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The problem

Given in Hilbert’s 1900 address before the International Congress of
Mathematicians.

Entscheidung der Lösbarkeit einer diophantischen Gleichung. Eine
diophantische Gleichung mit irgendwelchen Unbekannten und mit ganzen
rationalen Zahlkoeffizienten sei vorgelegt: man soll ein Verfahren angeben,
nach welchen sich mittels einer endlichen Anzahl von Operationen
entscheiden lässt, ob die Gleichung in ganzen rationalen Zahlen lösbar ist.

In English:

Given a Diophantine equation with any number of unknown quantities and
with integral numerical coefficients: To devise a process according to
which it can be determined by a finite number of operations whether the
equation is solvable in integers.

Our goal is to show that no such process (algorithm) may exist!
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David Hilbert
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We will consider the problem of whether or not a Diophantine equation
with integer coefficients has a solution in the positive integers.

Suppose had an algorithm for testing for solutions in the positive integers.
If we want to use it test a Diophantine equation for solutions in the
integers, just replace each integer variable x with x1 − x2 where x1 and x2

are positive integer variables.

Now suppose had an algorithm for testing for solutions in the integers. If
we want to use it test a Diophantine equation for solutions in the positive
integers, just replace each positive integer variable x with
x2
1 + x2

2 + x2
3 + x2

4 + 1 where x1, x2, x3 and x4 are integer variables. This
works since every positive integer is the sum of four squares (Lagrange).
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Key Players

Martin Davis Yuri Matiyasevich Hilary Putnam Julia Robinson

In what follows, all work is due to some subset of these four people, unless
otherwise noted.
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Diophantine sets

Instead of starting with a Diophantine equation and looking for its
solutions, we will begin with a set of ‘solutions’ and seek a corresponding
Diophantine equation.

Definition: A set S of ordered n-tuples of positive integers is called
Diophantine if there is a polynomial P(x1, ..., xn, y1, ..., ym) with integral
coefficients such that

(x1, ..., xn) ∈ S ↔ (∃y1, ..., ym)(P(x1, ..., xn, y1, ..., ym) = 0).

Here y1, ..., ym are positive integers. For now on, all variables represent
positive integers unless otherwise stated.
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Diophantine sets

Examples of Diophantine sets:

The composite numbers:

x ∈ S ↔ (∃y , z)(x = (y + 1)(z + 1)).

Numbers which are not powers of 2:

x ∈ S ↔ (∃y , z)(x = y(2z + 1)).

The set S of (x , y , z) for which x | y and x < z :

We have x | y ↔ (∃u)(y = ux) and x < z ↔ (∃v)(z = x + v), so

(x , y , z) ∈ S ↔ (∃u, v)((y − ux)2 + (z − x − v)2 = 0)

What about the prime numbers? What about powers of 2?

Brandon Fodden (University of Lethbridge) Hilbert’s Tenth Problem January 30, 2012 7 / 31



Diophantine sets

We may use a simultaneous system P1 = 0,P2 = 0, ...,Pk = 0 of
polynomial equations to define a Diophantine set, since the system can be
replaced by the equation P2

1 + P2
2 + ... + P2

k = 0.

Theorem (Putnam): A set S of positive integers is Diophantine if and
only if there is a polynomial P such that S is equal to the set of positive
integers in the range of P.

Proof: (reverse direction): We have

x ∈ S ↔ (∃y1, ..., ym)(x = P(y1, ..., ym)),

so S is Diophantine.
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(forward direction): S is Diophantine, so there is a polynomial Q such that

x ∈ S ↔ (∃y1, ..., ym)(Q(x , y1, ..., ym) = 0).

Let P(x , y1, ..., ym) = x(1− Q2(x , y1, ..., ym)). We must show the positive
range of P is equal to S .

Let x ∈ S and choose y1, ..., ym so that Q(x , y1, ..., ym) = 0. Then
P(x , y1, ..., ym) = x , so x is in the positive range of P.

Now let z > 0 be in the range of P. Then

z = P(x , y1, ..., ym) = x(1− Q2(x , y1, ..., ym))

for some x , y1, ..., ym. Since z > 0, we must have Q(x , y1, ..., ym) = 0.
Thus z = x and x ∈ S .

