HILBERT'S TENTH PROBLEM FOR A CLASS OF RINGS OF ALGEBRAIC INTEGERS

THANASES PHEIDAS

(Communicated by Thomas J. Jech)

ABSTRACT. We show that Z is diophantine over the ring of algebraic integers in any number field with exactly two nonreal embeddings into C of degree ≥ 3 over Q.

Introduction. Let R be a ring. A set $S \subset R^m$ is called diophantine over R if it is of the form $S = \{x \in R^m : \exists y \in R^n \ p(x,y) = 0\}$, where p is a polynomial in R[x,y]. A number field is a finite extension of the field \mathbf{Q} of rational numbers. If K is a number field, we denote by O_K the ring of elements of K which are integral over the ring \mathbf{Z} of rational integers.

N is the set $\{0, 1, 2, ...\}$ and N_0 is the set $\{1, 2, 3, ...\}$. In this paper we prove

THEOREM. Let K be a number field of degree $n \geq 3$ over \mathbf{Q} with exactly two nonreal embeddings into the field \mathbf{C} of complex numbers. Then \mathbf{Z} is diophantine over O_K .

An example of such a number field is $\mathbf{Q}(d)$ where d^3 is a rational number which does not have a rational cube root.

In order to prove the theorem, we use the methods of J. Denef in [3]. The terminology and enumeration of the lemmas is kept the same as in [3] so that the similarities and differences of the proofs are clear. The theorem implies

COROLLARY. Let K be as in the theorem. Then Hilbert's Tenth Problem in O_K is undecidable.

The results of [3] and the present paper are the maximum that can be achieved using the present methods. Hence the general conjecture made in [4], namely that Hilbert's Tenth Problem for the integers of any number field is undecidable, remains open.

Let K be a number field of degree $n \geq 3$ over \mathbb{Q} with exactly two nonreal embeddings into \mathbb{C} . Let σ_i , $i = 1, 2, \ldots, n$, be all the embeddings of K into \mathbb{C} , enumerated in such a way that σ_{n-1} and σ_n are nonreal. Then the embedding $\sigma \colon K \to \mathbb{C}$ such that $\sigma(x) = \overline{\sigma_n(x)}$ is distinct from σ_n and from all σ_i , $i \leq n-2$,

©1988 American Mathematical Society 0002-9939/88 \$1.00 + \$.25 per page

Received by the editors July 16, 1987.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 03B25; Secondary 12B99.

I would like to thank Professor Leonard Lipschitz for his encouragement and help during the preparation of this work.

In the process of publication of this paper I was informed that Alexandra Shlapentokh obtained the same results as part of her thesis at Courant Institute of Mathematical Sciences.

This paper has been supported in part by NSF Grant #DMS 8605-198.

since σ_n is nonreal (i.e. for at least an $x \in K$, $\sigma_n(x) \notin \mathbf{R}$, hence $\sigma(x) \neq \sigma_n(x)$ and $\sigma(x) \notin \mathbf{R}$). Hence $\sigma = \sigma_{n-1}$ and therefore, for every $x \in K$, $\sigma_{n-1}(x) = \overline{\sigma_n(x)}$. In the rest of the paper we identify K with $\sigma_1(K)$.

There are two cases: $\sigma_{n-1}(K) = \sigma_n(K)$ or $\sigma_{n-1}(K) \neq \sigma_n(K)$. In the first case, let b be an element of K such that $K = \mathbf{Q}(b)$. We have that $\operatorname{Re} \sigma_n(b) \in \sigma_n(K)$ and $(\operatorname{Im} \sigma_n(b))^2 \in \sigma_n(K)$ where $\operatorname{Re} x$ and $\operatorname{Im} x$ are the real and imaginary parts of x, respectively. So, since $\sigma_n(K) = \mathbf{Q}(\sigma_n(b))$, $[\sigma_n(K) : \sigma_n(K) \cap \mathbf{R}] = 2$ and so $\sigma_n(K)$ is nontotally real of degree 2 over $\sigma_n(K) \cap \mathbf{R}$ which is totally real. By [3] \mathbf{Z} is diophantine over $\sigma_n(O_K) \cap \mathbf{R}$ and by the results of [4] this implies that \mathbf{Z} is diophantine over $\sigma_n(O_K)$. Hence \mathbf{Z} is diophantine over O_K . Therefore, we will consider only the case where $\sigma_{n-1}(K) \neq \sigma_n(K)$.

Let $a \in O_K$ be such that

(*)
$$|\sigma_i(a)| < 1/2^{4n}$$
 for $i = 1, 2, ..., n-2$ and $a \neq 0$.

For each $x \in O_K$, let $\delta(x) \in C$ be a number so that $\delta^2(x) = x^2 - 1$. Let $\delta = \delta(a)$ and call $L = K(\delta)$. By (*) a may not be a rational integer and therefore $\delta \notin K$. So [L:K] = 2 and each embedding σ_i of K into C extends to two embeddings $\sigma_{i,1}$ and $\sigma_{i,2}$ of L into C. The relations $\sigma_{i,2}(\delta) = -\sigma_{i,1}(\delta)$ are obvious. Call $\varepsilon = \delta + a$ and x_m and y_m the solutions in O_K of the equation $x_m + \delta y_m = (a + \delta)^m$ for $m \in \mathbb{Z}$. Clearly $\varepsilon^m = x_m + \delta y_m$, $\varepsilon^{-m} = x_m - \delta y_m$, and ε is a unit in O_L .

