ν = 0, 1, . . . , N), where they may

have integrable singularities, are bounded at infinity and satisfy the boundary condition

a(t)u(t) + b(t)v(t) = c(t), t ∈ L \Θ, (2.2)

where Θ = ∪N
ν=0 ∪mν

j=1 tνj .

To solve this problem, we transform it into a Riemann-Hilbert problem for piece-

wise automorphic functions. For this, we consider the symmetry group, G, of the line

L = L0 ∪ L1 ∪ . . . ∪ LN generated by the linear transformations σν(z) = TνT (z), ν =

1, 2, . . . , N , where

T = T0, Tν(z) = δν +
ρ2ν

z̄ − δ̄ν
, ν = 0, 1, . . . , N, (2.3)

and Tν is the symmetry transformation with respect to the circle Lν . Denote the fun-

damental region of the group G by F = D ∪ T (D) ∪ L. The group G is a symmetry

Schottky group [14]. The elements of the group are the identical map σ0(z) = z and

all possible compositions of the generators σν = TνT and the inverse maps σ−1
ν = TTν

(ν = 1, 2, . . . , N):

σ ∈ G ⇔ σ = Tk2μ
Tk2μ−1

. . . Tk2
Tk1

, μ = 1, 2, . . . ,

k1, k2, . . . , k2μ = 0, 1, . . . , N, k2 �= k1, k3 �= k2, . . . , k2μ �= k2μ−1. (2.4)
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The region D = ∪σ∈Gσ(F) is invariant with respect to the group G: σ(D) = D for all

σ ∈ G. This region is symmetric with respect to all the circles Lν (ν = 0, 1, . . . , N), and

D = C̄ \ Λ, where C̄ = C ∪ {∞} is the extended z-plane, and Λ is the set of the limit

points of the group G (it consists of two points if N = 1 and it is infinite if N ≥ 2).

Notice that all elements of the group G can be represented in the form

σ(z) =
aσz + bσ
cσz + dσ

, aσdσ − bσcσ �= 0, (2.5)

and cσ �= 0 if σ �= σ0.

Introduce now a new function

Φ(z) =

{
φ(z), z ∈ D,

φ(T (z)), z ∈ T (D).
(2.6)

Extend next the definition of the function Φ(z) from the domain D∪T (D) into the region

D by the automorphicity law,

Φ(z) = Φ(σ−1(z)), z ∈ σ(D ∪ T (D)), σ ∈ G \ σ0. (2.7)

The function Φ(z) so defined is a piece-wise meromorphic function with the discontinuity

line L = ∪σ∈Gσ(L) invariant with respect to the group G:

Φ(σ(z)) = Φ(z), z ∈ D \ L, σ ∈ G. (2.8)

In addition, the function Φ(z) satisfies the symmetry condition

Φ(Tν(z)) = Φ(z), z ∈ D \ L, ν = 0, 1, . . . , N, (2.9)

which follows from (2.6) and (2.7). In order to write the boundary condition (2.2) in

terms of the function Φ(z), let z → t ∈ Lν , z ∈ D. Then Tν(z) → t, Tν(z) ∈ Tν(D).

Introduce the following notations

Φ+(t) = lim
z→t, z∈D

Φ(z) = φ(t),

Φ−(t) = lim
z→t, z∈Tν(D)

Φ(z) = lim
Tν(z)→t, Tν(z)∈D

Φ(Tν(z)) = φ(t).
(2.10)

Now inspection of the boundary condition (2.2) shows that it is essentially equivalent to

the equation

Re{[a(t)− ib(t)]φ(t)} = c(t), t ∈ L \Θ, (2.11)

or, equivalently, in terms of the functions (2.10),

Φ+(t) = p(t)Φ−(t) + q(t), t ∈ L \Θ, (2.12)

where

p(t) = −a(t) + ib(t)

a(t)− ib(t)
, q(t) =

2c(t)

a(t)− ib(t)
. (2.13)

Definition 2.2. We say that a function Φ(z) ∈ QG(L) if it is piece-wise meromorphic

with the discontinuity line L, invariant with respect to the group G: Φ(σ(z)) = Φ(z),

σ ∈ G, z ∈ D \ L, and T -symmetric: Φ(T (z)) = Φ(z), z ∈ D \ L.
The fact that the boundary values of the function Φ(z) satisfy the condition (2.12)

lends itself to the opportunity of stating the following Riemann-Hilbert boundary-value

problem with discontinuous coefficients in the class of functions QG(L):
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Problem 2.3. Find all functions Φ(z) ∈ QG(L), Hölder-continuous in the domain D∪
L apart from the set of points σ(Θ), σ ∈ G, where they may have integrable singularities,

bounded at the points σ(∞) and which satisfy the boundary condition (2.12).

3. Multiplicative canonical function. Let tν1 be the starting point of the circle

Lν . This point can be chosen arbitrarily if both of the functions a(t) and b(t) are

continuous everywhere on the circle Lν .

Definition 3.1. We say that a function χ(z) is a multiplicative canonical function of

Problem 2.3 if:

(i) it is a piece-wise meromorphic function in the region D with the discontinuity line

L, Hölder-continuous in the domain D∪L except for the points σ(tν1), where it may have

a power singularity of any finite exponent, and the points σ(tν2), σ(tν3), . . . , σ(tνmν
),

σ ∈ G, where it may have integrable singularities,

(ii) its boundary values χ±(t) satisfy the boundary condition

χ+(t) = p(t)χ−(t), t ∈ L \Θ, (3.1)

(iii) it is a T -symmetric function: χ(z) = χ(T (z)), z ∈ D \ L, and
(iv) it satisfies the multiplicativity condition χ(σ(z)) = H−1

σ χ(z), σ ∈ G, z ∈ D \ L,
with the character H−1, where H is a group homomorphism between G and a multi-

plicative group H of complex numbers such that Hσω = HσHω.

To find such a function, we shall use a quasiautomorphic analogue of the Cauchy

kernel. Prove first its existence.

Theorem 3.2. There exists a function K(z, τ ) which has the following properties:

(i) for each fixed τ ∈ L, K(z, τ ) = 1
τ−z +B(z, τ ), where B(z, τ ) is an analytic function

of z ∈ F,

(ii) there exists a point z∗ ∈ F such that K(z∗, τ ) = 0 for all τ ∈ L,

(iii) for any σ ∈ G,

K(σ(z), τ ) = K(z, τ ) + ησ(τ ), (3.2)

where ησ(τ ) = K(σ(z∗), τ ).

Proof. The existence of such a function for any discrete discontinuous group of Möbius

transformations and, in particular, for a Schottky symmetry group, follows from the

theory of abelian integrals on closed Riemann surfaces [18]. Indeed, the fundamental

region F becomes a closed Riemann surface of genus N if we add the circles L′
ν = σ−1

ν (Lν)

and consider all congruent points of the circles Lν and L′
ν (ν = 1, 2, . . . , N) as identical.

The cycles Lν may be accepted as canonical cross-sections aν , and any simple curve

joining a pair of congruent points ξ′ν ∈ L′
ν and σν(ξ

′
ν) ∈ Lν can be considered as a

canonical cross-section bν . As a function of z, the kernel K(z, τ ) is an abelian integral

of the second kind. It has only one simple pole at the point z = τ with the residue −1.

It vanishes at the point z = z∗ and has zero A-periods,
∮
aν

dzK(z, τ ) = 0. It is known

[18] that such an abelian integral exists and it is unique. This integral has non-zero
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B-periods, ∮
bν

dzK(z, τ ) = K(σν(ξ
′
ν), τ )−K(ξ′ν , τ ) = ην(τ ), ν = 1, 2, . . . , N, (3.3)

where ην(τ ) = K(σν(z∗), τ ), and the maps σν = TνT are generating transformations of

the group G. �
Note that the functions ην(τ ) (ν = 1, 2, . . . , N) are linearly independent, and the dif-

ferentials 1
2πiην(τ )dτ (ν = 1, 2, . . . , N) form the normalized basis of abelian differentials

of the first kind on the Riemann surface,

1

2πi

∫
Lν

ηk(τ )dτ =

{
1, k = ν,

0, k �= ν,

1

2πi

tν1∫
T (tν1)

ηk(τ )dτ = Bkν .

(3.4)

The matrix of B-periods, ||Bkν ||, k, ν = 1, 2, . . . , N , is symmetric and its imaginary part

is positive definite.

