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Hubert's Inequality and 
Witten's Zeta-Function 

Jonathan M. Borwein 

1. INTRODUCTION. In this article we explore a variety of pleasing connections 
between analysis, number theory, and operator theory, while revisiting a number of 
beautiful inequalities originating with Hilbert, Hardy and others. We shall first discuss 
the aforementioned Hilbert inequality [14], [18] and then apply it to various multiple 
zeta values. In consequence we obtain the norm of the classical Hilbert matrix, in the 

process illustrating the interplay of numerical and symbolic computation with classical 
mathematics. 

2. HILBERT'S (EASIER) INEQUALITY. The inequality in question is: 

Theorem 1 (Hilbert Inequality). For nonnegative sequences (an) and (bn), both not 

zero, and for p and q satisfying 1 < p, q < oo and 1/ p + l/q = I 

OO OO i / \ 

yy^T^- < Trcsci-) \\an\\p \\bn\\q (1) ~ *-i n + m \p J 

whenever the right-hand side is finite. 

Here and throughout, we write \\an\\p := 
{Y^L\ Wan\\p} 

? 
f?r tne p-norm of the se 

quence (an). Thus, the right-hand side is finite exactly when (an) and (bn) lie in the 

sequence spaces lp and lq respectively. A preparatory lemma is needed. 

Lemma 1. If 0 < a < 1 and n is a positive integer, then (a) 

?-!-<f_?_<i,<w^ + ? ^(n + m)(m/n)a J0 (I + x) x? I-a ^ C 

and (b) 

n + m)(m/n)a 
' 

Jo 
dx ? ti csc (a tt) . 

(1 +x)xa 

Proof, (a) The inequalities come from using standard rectangular approximations to a 

monotonic-decreasing integrand, as in Figure 1, and overestimating the integral from 

0 to l/n by f0 
n 
x~a dx to produce 

o<r?i 
Jo (i+; 

dx < 
(1 +x)xa 

~ 
1 -a 

(b) The integral is found in various tables such as Abromovitz and Stegun [1] or 

Gradshteyn and Ryzhik [12] and is known to Maple or Mathematica. We offer two 

other proofs. 
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Figure 1. Riemann sums for x a 
/(I + x). 

(i) For the first we exploit the geometric series and the monotone convergence 
theorem to compute 

f Jo 

1 

(l+x)xa Jo 

1 ?-a 
+ xa-l ~ 

Jo 
~ 

+ X 
dx 

= fVirj? 
OO f 

1 

ti yn+a 
1 ~ 

(_i)?2fl = - + / ?;-r 
a '?! a? 

? 
nl n=\ 

+ 
a n -\- a 

1 1 1 
+ 

- 

n ? a \ a 

? 
n csc ian), 

since the last equality is the classical partial fraction identity for n cscian) (see 
[19, p. 255]). 

(ii) Alternatively, we begin by letting 1 + x = 1/v, 

poo 
-a n\ 

/ T?dx= / ya-\l-y)-ady = Bia,l-a), 
Jo 1+x Jo 

where B is the beta function, Z?(x, y) := 
f0 tx~lil 

? 
t)y~] dt, which is ex 

pressible in terms of the gamma function T, 

B(a, 1 - a) = Via) T(l 
- 

a) = ? 
^ 

sin ian) 
' 

by using the product representation for T. 

Remark 1. Combining the arguments in (i) and (ii) above actually derives the identity 

r(a)r(l -a) = - n 

sin(a7r) 

from the partial fraction expansion for cosecant 
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1 ~ 
(-1)" n ese ian) = ?h 2a > ? 

a *?! az 
? n n = \ 

or vice versa?especially if we appeal to the Bohr-Mollerup theorem [2], [19] to es 

tablish Bia, 1 - a) = Tia) T(l 
- 

a). 