LEMMA 1. Let K be any number field, and $a,b,c \in O_K$. Suppose $\delta(a)$, $\delta(b) \notin K$. Let $m,h,k,j \in N$. We have:

- (1) ε is a unit in $O_{K(\delta)}$, $\varepsilon^{-1} = a \delta$, and x_m, y_m satisfy the Pell equation $x^2 (a^2 1)y^2 = 1$;
 - (2) $x_m = (\varepsilon^m + \varepsilon^{-m})/2, y_m = (\varepsilon^m \varepsilon^{-m})/2\delta;$
 - (3) $x_{m\pm k} = x_m x_k \pm (a^2 1) y_m y_k, y_{m\pm k} = x_k y_m \pm x_m y_k;$
 - (4) $h \mid m \Rightarrow y_m \mid y_h$;
 - $(5) y_{hk} \equiv kx_h^{k-1}y_h \bmod y_h^3;$
 - (6) $x_{m+1} = 2ax_m x_{m-1}, y_{m+1} = 2ay_m y_{m-1};$
 - (7) $y_m(a) \equiv m \mod(a-1);$
 - (8) if $a \equiv b \mod c$, then $x_m(a) \equiv x_m(b) \mod c$ and $y_m(a) \equiv y_m(b) \mod c$;
 - $(9) x_{2m\pm j} \equiv -x_j \mod x_m;$
 - (10) if $n \in O_K$ and $n \neq 0$, then there exists an $m \in N_0$ such that $n \mid y_m(a)$.

PROOF. See [3].

LEMMA 2. Let a be as above. Then:

- (1) for $i \le n-2$, $0 < |\sigma_i(a)| < 1/2^{4n}$ and $|\sigma_n(a)| = |\sigma_{n-1}(a)| > 2^{2n}$;
- (2) for $i \le n-2, j = 1, 2, |\sigma_{i,j}(\varepsilon)| = 1;$
- (3) $|\sigma_{n-1,j}(\varepsilon)| \neq 1$ and $|\sigma_{n,j}(\varepsilon)| \neq 1$ and

$$\max\{|\sigma_{n,1}(\varepsilon)|, |\sigma_{n,2}(\varepsilon)|\} = \max\{|\sigma_{n-1,1}(\varepsilon)|, |\sigma_{n-1,2}(\varepsilon)|\} > 2^{2n}.$$

PROOF. (1) Since $\sigma_{n-1}(a) = \overline{\sigma_n(a)}$, $|\sigma_{n-1}(a)| = |\sigma_n(a)|$. Moreover $N_{K/\mathbf{Q}}(a)$ is a rational integer different from zero and hence $\prod_{i=1}^n |\sigma_i(a)| = |N_{K/\mathbf{Q}}(a)| \ge 1$. Since for $i \le n-2$, $|\sigma_i(a)| < 1/2^{4n}$ we get $|\sigma_{n-1}(a)| \cdot |\sigma_n(a)| = |\sigma_n(a)|^2 > 2^{4n(n-2)}$ and since $n \ge 3$, $4n(n-2) \ge 4n$ and so $|\sigma_n(a)|^2 > 2^{4n}$, i.e. $|\sigma_n(a)| > 2^{2n}$.

(2) Since, for $i \leq n-2$, $\sigma_i(a) \in R$ and $|\sigma_i(a)| < 1$, we get that $\sigma_{i,j}(\delta) \in iR$. So $|\sigma_{i,j}(\varepsilon)|^2 = |\sigma_i(a) + \sigma_{i,j}(\delta)|^2 = \sigma_i(a)^2 + |\sigma_{i,j}(\delta)|^2 = 1$.

(3)
$$\sigma_{n,1}(\varepsilon) + \sigma_{n,2}(\varepsilon) = 2\sigma_n(a)$$
, so that we have that

$$|\sigma_{n,1}(\varepsilon)| + |\sigma_{n,2}(\varepsilon)| = |\sigma_{n,1}(\varepsilon)| + |\sigma_{n,1}(\varepsilon)|^{-1}$$

$$\geq |\sigma_{n,1}(\varepsilon) + \sigma_{n,2}(\varepsilon)| = 2|\sigma_n(a)| > 2^{2n+1} \quad \text{(by (1))}.$$

So either $|\sigma_{n,1}(\varepsilon)| > 2^{2n}$ or $|\sigma_{n,1}(\varepsilon)^{-1}| = |\sigma_{n,2}(\varepsilon)| > 2^{2n}$. Similarly for σ_{n-1} .

NOTATIONAL REMARK. From now on we adopt the convention that $\sigma_{n-1,1}$ and $\sigma_{n,1}$ are such that $|\sigma_{n-1,1}(\varepsilon)| > 1$ and $|\sigma_{n,1}(\varepsilon)| > 1$.

REMARK. It is well known that if $\varphi(n)$ is the Euler function of n then

$$\lim_{n \to \infty} \varphi(n) = \infty$$

and hence there is only a finite number of roots of unity such that their degrees over \mathbf{Q} is less than or equal to 2n. Call d the least common multiple of their orders. It is then obvious that for any root of unity $J \in L$, $J^d = 1$.

LEMMA 3. Let K, a, δ be as above. Let d be as in the last remark. Then all the solutions (x, y) in O_K of the equation $x^2 - \delta^2 y^2 = 1$, for which there are x^* and y^* in O_K such that $x + \delta y = (x^* + \delta y^*)^{6d}$ and $x^{*2} - \delta^2 y^{*2} = 1$, are given by $x = \pm x_m$ and $y = \pm y_m$ for some $m \in \mathbf{Z}$.

