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HILBERT'S TENTH PROBLEM IS UNSOLVABLE 

MARTIN DAVIS, Courant Institute of Mathematical Science 

When a long outstanding problem is finally solved, every mathematician would 
like to share in the pleasure of discovery by following for himself what has been 
done. But too often he is stymied by the abstruiseness of so much of contemporary 
mathematics. The recent negative solution to Hilbert's tenth problem given by 
Matiyasevic (cf. [23], [24]) is a happy counterexample. In this article, a complete 
account of this solution is given; the only knowledge a reader needs to follow the 
argument is a little number theory: specifically basic information about divisibility 
of positive integers and linear congruences. (The material in Chapter 1 and the 
first three sections of Chapter 2 of [25] more than suffices.) 

Hilbert's tenth problem is to give a computing algorithm which will tell of a 
given polynomial Diophantine equation with integer coefficients whether or not it 
has a solutioninintegers. Matiyasevic proved that there is no such algorithm. 

Hilbert's tenth problem is the tenth in the famous list which Hilbert gave in his 
1900 address before the International Congress of Mathematicians (cf. [18]). The 
way in which the problem has been resolved is very much in the spirit of Hilbert's 
address in which he spoke of the conviction among mathematicians "that every 
definite mathematical problem must necessarily be susceptible of a precise settlement, 
either in the form.of an actual answer to the question asked, or by the proof of the 
impossibility of its solution ..." (italics added). Concerning such impossibility proofs 
Hilbert commented: 

"Sometimes it happens that we seek the solution under unsatisfied hypotheses 
or in an inappropriate sense and are therefore unable to reach our goal. Then the 
task arises of proving the impossibility of solving the problem under the given 
hypotheses and in the sense required. Such impossibility proofs were already given 
by the ancients, in showing, e.g., that the hypotenuse of an isosceles right triangle 
has an irrational ratio to its leg. In modern mathematics the question of the impos- 
sibility of certain solutions has played a key role, so that we have acquired the 
knowledge that such old and difficult problems as to prove the parallel axiom, to 
square the circle, or to solve equations of the fifth degree in radicals have no solution 
in the originally intended sense, but nevertheless have been solved in a precise and 
completely satisfactory way." 

Martin Davis received his Princeton Ph. D. under Alonzo Church. He has held positions at Univ. 
of Illinois, IAS, Univ. of Calif.-Davis, Ohio State Univ., Rensselaer Poly, Yeshiva Univ. and New 
York Univ., and he spent a leave at Westfield College, London. He has done research in various 
aspects of the foundations of mathematics, and is the author of Computability and Unsolvability 
(McGraw-Hill, 1958), The Undecidable (editor, Raven Press, 1965), Lectures on Modern Mathematics 
(Gordon and Breach, 1967), and First Course in Functional Analysis (Gordon and Breach, 1967). 
Editor. 
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234 MARTIN DAVIS [March 

Matiyasevic's negative solution of Hilbert's tenth problem is ofjust this character. 
It is not a solution in Hilbert's "originally intended sense" but rather a "precise and 
completely satisfactory" proof that no such solution is possible. The methods needed 
to make it possible to prove the non-existence of algorithms had not been developed 
in 1900. These methods are part of the theory of recursive (or computable) functions, 
developed by logicians much later ([6] is an exposition of recursive function theory). 
In this article no previous knowledge of recursive function theory is assumed. The 
little that is needed is developed in the article itself. 

What will be proved in the body of this article is that no algorithm exists for 
testing a polynomial with integer coefficients to determine whether or not it has 
positive integer solutions (Hilbert inquired about arbitrary integer solutions). But 
then it will follow at once that there can be no algorithm for integer solutions 
either. For one could test the equation 

P(Xl, 'Xn) "'O 

for possession of positive solutions <x1, *,x,> by testing 

P(1 + p 2+ q1 + r2 + s1 2 ,1 +p 
2 +q2 + rn + S2) = 0 

for possession of integer solutions <p1, q1, r1,s1, s * * Pn qn rn, Sn>. This is because (by 
a well-known theorem of Lagrange) every non-negative integer is the sum of four 
squares. (Just this once the stated prerequisite is exceeded! Cf. [17], p. 302.) In the 
body of this article, only positive integers will be dealt with-except when the 
contrary is explicitly stated. 

