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ABSTRACT. We show that Z is diophantine over the ring of algebraic integers

in any number field with exactly two nonreal embeddings into C of degree > 3

over Q.

Introduction. Let R be a ring. A set S C Rm is called diophantine over R if

it is of the form S = {x G Rm : 3t/ G Rn p(x, y) = 0}, where p is a polynomial in

R[x,y). A number field is a finite extension of the field Q of rational numbers. If

K is a number field, we denote by Ok the ring of elements of K which are integral

over the ring Z of rational integers.

N is the set {0,1,2,...} and N0 is the set {1,2,3,... }.

In this paper we prove

THEOREM. Let K be a number field of degree n > 3 over Q with exactly two

nonreal embeddings into the field C of complex numbers. Then Z is diophantine

over 0K.

An example of such a number field is Q(d) where c/3 is a rational number which

does not have a rational cube root.

In order to prove the theorem, we use the methods of J. Denef in [3]. The

terminology and enumeration of the lemmas is kept the same as in [3] so that the

similarities and differences of the proofs are clear. The theorem implies

COROLLARY. Let K be as in the theorem. Then Hilbert's Tenth Problem in Ok

is undecidable.

The results of [3] and the present paper are the maximum that can be achieved

using the present methods. Hence the general conjecture made in [4], namely that

Hilbert's Tenth Problem for the integers of any number field is undecidable, remains

open.

Let if be a number field of degree n > 3 over Q with exactly two nonreal

embeddings into C. Let <t¿, i = 1,2, ...,n, be all the embeddings of K into C,

enumerated in such a way that crn_i and an are nonreal. Then the embedding

a: K —► C such that a(x) — an(x) is distinct from an and from all ai, i < n — 2,
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612 THANASES PHEIDAS

since an is nonreal (i.e. for at least an x G K, a„(x) £ R, hence <r(x) ^ an(x) and

a(x) ^ R). Hence a = an-i and therefore, for every x G K, an-i(x) = an(x). In

the rest of the paper we identify K with a\ (K).

There are two cases: an-i(K) = an(K) or an_i(K) ^ an(K). In the first case,

let b be an element of K such that K = Q(b). We have that Rean(b) G an(K)

and (Imtr„(6))2 G an(K) where Rex and Imx are the real and imaginary parts

of x, respectively. So, since an(K) = Q(an(b)), [an(K) : an(K) n R] = 2 and

so an(K) is nontotally real of degree 2 over an(K) n R which is totally real. By

[3] Z is diophantine over an(OK) <~l R and by the results of [4] this implies that Z

is diophantine over trn(0/c-). Hence Z is diophantine over Ok- Therefore, we will

consider only the case where an-\(K) ^ an(K).

Let a G Ok be such that

(*) \al(a)\<l/24n     for i = l,2,...,n-2 and a ¿ 0.

For each x G Ok, let 8(x) G C be a number so that 82(x) = x2 - 1. Let 8 = 8(a)

and call L = K(8). By (*) a may not be a rational integer and therefore 8 £ K. So

[L : K] = 2 and each embedding <r¿ of K into C extends to two embeddings alti

and ct¿i2 of L into C. The relations ai,2(8) — — <j¿,i(¿>) are obvious. Call e = 8 + a

and xm and ?/m the solutions in Ok of the equation xm + 8ym = (a + 8)m for m G Z.

Clearly em = xm + r5î/m, £_m = xTO - <5?/m, and £ is a unit in Ol-

LEMMA 1. Let K be any number field, and a,b,c G Ok- Suppose 8(a), 8(b) 0

K. Let m,h,k,j G N.  We have:

(1) £ is a unit in Ok(s), £_1 = a — 8, and xm,ym satisfy the Pell equation

x2 - (a2 - l)y2 = 1;

(2) xm = (em + e~m)/2, ym = (em - e~m)/2S;

(3) xm±k = xmXk ± (a2 - l)ymyk, ym±k = xkym ± xmyk;

(4) h\m=>ym\yh;

(5) yhk = kxkh~lyh mod2/£;

(6) xm+i = 2axm - xm_i,2/m+i = 2aym - ym-i;

(7) ym(a) =m mod(a - 1);

(8) if a = b mode, then xm(a) = xm(6)modc and ym(a) = ym(b)modc;

(9) x2m±j = -Xj modxm;

(10) if nG Ok and n ^ 0, then there exists an m G No such that n \ ym(a).