Proof of Theorem 1. We may assume the right-hand side is finite. We apply Holder's 

inequality with what Hardy calls "compensating difficulties" (inserting a term and its 

reciprocal) to obtain 

OO OO 7 00 OO i 
v~^ v~^> an om _^?\ ^?\ an om 

n + m frif-f in + myiPimlnyi(P?? in + m)11? in/m)11 ^ 

1 

n?\ m ? \ n ? \ ra=l 

_ _ \/p 

< 

\^?' 
"' 

?^[(n + m)im/nyti J 
Wq 1 OO OO 1 

< tt cscl-1 cscl-1 ||fl?||^||&m||9, 

where the strict inequality follows from Lemma 1(a). We conclude by observing that, 
since l/p + l/q = 1, the two cosecants are equal and the final estimate reduces to 

ncscin/p)\\an\\p \\bn\\q. 

The integral analogue of (1) may likewise be established. There are numerous ex 

tensions. One of interest for us later is 

V^ Onbm ? /^(g-DMT? ? ?All 
1^1^-f-i-^7< 

7rCSC - 
? Wan\\pWbn\\q, (3) 

f^^in + my [ \ crq J\ 

true when p, q > 1, a > 0, l/p + l/q > 1, and a + l/p + l/q = 2. The best con 

stant Cip, q, t) < {n csc (7r(g 
? 

l)/iaq))}T in (3) is called a Hubert constant [11, 
sec. 3.4]. 

For /? = 2, (1) yields Hilbert's original inequality: 

OO OO 7 / 00 / OO 

! i n + m v . 

though Hilbert only obtained the constant 2tt [13]. 
A fine direct Fourier analytic proof of (4) due to Toeplitz in 1912 starts from the 

observation that 

1 f2n 
,71 I Jo 

?2n ! 
. v.. t)eintdt 

= - 

2n i Jo n 

for n = 1, 2 ..., and deduces that 
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N N ? u 1 r2* 

/i=l m=l ?'u fc=l k=\ 

We recover (4) by applying the integral form of the Cauchy-Schwarz inequality to the 

integral side of the representation in (5). 

Example 1. Identity (5) has a quadratic counterpart: 

N N n h 1 r2n 

Y ̂-f (? + m)2 
~ 

2tt Jo v - -/ , i 

where f signifies the Riemann zeta-function. Moreover, for larger integral a, on setting 

N N n h 1 r2n / TTt \\ N N 

^??(n+m? 2W0 yy) 2 4;^ y 

^ cos(2/:7rx) ? sin(2/:7rx) 
fmix) := 

^-?-, iK+i? := 
2^ 2?+1 , 

we have 

N N n h \ r2n / t \ N N 

where ^ff(ji) are related to the Bernoulli polynomials [1], [19] by 

f0(x) = (-l)^^y^ Ba(x) ̂ ^, (0 < x < 1). 
2a! 

It follows that 

00 ?? 
ab 

where || V^ II to, i] denotes the supremum norm. Finally, when w>0we can compute 

11^2?II[o,i] = fe(0) = ?(2n), ||fe+ill[o,i] - ^2?+i(l/4) - ?(2n + 1), 

in terms of the classical zeta-functions ?(2n) :? J2k>o ^/k2n and ^(2n + 1) := 

Z^>o(~" l)^/^2"+1- We should note that most of these upper bounds are not optimal. 

3. A BRIGHT AND AMUSING SUBJECT. Hubert's inequality and much more of 
the early twentieth-century history?and philosophy?of the 

" 
'bright' and amusing" 

subject of inequalities is charmingly discussed in Hardy's retirement lecture as London 
Mathematical Society Secretary [13]. There is much in this article to reward close 

reading, especially on the nature of appropriateness of proof methods?that the tools 
of the proof should fit the soil of the assertion?and the like. Hardy comments [13, 
p. 474] that 

Harald Bohr is reported to have remarked "Most analysts spend half their time hunting through 
the literature for inequalities they want to use, but cannot prove." 
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This remains true, though more recent inequalities often involve less-symmetric 
and less-linear objects such as entropies, divergences, and log-barrier functions [2], [6] 
such as in the following divergence estimate [5, p. 63] for two discrete distributions: 

Theorem 2 (Kullback-Leibler). For two strictly positive sequences ?Pi)^=l and 

iqi)?=l with J2?=\ Pi = E/Ii ai = I one has 

f>>^H(f>-*i)2. 
m 

Proof Inequality (6) follows from establishing that the function 0 : (0, oo) -? R, 

0(0 := 2 (2 + t) {1 + t log t-t}-3it- I)2, 

is convex and is minimized at t = 1. One now lets tt = Pi/q?, homogenizes and sums. 