Definition 3.3. A function K(z, ξ) is said to be a quasiautomorphic analogue of the

Cauchy kernel if it possesses properties (i) to (iii) of Theorem 3.2.

Remark 3.4. Because of the property (i), the integral

1

2πi

∫
L

ϕ(τ )K(z, τ )dτ (3.5)

satisfies the Sokhotski–Plemelj formulas.

If the group G is of the first class [7] or, equivalently, if the numerical series∑
σ∈G\σ0

|aσdσ − bσcσ|
|cσ|2

(3.6)

is convergent, such a kernel is known [8],

K(z, τ ) =
∑
σ∈G

(
1

σ(τ )− z
− 1

σ(τ )− z∗

)
σ′(τ ) =

∑
σ∈G

(
1

τ − σ(z)
− 1

τ − σ(z∗)

)
. (3.7)

In general, the kernel can be expressed through the Schottky–Klein prime function ω(z, τ )

associated with the group G [6] by the formula

K(z, τ ) =
d

dτ
ln

(
ω(z, τ )

ω(z∗, τ )

)
. (3.8)

Define next the logarithmic function ln p(τ ) or, equivalently, arg p(τ ) on each arc

tνjtνj+1, ν = 0, 1, . . . , N , j = 1, 2, . . .mν . We shall use the definitions t+νj and t−νj+1

to indicate the starting and the terminal points of the arc tνjtνj+1, respectively (it is

assumed that tνmν+1 = tν1). On the arc tν1tν2, a branch of the function arg p(τ ) can be

fixed arbitrarily. We fix it by the condition

−π < arg p(t+ν1) ≤ π. (3.9)
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Let Δνj be the change of arg p(τ ) along the arc tνjtνj+1 (j = 1, 2, . . . ,mν),

Δνj = [arg p(τ )]tνjtνj+1
. (3.10)

Then, obviously, arg p(t−νj+1) = arg p(t+νj) + Δνj , j = 1, 2, . . . ,mν . The values arg p(t+νj)

(j = 2, 3, . . . ,mν) cannot be chosen arbitrarily. Since the solution Φ(z) may have inte-

grable singularities at the points tνj , define a continuous branch of the function arg p(τ )

by

−2π < arg p(t−νj)− arg p(t+νj) ≤ 0, j = 2, . . . ,mν . (3.11)

We next choose integers κν such that

−4π < arg p(t−ν1)− arg p(t+ν1)− 4πκν ≤ 0, ν = 0, 1, . . . , N, (3.12)

and prove the following result.

Theorem 3.5. Let

Γ(z) =
1

4π

∫
L

arg p(τ )K(z, τ )dτ +
N∑

ν=0

sgn κν

|κν |∑
j=1

∫
γνj

K(z, τ )dτ, (3.13)

where γνj = tν1zνj are piece-wise smooth curves in D which do not cross each other, and

zνj are arbitrarily fixed distinct points in the region D (Fig. 1). Then

χ(z) = exp{Γ(z) + Γ(T (z))} (3.14)

is a multiplicative canonical function.

Proof. Analyze first the behavior of the function χ(z) at the points of the set Θ.

Clearly, in a neighborhood of the point z = tνj ,

Γ(z) = ανj ln(z − tνj) + f0(z), j = 1, 2, . . . ,mν , ν = 0, 1, . . . , N, (3.15)

where f0(z) is a function bounded as z → tνj ,

αν1 =
1

4π
[arg p(t−ν1)− arg p(t+ν1)]− κν ,

ανj =
1

4π
[arg p(t−νj)− arg p(t+νj)], j = 2, 3, . . . ,mν .

(3.16)

Since Tν(tνj) = tνj , we conclude from (2.3) that

Tν(z)− tνj ∼ − ρ2ν
(t̄νj − δ̄ν)2

(z̄ − t̄νj), z → tνj . (3.17)

On the other hand,

Γ(T (z)) = Γ(σ−1
ν (Tν(z))) = Γ(Tν(z))− Γ(σν(z∗))

= ανj ln(Tν(z)− tνj) + f1(z), z → tνj ,
(3.18)

where f1(z) is a function bounded as z → tνj . From the definition of the function χ(z)

(3.14) and (3.13), it follows that

χ(z) ∼ Aνj(z − tνj)
2ανj , Aνj = const �= 0, z → tνj ,

j = 1, 2, . . . ,mν , ν = 0, 1, . . . , N. (3.19)
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Since − 1
2 < ανj ≤ 0 (j �= 1), the function χ(z) may have at most an integrable singularity

as z → tνj (j �= 1). At the point z = tν1, the function χ(z) has an integrable singularity if

− 1
2 < αν1 ≤ 0 and a nonintegrable singularity of order 1 ≤ −2αν1 < 2 if −1 < αν1 ≤ − 1

2 .

Analysis of the second term in (3.13) implies that if κν �= 0, then at the points zνj ,

the function χ(z) has a simple pole provided κν is negative and a simple zero provided

κν is positive. Apart from these points, the function χ(z) is analytic everywhere in the

region D and does not vanish. In the case κν = 0, zνj are regular points of the function

χ(z).

Verify now that the boundary values, χ+(t) and χ−(t), of the function χ(z) satisfy

the linear relation (3.1). By applying the Sokhotski–Plemelj formulas to the integral

Γ0(z) =
1

4πi

∫
L

ln p(τ )K(z, τ )dτ, (3.20)

and noticing that |p(τ )| = 1, we obtain

Γ+
0 (t)− Γ−

0 (t) =
i

2
arg p(t), t ∈ L \Θ. (3.21)

Consider now Γ±
0 (T (t)), t ∈ L. Let first t ∈ L0 and z → t±. Clearly then, T (z) → t∓

and Γ±
0 (T (t)) = Γ∓

0 (t). This implies

Γ+
0 (T (t))− Γ−

0 (T (t)) = − i

2
arg p(t). (3.22)

For t ∈ Lν (ν = 1, 2, . . . , N), because of the identity

Γ0(T (z)) = Γ0(Tν(z))− Γ0(σν(z∗)), (3.23)

the one-sided limits Γ±
0 (T0(t)) of the function Γ0(T (z)) meet the condition (3.22). There-

fore, the jump of the function Γ0(z)+Γ0(T (z)), when z passes through the line L, equals

i arg p(t) = ln p(t).

Notice that the function Γ(z) is discontinuous when z passes through the curves tν1zνj ,

and the jump is a multiple of 2πi. This means that the function χ(z) itself is continuous

through these curves.

We observe next that the function χ(z) is a T -symmetric function: χ(T (z)) = χ(z),

z ∈ D \ L. To finalize the proof of the theorem, we need to show that χ(z) is a multi-

plicative function. The property (3.2) of the kernel K(z, τ ) written for the generating

transformations σν(z) implies

Γ(σν(z)) = Γ(z) + hν ,

Γ(T (σν(z))) = Γ(TTνT (z)) = Γ(σ−1
ν T (z)) = Γ(T (z))− hν , (3.24)

where hν = Γ(σν(z∗)), ν = 1, 2 . . . , N. Therefore,

χ(σν(z)) = H−1
ν χ(z), z ∈ D \ L,

Hν = exp(−2i Imhν), ν = 1, 2, . . . , N. (3.25)

Consider now the general form of the transformation σ = Tν2μ
Tν2μ−1

. . . Tν2
Tν1

. It can

also be written in the form

σ = σν2μ
σ−1
ν2μ−1

. . . σν2
σ−1
ν1

, μ = 1, 2, . . . . (3.26)
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Since

χ(σ−1
ν (z)) = Hνχ(z), z ∈ D \ L, (3.27)

the property (3.25) for the generating transformations is valid for any transformation

σ ∈ G provided the number Hν is replaced by Hσ,

χ(σ(z)) = H−1
σ χ(z), z ∈ D \ L,

Hσ =
Hν2

Hν4
. . .Hν2μ

Hν1
Hν3

. . .Hν2μ−1

, Hσ0
= 1.

(3.28)

The one-to-one map (3.28), H, from the group G into a multiplicative group H of complex

numbers Hσ, σ ∈ G, has the following property:

Hσω = HσHω ∀σ, ω ∈ G. (3.29)

Thus, H is a homomorphism between these two groups, and χ(z) is a multiplicative

function with the character H−1 [19]. �

4. Quasimultiplicative analogue of the Cauchy kernel. To solve the homoge-

neous case (q(t) ≡ 0) of Problem 2.3, we need a quasimultiplicative analogue of the

Cauchy kernel.