Proof. See [3].

LEMMA 2.   Let a be as above.  Then:

(1) fori<n-2,0< \at(a)\ < 1/24" and \an(a)\ = |cr„_1(a)| > 22";

(2) for i <n-2,j = 1,2, |<r^(e)| = 1;

(3) |<r„_ij(e)| ^ 1 and |<TniJ-(e)| # 1 and

max{|<7„,i(£)|, |<T„,2(e)|} = max{|crn_i,i(£)|, \a„-i<2(e)\} > 22n.

PROOF. (1) Since an-x(a) = an(a), |(7n_i(a)| = |tr„(o)|. Moreover Nk/q(o)

is a rational integer different from zero and hence n?=i lCTí(a)l = I^K/Q(a)l > !•

Since for i<n -2, \ai(a)\ < l/24n we get \an^(a)\-\an(a)\ = \an(a)\2 > 24"("-2)

and since n > 3, 4n(n - 2) > 4n and so |cr„(a)|2 > 24", i.e. |<r„(a)| > 22".
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(2) Since, for i < n — 2, ai(a) G R and |tfj(a)| < 1, we get that ai¿(8) G iR- So

Kj(e)\2 = M<0 +vi,j{ô)\2 =°i(af + Wi,j(8)\2 = 1-

(3) an%\(e) + an,2(e) = 2an(a), so that we have that

K,i(£)| + k„,2(£)| = K,i00l + k„,i(£)|_1
> Wn,i(e) + cr„,2(£)| = 2|cr„(a)| > 22"+1     (by (1)).

So either |cr„,i(£)| > 22" or \anA{£)-l\ = \ant2(e)\ > 22™. Similarly for <xn_i.

NOTATIONAL REMARK. From now on we adopt the convention that an-i,i and

<7nji are such that|t7n_i,i(£)| > 1 and |<7nii(£)| > 1.

REMARK. It is well known that if <p(n) is the Euler function of n then

lim ¡p(n) = oo
n—*oo

and hence there is only a finite number of roots of unity such that their degrees

over Q is less than or equal to 2n. Call d the least common multiple of their orders.

It is then obvious that for any root of unity J G L, Jd — 1.

LEMMA 3. Let K,a,8 be as above. Let d be as in the last remark. Then all the

solutions (x, y) in Ok of the equation x2 — 82y2 = 1, for which there are x* and y*

in Ok such that x + 8y = (x* + 8y*)6d and x*2 — 82y*2 = 1, are given by x = ±xm

and y = ±ym for some m G Z.

PROOF. By the Dirichlet-Minkowski theorem on units (see [1]), there are n — 2

fundamental units in K. Also L has no real embeddings into C and so L has

2n/2 — 1 = n — 1 fundamental units. Consider the set S = {x + 8y\x2 — 82y2 = 1,

x,y G Ok}- S is clearly in the kernel of the map NL/K'- Ol\{0} —► Ok\{0}

considered as a multiplicative homomorphism. For any unit u oí Ok, Nl/k(u) = u2

and hence the image oiNL/K has torsion-free rank at least equal to n — 2. Therefore,

the torsion-free rank of S is at most (n — 1) — (n — 2) = 1. Since e is in S and

£ is torsion free, rank S — 1. Hence there is a unit £q — x' + 8y' G S such that

every u G S can be written in the form u = Je™ where m £ Z and J is a root

of unity in L. In particular £ = Jo^o f°r some e ^ Z, e ^ 0 and a root of unity

Jo G L (so Jq = 1). Clearly we may assume that e > 0 interchanging £o with £q i

if necessary. Then £o — £q 1 = 28y' and £ — £_1 = 28, so £ — £_1 | £o — Eq1- So

|¿V(2¿)| < \N(so - EÖ1)!, where ¿V = NL/Q. We have

|¿V(2£)| =22n\N(8)\ =

n-2

}Ma)2-i;