An application of the Cauchy-Schwarz inequality yields 

(N 

\2 N / x2 N / \ 

tr / fci Pi + 2?. tt w 

Two other high spots in Hardy's essay are Carleman's inequality which states that 
for ai > 0 and not all zero 

oo oo 

\] ia\ a2 an)x/n < e 
2_,an 

(see the recent survey [9] or [19, p. 63] for a proof, and also [3, p. 284] for an indication 
of why the constant e is best possible), and one of Hardy's own discoveries: 

Theorem 3 (Hardy). For a positive sequence iak) and p > 1 

p / \ p ?? 

M????) ?U=?)?* 
(7) 

Hardy remarks [13, p. 485]: 

[My] own theorem was discovered as a by-product of my own attempt to find a really simple 
and elementary proof of Hubert's. 

Remark 2. For p = 2, Hardy reproduces Elliott's proof of (7), writing "it can hardly 
be possible to find a proof more concise or elegant." 

Proof. This proof runs as follows. Set An = ax + a2 + + an (with A0 := 0) and 
write 

2an An f An\ An An_j / An An-\ =- + in 
- 

1) I 
n n ? \ \ n n ? 1 

A2 A2 
n n ? 

1 
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Today, this is something easy to check symbolically. Now sum to obtain 

/7V/ n y n \ n 
(9) 

which proves (7) for p = 2. Indeed, this argument easily adapts to the general case. 

A pre-history of Hardy's inequality may be found in a very recent issue of this 
Monthly [16]. 

Finally we record the (harder) bilateral Hilbert inequality is 

Ean 

b, 
n ? 

riy^meZ 
n ? m we i We i^i (10) 

n=l n = \ 

the best constant n being due to Schur in (1911) (see [17]). There are many extensions 
with applications to prime number theory [17]. 

4. WITTEN C-FUNCTIONS. We turn to a seemingly unrelated topic that, in the 
next section, will allow us to take a new perspective regarding the Hilbert constants. 
The sum 

W(r,M):=EE 
1 

n=\ ra=l nr ms (n + m)1 
(r,s,t >0) 

is called a Witten ^-function [21], [10], [8]. The double sum clearly converges for 
r > 1 and s > 1. We refer to [21] for a description of the uses of more general Witten 

?-functions. Ours are also called Tornheim double sums [10], in honour of Tornheim 
who first carefully studied this specific case [20]. Correspondingly, 

OO OO -i i 

w,s):=YY?-?= Y 
? 

n?\ m ? \ v 7 n> nl mb 

is an Euler double sum. A sizable online set of references on multiple zeta values and 
Euler sums is found at www.usna. edu/Users/math/meh/biblio .html. For many illustra 

tive proofs of the basic identity ?(2, 1) = f (3) due to Euler, and of its generalizations, 
we refer to [4]. 

There is a simple algebraic relation 

W(r, s, t) = W(r 
- 

l,s, t + 1) + W(r, s-l,t + l). 

This is based on writing 

m -f- n 

(id 

m 
+ 

(m + n)t+x (m+n)t+x (m + n)t+x 

Clearly 

W(r,s,t) = W(s,r,t), (12) 
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and it is straight-forward to check that 

Wir, s, 0) = f (r) f (j), Wir, 0, t) = f (f, r). (13) 

Hence, W(s, s, 0 = 2W(?, s - 1, f + 1), so 

W(l, 1, 1) = 2 W(l, 0, 2) = 2f(2, 1) = 2f (3). 

We note that the analogue to (11), ?(s, f) + f (f, 5) = f (s) f (0 
- 

?C* + 0? shows that 

Wis, 0, j) = 2?is, s) = ?2is) 
- 

?(2s). 

In particular, W(2, 0, 2) = 2 f (2, 2) = tt4/36 
- 

tt4/90 = tt4/72. 