When Matiyasevic announced his beautiful and ingenious solution in January 
1970, it had been known for a decade that the unsolvability of Hilbert's tenth problem 
would follow if one could construct a Diophantine equation whose solutions were 
such that one of its components grew roughly exponentially with another of its 
components. (In ?9, this is explained more precisely.) Matiyasevic showed how the 
Fibonacci numbers could be used to construct such an equation. In this article the 
historical development of the subject will not be followed; the aim has rather been to 
give as smooth and straightforward an account of the main results as seems currently 
feasible. A brief appendix gives the history. 

1. Diophantine Sets. In this article the usual problem of Diophantine equations 
will be inverted. Instead of being given an equation and seeking its solutions, one 
will begin with the set of "solutions" and seek a corresponding Diophantine equation. 
More precisely: 

DEFINITION. A set S of ordered n-tuples of positive integers is called Diophantine 
if there is a polynomial P(xl, ...,9 xny1, 

.. Ym), where m ? 0, with integer coefficients 
such that a given *n-tuple <x1, * , xn> belongs to S if and only if there exist positive 
integers Yi 1*, ym for which 
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1973] HILBERT'S TENTH PROBLEM IS UNSOLVABLE 235 

P(XI* j," ,Xn j,Yl *...sYm) = 0- 

Borrowing from logic the symbols "3" for "there exists" and ".*." for "if and 
only if", the relation between the set S and the polynomial P can be written succinctly 
as: 

<XI, .* sXn> E S-(3yjj,-*,Ym) [P(xjj, * sXni Y1i .., Ym) = O?]s 

or equivalently: 

S = {<xl Xn **"> | (3 y, * ,Ym) [P(xl 31*X nsYlq .. 9Ym) -?]}*- 

Note that P may (and in non-trivial cases always will) have negative coefficients. 
The word "polynomial" should always be so construed in the article except where 
the contrary is explicitly stated. Also all numbers in this article are positive integers 
unless the contrary is stated. 

The main question which will be discussed (and settled) in this article is: 
Which sets are Diophantine? A vague paraphrase of the eventual answer is: any 

set which could possibly be Diophantine is Diophantine. What does the phrase 
"which could possibly be Diophantine" mean? And how is all this related to Hilbert's 
tenth problem? These quite reasonable questions will only be answered much later. 
In the meantime, the task will be developing techniques for showing that various sets 
are indeed Diophantine. 

A few very simple examples: 
(i) the numbers which are not powers of 2: 

xeS..(3 y,z)[x = y(2z + 1)], 

(ii) the composite numbers: 

xeS.S*(3y,z) [x = (y + 1)(z + 1)], 

(iii) the ordering relation on the positive integers; that is the sets {<x, y> x < y}, 
{<x,y> Ix _y}: 

x < y (3 z) (x + z = y), 

x:!gy.(3z) (x +z- I =y), 

(iv) the divisibility relation; that is {<x, y> I x I y}: 

xj y..(3 z) (xz = y). 

Examples (i) and (ii) suggest, as other sets to consider, the set of powers of 2 and 
of primes respectively. As we shall eventually see, these sets are Diophantine; but the 
proof is not at all easy. 

Another example: 
(v) the set W of <x, y, z> for which xj y and x < z: Here 

xl y.*.(3u) (y = xu) and x <z.*.(3v) (z = x + v). 
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236 MARTIN DAVIS [March 

Hence, 

<x, y, z> E W (3 it, v) [(y-xu)2 + (z-x-v)2 = O]. 

Note that the technique just used is perfectly general. So, in defining a Diophantine 
set one may use a simultaneous system P1 = O, P2 = 0, *,Pk = 0 of polynomial 
equations since this system can be replaced by the equivalent single equation: 

2 
2k P1 +P2 + o+ Pk2=0? 

By a "function" a positive integer valued function of one or more positive integer 
arguments will always be understood. 