Theorem 4.1. There exists a function M(z, τ ) which has the following properties:

(i) for each fixed τ ∈ L, M(z, τ ) = 1
τ−z + B0(z, τ ), where B0(z, τ ) is an analytic

function of z ∈ F,

(ii) there exists a point z0 ∈ F such that M(z0, τ ) = 0 for all τ ∈ L,

(iii) for each fixed τ ∈ L and for any σ ∈ G, there exists a function ζσ(τ ) such that

M(σ(z), τ ) = HσM(z, τ ) + ζσ(τ ). (4.1)

Definition 4.2. A function M(z, ξ) which possesses properties (i) to (iii) is said to

be a quasimultiplicative analogue of the Cauchy kernel with the character H.

Proof. Introduce a function P (z) = ∂M(z,τ)
∂z . From the conditions (i) and (iii), it

follows that

P (z) =
1

(τ − z)2
+B1(z, τ ) for each fixed τ ∈ L, (4.2)

where B1(z, τ ) =
∂B0(z,τ)

∂z , and also

σ′(z)P (σ(z)) = HσP (z), σ ∈ G, (4.3)

or, equivalently, σ′
ν(z)P (σν(z)) = HνP (z), ν = 1, 2, . . . , N . This means that P (z) is a

multiplicative automorphic form of weight (dimension) (-2) belonging to the character

H [19]. This form has only one singularity in the fundamental region F, a pole of the

second order at the point z = τ . At the infinite point, z = ∞, it has a zero of the second

order. In what follows we prove that such a form exists.

Let R be a Riemann surface formed by gluing the congruent sides Lν and L′
ν =

σ−1
ν (Lν) of the fundamental region F. Choose the canonical cross-sections of the surface

R (the canonical homology basis on R) as follows: aν = Lν and bν = ξ′νξν with ξ′ν ∈ L′
ν
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and ξν = σν(ξ
′
ν) ∈ Lν . On the surface R, the differential dP ◦(z) = P (z)dz can be

interpreted as a multiplicative differential with the character H defined by

H[aν ] = 1, H[bν ] = Hν , ν = 1, 2, . . . , N. (4.4)

Show next that there exist exactly N +1 linearly independent multiplicative differentials

which, on the surface R, have only one pole of multiplicity not higher than 2. Let r∗ be

the dimension of the space MH(d∗) of multiplicative differentials with the character H

whose divisors d∗ are multiples of the divisor d0 = τ−2, and let r be the dimension of

the space MH−1(d−1
∗ ) of multiplicative functions with the character H−1 whose divisors

d−1
∗ are multiples of the divisor d

−1
0 = τ2. The character H−1 is defined by the factors

H−1[aν ] = 1, H−1[bν ] = H−1
ν , ν = 1, 2, . . . , N . The space MH−1(d−1

∗ ) consists of

multiplicative functions which have a second-order zero at the point z = τ and which

do not have any singularities on R. Clearly, the dimension of this space, r, is zero. By

the Riemann–Roch theorem for multiplicative functions on a genus-N Riemann surface

R [13], p. 126,

r∗ = r − deg d0 +N − 1. (4.5)

Since r = 0 and deg d0 = −2 we find r∗ = N + 1. Similarly, the dimension of the space

of multiplicative differentials whose divisors are multiples of the divisor d1 = τ−1 equals

N . Note, however, that there does not exist a differential dP ◦ with factors H[aν ] = 1

analytic everywhere on the surface R except at the point z = τ ,

dP ◦(z) ∼ dz

τ − z
. (4.6)

Otherwise, on one hand, ∫
∂F

dP ◦ = −2πi. (4.7)

On the other hand,

∫
∂F

dP ◦ =
N∑

ν=1

⎛
⎜⎝∫
Lν

dP ◦ −
∫
L′

ν

dP ◦

⎞
⎟⎠ =

N∑
ν=1

(1−H−1[bν ])

∫
Lν

dP ◦ = 0 (4.8)

since ∫
Lν

dP ◦ = P ◦(ξ−ν )− P ◦(ξ+ν ) = (H[aν ]− 1)P ◦(ξ+ν ) = 0; (4.9)

that is in contradiction with (4.7). This means there exist N linearly independent mul-

tiplicative differentials with factors H[aν ] = 1 and H[bν ] = Hν , ν = 1, 2, . . . , N , analytic

everywhere on the surface R. Since r∗ = N + 1, there exists at least one multiplica-

tive differential dP ◦(z) with factors H[aν ] = 1 and H[bν ] = Hν and which has a single

second-order pole with the principal part dz
(τ−z)2 . Then the function P (z) = dP ◦(z)

dz sat-

isfies the conditions (4.2) and (4.3), has a second-order zero at the infinite point z = ∞,

and also has the following property:∫
Lν

P (z)dz =

∫
Lν

dP ◦ = 0. (4.10)
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Define now a function

M(z, τ ) =

z∫
z0

P (ξ)dξ. (4.11)

This function, as a function of z and for any fixed τ ∈ L, is analytic everywhere in the

region F except at the point z = τ , where it has a simple pole with the residue -1. Clearly,

M(z0, τ ) = 0. Finally, from (4.3),

M(σ(z), τ ) =

σ(z0)∫
z0

P (ξ)dξ +

σ(z)∫
σ(z0)

P (ξ)dξ

= M(σ(z0), τ ) +

z∫
z0

P (σ(ξ))dσ(ξ) = HσM(z, τ ) + ζσ(τ ), σ ∈ G,

(4.12)

where ζσ(τ ) = M(σ(z0), τ ). Because of the condition (4.10), M(z, τ ) is a single-valued

function in the fundamental region F. The quasimultiplicativity property (4.12) implies

that the function M(z, τ ) is single-valued everywhere in the region D. Thus, all three

properties (i) to (iii) have been verified, and that proves the existence of the kernel

M(z, τ ). �
If the group G is of the first class, and |Hσ| = 1 for all σ ∈ G or, equivalently, |Hν | = 1,

ν = 1, 2, . . . , N , then the kernel M(z, τ ) can be found explicitly [20] through all the

transformations of the group G in the form of an absolutely and uniformly convergent

series

M(z, τ ) =
∑
σ∈G

1

Hσ

(
1

τ − σ(z)
− 1

τ − σ(z0)

)
. (4.13)

This kernel vanishes at z = z0 and possesses the other two properties of the kernel

M(z, τ ). Indeed, because G � σ0,

M(z, τ ) =
1

τ − z
− 1

τ − z0
+

∑
σ∈G\σ0

1

Hσ

(
1

τ − σ(z)
− 1

τ − σ(z0)

)
. (4.14)

To verify the property (4.1), we employ the multiplicativity of H, Hσω = HσHω, the

relation

M(σ(z), τ ) =
∑
ω∈G

1

Hω

(
1

τ − ωσ(z)
− 1

τ − ωσ(z0)

)

+
∑
ω∈G

1

Hω

(
1

τ − ωσ(z0)
− 1

τ − ω(z0)

)
,

(4.15)

and make the substitution ν = ωσ. This ultimately gives the relation wanted: M(σ(z), τ )

= HσM(z, τ ) + ζσ(τ ), where ζσ(τ ) = M(σ(z0), τ ).

5. Solution to the Riemann-Hilbert problem. Being now equipped with two

analogues of the Cauchy kernel, the quasiautomorphic and quasimultiplicative kernels

K(z, τ ) and M(z, τ ), we solve Problem 2.3. We begin with the homogeneous Riemann–

Hilbert problem.
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5.1. Homogeneous case: q(t) ≡ 0.