Example 2. Let an := l/rcr and ?>? := 1/rc5. Then inequality (4) becomes 

Wir, s,l)<n 7^20702^). (14) 

Similarly, inequality (1) translates into 

Wir, s,l)<n csc (- 
j ̂ f(pr) 7^). (15) 

Indeed, (3) can be used to estimate Wir, s, r) for somewhat broader t(=?? 1). Thence, 
(14) implies the crude inequality that ?(3) < 7r3/12, on appealing to equation (18). 

More generally, recursive use of (11) and (12), along with the initial conditions (13), 
shows that all integer Wis,r,t) values are expressible in terms of double (and single) 
Euler sums. As we shall see in (20) the representations are necessarily homogeneous 
polynomials of weight r + s + t. All double sums of weights less than eight and all 
those of odd weights reduce to sums of products of single variable zeta-values, [3]. 
The first impediments arise because ?(6, 2), and ?(5,3) are not so reducible. 

We next observe that in terms of thepolylogarithm defined by Lis(t) 
? 

Yln>o tnlnS 
for real s, the representation (5) yields 

Wir,s, 1) = 
? 

? o-Liri-eia)Lisi-eia)dG. (16) 

This representation is not numerically effective. It is better to start with 

ris) I- = 
f i-logaf-1 am+n~l da 

ny Jo im + i 

and so to obtain 

Wir,s,t) = -?- 
[ Lir(cT)Li,(cT)(~lQga) da. ill) I (0 JO or 

This real-variable analogue of (16) is somewhat more satisfactory computationally. 
For example, we recover from it an analytic proof of 

flln2il -a) 
2f(2,l) = W(l,l,l)= / ?--d<r = 2f(3). (18) 

JO Or 
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Moreover, we can now discover analytic as opposed to algebraic relations. Integration 
by parts yields 

W(r, 5 + 1,1) + Wir + 1, s, 1) = Lir+1(l) LWi(l) = f (r + 1) ?(s + 1). (19) 

In particular, W(s + l,s,l) = ?2(s + l)/2. 

Example 3. Symbolically, Maple immediately evaluates W(2, 1, 1) = 7t4/72, and 
while it fails directly with W(l, 1, 2), we know that W(l, 1, 2) must be a rational 

multiple of 7T4 or equivalently f (4). Numerically (working to twenty places) we ob 
tain 

W(l, 1, 2)/f (4) - .49999999999999999998 .... 

Continuing, for r + s + r = 5 the only terms to consider are f (5) and f (2)?(3). 
The integer relation method PSLQ as implemented in Maple yields the weight five 
relations: 

/ 1Li2(jc)2 
W(2,2,l)=/ -i^-d^ = 2f(3)f(2)-3f(5), 

Jo * 

^L^WlogO-^logW , ^^ 3 
W(2, 1,2)=/' 

?"or ^"vv djc = f (3)f (2) 
- 

^ C(5), 
Jo * 2 

W(l,l,3)=/"l082(3C)!?82(1-x)^ 
= -2C(3)?(2) + 4g(5), 

Jo 2x 

W(3,l,l)= /"L?3Wl0e(1"X)^ 
= -C(3K(2) + 3C(5), 

Jo * 

as predicted. 
Likewise, for r + s + t = 6 the only terms we need to consider are ?(6) and ?2(3) 

since ?(6), ?(4), ?(2), and ?3(2) are all rational multiples of tt6. We recover identities 
like 

i lLu(x) Li??c) 1 o 
W(3,2, 1)= / dx = -?2(3), U) = ( Jo 

consistent with equation (19). 

x 

The general form of the reduction for integers r, s, and t is due to Tornheim, and 

expresses W(r, s, t) in terms of ?(a, b) with weight a + b = N:=r + s + t [20], 
[10]: 

Theorem 4. For positive integers r, s, and t 

w.M)=E{C+I':'r1)+(r+;:i"1)}{('-"-0- 
(20) 

Various other general formulas are given in [10] for classes of sums such as W(2n + 1, 
2n + l,2n + l) and W(2n, 2n, 2n). 
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5. THE BEST HILBERT CONSTANT. It transpires that the constant n used in 
Theorem 1 is best possible [14]. 