Thus S is the positive range of P(x , y1, ..., ym) = x(1− Q2(x , y1, ..., ym)).
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Positive range

Using our previous examples, we have

The set of composite numbers is equal to the positive range of

x
(
1− [x − (y + 1)(z + 1)]2

)
= 2x2 − 2xy − 2xz − x3 − xy2 − xz2 + 2x2yz + 2x2y + 2x2z

−xy2z2 − 2xy2z − 2xyz2 − 4xyz .

The set of numbers which are not powers of 2 is equal to the positive
range of

x
(
1− [x − y(2z + 1)]2

)
.
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Diophantine functions

Definition: A (positive integer valued) function of n (positive integer)
arguments is called Diophantine if

{(x1, ..., xn, y) : y = f (x1, ..., x2)} is a Diophantine set.

We will require a few important Diophantine functions.

Theorem: Let P(x , y) be the Diophantine function (x+y−2)(x+y−1)
2 + y .

P(x , y) is a bijection between the ordered pairs of positive integers and the
positive integers. There are Diophantine functions L(z) and R(z) such
that

∀x , y , L(P(x , y)) = x and R(P(x , y)) = y .

∀z , P(L(z),R(z)) = z (that is, the ordered pair which is mapped to z
by P(x , y) is (L(z),R(z))).

L(z) ≤ z , R(z) ≤ z .
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Diophantine functions

Theorem: (Sequence Number Theorem) There is a Diophantine function
S(i , u) such that

S(i , u) ≤ u

For each sequence a1, ..., aN , there is a number u such that
S(i , u) = ai for 1 ≤ i ≤ N.

All finite sequences are ‘encoded’ in S(i , u). The proof uses the Chinese
Remainder Theorem.
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The exponential function

By the late 1960s, only one piece was missing in order to show that the
algorithm Hilbert asked for can not exist:

The exponential function h(n, k) = nk is Diophantine.

Many people thought this was unlikely.

In 1970, Matiyasevich showed the exponential function is Diophantine by
using the Fibonacci numbers:

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2.

The key property he used is that

F 2
n | Fm → Fn | m.
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The Pell equation

Julia Robinson later replaced the Fibonacci numbers with the non-negative
solutions to the Pell equation

x2 − dy2 = 1 where d = a2 − 1 for a > 1.

Let
x0 = 1, x1 = a, xn = 2axn−1 − xn−2

and
y0 = 0, y1 = 1, yn = 2ayn−1 − yn−2.

One may show that the non-negative solutions to the Pell equation are the
pairs (xn, yn).The key property needed is that

y2
n | ym → yn | m.
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The exponential function is Diophantine

One may show that m = nk if and only if the following equations have a
solution in the remaining arguments:

x2 − (a2 − 1)y2 = 1

u2 − 16(a2 − 1)r2y4 = 1

(x + cu)2 − ((a + u2(u2 − a))2 − 1)(k + 4(d − 1)y)2 = 1

y = k + e − 1

(x − y(a− n)−m)2 = (f − 1)2(2an − n2 − 1)2

m + g = 2an − n2 − 1

w = n + h = k + `

a2 − (w2 − 1)(w − 1)2z2 = 1
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The factorial is Diophantine

One may show the following theorem: For any positive integer k, if
(2k)k ≤ n and nk < p then

k! <
(n + 1)kpk

rem((p + 1)n, pk+1)
< k! + 1,

where rem(x , y) is the remainder when y is divided by x .

Using this, one may give a Diophantine definition of the factorial function.

Wilson’s Theorem: k + 1 is prime if and only if k! ≡ −1 (mod k + 1).

Using Wilson’s Theorem, one may now give a Diophantine definition of the
set of prime numbers!

Using this Diophantine definition of the primes together with Putnam’s
Theorem, the following prime representing polynomial was given by Jones,
Sato, Wada and Wiens.
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A prime representing polynomial

The set of prime numbers is equal to the positive range of

(k + 2)
[
1− [wz + h + j − q]2 − [(gk + 2g + k + 1)(h + j) + h − z ]2

− [2n + p + q + z − e]2 − [16(k + 1)3(k + 2)(n + 1)2 + 1− f 2]2

− [e3(e + 2)(a + 1)2 + 1− o2]2 − [(a2 − 1)y2 + 1− x2]2

− [16r2y4(a2 − 1) + 1− u2]2 − [n + ` + v − y ]2

− [((a + u2(u2 − a))2 − 1)(n + 4dy)2 + 1− (x + cu)2]2

− [(a2 − 1)`2 + 1−m2]2 − [ai + k + 1− `− i ]2

− [p + `(a− n − 1) + b(2an + 2a− n2 − 2n − 2)−m]2

− [q + y(a− p − 1) + s(2ap + 2a− p2 − 2p − 2)− x ]2

− [z + p`(a− p) + t(2ap − p2 − 1)− pm]2
]