Problem 5.1. Find all functions Φ(z) ∈ QG(L), Hölder-continuous everywhere in the

domain D ∪ L apart from the set of points σ(Θ), σ ∈ G, where they may have integrable

singularities, bounded at the points σ(∞) and satisfying the boundary condition

Φ+(t) = p(t)Φ−(t), t ∈ L \Θ. (5.1)

By using (3.1), we write the boundary condition (5.1) in the form

Φ+(t)

χ+(t)
=

Φ−(t)

χ−(t)
, t ∈ L \Θ, (5.2)

and analyze the function Φ(z)/χ(z). It is a T -symmetric and G-multiplicative function

with the factors Hσ, σ ∈ G. If κν > 0, then it has simple poles at the points zνj and

T (zνj) (j = 1, 2, . . . ,mν). In the case κν < 0, the function Φ(z)/χ(z) has simple zeros

at the points zνj and T (zνj). Let

κ+
ν =

{
κν , κν > 0,

0, κν ≤ 0,
κ−
ν =

{
0, κν ≥ 0,

κν , κν < 0,
(5.3)

and

κ+ =

N∑
ν=0

κ+
ν , κ− =

N∑
ν=0

κ−
ν . (5.4)

For arbitrary complex numbers Cνj , we define

Ω0(z) =

N∑
ν=0

κ+
ν∑

j=1

CνjM(z, zνj). (5.5)

Since the function M(z, ẑ) has a single pole z = ẑ ∈ F, it is quite clear that the functions

Ω0(z) + Ω0(T (z)) and Φ(z)/χ(z) have simple poles at the same points of the region F.

By the generalized Liouville theorem for multiplicative functions,

Φ(z) = χ(z)[C0 +Ω0(z) + Ω0(T (z))], (5.6)

where C0 is a constant.

For arbitrary constants C0 and Cνj , the function (5.6) cannot be accepted as the

solution to Problem 5.1. Indeed, it must be T -symmetric, G-automorphic and piece-wise

meromorphic. This is guaranteed if the constant C0 is real and the function Φ(z)/χ(z)

is multiplicative with factors Hν . Because of the quasimultiplicativity property (4.1) of

the kernel M(z, τ ), however, in general,

Φ(σk(z))

χ(σk(z))
= Hk

Φ(z)

χ(z)
+ ξk, k = 1, 2, . . . , N, (5.7)

where

ξk = C0(1−Hk) +

N∑
ν=0

κ+
ν∑

j=1

[Cνjζk(zνj)−HkCνjζk(zνj)], (5.8)

where ζk(z) = M(σk(z0), z). Thus, the function Φ(z)/χ(z) becomes multiplicative if and

only if ξk = 0. This condition can be written as follows:

Im{H−1/2
k C0 +H

−1/2
k Ω0(σk(z0))} = 0, k = 1, 2, . . . , N. (5.9)
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Next, for negative κν , the function (5.6) has simple poles at the points zνj . These points

become removable points if the following conditions are met:

C0 +Ω0(zνj) + Ω0(T (zνj)) = 0, j = 1, 2, . . . ,−κ−
ν , ν = 0, 1, . . . , N. (5.10)

Finally, if −1 < αν1 ≤ − 1
2 , then the function (5.6) has a nonintegrable singularity at the

point tν1. To make this singularity integrable we require

lν [C0 +Ω0(tν1) + Ω0(T (tν1))] = 0, ν = 0, 1, . . . , N, (5.11)

where

lν =

{
0, −1/2 < αν1 ≤ 0,

1, −1 < αν1 ≤ −1/2.
(5.12)

The condition (5.11) can be simplified. We consider two cases. If tν1 = t01, then

T (t01) = t01, and

C0 +Ω0(t01) + Ω0(T (t01)) = C0 + 2ReΩ0(t01). (5.13)

If ν �= 0, then

Ω0(T (tν1)) = Ω0(σ
−1
ν Tν(tν1)) = HνΩ0(tν1)−HνΩ0(σν(z0)). (5.14)

Then, by using the condition (5.9), it is easy to verify that

C0 +Ω0(tν1) + Ω0(T (tν1)) = H1/2
ν Re{H−1/2

ν [C0 + 2Ω0(tν1)− Ω0(σν(z0))]}. (5.15)

The two formulas (5.13) and (5.15) can be combined, and the conditions (5.11) become

lν Re{H−1/2
ν [C0 + 2Ω0(tν1)− Ω0(σν(z0))]} = 0, ν = 0, 1, . . . , N. (5.16)

Thus, there are 2κ+ + 1 real arbitrary constants, C0 and Cνj = C ′
νj + iC ′′

νj . These

constants need to satisfy N real conditions (5.9), −κ− complex conditions (5.10), and

l =
∑N

ν=0 lν real conditions (5.16), in total, N + l − 2κ− real conditions.

Let κ = κ+ + κ− =
∑N

ν=0 κν . Introduce an integer

K = 2κ− l =

N∑
ν=0

(2κν − lν) (5.17)

and call this number the index of Problems 5.1 and 2.3. Denote by ρ the rank of the

linear system of N+l−2κ− real equations (5.9), (5.10), and (5.16) (1 ≤ ρ ≤ N−2κ−+l).

Theorem 5.2. If the index K is negative, then Problem 5.1 has only the trivial solution.

If 0 ≤ K ≤ 2N − 2, then Problem 5.1 has 2κ+ − ρ + 1 nontrivial solutions (5.6) over

the field of real numbers, provided this number is positive, and only the trivial solution

otherwise.

If K > 2N − 2, then Problem 5.1 has K −N + 1 solutions (5.6) over the field of real

numbers.

Proof. The multiplicative function Φ(z)/χ(z) has simple zeros at the points zνj and

T (zνj) if κν < 0 and at the points tν1 if −1 < αν1 ≤ − 1
2 . The number of these points is

equal to l − 2κ−. The function Φ(z)/χ(z) may have some other zeros. That is why the

number of zeros in the fundamental region is not less than l − 2κ−. In the case κν > 0,
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this function has 2κ+ simple poles at the points zνj and T (zνj). It is clear that the

divisor of the multiplicative function Φ(z)/χ(z) is a multiple of the divisor

d =

N∏
ν=0

tlνν1

|κν |∏
j=1

z−κν
νj [T (zνj)]

−κν , (5.18)

and deg d = −2κ+ l = −K.

Let first K < 0. Then the degree of the divisor d is positive and since K = 2κ+ − (l −
2κ−), this implies that the number of zeros of the multiplicative function Φ(z)/χ(z) in

the fundamental region F is greater than the number of poles. Such a nontrivial function

does not exist.

Let now K > 2N−2. Notice that the dimension d− of the space of multiplicative forms

of weight (-2) with factors H−1
σ , σ ∈ G, whose divisors are multiples of the divisor d−1,

is equal to zero. Indeed, on one hand, deg d−1 = K and K > 2N − 2. On the other hand,

the degree of the divisor of any multiplicative form of weight (-2) on a genus-N Riemann

surface is equal to 2N − 2 [19]. Let d+ be the dimension of the space of multiplicative

functions with factors Hσ, σ ∈ G, whose divisors are multiples of the divisor d. Then by

the Riemann–Roch theorem [13],

d+ = deg d−1 −N + 1 + d−, (5.19)

and d+ = K−N +1. Since the solution Φ(z) has to be a T -symmetric function, Problem

5.1 has K−N + 1 linearly independent solutions over the field of real numbers.

In the final case, 0 ≤ K ≤ 2N − 2, the number of solutions depends on the rank ρ of

the linear system of N + l − 2κ− real equations (5.9), (5.10), and (5.16) with respect to

the 2κ+ + 1 real unknowns C0, C
′
νj , and C ′′

νj . Let ρ̃ = 2κ+ + 1 − ρ. Clearly, if ρ̃ ≤ 0,

then Φ(z) ≡ 0. Otherwise, Problem 5.1 has ρ̃ nontrivial solutions defined by (5.6).

�
5.2. Inhomogeneous case: Problem 2.3. Introduce the function

Ψ0(z) =
1

4πi

∫
L

M(z, τ )
q(τ )dτ

χ+(τ )
. (5.20)

From the Sokhotski–Plemelj formulas and the quasimultiplicativity of the kernel M(z, τ ),

this function has the following properties:

Ψ+
0 (t)−Ψ−

0 (t) =
q(t)

2χ+(t)
,

Ψ0(σν(z)) = HνΨ0(z) + Ψ0(σν(z0)).