Example 4. Let us numerically explore the ratio 

Wis,s, 1) 
IZis) := 

ni;i2s) 

as ^ ̂ 1/2. (If we wish we can restrict matters to s > 1/2.) Note that 7^(1) = 

12?(3)/tt3 -0.4652181552.... 
Further numerical explorations seem to be in order. Unfortunately, when 0 < s < 1, 

(17) is very hard to exploit numerically. This fact led us to look for a more sophisticated 
attack along the line of the Hurwitz zeta and Bernoulli polynomial integrals used in 

[10], or the expansions in [8]. Namely, we appeal to the identity 

-/ 
Wir,s,t)= / Eir,x)Eis,x)Eit,x)dx (21) 

Jo 

where Eis, x) := J27=\ e2ninx n~s = Li^ (e2lTlx), using the formulae 

oo 
(Otti r\m 

E(s,jc) = 
y\(s-m)--^- + r(l-i)(-27r/jc)i-1 (|jc| < 1) 

and 

t?( \ Va / ,(2x -I) OO m n 
tis,x) = ? 

} ?]is 
? 

m)- (0 < x < 1) 
m=0 

with r?is) := (1 
- 

2l~s) f (s), as given in [8, (2.6)(2.9)]. 

Ultimately, carefully expanding (21) with a free parameter 0 in (0, 1) led Crandall 
to the following efficient formula, in terms of the incomplete Gamma function, which 
is given by Via, z) := f?? exp(-i) ta~x dt when Re a > 0 [1]. Of course Via, 0) = 

Via). 

Proposition 1. If neither r nor s is an integer, then 

rftMr * V- r(i,(m + /i)0) 
r(i)>V(r, s, r) = > - 

t?. mrnsim + wV 

?o u\v\(u + v + t) 

?o v\(r + v + t-l) 

?r+s+t-2 
+ r(i-r)r(i-?) 

(22) 

r+s+t-2 
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When at least one of r, s is an integer, a limit formula with a few more terms results. 
As is often the case, the analytically attractive and the computationally effective rep 
resentations are quite different. 

We can now use (22) to give an accurate plot of 1Z on [1/3, 2/3], as shown in Figure 
2. Note that Figure 2 shows that, while the functions 1Z and 

:= 2/7T / x~ 
Jo 

</(l+x)dx 

do agree at 1/2, the one is increasing but the other is decreasing. In various ways we 
are thus led to the following conjecture; and in turn to a proof thereof. 

Tf'ir TTJ I I I I I I I I I I I I I I I I I 1 I I I I I I I It 
0.35 0.4 0.46 0.5 0.56 0.6 0.65 

Figure 2. H (left) and T (right) on [1/3, 2/3]. 

Conjecture 1. lim^^T^Cs) 
= 1. 

Proof of Conjecture I. (a) To establish this, we introduce 

<*n(s) := E 
ro=l 

n + m 

and invoke Lemma 1 to write 

OOOO ?v ?v 
-n 

s 
m 

s 

?:= lim (2s 
- 

1) V Y*-= lim (2s 
- 

1) V -^-an(s) $- 1/2 n=l m=l 
n + m j-^i/2 n=l 

= hm (2s 
- 

1) >-h hm n (2s 
- 

l)?(2s) ese (n s) 
?->1/2 *?' ?2lS n=l 

= 0 + 7T =7T. 

j^l/2 

Here, by another appeal to Lemma 1, the bracketed term in the series is 0(ns~l) 
while ?(2s) 

~ 
1/(25 

- 
1) as s -> 1/2, using the standard asymptotic for ? [2]. In 

consequence, we see that C/tt = 
lims^\/2TZ(s) 

= 1, and?at least to first-order? 

inequality (4) is best possible (see also [15]). 
(b) Alternatively, we can sum directly as follows: 

W(s s n = ff"","-'=2f 
* 
y* */" f(2* + D 

?r??? + ? ?f ?2* ?- (m/nY(m/n + 1) 2 
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fl x's ?i2s + l) 
<2ti2s) / ?-dx+'K 

Jo 1 + x 2 
00 1 II 

<iY l Y 1/n i ?(2s + i) ~~ 
+ n2s + (m/ny(m/n + l) 2 ft=l m = \ v ' 7 v ' / 

+ n2s + (m/n)s(m/n + 1) 2 

We deduce that 

YY-+ f(2s + i). 
n=\ m ? \ 

K(s) - l{s) 

as s -> 1/2. Also 1(1/2) = 1. 