PROOF. By the Dirichlet-Minkowski theorem on units (see [1]), there are n-2 fundamental units in K. Also L has no real embeddings into ${\bf C}$ and so L has 2n/2-1=n-1 fundamental units. Consider the set $S=\{x+\delta y\,|\,x^2-\delta^2y^2=1,\,x,y\in O_K\}$. S is clearly in the kernel of the map $N_{L/K}\colon O_L\setminus\{0\}\to O_K\setminus\{0\}$ considered as a multiplicative homomorphism. For any unit u of O_K , $N_{L/K}(u)=u^2$ and hence the image of $N_{L/K}$ has torsion-free rank at least equal to n-2. Therefore, the torsion-free rank of S is at most (n-1)-(n-2)=1. Since ε is in S and ε is torsion free, rank S=1. Hence there is a unit $\varepsilon_0=x'+\delta y'\in S$ such that every $u\in S$ can be written in the form $u=J\varepsilon_0^m$ where $m\notin {\bf Z}$ and J is a root of unity in L. In particular $\varepsilon=J_0\varepsilon_0^e$ for some $e\notin {\bf Z}$, $e\ne 0$ and a root of unity $J_0\in L$ (so $J_0^d=1$). Clearly we may assume that e>0 interchanging ε_0 with ε_0^{-1} if necessary. Then $\varepsilon_0-\varepsilon_0^{-1}=2\delta y'$ and $\varepsilon-\varepsilon^{-1}=2\delta$, so $\varepsilon-\varepsilon^{-1}|\varepsilon_0-\varepsilon_0^{-1}$. So $|N(2\delta)|\le |N(\varepsilon_0-\varepsilon_0^{-1})|$, where $N=N_{L/Q}$. We have

$$|N(2\delta)| = 2^{2n}|N(\delta)| = \left|\prod_{i=1}^{n-2} (\sigma_i(a)^2 - 1)\right| \cdot |\sigma_n(a)^2 - 1|^2 \cdot 2^{2n}$$

since $\sigma_n(a)^2 - 1 = \overline{\sigma_{n-1}(a)^2 - 1}$. Hence

$$|N(2\delta)| \ge 2^{2n} \cdot (1 - 1/2^{16n^2})^{n-2} \cdot |\sigma_n(a)^2 - 1|^2 > 2^{2n} \cdot (1/2^2)^{n-2} \cdot |\sigma_n(a)^2 - 1|^2$$

$$= 2^4 |\sigma_n(a)^2 - 1|^2 > 2^4 \cdot |\sigma_n(a)|^2 - 1| > 2^3 |\sigma_n(a)|^2,$$

using (*). Finally

$$|N(2\delta)| > 2^2 \cdot |\sigma_n(a)|^2(i).$$

Now observe that $\sigma_{n-1,1}(\varepsilon_0) = \sigma_{n-1}(x') + \sigma_{n-1,1}(\delta)\sigma_{n-1}(y')$ and $\sigma_{n-1,2}(\varepsilon_0) = \sigma_{n-1}(x') + \sigma_{n-1,2}(\delta)\sigma_{n-1}(y') = \sigma_{n-1}(x') - \sigma_{n-1,1}(\delta)\sigma_{n-1}(y')$. So $\sigma_{n-1,2}(\varepsilon_0) = \sigma_{n-1,1}(\varepsilon_0^{-1})$ and hence

$$|\sigma_{n-1,1}(\varepsilon_0) - \sigma_{n-1,1}(\varepsilon_0^{-1})| \cdot |\sigma_{n-1,2}(\varepsilon_0) - \sigma_{n-1,2}(\varepsilon_0^{-1})| = |\sigma_{n-1,1}(\varepsilon_0) - \sigma_{n-1,1}(\varepsilon_0^{-1})|^2.$$
 Similarly for $\sigma_{n,1}(\varepsilon_0)$ and $\sigma_{n,2}(\varepsilon_0)$. Moreover,

$$(\sigma_{n,1}(\varepsilon_0) - \sigma_{n,1}(\varepsilon_0^{-1}))^2 = 4(\sigma_n(a)^2 - 1)\sigma_n(y')^2$$

and

$$(\sigma_{n-1,1}(\varepsilon_0) - \sigma_{n-1,1}(\varepsilon_0^{-1}))^2 = 4(\sigma_{n-1}(a)^2 - 1)\sigma_{n-1}(y')^2$$

and since $\sigma_n(a)^2 = \overline{\sigma_{n-1}(a)^2}$ and $\sigma_n(y')^2 = \overline{\sigma_{n-1}(y')^2}$, we get

$$(\sigma_{n,1}(\varepsilon_0) - \sigma_{n,1}(\varepsilon_0^{-1}))^2 = \overline{(\sigma_{n-1,1}(\varepsilon_0) - \sigma_{n-1,1}(\varepsilon_0^{-1}))^2}.$$

Also since $|\sigma_{n,1}(\varepsilon_0)|^e = |\sigma_{n,1}(\varepsilon)|$ and $|\sigma_{n,1}(\varepsilon)| > 1$, we get $|\sigma_{n,1}(\varepsilon_0)| > 1$, using the convention e > 0. Similarly $|\sigma_{n-1,1}(\varepsilon_0)| > 1$. So we get

$$|N(\varepsilon_0 - \varepsilon_0^{-1})| = \prod_{\substack{i=1\\j=1,2\\j=1,2\\j=1,2}}^n |\sigma_{i,j}(\varepsilon_0) - \sigma_{i,j}(\varepsilon_0)^{-1}| \le 2^{2n-4}$$

$$\prod_{\substack{i=n-1,n\\j=1,2\\j=1,2\\}} |\sigma_{i,j}(\varepsilon_0) - \sigma_{i,j}(\varepsilon_0^{-1})|$$

and finally we get

$$|N(\varepsilon_0 - \varepsilon_0^{-1})| \le 2^{2n-4} |\sigma_{n,1}(\varepsilon_0) - \sigma_{n,1}(\varepsilon_0)^{-1}|^4$$