(5.21)

By applying the Liouville theorem for multiplicative functions, we can derive the general

solution to Problem 2.3 as

Φ(z) = χ(z)[C0 +Ω0(z) + Ω0(T (z)) + Ψ0(z) + Ψ0(T (z))], (5.22)

where C0 is an arbitrary real constant and Ω0(z) is the function (5.5). As in the homo-

geneous case, the function Φ(z) has to be invariant with respect to the group G. This is

guaranteed by the following N real conditions:

Im{H−1/2
k [C0 +Ω0(σk(z0)) + Ψ0(σk(z0))]} = 0, k = 1, 2, . . . , N. (5.23)
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In the case κν < 0, the function (5.22) has simple poles at the points zνj . To remove

these poles, we require that

C0 +Ω0(zνj) + Ψ0(zνj) + Ω0(T (zνj)) + Ψ0(T (zνj)) = 0. (5.24)

Here j = 1, 2, . . . ,−κ−
ν , and ν = 0, 1, . . . , N . Notice that in the case −1 < αν1 ≤ − 1

2 , in

general, the function Φ(z) has a nonintegrable singularity at the points tν1. The function

Φ(z) becomes integrable in this case if we put

lν Re{H−1/2
ν [C0 + 2Ω0(tν1) + 2Ψ0(tν1)− Ω0(σν(z0))−Ψ(σν(z0))]} = 0, (5.25)

where ν = 0, 1, . . . , N , and lν is given by (5.12).

Having now written down the linear system of N + l − 2κ− real equations (5.23) to

(5.25) for 2κ+ + 1 real constants, C0, C
′
νj = ReCνj and C ′′

νj = ImCνj (j = 1, 2, . . . , κ+
ν ,

ν = 0, 1, . . . , N), we can study its solvability. The difference between this system and

that in the homogeneous case is that now the equations are not homogeneous.

If K < 0, then the associated homogeneous system has only a trivial solution. In the

inhomogeneous case, we can exclude all the constants C0, C
′
νj , and C ′′

νj from the system

(5.23) to (5.25). This leaves us with a new system of N+ l−2κ−−2κ+−1 (κ++κ− = κ)

conditions. If the function q(t) = 2c(t)
a(t)−ib(t) in (2.13) satisfies these conditions, then the

solution to Problem 2.3 exists and it is unique.

If K > 2N − 2, then the rank of the system (5.23) to (5.25) coincides with the number

of the equations. Therefore, the system is always solvable and the general solution to

Problem 2.3 possesses 2κ− l −N + 1 arbitrary real constants.

In the case 0 ≤ K ≤ 2N − 2, the number of solutions and the number of solvability

conditions depends on the rank ρ (1 ≤ ρ ≤ N − 2κ− + l) of the system (5.23) to (5.25).

If the solvability conditions are met, then the general solution may have up to K−N +1

arbitrary real constants.

Thus we have proved the following result.

Theorem 5.3. If the index K > 2N −2, then Problem 2.3 is always solvable, the general

solution possesses K−N + 1 arbitrary real constants, and it is given by formula (5.22).

If K < 0, then Problem 2.3 is solvable if and only if the functions a(t), b(t), and c(t)

satisfy a system of N − K − 1 conditions taken out of N + l − 2κ− equations (5.23) to

(5.25). If these conditions are satisfied, then the solution (5.22) to Problem 2.3 is unique.

If 0 ≤ K ≤ 2N−2, then the number of additional conditions from the system does not

exceed N − K − 1. If these conditions are met, then the solution to Problem 2.3 exists,

and the number of arbitrary real constants does not exceed K−N + 1.

Notice that the theory of solvability to the Hilbert problem (Problem 2.1) coincides

with that of Problem 2.3. The general solution to Problem 2.1 is also given by formula

(5.22), where we should put z ∈ D.

6. The general solution in terms of an automorphic canonical function. In

this section we derive another form of the solution to Problem 2.3. Instead of the multi-

plicative canonical function χ(z) we shall use a piece-wise meromorphic G-automorphic
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canonical function. This function would be a particular case of the multiplicative canon-

ical χ(z) function (3.14) with factors Hσ = 1, σ ∈ G if it did not have extra poles:

χa(z) = exp{Γa(z) + Γa(T (z))}, (6.1)

where

Γa(z) = Γ(z) +

N∑
ν=1

⎛
⎜⎝

qν∫
rν

K(z, τ )dτ + λν

∫
Lν

K(z, τ )dτ + μν

tν1∫
T (tν1)

K(z, τ )dτ

⎞
⎟⎠ , (6.2)

Γ(z) is given by (3.13), rν , qν ∈ D, and λν and μν are integers. The points rν are fixed

arbitrarily while qν , λν , and μν are to be determined. It is assumed that all the points

rν and qν (ν = 1, 2, . . . , N) are distinct, and none of them coincides with the points zνj
(j = 1, 2, . . . , |κν |, ν = 0, 1, . . . , N). It is clear that the function χa(z) possesses the

properties (i) to (iv) in Definition 3.1 of the multiplicative function χ(z). Similarly to

the function χ(z),

χa(σk(z)) = Ĥ−1
k χa(z), k = 1, 2, . . . , N, (6.3)

where the new factors Ĥk are given by

Ĥk = exp{−2i ImΓa(σk(z∗))}. (6.4)

The function χa(z) is invariant with respect to the group G if and only if

ImΓa(σk(z∗)) ≡ 0 (mod π), k = 1, 2, . . . , N, (6.5)

or, equivalently,

Re

[
1

2πi
Γa(σk(z∗))

]
≡ 0

(
mod

1

2

)
, k = 1, 2, . . . , N. (6.6)

Show next that the conditions (6.6) can be considered as the real part of the classical

Jacobi inversion problem for the genus-N Riemann surface R. Let r0 be a fixed point in

the domain D. Introduce the integrals

ϕk(z) =
1

2πi

z∫
r0

ηk(τ )dτ, k = 1, 2, . . . , N, (6.7)

where ηk(τ ) = K(σk(z∗), τ ). These integrals form the normalized basis of abelian inte-

grals of the first kind with A- and B-periods defined in (3.4). By using (6.7) and (3.4),

we can transform the conditions (6.6) as follows:

N∑
j=1

[Reϕk(qj) + μj ReBkj ] + λk ≡ Re dk

(
mod

1

2

)
, k = 1, 2, . . . , N, (6.8)

where

dk = − 1

2πi
Γ(σk(z∗)) +

N∑
j=1

ϕk(rj), k = 1, 2, . . . , N. (6.9)

Consider now another problem, a modulo-period-1 problem,

N∑
j=1

[Reϕk(qj) + μj ReBkj ] ≡ Re dk (mod 1), k = 1, 2, . . . , N. (6.10)
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Evidently, each solution to the system (6.10) is a solution to the system (6.8). The new

system (6.10) can be treated as the “real part” of the classical Jacobi inversion problem

for the surface R:

N∑
j=1

[ϕk(qj) + μjBkj ] ≡ Re dk + iεk (mod 1), k = 1, 2, . . . , N, (6.11)

where εk are arbitrary real numbers. It is known [13] that the solution to this problem,

the points qk and the integers μk, exist, and its solution can be expressed through the

zeros of the associated genus-N Riemann theta function [26], [3]. Note that the numbers

εk can always be chosen such that the points qk coincide with none of the points rk
(k = 1, 2, . . . , N) or zνj (j = 1, 2, . . . , |κν |, ν = 0, 1, . . . , N).

The new canonical function χa(z), given by (6.1) and (6.2), is invariant with respect to

the group G, χa(σ(z)) = χa(z), z ∈ D \L. Another difference between this function and

the multiplicative function χ(z) is the presence of extra zeros and poles of the function

χa(z). At the points qk and T (qk), the function χa(z) has simple zeros, and the points

rk and T (rk) are simple poles (k = 1, 2, . . . , N).

We now repeat the procedure of Section 5, adjusting it to the class of symmetric piece-

wise meromorphic multiplicative functions with factors Hk = 1. The general solution to

Problem 2.3 has the form

Φ(z) = χa(z)[C0 +Ωa(z) + Ψa(z) + Ωa(T (z)) + Ψa(T (z))], (6.12)

where

Ωa(z) =
N∑

ν=0

κ+
ν∑

j=1

CνjK(z, zνj) +
N∑
j=1

AjK(z, qj),

Ψa(z) =
1

4πi

∫
L

K(z, τ )
q(t)dτ

χa(τ )
. (6.13)

In comparison to the solution (5.22), the new solution (6.12) has N extra complex arbi-

trary constants Aj , and in total it has 2κ+ + 2N + 1 real constants. The conditions of

solvability of the problem consist of N + l − 2κ− real equations (5.23) to (5.25), where

we should put Hk = 1 and replace the functions Ω0(z) and Ψ0(z) by the functions Ωa(z)

and Ψa(z), respectively. In addition, to remove the simple poles at rj and T (rj) of the

automorphic canonical function χa(z), we require

C0 +Ωa(rj) + Ψa(rj) + Ωa(rj) + Ψa(T (rj)) = 0, j = 1, 2, . . . , N. (6.14)

This brings us 2N extra real conditions and makes the difference between the number

of constants and the number of solvability conditions invariant to the analogue of the

Cauchy kernel chosen.