1=1

(a)2 - II2 • 22"

since tr„(a)2 - 1 = an-i(a)2 — 1. Hence

\N(28)\ > 22n ■ (1 - 1/216"2)"-2 • \an(a)2 - 1\2 > 22n ■ (1/22)""2 • |cr„(a)2 - 1|2

= 24|crn(a)2 - 1|2 > 24 • | |crn(a)|2 - 1| > 23|cr„(a)|2,

using (*). Finally

|Ar(2(5)|>22>„(a)|2(0.
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614 THANASES PHEIDAS

Now observe that an-i,i{eo) = tf„_i(x') + o-n-i.i(S)an-1(y') and <7„_ii2(£0) =

f7n_i(x') + an-i,2(8)an-i(y') = an-i(x') - an^1A(8)an^1(y'). So tTn_12(t:0) =

On-i.i^o-1) and hence

Wn-l,l(£o)-Vn-l,l(£o~1)\-\°~n-l,2(£o)-0-n-l,2(£Ö1)\ = Wn-1,1 (£o) -^n-1,1 (Sq ^ ■

Similarly for tTn)i(£o) and ani2(eo). Moreover,

(ffn.i(eo) - CTn.i^ö1))2 = 4(a„(a)2 - 1)ct„(2/')2

and

(<7n_i,i(£0) -tJ-n-i,!^1))2 = 4(<7n_1(o)2 - 1)ct„_i (y'f
_ _

and since an(a)2 — an-1(a)2 and an(y')2 = an~i(y')2, we get

(^n,l(£o) -O-^i^ö1))2 = (ffn-l.lieoj-ffn-l.l^ö1))2-

Also since |<7n,i(£o)|e = |cn,i(e)| and |o-n,i(e)| > 1, we get |<7„,i(£o)| > 1, using the

convention e > 0. Similarly |o,„-i,i(£o)| > 1- So we get

n

|7V(£0 - eô1)! =   Il Ki(*o) - ^(eo)_1l < 22n"4
t=i

¿=1,2

Il    kt,i(^o) -o-^jCeö1)!
r=n—l,n

J=l¡2

= 22"-4-K1(£0)-cTn,1(£Ö1)|4

and finally we get

|iV(£o-£0-1)|<22n-4|cTn,1(£o)-cTn,i(£o)-1|4-

Now clearly we have

|oVi,i(£o) - &n,i(£o)~ I   = 1^71,1 (eo)   + &n,i(£o)~   — 2|

< |ct„,i(£o)|2 + |ct„,i(£0)|~2 + 2

<2(|cTn,i(£o)|2 + |cTnil(£o)|-2)

and so

kn,l(eo)-ffn,l(eo)-1|4 <4(|cT„,i(£o)|2 + |cTnil(£0)|~2)2,

and hence

|7V(£0 - 6Ô1)] < 22"-2(|cTrM(e0)2| + \an<1(e0)\-2)2.

If |e| = |£o|e and e > 4 then |<7„,i(£)| > |crnii(£o)|4 > 1 and so

\N(e0 - 0| < 22"-2(|cTn,1(£0)|2 + Ki(c0)|-2)2

= 22"-2(|cTn,,(£o)|4 + K!(£0)|-4 + 2) < 22"-1(K1(£0)|4 + Ki(e„)r4)

< 22"|ct„,1(£0)|4 < 22"|cr„,1(£)| = 22n\an(a)+an,1(S)\

< 22"(|crn(a)| + |ffBil(i)|) = 22"(|rTn(a)| + y/\an(a)-l\)

< 22"(|crn(a)| + 2|an(a)|) < 22n+V„(a)|.