Now clearly we have

$$|\sigma_{n,1}(\varepsilon_0) - \sigma_{n,1}(\varepsilon_0)^{-1}|^2 = |\sigma_{n,1}(\varepsilon_0)^2 + \sigma_{n,1}(\varepsilon_0)^{-2} - 2|$$

$$\leq |\sigma_{n,1}(\varepsilon_0)|^2 + |\sigma_{n,1}(\varepsilon_0)|^{-2} + 2$$

$$\leq 2(|\sigma_{n,1}(\varepsilon_0)|^2 + |\sigma_{n,1}(\varepsilon_0)|^{-2})$$

and so

$$|\sigma_{n,1}(\varepsilon_0) - \sigma_{n,1}(\varepsilon_0)^{-1}|^4 \le 4(|\sigma_{n,1}(\varepsilon_0)|^2 + |\sigma_{n,1}(\varepsilon_0)|^{-2})^2,$$

and hence

$$|N(\varepsilon_0 - \varepsilon_0^{-1})| \le 2^{2n-2} (|\sigma_{n,1}(\varepsilon_0)^2| + |\sigma_{n,1}(\varepsilon_0)|^{-2})^2.$$

If $|\varepsilon|=|\varepsilon_0|^e$ and $e\geq 4$ then $|\sigma_{n,1}(\varepsilon)|\geq |\sigma_{n,1}(\varepsilon_0)|^4>1$ and so

$$\begin{split} |N(\varepsilon_{0}-\varepsilon_{0}^{-1})| &\leq 2^{2n-2}(|\sigma_{n,1}(\varepsilon_{0})|^{2}+|\sigma_{n,1}(\varepsilon_{0})|^{-2})^{2} \\ &= 2^{2n-2}(|\sigma_{n,1}(\varepsilon_{0})|^{4}+|\sigma_{n,1}(\varepsilon_{0})|^{-4}+2) \leq 2^{2n-1}(|\sigma_{n,1}(\varepsilon_{0})|^{4}+|\sigma_{n,1}(\varepsilon_{0})|^{-4}) \\ &\leq 2^{2n}|\sigma_{n,1}(\varepsilon_{0})|^{4} \leq 2^{2n}|\sigma_{n,1}(\varepsilon)| = 2^{2n}|\sigma_{n}(a)+\sigma_{n,1}(\delta)| \\ &\leq 2^{2n}(|\sigma_{n}(a)|+|\sigma_{n,1}(\delta)|) = 2^{2n}(|\sigma_{n}(a)|+\sqrt{|\sigma_{n}(a)-1}|) \\ &\leq 2^{2n}(|\sigma_{n}(a)|+2|\sigma_{n}(a)|) \leq 2^{2n+2}|\sigma_{n}(a)|. \end{split}$$

Combining the last inequality with (i) above gives $|\sigma_n(a)| < 2^{2n}$ which contradicts Lemma 2(1). So $e \le 3$. Therefore, if $x^{*2} + \delta^2 y^{*2} = 1$ and $x + \delta y = (x^* + \delta y^*)^{6d}$, since for some $n \in \mathbb{Z}$, $x^* + \delta y^* = J\varepsilon_0^n$ and $J^d = 1$ then $x + \delta y = \varepsilon_0^{6nd} = \varepsilon^{n_1}$ and hence $x = \pm x_{n_1}$ and $y = \pm y_{n_1}$ where $n_1 = 6n/e$.

LEMMA 4. Assume that K, a are as above, $h, m \in \mathbb{N}$ and

$$|\sigma_i(y_h)| \ge \frac{1}{2}$$
 for $i = 1, 2, \dots, n-2$ (condition (1)).

Then

- (1) $|\sigma_n(y_h)| > |\sigma_{n,1}(\varepsilon)|^h/4|\sigma_{n,1}(\delta)|$ and $|\sigma_{n,1}(\varepsilon)| > 2^{2n}$,
- (2) $y_h | y_m \Rightarrow h | m$ (the first divisibility is meant in O_K , the second in Z),
- (3) $y_h^2 \mid y_m \Rightarrow y_h \mid m \text{ in } O_K$.

PROOF. (1) We have proved that $|\sigma_{n,1}(\varepsilon)| > 2^{2n}$. It is trivial to see that from this fact the following immediately follows: $|\sigma_{n,1}(\varepsilon)|^h - |\sigma_{n,1}(\varepsilon)|^{-h} \ge |\sigma_{n,1}(\varepsilon)|^h / \sqrt{2}$ for $h \in N_0$. So

$$|\sigma_n(y_h)| = \frac{|\sigma_{n,1}(\varepsilon)^h - \sigma_{n,1}(\varepsilon)^{-h}|}{2|\sigma_{n,1}(\delta)|} > \frac{|\sigma_{n,1}(\varepsilon)|^h}{2\sqrt{2}|\sigma_{n,1}(\delta)|} \ge \frac{|\sigma_{n,1}(\varepsilon)|^h}{4|\sigma_{n,1}(\delta)|}.$$

(2) Suppose $y_h \mid y_m$ but $h \nmid m$. Set m = hq + k, with $q, k \leq N$ and 0 < k < h. Lemma 1 yields $y_m = x_k y_{hq} + x_{hq} y_k$. Notice that $y_h | y_{hq}$, hence $y_h | x_{hq} y_k$. Since $x_{hq}^2 - (a^2 - 1)y_{hq}^2 = 1$, the elements y_h and x_{hq} are relatively prime. Thus $y_h \mid y_k$ and $|N_{K/\mathbf{Q}}(y_h)| \leq |N_{K/\mathbf{Q}}(y_k)|$. From the Introduction we have that $\sigma_{n-1}(y_h) = \overline{\sigma_n(y_h)}$. Also from condition 1 and (1),

$$|N_{K/\mathbf{Q}}(y_h)| = |\sigma_{n-1}(y_n)| \cdot |\sigma_n(y_h)| \cdot \prod_{i \le n-2} |\sigma_i(y_h)| \ge |\sigma_n(y_h)|^2 \cdot \left(\frac{1}{2}\right)^{n-2}$$
$$> \left(\frac{|\sigma_{n,1}(\varepsilon)|^h}{4|\sigma_{n,1}(\delta)|}\right)^2 \cdot \left(\frac{1}{2}\right)^{n-2}.$$