7. Piecewise constant coefficients a(t) and b(t): The solution for the first

class group G. In this section we consider a particular case when the coefficients aν(t)

and bν(t), t ∈ Lν (ν = 0, 1, . . . , N), are piecewise constant. If, in addition, the group G
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is a first-class group, the formula for the multiplicative canonical function χ(z) can be

simplified. Let

aν(t) = aνj = const, bν(t) = bνj = const,

t ∈ tν jtν j+1, j = 1, 2, . . . ,mν , ν = 0, 1, . . . , N, tν mν+1 = tν1.
(7.1)

In this case p(τ ) is also a piecewise constant function,

p(τ ) = pνj = −aνj + ibνj
aνj − ibνj

, τ ∈ tν jtν j+1, j = 1, 2, . . . ,mν , ν = 0, 1, . . . , N. (7.2)

According to the inequalities (3.9), (3.11), and (3.12), the values of the piecewise function

arg p(τ ) = arg pνj and the integers κν are defined by

−π < arg pν1 ≤ π,

−2π < arg pν j−1 − arg pν j ≤ 0, j = 2, . . . ,mν , ν = 0, 1, . . . , N,

−4π < arg pνmν
− arg pν1 − 4πκν ≤ 0, ν = 0, 1, . . . , N. (7.3)

Assuming that G is a first-class group, evaluate the integrals in (3.13). In this case, the

kernel K(z, τ ) is a uniformly and absolutely convergent series (3.7), and formula (3.13)

reads

Γ(z) =
1

4π

N∑
ν=0

mν∑
j=1

arg pνj

tν j+1∫
tνj

∑
σ∈G

σ′(τ )

σ(τ )− z
dτ +

N∑
ν=0

sgn κν

|κν |∑
j=1

zνj∫
tν1

σ′(τ )

σ(τ )− z
dτ. (7.4)

Evaluating the integrals and using formulas (3.16), we can write

Γ(z) = ln
∏
σ∈G

N∏
ν=0

mν∏
j=1

(σ(tνj)− z)ανj

|κν |∏
j=1

(σ(zνj)− z)sgnκν . (7.5)

For the canonical function χ(z), we also need Γ(T (z)). Since tνj ∈ Lν , we have tνj =

T (tνj). Making the substitution TσTν = ω ∈ G and TσT = ω∗ ∈ G, we can establish

the following relations:

σ(tνj)− T (z) =
ρ20(z − ω(tνj))

(ω(tνj)− δ0)(z − δ0)
,

σ(zνj)− T (z) =
ρ20(z − ω∗(z

∗
νj))

(ω∗(z∗νj)− δ0)(z − δ0)
.

(7.6)

Here z∗νj = T (zνj). Combining the two equalities in (7.6) with the expression for Γ(T (z))

obtained from (7.5), we derive the canonical function (3.14)

χ(z) =

(
ρ20

z − δ0

)γ

Π(z), (7.7)
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where

γ =
N∑

ν=0

⎛
⎝mν∑

j=1

ανj + κν

⎞
⎠ ,

Π(z) =
∏
σ∈G

N∏
ν=0

⎡
⎣mν∏
j=1

(
(σ(tνj)− z)2

δ0 − σ(tνj)

)ανj |κν |∏
j=1

(
(z − σ(zνj))(z − σ(z∗νj))

δ0 − σ(z∗νj)

)sgnκν
⎤
⎦ .

(7.8)

This formula can be further simplified. Indeed, from the definition of the numbers ανj

(3.16) and from the first formula in (7.8) we derive γ = 0, and therefore χ(z) = Π(z).

Example 7.1. Consider a particular case of Problem 2.1 when all mν are even: mν =

2nν (ν = 0, 1, . . . , N), and

Reφ(t) = c(t), t ∈ tνjtνj+1, j = 1, 3, . . . , 2nν − 1,

Imφ(t) = c(t), t ∈ tνjtνj+1, j = 2, 4, . . . , 2nν ,
(7.9)

and c(t) is continuous on tνjtνj+1, j = 1, 2, . . . , 2nν . In this case,

pνj =

{
−1, j = 1, 3, . . . , 2nν − 1,

1, j = 2, 4, . . . , 2nν .
(7.10)

From the definition of arg pνj (7.3) and the numbers κν ,

arg pνj = πj, j = 1, 2, . . . , 2nν , κν =

[
nν + 1

2

]
, (7.11)

where [a] is the integer part of a number a. This implies

αν1 =

{
−3/4, nν = 2sν − 1,

−1/4, nν = 2sν ,
ανj = −1

4
, j = 2, 3, . . . , 2nν , ν = 0, 1, . . . , N.

(7.12)

We now observe that κ−
ν = 0, κ+

ν = κν = [(nν + 1)/2].

Simple computations show that in both cases, αν1 = − 3
4 and αν1 = − 1

4 ; the index of

the problem is K =
∑N

ν=0 nν . The general solution (5.22) possesses K + l + 1 arbitrary

constants C0 and Cνj , ν = 0, 1, . . . , N , j = 1, 2, . . . , κν . The solution has to satisfy N + l

conditions of solvability (5.23) and (5.25). The difference between the number of the

arbitrary constants and the number of the conditions is K+ 1−N .

8. Circular (N + 1)-connected Hall plate with electrodes and dielectrics.

8.1. Statement of the problem. Consider a semiconductorD, an infinite N+1-connect-

ed circular plate with finite contacts on the circles Lν which form the boundary of the

structure (Fig. 2). We assume that on the circles Lν (ν = 0, 1, . . . , N0), the number of

the electrodes is even, nν = 2sν , and on the other circles Lν (ν = N0+1, N0+2, . . . , N),

the number of electrodes is odd, nν = 2sν − 1. Here N0 ∈ [−1, N ]. If N0 = −1, then

all the circles have an odd number of electrodes. If N0 = N , then all the circles have

an even number of electrodes. Let the j-th electrode on the circle Lν be denoted as

eνj = tν 2j−1tν 2j , j = 1, 2, . . . , nν . It is assumed that the rest of the boundary of each

circle is insulated.
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Fig. 2. An infinite multiply connected Hall plate.

Let the magnetic field be orthogonal to the plate, and its intensity H be prescribed,

H = (0, 0, Hz), Hz = const. The system is activated by applied electric field flowing

through the electrodes

Jνj = h0

∫
eνj

Jndτ, j = 1, 2, . . . , nν , ν = 0, 1, . . . , N. (8.1)

Here h0 is the thickness of the plate, Jn is the normal component of the current density

J = (Jx, Jy, 0), and Jνj are the total currents flowing through the electrodes. Assume

also that at infinity there is no source of an external current. Then the electric field

intensity E = (Ex, Ey, 0) vanishes at infinity,

E =
A0

z
+O(z−2), z → ∞, (8.2)

where A = (Ax, Ay, 0) is a constant nonzero vector, and the currents Jνj have to be

prescribed such that
N∑

ν=0

nν∑
j=1

Jνj = 0. (8.3)

Because of the applied electric and magnetic fields, the semiconductor develops a com-

ponent of electric field orthogonal to both the electric and magnetic fields. This phe-

nomenon, known as the Hall effect, is described by the generalized Ohm’s law

E = αJ−RHJ ∧H, (8.4)

where α is the resistivity in the absence of the magnetic field, and RH is the Hall coef-

ficient. The Maxwell equations written for a source-free 2-d medium in the steady-state

case imply the harmonicity of the current in the domain D. On the electrodes, the
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tangential component Eτ of the electric field intensity vanishes, whilst on the dielectrics

(insulated walls), the normal component Jn of the current intensity vanishes:

