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Abstract. In Hilbert's Tenth problem for fields of rational functions over finite

fields (Invent. Math. 103 (1991)) Pheidas showed that Hilbert's Tenth problem
over a field of rational functions with constant field a finite field of characteristic

other than 2 is undecidable. We show that the same holds for characteristic 2.

1. Introduction

To obtain his result, Pheidas establishes four lemmas, the first three valid

only for characteristic p > 3. They are:

Lemma 1.1. Let F be afield of characteristic p > 3. An x e F(t) is a psth

power of t for some s £ N if and only if 3u,v £ F(t) such that

X - t = UP -U, j - j = Vp - V .

Lemma 1.2. Let F be afield of characteristic p > 3. For x £ F(t) let u =

(xp + t)/(xp - t). Then u has only simple zeros and simple poles.

Lemma 1.3. Let F be afield of characteristic p > 3. Let x ,y £ F(t), xy ^ 0.

Let u = (xp + t)/(xp - /) and v = (y + tpS)/(y - tpS) for some s > 0. Then

y = xpS+   if and only if 3a, r, p, 6, d in F(t) such that

,7 11
v   - u   = ap - a ,        -^-T = tp - t ,

v1     u1

v2tpS -u2t = pp-p,     -^-\ = ep-6,    v-u = Sp-8.
V2tP       u2t

Lemma 1.4. Let F be a field of nonzero characteristic p. Assume F finite with

pn elements. Write r = pn , and let x £ F(t). Then ord,(x) > 0 if and only if

3s £ N-{0} such that 3a,ax, ... , ar-X £ F(t) with (1 -tpS~')txp/(l +txp) =

(ar -a) + ta\ + --- + tr~xarr_l.

We mention Lemma 1.4 because it is an open problem to find something

analogous for infinite fields. In characteristic 2 Lemma 1.1 is false. For example,
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take x = (1 + t + t3)2t/(l + t2 + r3)2. Then we have

_ (     /3     V ?3
X + '~ U+'2 + 'V   + l + f2 + ?3'

I     I      /       1       V 1
x+ r ~~ \\+t + fi)  + l + t + t*'

2. Proofs

For Lemma 1.1 we need to add more equations. In this section F is a field

of characteristic 2.

Lemma 2.1. Let x £ F(t). Then x £ {tr : s > 1} <*=> 3u, v , w , s £ F(t) such

that

(1) x + t = u2 + u,

(2) u = w2 + t,

(3) l + i = v2 + v,

(4) v = s2 + \ .

Notice that one direction is easy. If x = t2' with s > 2, take u = tr    +

... + t2 + t = (tr~2 + ■ ■ ■ + t)2 + t. For v take

1 11/1 1\2     1

If s = 1 take u = t and w = 0; v = \ and 5 = 0.

In the other direction, it is enough to prove the result in F(t). So from now

on we assume we work in F(t). First, two facts.

Fact 2.1. If a rational function x is of the form u2 + u then the poles of x have
multiplicities divisible by 2.

Proof. Straightforward calculation.

Fact 2.2. Let x £ F(t), x = a2t/b2,  (a, b) = 1, and (t, b) = 1.   Then the
equations

(1) x + t = u2 + u,

(2) u = w2 + t,

(3) j. + i = v2 + v,

(4) v=s2 + \

cannot have solutions u, v , w , s, in F(t).

Proof. Let u = c/d , (c, d) = 1, w = m/n , (m, n) = 1, v = e/f, (e, f) =

1, and s = k/h , (k,h) = \. From (1) we get t(a2 + b2)/b2 = c(c + d)/d2. It
follows that b = d. Equation (2) yields c/b = (m2 + n2t)/n2 . Hence b is a
square.

From (3) we get (a2 + b2)/ta2 = e(e + f)/f2.

Hence t\a2 + b2, from which we get that a^ + b2 = 0 (here a0 and bo are the

constant terms of the polynomials a and b). So ao = bo, and a = f. From (4)

we get e/a = (k2t + h2)/h2t. If (h2t, k2t + h2) = 1 then a = h2t from which
a0 = 0; i.e., the polynomial a has no constant term. But then bo = 0 and so
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t\b, which is a contradiction. On the other hand, if (h2t, k2t + h2) = q ^ 1, it
follows that q = t and t\h . Write h = th'. So

g _ t(k2 + th'2) _k2 + th'2

a ~      fih'2      ~    t2h'2    '

Now we have (k2 + th'2, t2h'2) = 1. The polynomial a is therefore divisible

by t2; in particular, a0 = 0 again. This proves the fact.

We are now ready for the proof of Lemma 1.1.

Proof of Lemma 2.1. Suppose x is not a square. From Fact 2.1 and (1) and

(3) (of the lemma) we have x = a2tk/b2. The case k < 1 cannot happen;

otherwise, / = 0 is a pole (and hence of even multiplicity) and x is a square,

which we assume is not the case. It follows that k = 1 . Notice that we also

have (t, b) = I for otherwise we would have / = 0 a pole of x with odd

multiplicity. Therefore, by Fact 2.2, we may assume that x is a square.