Now observe that, for $i \leq n-2$, $\sigma_i(x_k)^2 - (\sigma_i(a)^2 - 1) \cdot \sigma_i(y_k)^2 = 1$ and $\sigma_i(a)^2 < 1$. So $|\sigma_i(y_k)| < 1$ for $i \le n-2$. Therefore,

$$\begin{split} |N_{K/\mathbf{Q}}(y_k)| &= |\sigma_{n-1}(y_k)| \cdot |\sigma_n(y_k)| \cdot \prod_{i \leq n-2} |\sigma_i(y_k)| < |\sigma_n(y_k)|^2 \\ &= \frac{|\sigma_{n,1}(\varepsilon^k) - \sigma_{n,1}(\varepsilon)^{-k}|^2}{(2|\sigma_{n,1}(\delta)|)^2} \leq \left(\frac{2|\sigma_{n,1}(\varepsilon)|^k}{2|\sigma_{n,1}(\delta)|}\right)^2 \\ &= \frac{|\sigma_{n,1}(\varepsilon)|^{2k}}{|\sigma_{n,1}(\delta)|^2}. \end{split}$$

Hence

$$\left(\frac{1}{2}\right)^{n-2}\frac{|\sigma_{n,1}(\varepsilon)|^{2h}}{4^2|\sigma_{n,1}(\delta)|^2}<\frac{|\sigma_{n,1}(\varepsilon)|^{2k}}{|\sigma_{n,1}(\delta)|^2},$$

i.e. $|\sigma_{n,1}(\varepsilon)|^{2h-2k} < 2^n$ which contradicts (1) since $h-k \ge 1$. Hence $h \mid m$. (3) is obvious since $(\varepsilon^{lh} - \varepsilon^{-lh})/(\varepsilon^h - \varepsilon^{-h}) \equiv 1 \cdot u \mod(\varepsilon^h - \varepsilon^{-h})$ where uis a unit and hence if $y_h^2 | y_m$, by (2) h | m, i.e. m = lh for some $l \in \mathbb{N}$, and so $y_m/y_h \equiv 0 \mod y_h$ which means that $m/h \equiv 0 \mod y_h$, i.e. $m \equiv 0 \mod y_h$.

LEMMA 5. If K, a are as above and $k, j \in \mathbb{N}, m \in \mathbb{N}_0$ and $|\sigma_i(x_m)| \geq \frac{1}{2}$ for $i=1,\ldots,n-2$, then if $x_k\equiv \pm x_j \mod x_m$ we get that $k\equiv \pm j \mod m$ (the two $\pm i$ do not have to correspond).

PROOF. Set $k = 2mq \pm k_0$, $j = 2mh \pm j_0$ with $q, h, k_0, j_0 \in \mathbb{N}$ and $k_0 \leq m$, $j_0 \le m$. Lemma 1(9) implies $x_k \equiv \pm x_{k_0} \mod x_m$, $x_j \equiv \pm x_{j_0} \mod x_m$. Hence, it is sufficient to prove the lemma for $k \leq m$, $j \leq m$. Thus suppose $x_k \equiv \pm x_j \mod x_m$, $k \leq m$ and $j \leq m$. We shall prove that $x_k = \pm x_j$. Assume $x_k \neq \pm x_j$; then $|N_{K/\mathbf{Q}}(x_m)| \leq |N_{K/\mathbf{Q}}(x_k \pm x_j)|$. We may assume without loss of generality that $|\sigma_n(x_k)| \geq |\sigma_n(x_j)|$. Then by the hypothesis of the lemma,

$$\begin{split} |N_{K/\mathbf{Q}}(x_m)| &= |\sigma_n(x_m)|^2 \cdot \prod_{i \le n-2} |\sigma_i(x_m)| \ge |\sigma_n(x_m)|^2 \cdot (\frac{1}{2})^{n-2} \\ &= (\frac{1}{2})^{n-2} \cdot \frac{|\sigma_{n,1}(\varepsilon)^m + \sigma_{n,1}(\varepsilon)^{-m}|^2}{4} \ge (\frac{1}{2})^n \left(|\sigma_{n,1}(\varepsilon)|^m - |\sigma_{n,1}(\varepsilon)|^{-m} \right)^2 \\ &> (\frac{1}{2})^{n+1} |\sigma_{n,1}(\varepsilon)|^{2m}. \end{split}$$

The last inequality holds by Lemma 4(1). Also

$$|N_{K/\mathbf{Q}}(x_k \pm x_j)| \le (|\sigma_n(x_k)| + |\sigma_n(x_j)|)^2 \cdot \prod_{i \le n-2} (|\sigma_i(x_k)| + |\sigma_i(x_j)|)$$

$$< (2|\sigma_n(x_k)|)^2 \cdot 2^{n-2} = |\sigma_n(x_k)|^2 \cdot 2^n \le |\sigma_{n,1}(\varepsilon)|^{2k} \cdot 2^n.$$

So $|\sigma_{n,1}(\varepsilon)|^{2m-2k} < 2^{2n+1}$, i.e. $|\sigma_{n,1}(\varepsilon)|^{m-k} < 2^{n+1} < 2^{2n}$ which contradicts Lemma 4(1), if $m \neq k$. So we get $x_m = x_k$ and hence $x_m \mid x_j$. So we conclude that $|N_{K/\mathbf{Q}}(x_m)| \leq |N_{K/\mathbf{Q}}(x_j)|$. As we proved above,

$$|N_{K/\mathbb{Q}}(x_m)| \ge (\frac{1}{2})^{n+1} |\sigma_{n,1}(\varepsilon)|^{2m}.$$