Combining the last inequality with (i) above gives |tr„(a)| < 22n which contradicts

Lemma 2(1). So e < 3. Therefore, if x*2 + 82y*2 = 1 and x + 8y = (x* + 8y*fd,

since for some n G Z, x* + 8y* = Jeq and Jd = 1 then x + 8y = eQnd = £"' and

hence x = ±xn, and y — ±yni where n\ = 6n/e.
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LEMMA 4.   Assume that K, a are as above, h, m G N and

\o~i(yh)\>\     for i= l,2,...,n — 2    (condition  (1)).

Then

(1) \an(yh)\ > \an¡1(s)\h/4\anA(8)\ and |<rn,i(e)| > 22",

(2) y h I Vm =>■ h | m (the first divisibility is meant in Off, the second in Z),

(3) î/h I Vm => î/fc I ™ in O/f.

PROOF. (1) We have proved that |<Tnii(e)| > 22n. It is trivial to see that from

this fact the following immediately follows: \an¡i(e)\h — \an,i(e)\~h > \an^(e)\h / \/2

for h G N0. So

■     *    ]l= \<rn,i(e)h - <rn,i{e)~h\ ^     Ki(g)|h Ki(g)|fc

lan[yh)l 2\vn,i(8)\        ~ > 2V2\anA(8)\ ~ 4\anA(6)\'

(2) Suppose y h \ ym but h\m. Set m = hq + k, with o, k < N and 0 < k < h.

Lemma 1 yields ym = xkyhq + xhqyk. Notice that yh \ yhq, hence yh | xnqyk. Since

x\q — (a2 — l)y\„ — 1, the elements yn and xnq are relatively prime. Thus y h \ yk and

\NK/Q(yh)\ < \NK/Q(yk)\. From the Introduction we have that an-i(yh) = an(yh)-

Also from condition 1 and (1),

/I\"~2
\NK/Q(yh)\ = Wn-i(yn)\ ■ Wn(yh)\ ■  n  \ai(yh)\>\o-n(yh)\2 ■ i^J

, Ki(e)|fcV   /I

i<n-2

n-i

,4|ffnil(Ä)iy   va,

Now observe that, for i < n — 2, cr¿(xfc)2 — (<r¿(a)2 — 1) ■ cr¿(t/fc)2 = 1 and al(a)2 < 1.

So |ct¿(3/*)| < 1 for i < n - 2. Therefore,

l-W/r/Q(î/fc)l = |tr„-i(yfc)| ■ kn(î/*)l •   n   Mv*)! < lffn(î/*)|2
¿<n-2

_ |gn.i(^)-gn,i.(e)-*la < f?K,i(?{k

Hence

(2|an,1(¿)|)2 ~\2\anA(S)\

K,i(£)\2k

K,i(S)\2 ■

Sly-2   \anA(e)\2h   ^ |crnil(£)|2fc

,27        42K,1(C5)|2       \anA(8)\2 '

i.e. \anii(e)\2h~2k < 2n which contradicts (1) since h — k > 1. Hence /i|m.

(3) is obvious since (f"1 - e~lh)/(eh - e~h) = 1 ■ u mod(£/l - e~h) where u

is a unit and hence if y\ \ym, by (2) h\m, i.e. m = Ih for some / G N, and so

ym/yh — 0 modyh which means that m/h = 0 modyn, i.e. m = 0 rnody^.

LEMMA 5. If K,a are as above and k,j G N, m € N0 and |<7¿(xm)| > ^ /or

i = 1,... ,n — 2, £/ien î/xfc = ±Xj modxm we get that k = ±j mod m (the two ±

do not have to correspond).

