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HILBERT'S TENTH PROBLEM FOR QUADRATIC RINGS

J. DENEFl

ABSTRACT.    Let   A(D)  be any quadratic ring; in this paper we prove

that Hilbert's tenth problem for A(D)   is unsolvable, and we determine

which relations are diophantine over  A(ö).

1.  Introduction.   A quadratic ring A(D) is the ring of algebraic integers

of the quadratic field  Q(\JD), with  D  a square-free rational integer.  A poly-

nomial is called diophantine if its coefficients are rational integers.  A dio-

phantine equation is an equation of the form  P(x, , • • • , x  ) = 0, where

P(x   ,. . . ,x  )  is a diophantine polynomial.  In this paper, a relation

R(x.,. • . , x )  in  A(D)  is called diophantine over \(D) if there exists a

diophantine polynomial   P(x ,,•••, x , y ,,••-, y   )  such that  R(x ^, ■ ■ ■ , x )

holds if and only if there exist   y.,...,y      in   \(D)   suchthat

P(x.,..., x , y   ,. • . , y   ) = 0.   By definition, a relation is recursively

enumerable if there exists an algorithm to enumerate the  72-tuples for which

the relation holds.  In this paper, a relation  R(x   , ■ ■ ■ , x )  in  A(D) is

called self-conjugate in A(D) if R(x ^ . • . , x ) holds if and only if

R(x ,,•••, x   ) holds, where x . is the conjugate of x.  in A(D).

We use the following notations: N is the set of natural numbers 0, 1, 2, • • ■ ; Z

is the set of rational integers; Q is the set of rational numbers. Where the con-

trary is not explicitly stated, capital Latin letters stand for rational integers,

and lower case Latin letters, except 72, k, m, /', stand for elements of A(D).

22, k run over N.  772, ;' run over Z.  D  always stands for a fixed square-free

rational integer.   By  N(x), we mean the norm of x  in  A(D): /V(x) = xx".

The main results of this paper are the following two theorems:
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Theorem 1.  Let \(D)  be a quadratic ring.   There cannot exist an al-

gorithm to decide whether or not a given diophantine equation has a solu-

tion in A(D); i.e. Hilbert's tenth problem for the quadratic ring  \(D)  is

unsolvable.

Theorem 2.  A relation is diophantine2 over A(D)  if and only if the

relation is recursively enumerable and self-conjugate in \(D).

These theorems are analogues of the famous results of M. Davis, Yu.

Matijasevic, H. Putnam and J. Robinson [2] concerning Hilbert's tenth

problem for the rational integers.  In view of their results we only have to

prove that the relation x e N  is diophantine over A(D).

Let D    be a square-free rational integer, different from  D, and let

x, y £ A(D); then  x = 0  and y = 0  if and only if x    - D'y    = 0.  Moreover,

by Lagrange's theorem, every natural number is the sum of four squares of

natural numbers.  By those two facts it is sufficient to prove the

Main lemma.  For every quadratic ring A(D)  there exists a (finite)

system  S of diophantine equations in the unknowns  t, x, ■ • •, s  such that

the following two conditions are satisfied:

(1) // 2 has a solution   ( t, x, . . ., s )   in  A(D), then t £ Z.

(2) // k £ N  and k 4 0, then  2 has a solution   (t, x, • • •, s ) in \(D)

with t = k2.

We construct such a system of diophantine equations in §2 for real

quadratic rings and in § 3 for imaginary quadratic rings; this will complete

the proof of Theorems 1 and 2.

First we consider some lemmas concerning the solutions in  N  of the

so-called Pell equation:

(1) X2-PY2=1.

The first two lemmas are standard results from number theory.

Lemma 1.  // P £ N, and P  is not a square, then there exist natural

numbers X and Y, with   Y 4 0, satisfying (1).

Definition.  For A  £ N, A > 1, 72 £ N, we define X (A), Y (A), by set -

ting:

2l{ we change the definition of "diophantine relation" by permitting not only

polynomials with rational integer coefficients, but also polynomials with arbitrary

coefficients from the quadratic ring, then the analogue to Theorem 2 is obtained

by simply omitting the words "and self-conjugate".
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XnÍA) + ÍA2- l)I/2Yn(A) = (A + (A2- 1)1/2)",       XnÍA), YnÍA) e N.

Where the context permits, the dependence on A   is not explicitly shown,

writing  X ,  Y .& 72 72

Lemma 2.  // P = A2 - 1, A e IN, aTîri A > 1, then all solutions in  N  of

the Pell equation (1) are given by  X = X  (A), Y = Y  (A).

Lemma 3.  // A, 72, /e are in N, aTja" A > 1, then

ÍYnkÍA))2 = (Yn(A))2¿2 (mod(Y?2(A))4).