DEFINITION. A function f of n arguments is called Diophantine if 

{<XI, .. 
xn,Y>l y =f(xi, . 

,xX) 

is a Diophantine set, (i.e., f is Diophantine if its "graph" is Diophantine). 
Another question that will be answered here is: which functions are Diophantine? 
An important Diophantine function is associated with the triangular numbers, 

that is numbers of the form: 

T(n) = 1 + 2 + *. +n - (n + 1) 
2 

Since T(n) is an increasing function, for each positive integer z, there is a unique 
n ? 0 such that 

T(n) < z < T(n + 1) = T(n) +n+ 1. 

Hence each z is uniquely representable as: 

z=T(n)+y; y<n+1, 

or equivalently, uniquely representable as: 

z = T(x + y -2) + y. 

In this case, one writes x = L(z), y = R(z); also one sets 

P(x,y) = T(x + y -2) + y - 1. 

Note that L(z), R(z) and P(x, y) are Diophantine functions since 

z = P(x,y) 2z=(x+y-2)(x+y-1)+2y 

x = L(z) (3y)[2z=(x+y-2)(x+y-1)+2y] 

y = R(z) (3x) [2z = (x + y-2) (x + y-1) + 2y]. 

The function P(x; y) maps the set of ordered pairs of positive integers one-one 
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onto the set of positive integers. And, for each z, the ordered pair which is mapped into 
z by P(x, y) is (L(z), R(z)). ("P" is for "pair", "L" for "left", and "R" for "right".) 
Note also that L(z) < z, R(z) < z. To summarize: 

THEOREM 1.1 (Pairing Function Theorem'). There are Diophantine functions 
P(x,y), L(z), R(z) such that 

(1) for all x, y, L(P(x,y)) = x, R(P(x,y)) = y, and 
(2) for all z, P(L(z),R(z)) = z, L(z) < z, R(z) ? z. 
Another useful Diophantine function is related to the Chinese Remainder Theorem, 

stated below: 

DEFINITION. The numbers mln **, mN are called an admissible sequence of moduli 
if i # j implies that mi and mj are relatively prime. 

THEOREM 1.2 (Chinese Remainder Theorem). Let a,, *,aN be any positive 
integers and let ml * mN be an admissible sequence of moduli. Then there is an x 
such that: 

x a, mod ml 

x a2 mod M2 

x aN mod MN. 

The Chinese remainder theorem is proved for example in [25], p. 33. (That x can 
be assumed positive is not ordinarily stated. But since the product of the moduli 
added to a solution gives another solution, this is obvious.) 

Now let the funetion S(i, u) be defined as follows: 

S(i, u) = wI 

where w is the unique positive integer for which: 

w-L(u) mod 1 + iR(u) 

w < 1 + i R(u). 

Here w is simply the least positive remainder when L(u) is divided by 1 + i R(u). 

THEOREM 1.3 (Sequence Number Theorem). There is a Diophantine function 
S(i, u) such that 

(1) S(i, u) < u, and 
(2) for each sequence a,, ***,aN, there is a number u such that 

S(i,u) = a1 for 1 < i < N. 

Proof. The first task is to show that S(i, u) as defined just above, is a Diophantine 
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function. The claim is that w S(i, u) if and only if the following system of equations 
has a solution: 

2u = (x+y-2)(x+y-1)+2y 

X w + z(1 + iy) 

1+iy -w+v-1. 

This is because (by the discussion leading to the Pairing Function Theorem), the 
first equation is equivalent to: 

x = L(u) and y = R(u). 

Then (using a technique already noted) one needs only sum the squares of the three 
equations to see that S(i, u) is Diophantine. 

Now S(i, u) < L(u) ? u. So finally, let al, *- aN be given numbers. Choose y to 
be some number greater than each of at, * aN and divisible by each of 1,2, **-, N. 
Then the numbers 1 + y, 1 + 2y, **, 1 + Ny are an admissible sequence of moduli. 
(For, if dj 1 + iy and df I +jy, i <I, then dj [j(1 + iy) - i(1 +jy)], i.e., di -i 
so that d < N; but this is impossible unless d = 1 beca use dl y.) This being the case, 
the Chinese Remainder Theorem can be applied to obtain a number x such that 

x3 a mod l+y 

x a2 mod l+ 2y 

x aN modl+Ny. 