PROOF. Set k = 2mq ± fc0, j = 2mh ± j0 with q,h,ko,jo € N and fco < m,

jo < m. Lemma 1(9) implies xk = ±xko modxm, Xj = ±xjomodxm. Hence, it is

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



616 THANASES PHEIDAS

sufficient to prove the lemma for k < m, j < m. Thus suppose xk = ±Xj modxm,

k < m and j < m. We shall prove that xk — ±Xj. Assume xk ^ izji then

\^K/Q(xm)\ < \^K/Q(xk ± Xj)\. We may assume without loss of generality that

l^ni^fc)! > |o"n(a:j)|- Then by the hypothesis of the lemma,

\NK/Q(xm)\ = \an(xm)\2 ■    H    M*m)1 > Wn(xm)\2 ■ (I)""2
i<n-2

= (ir-2 . Ki(gr+an,i(e)-"'|2 > (i)B (Ki(e)r _ Kl(ff)rm)2

>(è)"+1K,i(g)l2m-

The last inequality holds by Lemma 4(1). Also

\NK/Q(xk±xJ)\<(\an(xk)\ + \an(xJ)\)2 ■   JJ  (M*fc)l + M*j)l)
¿<n-2

< (2|crn(x,)|)2 • 2""2 = |cr„(xfc)|2 • 2" < |<7n>1(e)|a* • 2".

So |crnil(£)|2m-2fc < 22n+1, i.e. |cTnil(£)|m-fc < 2n+1 < 22n which contradicts

Lemma 4(1), if m ^ k. So we get xm = xk and hence xm | Xj. So we conclude that

\N¡{/Q{xm)\ < \Nk/q(xj)\- As we proved above,

\NK/Q(xm)\ > (è)n+1k„,i(e)|2m.

Also

|tfWxj)l = n M^i)! • M»i)la £ M*i)la
¿<n-2

-~A-< Fn,i(e)|   •

Hence |<Tn,i(e)|2m-2i' < 2n+1, which by Lemma 4(1) can happen only iî2m—2j = 0,

i.e. m = j. So xk = ±Xj. If x/t = Xj, then £* + e~k = eJ + £~3, i.e. ek - £J =

e~* - e~k, i.e. £-fc(l - ¿~k) = e'(£*--» - 1), i.e. (ek+j + l)(sk~3 - 1) = 0, i.e.

fc = ±j. Similarly, if xk = -x3, ek+e~k = -e^-e^, i.e. (sk+e>)(l + e-k-j) = 0,

i.e. fc = ±j.

LEMMA 6. Suppose that K and a are as above with the additional hypothesis

that a nti(e) / a n-i,i(e) is not a root of unity. Let fc G No. Then there exist multiples

m,h of fc such that |cr¿(xm)| > \ for i = 1,2,... ,n — 2 and \ai(yn)\ > \ for

i = l,2,...,n-2.

PROOF. We shall prove that if

(1) 0-1,1(£)fc'cT2,1(£)^..-cTn_2,1(£)'C"-=l,

then fci = fc2 = • ■ • = fcn-2 = 0. Let K\ be the least normal extension of K and L\

the least normal extension of L, so K\ C L\. It is enough to prove that for each ai,

i < n — 2, there is an automorphism t of K\ such that ro"¿ = <t„_i and t<t„_i = ai

and for all j ^ i,n — 1, raj = aj, where by rrx, we mean the restriction of r on

aj(K) composition aj. This is enough because for each i < n — 2, applying the

corresponding r extended to L\ on both sides of (1) and taking absolute values, we

get \anj(s)k,\ = 1 where j = 1 or 2; hence fc¿ = 0 and hence the result follows by

the theorem of Kronecker (see [5]).
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Notice that every automorphism of K\ determines a permutation of the embed-

dings of K and conversely every permutation of these embeddings determines at

most one automorphism of K\. So when we write r = (ai,aj) we mean that r is the

unique automorphism of K\ which transposes cr¿ and aj. Since an-i(K) ^ an(K),

the degree of the extension an-i(K)an(K) over an(K) is at least 2, so the iden-

tity embedding of an(K) into C extends to at least one nonidentity embedding of

an-i(K)an(K) into C. This embedding extends to an automorphism T\ of K\.

Since T\ is not the identity on an-i(K)an(K) and is the identity on an(K), it

can not be the identity on an-\(K). So, since T\an-\ ^ <rn-i and T\an-\ ^ an,

T\an-\ is a real embedding of K, say T\an-i = ai0. Let ro be the automorphism

of K\ such that ro(x) = x. Then tiTqt^1 = (cr¿0,o~n), since ro is a transposition

(t0 = (an,an-i)).