Likewise, the constant in (1) is best possible. 

Proof. Motivated by the foregoing argument we consider 

Wiip-l)s,s,l) 
npis) := 

n ?ips) 

and observe that with a//is) := X!m=i Wm) 
(/? 

X)slin + m)?which satisfies a//is) 
n csc (7r/^) il/q + 1//? = 1) as n -> 00 and s -> 1/p?we have 

_2?_ _22_ n~s m~(p-{)s ? 1 

?p : = lim ips 
- 1) > V-= lim ips 

- 1) V ? 
0^(5) 

n = \ m?\ n = \ 

= 
v,m(ps-?t{?"U)-nCSCin"'}}] s^i/p f-f nPs 

' 
n 

+ lim (2s 
? 

l)?ips) n csc 
S-+1/P \q 

, n 
0 -f- n csc 

Setting r = ip 
? 

l)s, for 5* near 1/p we check that ?ips)]/p ?iqr)l/q 
= ?ips), 

whence the best constant possible in (15) is the one given. 

To recapitulate our narrative, in terms of the celebrated infinite Hubert matrices [3, 

pp. 250-252], 

7-io := I ?^? 1 and Hx := 
im + n\m,n=i [m + n- lJmiB=1 

we have actually proven: 
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Theorem 5.Ifl<p,q<oo and l/p + \/q = 1, then the Hilbert matrices T?o ana 

7?x determine bounded linear mappings from the sequence space ip to itself such that 

\\rt\ \\p,p 
= IIWo Up 

= lim-?-= n csc - . 
*-i/p ?(ps) \pj 

Proof. Appealing to the isometry between (?p)* and lq, and given our earlier evalua 
tion of Cp, we directly compute the operator norm of Ho as follows: 

\\1io\\P,p : = sup ||Wo*lip 
II*IIp=i 

= sup sup (Tiox, y) 
? n csc I ? 

\y\\q=\ \\x\\p=\ \P 

Now clearly ||7-?0II/?,/? 
< 

WH\\\p,p. For n > 2 we have 

OO ? OO i 
- < y^- < it csc (ita), 

m=1 (n + m- l)(m/n)a 
~ 

?^ (n 
- 1 + m)(m/(n 

- 
l))a 

~ 

and so Lemma 1 and Theorem 1 in tandem show that ||WoIUp 
> IIWi \\p,p. 

A delightful operator-theoretic introduction to the Hilbert matrix Ho is given by 
Choi in his Chauvenet prize-winning article [7] while a recent set of notes by G. J. O. 
Jameson (see [15]) is also well worth accessing. 

In the case of (3), Finch [11, ?4.3] comments that the issue of best constants is 

unclear in the literature. He remarks that even the case p = q = 4/3 and a = 1/2 
appears to be open. It seems improbable that the techniques of this article can be used 
to resolve the question. Indeed, consider 

W(s,s, 1/2) 
1 

f(4j/3)? 

with the critical point in this case being s ? 3/4. Numerically, using (22), we discover 

that log(W(s,s, l/2))/log(f (4s/3)) -> 0. Hence, for any positive a, the requisite 
limit is given by \\rns^^/ATZX/2(s, a) = 0, which is certainly not the desired norm. 

What we are exhibiting is that the subset of sequences (an) 
? 

(n~s) for s > 0 is norm 

ing in lp for o ? 1 but not apparently for general a > 0. 

Example 5. One may also study the corresponding behaviour of Hardy's inequality 
(7). For example, setting an = \/n and writing Hn ? 

YH=\ V^ in (7) yields 

Hn 
P / r* \ P 

Application of the integral test shows that 

p r?? /}^^v\p r n 
_|_ p\ 

m)'~rm'<-E (p-D"+i' 
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when p > 1. Also 

,. ( p Y ip~i)l+p 
lim 

?? 
f ip) 

?---= 1. 

(This is a limit that both Maple and Mathematica will compute.) This shows the con 
stant is again best possible. 
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