Note: As it is written here, the variables are non-negative integers.
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More prime representing polynomials

Similar polynomials have been written out for the set of Mersenne primes,
the set of Fermat primes and the set of ‘younger’ twin primes.

Positive range polynomials have been written down for the set of even
perfect numbers, the set of all perfect numbers, the set of Lucas numbers,
and the set of Fibonacci numbers.

(Jones) The set of Fibonacci numbers is equal to the positive range of

2y4x + y3x2 − 2y2x3 − y5 − yx4 + 2y .

Back to showing the algorithm Hilbert asked for does not exist...
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Universal quantification

An important result is that one may universally quantify over one of the
variables in a Diophantine set to obtain another Diophantine set, as long
as the quantification is bounded.

That is, if P is a polynomial, then

S = {(y , x1, ..., xn) : (∀z)≤y (∃y1, ..., ym)[P(y , z , x1, ..., xn, y1, ..., ym) = 0]}

is Diophantine. One must show that

(∀z)≤y (∃y1, ..., ym)[P(y , z , x1, ..., xn, y1, ..., ym) = 0]

↔

A large number of expressions, all of which are known to be Diophantine.

I’m not kidding when I say that it won’t fit on one slide.

Brandon Fodden (University of Lethbridge) Hilbert’s Tenth Problem January 30, 2012 19 / 31



Recursive functions

Another Diophantine definition of the prime numbers:

x is prime ↔ (x > 1)∧ (∀y , z)≤x [(yz < x)∨ (yz > x)∨ (y = 1)∨ (z = 1)]

Actually, our available methods to show a set is Diophantine are quite
powerful.

Definition: The recursive (or computable) functions are those that may
be computed by a finite program or computing machine having arbitrarily
large amounts of time and memory at its disposal (ie a Turing Machine).

One may properly define the recursive functions using a small number of
initial functions and several recursive operations (composition, primitive
recursion, minimalization).

Theorem: A function is Diophantine if and only if it is recursive.
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An enumeration of the Diophantine sets

The following construction is based on the aforementioned paper by Davis.

Any polynomial with positive integer coefficients can be constructed from
1 and variables x0, x1, ... by successive additions and multiplications. Let

P1 = 1

P3i−1 = xi−1

P3i = PL(i) + PR(i)

P3i+1 = PL(i) · PR(i)

Let

Dn = {x0 : (∃x1, ..., xn)[PL(n)(x0, x1, ..., xn) = PR(n)(x0, x1, ..., xn)]}

Clearly
D1,D2,D3, ...

consists of all Diophantine sets of positive integers.
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A universal Diophantine set

Universality Theoerm:

{(n, x) : x ∈ Dn} is Diophantine.

To prove this, one may show that x ∈ Dn if and only if there exists u such
that the following hold:

S(1, u) = 1

S(2, u) = x

(∀i)≤n[S(3i , u) = S(L(i), u) + S(R(i), u)]

(∀i)≤n[S(3i + 1, u) = S(L(i), u) · S(R(i), u)]

S(L(n), u) = S(R(n), u).

Clearly each of these is Diophantine.

Jones has written down a polynomial for the Diophantine definition of
{(n, x) : x ∈ Dn}.
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A non-Diophantine set

Using the enumeration of the Diophantine sets, one may employ a
standard diagonalization technique to construct a set that is different from
each Diophantine set:

Theorem: V = {n : n /∈ Dn} is not Diophantine.

Proof: Suppose V were Diophantine. Then V = Di for some particular i .
Is i ∈ V ? We have i ∈ V ↔ i ∈ Di and i ∈ V ↔ i /∈ Di . This is a
contradiction.
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A non-recursive function

Theorem: The function

g(n, x) =

{
1 if x /∈ Dn

2 if x ∈ Dn

is not recursive.