Let u =P(x,y), so that x =L(u) and y = R(u). Then, for i =1,2, .. N 

a L=- L(u) mod 1 + iR(u) 

and ai < y = R(u) < I + iR(u). But then by definition, ai = S(i, u). 
A striking characterization of Diophantine sets of positive integers (cf. [26]) is 

given by: 

THEOREM 1.4. A set S of positive integers is Diophantine if and only if there 
is a polynomial P such that S is precisely the set ofpositive integers in the range of P. 

Proof. If S is related to P(x1, ** , xm) as in the theorem then 

x E- S *(3 xl, ^ * , xm) [x = p(xl , xm)]. 

Conversely, let 

x PS(x, X1, XXm) [ Q(x x1 Xm) Tn, i-XSX = 

Let P(x, xl * * * xm) = x[l _ Q2(s, XI ,.*.*, Xm )]. Then, i'f x E- S, choose X,, * * >xm such 
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that Q(x,xl, ,Xm) = 0. Then P(x, xl, * ' -, xm) = x; so x is in the range of P. On the 
other hand, if z = P(x, x, *., Xm), z > 0, then Q(x, x, x I xm) must vanish (otherwise 
1-_ Q2<_ 0) so that z = x and x eS. 

2. Twenty-four easy lemmas. The first major task is to prove that the exponential 
function h(n, k) = nk is Diophantine. This is the hardest thing we shall have to do. 
The proof is in ?3. In this section we develop the methods we shall need, using the 
so-called Pell equation: 

X2 -dy2=1, X,Y>O, 
where M(* 

d =a21, a >1 

Although this is a famous equation with a considerable literature,2 a self-contained 
treatment is given. Note the obvious solutions to (*): 

x= 1 y=0 

x=a y=l. 

LEMMA 2.1. There are no integers x , y, positive, negative, or zero, which satisfy 
(*)for which 1 <x+yld< a +Id. 

Proof. Let x, y satisfy (*). Since 

1 = (a + Vd)(a-Nd) = (x + yd)(x-yfyd), 

the inequality implies (taking negative reciprocals) -1 < - x + yld < - a + Id. 
Adding the inequalities: 0 < 2y I/d < 2 I/d, i.e., 0 < y < 1, a contradiction. 

LEMMA 2.2. Let x,y and x',y' be integers, positive, negative, or zero which 
satisfy (*). Let 

X" + Y (x + yV) (x' + y' Vd). 

Then, x",y" satisfies (k). 

Proof. Taking conjugates: x" - y"Id = (x - y Id) (x' - y' Id). Multiplying 
gives: 

(x")2 - d(y")2 = (x2 - dy2) ((X')2 - d(y')2) = 1. 

DEFINITION. xn(a), y,(a) are defined for n > 0, a > 1, by setting 

xn(a) + yn(a)/d = (a + Vd)n. 

Where the context permits, the dependence on a is not explicitly shown, writing 
XnL .sYn( 

LEMMA 2.3. xn,,Yn sati'sfy () 
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Proof. This follows at once by induction using Lemma 2.2. 

LEMMA 2.4. Let x, y be a non-negative solution of (*). Then for some n, x = xn, 
Y =Yn. 

Proof. To begin with x + yVd > 1. Oj the other hand the sequence (a + I 
increases to infinity. Hence for some n > 0O 

(a + <d)" ? x + yl/d < (a + 1ydY'+ 

If there is equality, the result is proved; so suppose otherwise: 

Xn + Yn,fdi < x + yV/d < (xn + Yn,/d) (a + V-d). 

Since (xn + yn V/d) (xn - yn Jd) = 1, the number xn - yn /d is positive. H4ence, 
1 < (x + yld) (Xn -Yn y,d) < a + >/d. But this contradicts Lemmas 2.1 and 2.2. 