Proof.  It is well known that

nk

So,

y*=   ¿   (*V¿2-'i)ü-1)/2x*-'V.
7 = 1;; odd   \'>

Y , s.tX*-^    (mod Y3)    and    (Y  ,/Y ) = kXk~l (mod Y2).
nk. n n n nk       n n n

Squaring yields:

(Y   ,/Y )2 = k2iX2)k~l (mod Y2).
nk       n n n

But in virtue of Lemma 2 we also have  X 2 = 1  (mod Y ).
72 72

2.  The main lemma for real quadratic rings.

Lemma 4. Let A(D) be a real quadratic ring, i.e. D > 1. Let (A, B )

be one of the solutions in N of the Pell equation A — DB = 1, with B 4

0 (cf. Lemma 1).  Set  E = A2 - 1.  // x2 - Ey2 = 1   avW x, y £ A(D), i/W

y2 eN.

Proof.  Obviously  A > 1   and  E = B 2D.   We have  (x - B\/DyK* + NDy)

= 1; thus x + ByjDy is a unit in A(D).  Set  22 = x + B\JDy; then  Z2~ ' = x -

ByJDy.  Subtracting and squaring yield: 4B2Dy2 + 2 = u2 + (u~ 1)2.  Since u

is a unit, Niu) = ± 1, and 22" J = ±a.  Hence, 4B2Dy2 + 2 = u2 + û~ .   Thus

4B2Dy2 + 2 e Q, y2 e Q.  But y2 e A(D), so y2 e Z; and since D > 1, y2 e

N.

Lemma 5. Let D > 1, arca7 x, y, 2 e A(D). // x = y (mod z) aTza" 0 < x

< z, 0 < x < z, 0 < y < z, 0 < y < F, then x = y.

Proof.  Suppose x 4 y, then x - y = zw, with w 4 0. So
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|x-y||x-y| = |25||iVU)|.

Since  t22 4 0, \Niw)\ > 1, hence   |x - y||x  - y | > \zz\.   But this is in con-

tradiction with the hypothesis of the lemma.

Lemma 6.  Let  A(D)  be a real quadratic ring, i.e.   D > 1.   Let  E  be as

defined in the hypothesis of Lemma 4, and let  72  be the following system of

diophantine equations (J)_(5)  ¿72 the unknowns  t, x, y, u, v, z, w, h, q, r,

s.

(1) x2 -Ey2= 1,

(2) 222 -Ev2 = 1,

(3) v2-y2t = zy4,

(4) /:  =  22,2,

(5) y2 _/ = 1 + h2 + q2 + r2 + s2.

Then conditions (I) and (2) of the main lemma are satisfied.

Proof.  (1)  Suppose that  t, x, ■ • ■, s are in  A(D), and satisfy (1)—(5).

From (1), (2) and Lemma 4 we have: y2 eN,v2 £ IN.  From (3) follows

(v2/y2) = t (mod y2), thus  (v2/y2) = F  (mod y2).  Hence  t s T (mod y2).

By (4) and (5): 0 <t <y2, 0 < T < y2.   Using Lemma 5, we obtain  t = T.   So

t eN.

(2) Suppose t = k2, k £ IN.  Take 72, such that  Y (A) > k, where A  is

as in Lemma 4.  Set x = X,y=Y,u = X,, v=Y,, w = k.   By Lemma 2,
72 72 72 re 72 R

(I) and (2) are satisfied.  By Lemma 3, we can choose  z  such that (3) holds.

Obviously (4) is satisfied.  Finally, y    - k    > 0  and by Lagrange's theorem,

(5) can also be satisfied.  So we have proved the main lemma for real quad-

ratic rings.

3.  The main lemma for imaginary quadratic rings.  In the following lem-

ma we need some properties of totally imaginary biquadratic fields:

Qi\jF> yfD), where  D < - 1, F > 1, and D, F ate square-free.  The only pos-

sible    roots of unity in such fields are:  ±1,  ± 2, ( ± 1   ±2 \J'i)/2,

(±\/2 í i \j2)/2, (± i ±\j3)/2.  By o., o2 we mean the automorphisms defined

by:

oS:^F)=-yjF,       oliy/D) = y/D,

02(,y/F) = y/F, 02iyjD)=~yjD.

3See e.g. Borevich and Shafarevich [l, p. 326], and notice that the primitive

5- and 10-roots of unity are excluded because their Galois group is cyclic.
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If  1  £ Q,  then   aAq) = q, oAq) = a.   By the Dirichlet-Minkowski Theorem

on units there exists a fundamental unit  r¡  such that every unit   22   in

Q(VF, -\JD)   can be uniquely written in the form   22 = prf" , where  772  £ Z

and  p   is a root of unity in   Q(\/F, yjD).   By the same theorem, there

exists a fundamental unit  e  in   Qi\/F)   such that every unit   e   in   Qiy/F)

can be uniquely written in the form   e = ± A" , where   m    £ Z.

Now  ( is also a unit in  QiyfF, \/D), hence  e = prj™.  So  «7 (f) =

po2íp) írp2ír¡))m. Hence    2 = p'em, where  p'  is a root of unity in  ()i\/F),

and  e a unit in  Qiy/F).   Thus, e2 = (± 1)(± (m')m, |f|2 = \(\m'm.  Hence

1 to I = 1   or   17721 = 2.  From  e = prf, we conclude:

Tf2 = pjf7,        j = ±1  or   ±2,        pj  root of unity in  Qi\jF, yjD).