− Ex sin θ + Ey cos θ = 0, t ∈ eν ,

Jx cos θ + Jy sin θ = 0, t ∈ dν ,
(8.5)

where θ is the polar angle in the parametrization of the circle Lν , t− δν = ρνe
iθ, eν and

dν are the unions of the electrodes and the dielectrics on the circle Lν , respectively,

eν =

2nν−1⋃
j=1,3,...

tνjtνj+1, dν =

2nν⋃
j=2,4,..

tνjtνj+1, (8.6)

and tν2nν+1 = tν1. By employing Ohm’s law (8.4), we rewrite the first boundary condi-

tion in (8.5) in the form

(α sin θ +RH cos θ)Jx − (α cos θ −RH sin θ)Jy = 0. (8.7)

Introduce next a new function, φ(z) = Jx− iJy, analytic in the domain D and satisfying

the Hilbert boundary condition

a(t)u(t) + b(t)v(t) = 0, (8.8)

where

u(t) = Jx, v(t) = −Jy,

a(t) =

{
(α+ iβ)(t− δν)

2 − (α− iβ)ρ2ν , t ∈ eν ,

(t− δν)ρ
−1
ν + ρν(t− δν)

−1, t ∈ dν ,

b(t) =

{
i[(α+ iβ)(t− δν)

2 + (α− iβ)ρ2ν ], t ∈ eν ,

i[(t− δν)ρ
−1
ν − ρν(t− δν)

−1], t ∈ dν ,

(8.9)

β = HzRH . Clearly, (8.8) is a particular case (c(t) = 0) of the boundary condition (2.2).

The function φ(z) is sought in the class of functions which are holomorphic in D and H-

continuous in D ∪L except for the points of the set Θ = ∪N
ν=0Θν , Θν = {tν1, . . . , tν2nν

},
where it may have integrable singularities.

8.2. Solution to the Hilbert problem. As was shown in Section 2 for the general case,

the Hilbert problem (8.8) is equivalent to the homogeneous Riemann-Hilbert problem

Φ+(t) = p(t)Φ−(t), t ∈ L \Θ (8.10)

for the function Φ(z) defined in (2.6). The coefficient in (8.10) is p(t) = p1(t)p2(t), where

p1(t) is a continuous function and p2(t) is a piecewise constant function given by

p1(t) = − ρ2ν
(t− δν)2

, t ∈ Lν ,

p2(t) = pνj , t ∈ tνjtνj+1, j = 1, 2, . . . , 2nν ,

pνj =

{
−(α− iβ)(α+ iβ)−1, j = 1, 3, . . . , 2nν − 1,

1, j = 2, 4, . . . , 2nν .

(8.11)

In addition, because of the condition (8.2), it is required that the solution has the fol-

lowing asymptotics at infinity:

Φ(z) =
K

z
+O(z−2), z → ∞, (8.12)
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where K is a nonzero constant.

We split the canonical function of the problem as follows:

χ(z) = χ1(z)χ2(z), (8.13)

where the first function, χ1(z), factorizes the continuous function p1(t), and the second

one factorizes the piecewise constant function p2(t). In order to find the function χ1(z),

choose the starting point tν1 ∈ Lν . Then the function χ1(z) is determined by

χ1(z) = χ∗(z) exp
{
Γ1(z) + Γ1(T (z))

}
, (8.14)

where χ∗(z) is a piecewise automorphic function in the domain D \ L such that

χ∗(z) =

{
i, z ∈ σ(D),

−i, z ∈ σ(T (D)),
σ ∈ G. (8.15)

This function satisfies the boundary condition χ∗(t) = −χ∗(t), t ∈ Lν (ν = 0, 1, . . . , N),

and the symmetry and automorphicity conditions (2.9) and (2.7). The function Γ1(z) is

determined by the singular integrals

Γ1(z) =
N∑

ν=0

1

2πi

∫
Lν

ln
ρν

τ − δν
K(z, τ )dτ, (8.16)

where a branch of the logarithmic function ln[ρν(z − δν)
−1] is fixed in the z-plane cut

along a line joining the branch points z = δν and z = ∞ and passing through the point

tν1. The function χ1(z) is a piecewise G-multiplicative function,

χ1(σj(z)) = [H
(1)
j ]−1χ1(z), j = 1, 2, . . . , N, (8.17)

where

H
(1)
j = exp{−2i Imh

(1)
j }, h

(1)
j =

N∑
ν=0

1

2πi

∫
Lν

ln
ρν

τ − δν
ηj(τ )dτ. (8.18)

For the first class groups, the integrals in the expression for the function χ1(z) can be

evaluated. By choosing z∗ = ∞, we obtain [5]

χ1(z) = A1
χ∗(z)q(z)

z − δ0
, z ∈ D ∪ T (D), (8.19)

where

q(z) = (z − t01)
N∏

ν=1

z − tν1
z − δν

N∏
j=0

⎛
⎝ ∏

σ∈G′
j

z − σ(tj1)

z − σ(∞)

∏
σ∈G′′

j

z − σ(tj1)

z − σ(δj)

⎞
⎠ ,

A1 =
ρ0√
q(δ0)

, (8.20)

where G′
j is the set of all transformations Tm2μ

Tm2μ−1
. . . Tm2

Tj , m2 �= j, m3 �= m2, . . .,

m2μ �= m2μ−1, μ = 1, 2, . . ., where all the indices mμ vary from 0 to n: mμ = 0, 1, . . . , n.

The set G′′
j = G \G′

j \ σ0 includes all the other transformations Tm2μ
Tm2μ−1

. . . Tm2
Tm1

(m1 �= j) of the group G except for the identical transformation σ0.

Notice that the constant A1 in the representation (8.19) of the canonical function χ1(z)

cannot be removed. It is needed to satisfy the symmetry condition χ1(z) = χ1(T (z)).
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The branch in (8.20) is chosen arbitrarily. Its choice affects the sign of the constant

and does not break the symmetry of the canonical function. We shall also need a series

representation of the coefficients h
(1)
ν . For the first-class group G, formula (8.18) yields

[5]

2h(1)
ν = ln

Tν(δ0)− δν
ρν

+
N∑
j=0

[
ln

Tν(δ0)− tj1
Tν(δ0)− δj

+
∑
σ∈G′

j

ln
Tν(δ0)− σ(tj1)

Tν(δ0)− σ(∞)
+

∑
σ∈G′′

j

ln
Tν(δ0)− σ(tj1)

Tν(δ0)− σ(δj)

⎤
⎦ .

(8.21)

In Section 7 we have determined the canonical function (7.7) and showed that γ = 0.

To use this formula for the function χ2(z), we specify the parameters. Notice that the

numbers mν are always even, mν = 2nν , and the parameter β can be any finite real

number. Introduce the parameter

δ = 2 tan−1 α

|β| ∈ (0, π). (8.22)

First, let β > 0. According to the inequalities (7.3), we choose arg pνj as follows:

arg pνj = δ + (j − 1)π, j = 1, 3, . . . , 2nν − 1,

arg pνj = jπ, j = 2, 4, . . . , 2nν .
(8.23)

It remains now to write down the integers κν and the parameters ανj . Since the function

χ1(z) has simple zeros at the points tν1 it will be convenient to choose the integers κν

such that the following inequalities hold:

−4π < arg pν 2nν
− arg pν1 − 4πκν + 2π ≤ 0, (8.24)

from which we obtain

κν =
[nν

2

]
+ 1 =

{
sν + 1, nν = 2sν ,

sν , nν = 2sν − 1.
(8.25)

We also need to determine the constants ανj ,

αν1 =
1

4π
(arg pν 2nν

− arg pν1 + 2π)− κν =

{
−δ∗ − 1

2 , nν = 2sν ,

−δ∗, nν = 2sν − 1,

ανj =
1

4π
(arg pν j−1 − arg pν j) =

{
−δ∗, j = 3, 5, . . . , 2nν − 1,

δ∗ − 1
2 , j = 2, 4, . . . , 2nν ,

(8.26)

where

δ∗ =
δ

4π
, ν = 0, 1, . . . , N. (8.27)
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Next, consider the case β < 0. The parameters of interest are defined as follows:

arg pνj = −δ + (j − 1)π, j = 1, 3, . . . , 2nν − 1,

arg pνj = (j − 2)π, j = 2, 4, . . . , 2nν ,

αν1 =

{
δ∗ − 1, nν = 2sν − 1,

δ∗ − 1
2 , nν = 2sν ,

ανj =

{
δ∗ − 1

2 , j = 3, 5, . . . , 2nν − 1,

−δ∗, j = 2, 4, . . . , 2nν ,
ν = 0, 1, . . . , N, (8.28)

and the integers κν = [nν/2] + 1 are the same as in the case β > 0. Now, with the

parameters ανj and κν being defined, we can write down the function χ2(ζ):

χ2(z) =
∏
σ∈G

N∏
ν=0

⎡
⎣2nν∏
j=1

(
(σ(tνj)− z)2

δ0 − σ(tνj)

)ανj κν∏
j=1

(
(z − σ(zνj))(z − σ(z∗νj))

δ0 − σ(z∗νj)

)⎤
⎦ . (8.29)

The function χ2(z) is the multiplicative canonical function with the factors H
(2)
j obtained

by replacing the factors Hj derived in Section 3 by H
(2)
j = exp(−2i Imh

(2)
ν ), h

(2)
ν =

Γ2(σν(z∗)). The function Γ2(z) coincides with the function Γ(z) in (3.13) if p(τ ) is

replaced by p2(τ ).