Proof: If g were recursive, then it would be Diophantine, so

y = g(n, x) ↔ (∃y1, ..., ym)[P(n, x , y , y1, ..., ym) = 0].

V is the set of x such that g(x , x) = 1, so

V = {x : (∃y1, ..., ym)[P(x , x , 1, y1, ..., ym) = 0]}.

That is, V is Diophantine, which is a contradiction.
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Main Theorem
The Universality Theorem yields

x ∈ Dn ↔ (∃y1, ..., ym)[P(n, x , y1, ..., ym) = 0]

for some polynomial P (which has been written down by Jones).

Suppose we had an algorithm which determines whether or not a
Diophantine equation has positive integer solutions.

For a given n, x , we could use this algorithm to test whether or not
P(n, x , y1, ..., ym) = 0 has a solution.

That is, we could use the algorithm to test whether or not x ∈ Dn.

Thus we could use the algorithm to compute g(n, x), and so g(n, x) must
be recursive.

This is a contradiction! No such algorithm may exist!!

Thus Hilbert’s Tenth Problem is unsolvable!!!
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Diophantine sets

We can also give a nice description of the Diophantine sets.

Definition: A set S of n-tuples of positive integers is recursively
enumerable (or listable) if there are recursive functions f (x , x1, ..., xn) and
g(x , x1, ..., xn) such that

S = {(x1, ..., xn) : (∃x)[f (x , x1, ..., xn) = g(x , x1, ..., xn)]}.

It is not hard to show that a set is Diophantine if and only if it is
recursively enumerable.

Diophantine sets are the listable sets.
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An application

Let P(n) be a decidable property of the positive integers (that is, we have
an algorithm which will determine whether or not P holds for any given n).
Let S = {n : P(n) is false}. Since P is decidable, S is recursively
enumerable (listable).

Thus S is Diophantine. We have

P(n) is false ↔ n ∈ S ↔ (∃y1, ..., ym)[Q(n, y1, ..., ym) = 0],

and so

∀nP(n) ↔ ∀n¬(∃y1, ..., ym)[Q(n, y1, ..., ym) = 0]

↔ ¬(∃n, y1, ..., ym)[Q(n, y1, ..., ym) = 0].

Thus we have

∀nP(n) ↔ Q has no solutions in the positive integers.
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An application

Goldbach’s conjecture:

∀n[n even → (∃≤np)(p is prime and n − p is prime)].

Thus there is a particular Diophantine equation which has no solutions if
and only if Goldbach’s conjecture is true.

Let δ(x) =
∏

n<x

∏
pk≤n p where p represents a prime. The Riemann

Hypothesis is equivalent to

∀n

 ∑
k≤δ(n)

1

k
− n2

2

2

< 36n3


Thus there is a particular Diophantine equation which has no solutions if
and only if the Riemann Hypothesis is true.

Determining if a Diophantine equation has solutions is a very hard
problem! Also: imagine what could be done if Hilbert’s algorithm existed!
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A formal application

The set of theorems of a formal axiomatic system (such as ZFC set theory
or Peano arithmetic) is recursively enumerable.

Let P(n) be “there is no contradiction among the first n theorems.”

This is a decidable property.

Thus there is a particular Diophantine equation which has no solutions if
and only if the formal system is consistent.

Gödel’s second incompleteness theorem implies that no formal system
which allows basic arithmetic may prove its own consistency.

Thus the formal system is not strong enough to prove that the
Diophantine equation has no solutions.

Brandon Fodden (University of Lethbridge) Hilbert’s Tenth Problem January 30, 2012 29 / 31



Open problems

Hilbert’s Tenth Problem for a ring R: Given a Diophantine equation with
integral numerical coefficients: Can one find an algorithm which
determines whether the equation has solutions in R?

R = Z: No (we just saw this)

R = C: Yes

R = R: Yes

R = Q: open (note: an algorithm for Z would have given one for Q.)

R = OK : Conjecture is no. Known for totally real K , quadratic
extensions of totally real K , and K which have one conjugate pair of
non-real embeddings.

Theorem (Poonen, Shlapentokh) If there is an elliptic curve E/Q with

rankE (K ) = rankE (Q) = 1,

then Hibert’s Tenth Problem for OK is a negative answer.
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M. Davis, Hilbert’s Tenth Problem video lecture, Convergence of
Logic, Math. and Comp. Sci., UCLA. Available on iTunes U.
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