Also

$$|N_{K/\mathbf{Q}}(x_j)| = \prod_{i \le n-2} |\sigma_i(x_j)| \cdot |\sigma_n(x_j)|^2 \le |\sigma_n(x_j)|^2$$
$$= \frac{|\sigma_{n,1}(\varepsilon)^j + \sigma_{n,1}(\varepsilon)^{-j}|^2}{4} \le |\sigma_{n,1}(\varepsilon)|^{2j}.$$

Hence $|\sigma_{n,1}(\varepsilon)|^{2m-2j} \leq 2^{n+1}$, which by Lemma 4(1) can happen only if 2m-2j=0, i.e. m=j. So $x_k=\pm x_j$. If $x_k=x_j$, then $\varepsilon^k+\varepsilon^{-k}=\varepsilon^j+\varepsilon^{-j}$, i.e. $\varepsilon^k-\varepsilon^j=\varepsilon^{-j}-\varepsilon^{-k}$, i.e. $\varepsilon^{-k}(1-\varepsilon^{j-k})=\varepsilon^j(\varepsilon^{k-j}-1)$, i.e. $(\varepsilon^{k+j}+1)(\varepsilon^{k-j}-1)=0$, i.e. $k=\pm j$. Similarly, if $x_k=-x_j$, $\varepsilon^k+\varepsilon^{-k}=-\varepsilon^j-\varepsilon^{-j}$, i.e. $(\varepsilon^k+\varepsilon^j)(1+\varepsilon^{-k-j})=0$, i.e. $k=\pm j$.

LEMMA 6. Suppose that K and a are as above with the additional hypothesis that $\sigma_{n,1}(\varepsilon)/\sigma_{n-1,1}(\varepsilon)$ is not a root of unity. Let $k \in \mathbb{N}_0$. Then there exist multiples m,h of k such that $|\sigma_i(x_m)| > \frac{1}{2}$ for $i=1,2,\ldots,n-2$ and $|\sigma_i(y_h)| > \frac{1}{2}$ for $i=1,2,\ldots,n-2$.

PROOF. We shall prove that if

(1)
$$\sigma_{1,1}(\varepsilon)^{k_1}\sigma_{2,1}(\varepsilon)^{k_2}\cdots\sigma_{n-2,1}(\varepsilon)^{k_{n-2}}=1,$$

then $k_1 = k_2 = \cdots = k_{n-2} = 0$. Let K_1 be the least normal extension of K and L_1 the least normal extension of L, so $K_1 \subset L_1$. It is enough to prove that for each σ_i , $i \leq n-2$, there is an automorphism τ of K_1 such that $\tau \sigma_i = \sigma_{n-1}$ and $\tau \sigma_{n-1} = \sigma_i$ and for all $j \neq i, n-1, \ \tau \sigma_j = \sigma_j$, where by $\tau \sigma_j$ we mean the restriction of τ on $\sigma_j(K)$ composition σ_j . This is enough because for each $i \leq n-2$, applying the corresponding τ extended to L_1 on both sides of (1) and taking absolute values, we get $|\sigma_{n,j}(\varepsilon)^{k_i}| = 1$ where j = 1 or 2; hence $k_i = 0$ and hence the result follows by the theorem of Kronecker (see [5]).

Notice that every automorphism of K_1 determines a permutation of the embeddings of K and conversely every permutation of these embeddings determines at most one automorphism of K_1 . So when we write $\tau = (\sigma_i, \sigma_j)$ we mean that τ is the unique automorphism of K_1 which transposes σ_i and σ_j . Since $\sigma_{n-1}(K) \neq \sigma_n(K)$, the degree of the extension $\sigma_{n-1}(K)\sigma_n(K)$ over $\sigma_n(K)$ is at least 2, so the identity embedding of $\sigma_n(K)$ into \mathbf{C} extends to at least one nonidentity embedding of $\sigma_{n-1}(K)\sigma_n(K)$ into \mathbf{C} . This embedding extends to an automorphism τ_1 of K_1 . Since τ_1 is not the identity on $\sigma_{n-1}(K)\sigma_n(K)$ and is the identity on $\sigma_n(K)$, it can not be the identity on $\sigma_{n-1}(K)$. So, since $\tau_1\sigma_{n-1} \neq \sigma_{n-1}$ and $\tau_1\sigma_{n-1} \neq \sigma_n$, $\tau_1\sigma_{n-1}$ is a real embedding of K, say $\tau_1\sigma_{n-1} = \sigma_{i_0}$. Let τ_0 be the automorphism of K_1 such that $\tau_0(x) = \bar{x}$. Then $\tau_1\tau_0\tau_1^{-1} = (\sigma_{i_0}, \sigma_n)$, since τ_0 is a transposition $(\tau_0 = (\sigma_n, \sigma_{n-1}))$.

Now assume that $\sigma_{n-1}(K) \subset \sigma_1(K) \cdots \sigma_{n-2}(K) \sigma_n(K)$. Applying $\tau_1 \tau_0 \tau_1^{-1}$ to both sides we find $\sigma_{n-1}(K) \subset \sigma_1(K) \cdots \sigma_{n-2}(K)$ which is impossible since $\sigma_{n-1}(K)$ is nonreal and the right-hand side of the relation is real. So

$$\sigma_{n-1}(K) \not\subset \sigma_1(K) \cdots \sigma_{n-2}(K) \sigma_n(K)$$
.