Let x = z2 . We consider two cases:

Case 1: z = r2. By taking u' = u + z, w' = w + r, v' = v + ^ , and s' = s + j

we see that z satisfies (l)-(4). Hence if we establish that z £ {t2' : s > 1} we

get x 6 {tr : s > 1}. So we are left with

Case 2: z is not a square. As before (use (1) and (2) applied to z) we

have z = a2t/b2, (a, b) = 1, (t, b) = 1. Assume b monic. Let u, w satisfy

x + t = i-:2 + u, u = w2 + t. Then we have z + t = (u + z)2 + (u + z). Writing

u + z = 2 » (c, d) = \, w = ™ , (m, n) = 1, we have that (as above in Fact

2.2) b = d and

c _ c _ m2 a2   _ (bm)2 + (nb)2t + (na)2t

d~b~~nT + t+¥t~ (n~bj2 '

If ((bm)2 + (nb)2t + (na)2t, (nb)2) = 1 then we have that b = n2b2 and hence

n2b = 1. It follows that b = 1. So t(a2 + 1) = c(c+ 1) (from (1) applied to
z). If a2 + 1 ^ 0, the left-hand side has odd degree whereas the right-hand
side has even degree, so a — 1 and z = t and x = t2.

Now suppose ((bm)2 + (nb)2t + (na)2t, (nb)2) = q ^ 1.

If q\n then the fraction c/b is of the form c'/n'b2 with (c', n'b2) = 1

(after cancelling q). Hence n'b = 1, so b = 1 and we are done. If q\n

then there exists a nonconstant polynomial p such that p\q, p\b, p\n , and

p\(bm)2+ (nb)2t + (na)2t. Therefore, p\a2t and so p\t; hence, t\b , which is a
contradiction. This finishes the proof.

Lemma 2.2. Let F be afield of characteristic 2, and x £ F(t).   Then u =

(x2 + t2 + t)/(x2 + t) has only simple zeros and simple poles.

Proof Let x = a/b, (a, b) = 1. Then u = (a2 + b2t2 + b2t)/(a2 + b2t). If
a prime q £ F[t] is such that q2s = a2 + b2t then the derivative q2s' = b2.

Hence q\a ; we get q = 1 ; similarly for the zeros of u.

Lemma 2.3. Let F be afield of characteristic 2. Let x, y £ F(t), xy / 0. Put

x2 + t2 + t        , y + t2S+i + t2S
u =-r-   and   v =-^—

x2 +1 y + t2s

where s > 0. Then y = xr+i if and only if 3p, q, w , z £ F(t) such that

(1) u + v = p2 +p,
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(2) v2tr + u2t = q2 + q,

(4)  l/v2tr + 1/w2/= z2 + z.

Proof. First assume that y = x2" . Then ur = v, so that v2 = (u2)2* and

v2tr = (w202S • It is clear what p, q, w , and z should be.

Conversely, assume we work in F(t). First observe that if y = z2 and 5 > 1

and if we let Vo = (z + tr + tr~ )/(z + t2S~'), so that v2 = v , then we have

v0 + u = (p + v0)2 + (p + v0),

vltv~l +u2t = (q + v^tr~' )2 + (q + v^tr~'),

11/ 1 \2     / 1 \
— + -= [w + — ]   +[w + — ],
vo      u      V "0/        V W

7prr + ̂ 27 = Vz + ̂ 2rTJ +Vz + :^Fv

Hence, if we showed that z = x2', we get y = xr+ . So assume that either

5 = 0 or y is not a square.
Case 1. s = 0. From (2) *(« + v)2 = q2 + q . Combining with (1) we have

t(p4 +P2) = q2 + q ■ Let p = t'a/b, q = Vc/d with (a, b) = I, (t, ab) = 1,
(c, d) = 1, (t, cd) = 1, and /, j £ Z. Then we have

f(f4'a4 + f2'a262) _ t2jc2 + Vcd

M rf2

Hence d = b2. Consider the equation t(t4'a4 + t2'a2b2) = t2Jc2 + tjcd. If i < 0

then the order at t of the left-hand side is 4/ + 1, which is negative. The order

of the right-hand side must be negative and so it is equal to 2j, a contradiction.

So / > 0 and ; > 0. We have b2(t2'a2 + tjc) = t2jc2 + t4i+la4 . Differentiating,

we get b2(t2'a2 + tjc)' = a4& . Hence b\a4t4' and so b = 1 (we may assume

b monic).
So we have t(t4'a4 + t2'a2) = t2>c2 + Vc. By comparing degrees one must

have that both sides are equal to 0; hence, p2 +p = 0, so u = v , which implies

y — x2.

Case 2. s > 1 and y not a square. The proof of Pheidas works; split the

situation into two subcases: v a square and v not a square. If v is a square

then y is a square, which is a contradiction. If v is not a square then argue

that all poles and zeros of v have multiplicity divisible by 2, and hence v is a

square!

Final comments

The rest of Pheidas's argument applies without change, so one has the un-

solvability of Hilbert's tenth problem. It is not clear to me why more equations

are needed in characteristic 2 or rather why two are enough in odd characteristic

in Lemma 2.1.
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