Now assume that an-i(K) C o~i(K) ■ ■ -an-2(K)an(K). Applying tiToTj-1 to

both sides we findan-i(K) C a\(K) ■ ■ •tr„_2(Ä") which is impossible since an-i(K)

is nonreal and the right-hand side of the relation is real. So

an-i{K) £ ax(K) ■ ■-an_2(K)an(K).

Let i < n — 2. Consider the extension

*„_!(/£>!(*) ■ --^-i(K)al+l(K) ■ --an„2(K)an(K)

over ai(K) ■ ■ ■ ai-i(K)ai+i(K) ■ ■ ■ an-2(K)an(K). This extension may not be of

degree 1, otherwise an-i(K) c a\(K) ■ ■ ■ ai-\(K)ai+\(K) ■ ■ •fT„_2(Ä")crn(Ä"), con-

trary to what we proved. So the identity embedding in C of the ground field extends

to at least one nonidentity embedding of the extension field in C. Let r be an ex-

tension of this embedding to an automorphism of K\. Clearly, since rcrn_i ^ an-\

and raj = aj for j ^ i,n — 1, we must have rtrn_i = tr¿ and hence t = (ai,an-i)

and this is what we should prove in order to conclude the lemma.

LEMMA 7. Suppose that K and a are as above and that |o¿(a)| < 1/28" for

i = 1,2,...,n — 2. Let m G No.  Then there exists an element b in Ok such that:

(1) b= lmodym(a);

(2) b = amodxm(a);

(3) 6 satisfies (*).

PROOF. Set b = x2^ + a(l - xm) with s G N0 to be determined. Since x2m -

(a2 — l)ym = 1, we have x2^ = lmodî/m; hence (1) holds. Also (2) holds obviously.

Since |o-¿(xm)| < 1 forz'= 1,2,... ,n-2 and |trn(xTO)|-|tTn_i(xm)| = |cr„(xm)|2 > 1,

we can choose s large enough so that |<r¿(xm)2s| < 1/28" for i = 1,2,...,n — 2.

Then for i = 1,2,..., n — 2 the following holds:

k,(o)| < Mxm)2s| + |cTt(a)| ■ |1 - cr,(xm)2| < |crt(xm)|2s + ^ < ^ < ^.

LEMMA 8. Let K be any number field of degree n over Q, and let <7i,cj2,..., an

be the embeddings of K into C. Let £,z G Ok and z / 0. //2n+1Çn(Ç + l)n • • •

(Ç + n-l)n\z, then \ai(t¡)\ < ^(z)^'71 for all i = 1,2,... ,n.

Proof. See [3].
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618 THANASES PHEIDAS

MAIN LEMMA.   Let K be as above and a G Ok satisfying

\ai(a)\ < l/28n for i = 1,2,...,n-2. (**)

and let d be defined as in the Remark before Lemma 3. Define the subset S of

Ok by £ G S *> £ G Ok A 3x, y, w, z, u, v, s, t, x', y', w', z', u', v', s', t', b in Ok-

(1) x'2 - (a2 - l)y'2 = 1,

(2) w'2 - (a2 - l)z'2 = 1,

(3) u'2 - (a2 - l)v'2 = 1,

(4) s'2 - (b2 - l)t'2 = 1,

(1*) x + 8(a)y = (x' + 8(a)y'fd,

(2*) w + 6(a)z = (w' + 8(a)z')6d,

(3*) u + 8(a)v = (u' + 8(a)v')6d,

(4*) s + 8(b)t = (s' + 8(b)t'fd,

(5) \at(b)\ <l/24n,        i=l,2,...,n-2,

(6) M*)¡>f,        ¿=l,2,...,n-2,

(7) k<(u)|>|,        ¿=l,2,...,n-2,

(8) v # 0,

(9) z2\v,

(10) 6=lmod2,

(11) 6 = omodw,

(12) s = xmodu,

(13) t = Çmoàz,

(14) 2n+1C(t + l)n ••■(£ + n - l)nx"(x + l)n • • • (x + n - l)n\z.

Then N0 C S c Z.