Let $i \leq n-2$. Consider the extension

$$\sigma_{n-1}(K)\sigma_1(K)\cdots\sigma_{i-1}(K)\sigma_{i+1}(K)\cdots\sigma_{n-2}(K)\sigma_n(K)$$

over $\sigma_1(K)\cdots\sigma_{i-1}(K)\sigma_{i+1}(K)\cdots\sigma_{n-2}(K)\sigma_n(K)$. This extension may not be of degree 1, otherwise $\sigma_{n-1}(K)\subset\sigma_1(K)\cdots\sigma_{i-1}(K)\sigma_{i+1}(K)\cdots\sigma_{n-2}(K)\sigma_n(K)$, contrary to what we proved. So the identity embedding in C of the ground field extends to at least one nonidentity embedding of the extension field in C. Let τ be an extension of this embedding to an automorphism of K_1 . Clearly, since $\tau\sigma_{n-1}\neq\sigma_{n-1}$ and $\tau\sigma_j=\sigma_j$ for $j\neq i,n-1$, we must have $\tau\sigma_{n-1}=\sigma_i$ and hence $\tau=(\sigma_i,\sigma_{n-1})$ and this is what we should prove in order to conclude the lemma.

LEMMA 7. Suppose that K and a are as above and that $|\sigma_i(a)| < 1/2^{8n}$ for i = 1, 2, ..., n-2. Let $m \in \mathbb{N}_0$. Then there exists an element b in O_K such that:

- $(1) \ b \equiv 1 \bmod y_m(a);$
- (2) $b \equiv a \mod x_m(a)$;
- (3) b satisfies (*).

PROOF. Set $b=x_m^{2s}+a(1-x_m^2)$ with $s\in \mathbb{N}_0$ to be determined. Since $x_m^2-(a^2-1)y_m^2=1$, we have $x_m^2\equiv 1 \mod y_m$; hence (1) holds. Also (2) holds obviously. Since $|\sigma_i(x_m)|<1$ for $i=1,2,\ldots,n-2$ and $|\sigma_n(x_m)|\cdot |\sigma_{n-1}(x_m)|=|\sigma_n(x_m)|^2>1$, we can choose s large enough so that $|\sigma_i(x_m)^{2s}|<1/2^{8n}$ for $i=1,2,\ldots,n-2$. Then for $i=1,2,\ldots,n-2$ the following holds:

$$|\sigma_i(b)| \le |\sigma_i(x_m)^{2s}| + |\sigma_i(a)| \cdot |1 - \sigma_i(x_m)^2| < |\sigma_i(x_m)|^{2s} + \frac{1}{2^{8n}} < \frac{2}{2^{8n}} < \frac{1}{2^{4n}}.$$

LEMMA 8. Let K be any number field of degree n over \mathbf{Q} , and let $\sigma_1, \sigma_2, \ldots, \sigma_n$ be the embeddings of K into C. Let $\xi, z \in O_K$ and $z \neq 0$. If $2^{n+1} \xi^n (\xi + 1)^n \cdots (\xi + n - 1)^n |z|$, then $|\sigma_i(\xi)| < \frac{1}{2} |N(z)|^{1/n}$ for all $i = 1, 2, \ldots, n$.

PROOF. See [3].

MAIN LEMMA. Let K be as above and $a \in O_K$ satisfying $|\sigma_i(a)| < 1/2^{8n}$ for i = 1, 2, ..., n-2. (**)

and let d be defined as in the Remark before Lemma 3. Define the subset S of O_K by $\xi \in S \Leftrightarrow \xi \in O_K \wedge \exists x, y, w, z, u, v, s, t, x', y', w', z', u', v', s', t', b$ in O_K :

(1)
$$x'^{2} - (a^{2} - 1)y'^{2} = 1,$$
(2)
$$w'^{2} - (a^{2} - 1)z'^{2} = 1,$$
(3)
$$u'^{2} - (a^{2} - 1)v'^{2} = 1,$$
(4)
$$s'^{2} - (b^{2} - 1)t'^{2} = 1,$$
(1*)
$$x + \delta(a)y = (x' + \delta(a)y')^{6d},$$
(2*)
$$w + \delta(a)z = (w' + \delta(a)z')^{6d},$$
(3*)
$$u + \delta(a)v = (u' + \delta(a)v')^{6d},$$
(4*)
$$s + \delta(b)t = (s' + \delta(b)t')^{6d},$$
(5)
$$|\sigma_{i}(b)| < 1/2^{4n}, \quad i = 1, 2, \dots, n - 2,$$
(6)
$$|\sigma_{i}(z)| \ge \frac{1}{2}, \quad i = 1, 2, \dots, n - 2,$$
(7)
$$|\sigma_{i}(u)| \ge \frac{1}{2}, \quad i = 1, 2, \dots, n - 2,$$
(8)
$$v \ne 0,$$
(9)
$$z^{2} | v,$$
(10)
$$b \equiv 1 \mod z,$$
(11)
$$b \equiv a \mod u,$$
(12)
$$s \equiv x \mod u,$$
(13)
$$t \equiv \xi \mod z,$$
(14)
$$2^{n+1} \xi^{n} (\xi + 1)^{n} \cdots (\xi + n - 1)^{n} x^{n} (x + 1)^{n} \cdots (x + n - 1)^{n} | z.$$

Then $N_0 \subset S \subset \mathbf{Z}$.

PROOF. (i) Suppose there are $x, y, ..., b \in O_K$ satisfying (1)–(14). We shall prove that $\xi \in \mathbf{Z}$. From (**) and (5) it follows that a and b satisfy (*). Hence from (1)–(4), (1*)–(4*) and Lemma 3 it follows that there are $k, h, m, j \in \mathbb{N}$ such that:

$$x = \pm x_k(a),$$
 $y = \pm y_k(a),$
 $w = \pm x_h(a),$ $z = \pm y_h(a),$
 $u = \pm x_m(a),$ $v = \pm y_m(a),$
 $s = \pm x_j(b),$ $t = \pm y_j(b).$