Lemma 7.  LeZ A(D)  be an imaginary quadratic ring, i.e.   D < - I.  Put

A = 2 and F = A 2 - 1 = 3, if D 4 - 1  and D 4 - 3; A = 4 «h¿ F = A 2 - 1

= 15,. ¿/ D = - 1  or D = - 3.  // x2 - Fy2 = 1  a72a' x, y e A(D), 2/7e72 y2 £ Z.

Proof.  We have  (x - y'Fy)(x + \jFy) = 1, thus  x + ^/Fy  is a unit in

Q(VF' V°)-   Hence, x + ^Fy = p77m, so  x - ^Fy= p~ 1r¡~m.  Subtracting and

squaring yield 4Fy2 + 2 = p2irf2)m + p~2ir]2)~m.  But rj2 = px A, hence

/c   2  ,   0 2   m im   ,   7 „2„7T2\ — 1/   — l\7'm
4Fy   + 2 = p p j e    + \p p1>     \e     )    .

After some change of variables we have  AFy    + 2 = pA + p~  ie~  )m, where

p  is a root of unity in  Q(\/F, \JD).   But for the defined values of  F, Nie) =

+ 1, thus  f- 1 = o^e).    Hence 4Fy2 + 2 = pfm + p~ lali^H).

Let us compute the imaginary part of both sides of this equation.  Since

Im(er) = 0, and Im(p~   ) = - Im(p), we have

Im (4Fy2 + 2) = Um-a1(em))Im(p).

Since  y £ A(D), and e eQ(^/F),we have

Im(4Fy2 + 2) = q^\D\,       iem - o¿e™)) = q2^F,

where  q , q    £ Q.  But  Im(p) = q AS, where  q    £ Q, and  5 = 0, 1, or 3.

5 = 2  is excluded since  F = 3  or 15.  So,

Im(4Fy2 + 2) = tf lV/|£>| = q^^F^S.

By our choice of F, we can conclude: Im (4Fy   + 2) = 0. Hence, 4Fy    +

2 e Q, and thus  y2 £ Z.
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Lemma 8.  Let D < - 1, t £ A(D), and W, R £ Z.  If R = t (mod W) and

N(t) < W2/4, then t £ Z.

Proof.  We have  t = R + (U + A\D\V)W/2, with   U, V £ Z.  So, Nit) =

ÍR + UW/2)2 + \D\V2W2/4. If V 4 0, then Nit) > W2/4.  From this contradic-

tion we conclude   V = 0, thus  t £ Z.

Lemma 9.   Let  \(D)  be an imaginary quadratic ring, i.e., D < - 1.   Let

F  be as defined in the hypothesis of Lemma 7, and let  72  be the following

system of diophantine equations (1)—(5), in the unknowns  t, x, y, u, v, z,

w, h, r, s.

(1) x2 -Fy2 = 1,

(2) u2 - Fv2 = 1,

(3) v2 -y2t = zy4,

(4) ry + si5h + 2) = 1,

(5) y = 2/222.

Then conditions (1) and (2) of the main lemma are satisfied.

Proof.  (1) Suppose that  t, x, • • •, s  are in A(D), and satisfy (1)—(5).

From (1), (2) and Lemma 7 follows y    £ Z, v    £ Z.    From (3), we have:

(6) (t72/y2) = 2  (mody2).

Suppose for a moment that y = 0; then (4) yields  s($h + 2) = 1.  Thus in this

supposition, 5h + 2  should be a unit.   But the only possible units in an

imaginary quadratic ring are: ± 1, ± i, (±1  ±i \fi)/2.  Since  h £ \(D\ we

have a contradiction, and we conclude y 4 0.  From (5) we have  N(y  ) =

l6(N(t))2(N(w))2.  But y 4 0, thus  N(y2) > l6N(t).  So,

(7) M2)<(y2)2/4.

Now, (v ¡y  ), y    e Z; thus by (6), (7) and Lemma 8, we conclude  t £

Z.

(2) Suppose t = k , k £ IN, and k 4 0.  By Lemma 1, there exist natural

numbers  X and   y, with   Y 4 0, satisfying  X2 - F(2i)2Y2 = 1.  But  F =

A2 - 1; thus, by Lemma 2, we have X = Xn(A), 2tY = Yn(A). Set x = Xn,

y = Y , u = X   ,, v = Y   ,, w = Y.   Obviously (5) is satisfied, and y 4 0.  By

Lemma 2, (1) and (2) hold.  By Lemma 3, (3) can be satisfied.  Since y 4 0,

we can choose a natural number h, such that y  and  5^ + 2 have no common

divisors in   N. Hence, there exist rational integers  r and  s  satisfying (4).

So we have proved the main lemma for imaginary quadratic rings too.
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