PROOF, (i) Suppose there are x,y,...,b G Ok satisfying (1)-(14). We shall

prove that £ G Z. From (**) and (5) it follows that a and b satisfy (*). Hence from

(l)-(4), (l*)-(4*) and Lemma 3 it follows that there are k,h,m,j G N such that:

x = ±xk(a), y = ±yk(a),

w = ±xh(a), z = ±yh(a),

u = ±Xrn(a), v = ±ym(a),

s = ±Xj(b), t = ±yj(b).

So (6)-(13) become

(6') Wi(Vh(a))\ > \     fort = l,2,...ln-2,

(7') \^(xm(a))\ > \     îori = l,2,...,n-2,

(8') ym(a)#0,

(9') y2h(a)\ym(a),

(10') b= 1 mod yn(a),

(11') 6 = amodxm(a),
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(12') Xj(b) = ±xk(a) mod xm(a),

(13') yj{b) = ±tmodyh{a).

We have

yj(b) = j mod (b - 1)     (Lemma 1(7)),

y](b)=jmodyn(a)     (by (10')),

(15) j = ±ímodyh{a)      (by (13')),

Xj(b) = Xj(a) modxm(a)     (by (11') and Lemma 1(8)),

Xj(a) = ±xk(a)modxm(a)     (by (12')),

(16) fc = ij'modm     (by (7'), (8') and Lemma 5),

yn(o) | m     (by (6'), (9') and Lemma 4),

k = ±jmodyh(a)     (by (16)),

(17) fc = ±£modz     (by (15)),

Wi(0\<^\N(z)\1/n     for» = 1,2,...,n     (by (14) and Lemma 8),

fc < |o-„(x*(a))| < ¿|¿V(z)|1/n     (by (14) and Lemma 8),

\oi{k±t)\<\N{z)\1'n     fort = l,2,...,n.

So \N(k + 01 < \N{z)\ and so fc = ±£ (by (17)).
(ii) Conversely, suppose £ G No- We shall prove that there are x, y,..., b G Ok

satisfying (1)-(14). Set fc = Ç G N0, x' = xk(a) and y' = yk(a); then (1) and

(1*) are satisfied. By Lemmas 1(10), (4) and 6 there exists an h G No such that

the left-hand side of (14) divides yh(a) and \ai(yn(a))\ > \ for i = 1,2,..., n — 2.

Set w' = xn(a) and z = y h (a), then (2), (6) and (14) are satisfied. Again by

Lemmas 1(10), (4) and 6, there exists an m € No such that y\(a) \ ym(a) and

|tT¿(xm(a))| > \ for i = 1,2,... ,n — 2. Set u' = xm(a) and v' = ym(a); then (3),

(3*) and (7)-(9) are satisfied. From Lemma 7 it follows that there exists b G Ok

satisfying (10), (11) and (5). Set s' = xk(b) and t' = yk(b); then (4) is satisfied.

Lemma 1(8) and (11) imply (12) and Lemma 1(7) and (10) imply (13). Thus all

conditions are satisfied and £ G S.

LEMMA 9.   Let K be any number field.

(i) If Ri and i?2 are diophantine relations over Ok, then R\ V i?2 and Ri A i22

are also diophantine over Ok-

(ii) The relation x ^ 0 is diophantine over Ok-

Proof. See [3].

LEMMA 10. Let K be any number field, and a an embedding of K into R.

Then the relation a(x) > 0 is diophantine over Ok-

Proof. See [3].

THEOREM. Let K be a number field with exactly two nonreal embeddings into

C, of degree n>3 over Q.  Then Z is diophantine over Ok-

PROOF. By Minkowski's lemma on convex bodies it follows that there is an

a satisfying (**) of the Main Lemma.   By Lemma 10 the relations (5)-(7) are
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diophantine over Ok and clearly the relations (l*)-(4*) can be written so that 8(a)

and 8(b) do not occur, i.e. (l*)-(4*) are diophantine over Ok- So the set S of the

Main Lemma is diophantine over Lk and hence Z is also diophantine over Ok-
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