So (6)-(13) become

$$|\sigma_{i}(y_{h}(a))| \geq \frac{1}{2} \quad \text{for } i = 1, 2, \dots, n-2,$$

$$|\sigma_{i}(x_{m}(a))| \geq \frac{1}{2} \quad \text{for } i = 1, 2, \dots, n-2,$$

$$(8') \quad y_{m}(a) \neq 0,$$

$$(9') \quad y_{h}^{2}(a) \mid y_{m}(a),$$

$$(10') \quad b \equiv 1 \mod y_{h}(a),$$

$$(11') \quad b \equiv a \mod x_{m}(a),$$

(12')
$$x_j(b) \equiv \pm x_k(a) \mod x_m(a),$$
(13')
$$y_j(b) \equiv \pm \xi \mod y_h(a).$$

We have

$$y_{j}(b) \equiv j \mod (b-1) \quad (\text{Lemma 1}(7)),$$

$$y_{j}(b) \equiv j \mod y_{h}(a) \quad (\text{by (10')}),$$

$$(15) \qquad j \equiv \pm \xi \mod y_{h}(a) \quad (\text{by (13')}),$$

$$x_{j}(b) \equiv x_{j}(a) \mod x_{m}(a) \quad (\text{by (11') and Lemma 1}(8)),$$

$$x_{j}(a) \equiv \pm x_{k}(a) \mod x_{m}(a) \quad (\text{by (12')}),$$

$$(16) \qquad k \equiv \pm j \mod m \quad (\text{by (7')}, (8') \text{ and Lemma 5}),$$

$$y_{h}(a) \mid m \quad (\text{by (6')}, (9') \text{ and Lemma 4}),$$

$$k \equiv \pm j \mod y_{h}(a) \quad (\text{by (16)}),$$

$$(17) \qquad k \equiv \pm \xi \mod z \quad (\text{by (15)}),$$

$$|\sigma_{i}(\xi)| < \frac{1}{2} |N(z)|^{1/n} \quad \text{for } i = 1, 2, \dots, n \quad (\text{by (14) and Lemma 8}),$$

$$k < |\sigma_{n}(x_{k}(a))| < \frac{1}{2} |N(z)|^{1/n} \quad (\text{by (14) and Lemma 8}),$$

$$|\sigma_{i}(k \pm \xi)| < |N(z)|^{1/n} \quad \text{for } i = 1, 2, \dots, n.$$

So $|N(k + \xi)| < |N(z)|$ and so $k = \pm \xi$ (by (17)).

(ii) Conversely, suppose $\xi \in \mathbb{N}_0$. We shall prove that there are $x, y, \ldots, b \in O_K$ satisfying (1)–(14). Set $k = \xi \in \mathbb{N}_0$, $x' = x_k(a)$ and $y' = y_k(a)$; then (1) and (1*) are satisfied. By Lemmas 1(10), (4) and 6 there exists an $h \in \mathbb{N}_0$ such that the left-hand side of (14) divides $y_h(a)$ and $|\sigma_i(y_h(a))| \geq \frac{1}{2}$ for $i = 1, 2, \ldots, n-2$. Set $w' = x_h(a)$ and $z = y_h(a)$, then (2), (6) and (14) are satisfied. Again by Lemmas 1(10), (4) and 6, there exists an $m \in \mathbb{N}_0$ such that $y_h^2(a) | y_m(a)$ and $|\sigma_i(x_m(a))| \geq \frac{1}{2}$ for $i = 1, 2, \ldots, n-2$. Set $u' = x_m(a)$ and $v' = y_m(a)$; then (3), (3*) and (7)–(9) are satisfied. From Lemma 7 it follows that there exists $b \in O_K$ satisfying (10), (11) and (5). Set $s' = x_k(b)$ and $t' = y_k(b)$; then (4) is satisfied. Lemma 1(8) and (11) imply (12) and Lemma 1(7) and (10) imply (13). Thus all conditions are satisfied and $\xi \in S$.

LEMMA 9. Let K be any number field.

- (i) If R_1 and R_2 are diophantine relations over O_K , then $R_1 \vee R_2$ and $R_1 \wedge R_2$ are also diophantine over O_K .
 - (ii) The relation $x \neq 0$ is diophantine over O_K .

PROOF. See [3].

LEMMA 10. Let K be any number field, and σ an embedding of K into R. Then the relation $\sigma(x) \geq 0$ is diophantine over O_K .

PROOF. See [3].

THEOREM. Let K be a number field with exactly two nonreal embeddings into C, of degree $n \geq 3$ over Q. Then Z is diophantine over O_K .

PROOF. By Minkowski's lemma on convex bodies it follows that there is an a satisfying (**) of the Main Lemma. By Lemma 10 the relations (5)–(7) are

diophantine over O_K and clearly the relations (1^*) – (4^*) can be written so that $\delta(a)$ and $\delta(b)$ do not occur, i.e. (1^*) – (4^*) are diophantine over O_K . So the set S of the Main Lemma is diophantine over L_K and hence \mathbf{Z} is also diophantine over O_K .

REFERENCES

- Z. I. Borevich and I. R. Shafarevich, Number theory, "Nauka", Moskow, 1964; English transl., Pure Appl. Math. 20, Academic Press, New York 1966.
- J. Denef, Hilbert's Tenth Problem for quadratic rings, Proc. Amer. Math. Soc. 48 (1975), 214– 220.
- 3. J. Denef, Diophantine sets over algebraic integer rings. II, Trans. Amer. Math. Soc. 257 (1980).
- 4. J. Denef and L. Lipshitz, Diophantine sets over some rings of algebraic integers, J. London Math. Soc. (2) 18 (1978), 385-391.
- G. Hardy and E. Wright, An introduction to the theory of numbers, Oxford Univ. Press, Oxford, 1960.
- Yu. Matijasevič, Enumerable sets are diophantine, Dokl. Akad. Nauk SSSR 191 (1970), 272–282; English transl., Soviet Math. Dokl. 11 (1970), 354–357.

COMPUTER TECHNOLOGY INSTITUTE, PATRAS 26110, GREECE

Current address: Department of Mathematics, Florida International University, University Park, Miami, Florida 33199