Having found the functions χ1(z) and χ2(z), we write down the general solution of

the Riemann-Hilbert problem:

Φ(z) = χ1(z)χ2(z)[C0 +Ω0(z) + Ω0(T (z))], (8.30)

where

Ω0(z) =

N∑
ν=0

κν∑
j=1

CνjM(z, zνj), (8.31)

M(z, τ ) is the quasimultiplicative kernel with the factors Hj = H
(1)
j H

(2)
j , C0 is a real

constant, and Cνj = C ′
νj + iC ′′

νj are complex constants.

8.3. Definition of the constants. In total, the general solution (8.30) possesses 2κ+ 1

real constants to be determined. It will be convenient to have another representation of

the number of the constants. Since

κ =

N∑
ν=0

κν , κν =
[nν

2

]
+ 1, (8.32)

nν = 2sν if ν = 0, 1, . . . , N0, and nν = 2sν − 1 if ν = N0 + 1, N0 + 2, . . . , N , we obtain

2κ+ 1 = 2s+ 2N0 + 3, s =

N∑
ν=0

sν . (8.33)

Next, show that for the definition of these constants, we have the same number of linear

equations. The first N equations come from the conditions which guarantee that the

solution Φ(z) is invariant with respect to the group G:

Im{H−1/2
k [C0 +Ω0(Tk(δ0))]} = 0, k = 1, 2, . . . , N. (8.34)
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The point z0 in the representation of the quasimultiplicative kernel M(z, τ ) in 4.13 can

be fixed arbitrarily. It is convenient to choose z0 = ∞. For this choice, σk(∞) = Tk(δ0),

and the additional conditions 5.23 reduce to the form 8.34.

The function Φ(z) has to have a simple zero at infinity. This is guaranteed by the

complex condition C0+Ω0(δ0) = 0, which is equivalent to the following two real equations:

C0 = −Re{Ω0(δ0)},
Im{Ω0(δ0)} = 0. (8.35)

We have shown that if nν = 2sν , then the parameter αν1 = −δ∗ − 1
2 when β > 0 and

αν1 = δ∗ − 1 when β < 0. This means that 2αν1 ∈ (−2,−1) when the number of

electrodes is even. Otherwise, 2αν1 ∈ (−1, 0). Thus, if nν = 2sν , then the solution (8.30)

has a nonintegrable singularity at the points tν1. It becomes an integrable singularity if

the conditions (5.16) hold. As in equations (8.34) and (8.35), we put z0 = ∞ and use

the fact that lν = 1 if ν = 0, 1, . . . , N0, and lν = 0 for ν > N0. This transforms equations

(5.16) to the following N0 + 1 conditions:

Re{H−1/2
ν [C0 + 2Ω0(tν1)− Ω0(Tν(δ0))]} = 0, ν = 0, 1, . . . , N0. (8.36)

In addition, we have the physical conditions (8.1), which can be written in the form∫
eνj

Jndτ =
Jνj
h0

, j = 1, 2, . . . , nν , ν = 0, 1, . . . , N, (8.37)

where

Jn = Jx cos θ + Jy sin θ, Jx = ReΦ(z), Jy = − ImΦ(z). (8.38)

The number n = n0 + . . . + nN of the conditions (8.37) can be expressed through the

integers s, N , and N0 as follows:

n = 2s−N +N0. (8.39)

Thus, we obtain a system which consists of N equations (8.34), two conditions (8.35),

N0 + 1 relations (8.36) and 2s − N + N0 equations (8.37). As we had anticipated, in

total, there are 2s + 2N0 + 3 real equations for the determination of 2s + 2N0 + 3 real

constants.

The first equation in (8.35) expresses the real constant C0 through the constants Cνj .

This makes it possible to simplify the solution of the problem. The final formula has

2κ = 2s+ 2N0 + 2 real constants, and it becomes

Jx − iJy =

N∑
ν=0

κν∑
j=1

[C ′
νjS

+
νj(z) + iC ′′

νjS
−
νj(z)], z ∈ D, (8.40)

where the functions S±
νj are free of the constants Cνj = C ′

νj + iC ′′
νj , and

S±
νj(z) = χ1(z)χ2(z)

[
−1

2
M(δ0, zνj)∓

1

2
M(δ0, zνj) +M(z, zνj)±M(T (z), zνj)

]
.

(8.41)
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Conclusions. We have developed a method for the Hilbert problem for a circular

multiply connected domain and the Riemann-Hilbert problem for piecewise analytic

functions invariant with respect to a symmetric Schottky group. The coefficients of

both problems are piecewise Hölder continuous functions, and the discontinuities of the

coefficients cause integrable singularities of the solution. The technique we have proposed

requires the use of two analogues of the Cauchy kernel, a quasiautomorphic kernel and

a quasimultiplicative kernel. We have proved the existence results for both kernels. The

existence of the former kernel follows from the theory of abelian integrals on a compact

Riemann surface. To prove the existence of the quasimultiplicative kernel, we have used

the Riemann-Roch theorem for multiplicative functions. For the first-class groups (the

Burnside classification), the solutions to the Hilbert and the Riemann-Hilbert problems

have been derived in a series form. In addition, we have obtained the solution in terms

of an automorphic analogue of the Cauchy kernel. It turns out that the use of this kernel

requires the solution of the Jacobi inversion problem. We emphasize that the procedure

which is based on the quasiautomorphic and quasimultiplicative kernels bypasses the Ja-

cobi inversion problem. There is another advantage to employing the quasiautomorphic

and quasimultiplicative kernels, not the automorphic kernel. For an (N + 1)-connected

circular domain, the second method leads to a solution which has 2N extra real constants

and therefore, in comparison with the first method, there are 2N extra equations to be

solved.

The method proposed has been illustrated by the solution of a model electromagnetic

steady-state problem on the motion of charged electrons in a plate when the applied

magnetic field is orthogonal to the plate. The plate, known as a Hall plate, has N + 1

circular holes with electrodes and dielectrics on the walls. We have reduced the problem

to a particular case of the Hilbert problem with the coefficient p(t) = p1(t)p2(t). The

first function is continuous, and its factorization has been implemented by the method

[5]. The second function, p2(t), is a piecewise constant function. Because of this property

and also because the first canonical function has a zero at the starting point, we have

managed to simplify the general formula for the second canonical function. We have

derived the exact formula for the current density. The formula possesses a finite number,

2κ, of unknown constants which solve a system of 2κ linear algebraic equations, where

2κ = 2s + 2N0 + 2, N0 is the number of circles with an even number of electrodes,

s = s0 + s1 + . . . sN , sν = [(nν + 1)/2], and nν is the number of electrodes on the

νth circle. Note that the system of equations for the constants consists of N + N0 + 2

“mathematical” equations (due to the method) and 2s+N0−N ≥ 1 physical equations.

Finally, we notice that the technique proposed can be extended for polygonal multiply

connected domains. This can be done by implementing a two-step-procedure. First, one

needs to map an (N +1)-connected circular domain into an (N +1)-connected polygonal

domain [10], [9] and define the coefficients a(t), b(t), and c(t). The second step is to use

the solution to the Hilbert problem for an (N + 1)-connected circular domain derived in

this paper.
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