The defining relation: 

Xn + Yn, Id = (a + >d)" 

is a formal analogue of the familiar formula: 

(cos u) + (sinu)y1 - 1 = eiU = (cos 1 + (sin 1)1 - 1)u, 

with xn playing the role of cos, Yn playing the role of sin and d playing the role of -1. 
Thus, the familiar trigonometric identities have analogues in which -1 is replaced 
by d at appropriate places. For example the Pell equation itself 

x- dY2 = 1 

is just the analogue of the Pythagorean identity. Next analogues of the familiar 
addition formulas are obtained. 

LEMMA 2.5. xm?n = XmXn ? dYnym and Ym?n = XnYm ? XmYn. 

Proof. 

Xm+n +Ym+nvJd = (a + Vd)m+n 

= (Xm + Ym V/d) (Xi + Yn >/d) 

- (Xmxn + dYnYm) + (XnYm + XmYn) Id. 
Hence, 

Xm+n = XmXn + dYnYm 

Ym+n = XnYm + XmYn. 

Similarly, (Xm.n + Ym.n Id) (Xn + YnId) = Xm + ym-/d. So 

Xm_n + Ym-nn/d = (Xm + ym -/d) (xn d)- 

and one proceeds .as above. 
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LEMMA 2.6. Ym?i = a Ym ? Xm, and xm ?1 = ax, + dym. 

Proof. Take n = 1 in Lemma 2.5. 
The familiar notation (x, y) is used to symbolize the g.c.d. of x and y. 

LEMMA 2.7. (x.,,yR) = 1. 

Proof. IfdIx and djYn, then dfx 2-dy2 i.e., dj1. 

LEMMA 2.8. YnJ Ynk 

Proof. This is obvious when k = 1. Proceeding by induction, using the addition 
formula (Lemma 2.5), 

Yn(m+1) = XnYnm + XnmYn 

By the induction hypothesis Yn j Ynm. Hence, Yn I Yn(m+ 1)- 

LEMMA 2.9. Yn|I Yt if and only if n j t. 

Proof. Lemma 2.8 gives the implication in one direction. For the converse 
suppose Ynj Yt but ntt. So one can write t = nq + r, 0 < r < n. Then, 

Yt = XrYnq + XnqYr. 

Since (by Lemma 2.8) yn j Ynq, it follows that Yn J XnqYr. But (yn,xnq) = 1- (If df Yn, 
d Xnq, then by Lemma 2.$ df Ynq which, by Lemma 2.7, implies d = 1.) Hence yn j Yr. 
But, since r < n, we have Yr < Yn (e.g., by Lemma 2.6). This is a contradiction. 

LEMMA 2.10. Ynk k xyn mod (yM,)3. 

Proof. 

Xnk + Y,,k V/d (a + Idyk 

= (Xn + Yn Qd)k 

?W 
( x k -iy Jdj12 

j= nJ 
n 

So, 

k 

Ynk = j (Jxkydjh-h)/2 
j odd 

But all terms of this expansion for which ]> I are 0 O mod (yR)3. 

LEMMA 2. 1 1. Yn I YnYn 

Proof. Set k = YR in Lemma 2.10. 

LEMMA 2.12. If Yn I Yf, then Yn t. 
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Proof. By Lemma 2.9, n I t. Set t = nk. Using Lemma 2.10, y2 k xn-7y., i.e., 
yn I kx'-71. But by Lemma 2.7, (Yn, Xn) = 1. SO, Yn k and hence Yn I t. 

LEMMA 2.13. xn+ = 2axn -xn_ and Yn+ I = 2ayn-yn. 

Proof. By Lemma 2.6, 

Xn+ = axn + dyn, Ynl+ = aYn + Xn 

Xn = aXn - dyn, Yn-1 = aYn - Xn, 

So, Xn+ Jr Xn-I = 2axw Yn+l + Yn-l = 2ayn. 

These second order difference equations, together with the initial values xo = 1, 
x1 = a, Yo = 0, Yi = 1, determine the values of all the Xn, Yn. Various properties of 
these sequences are easily established by checking them for n = 0, 1 and using these 
difference equations to show that the property for n + 1 can be inferred from its 
holding for n and n - 1. Some simple (but important) examples follow: 

LEMMA 2.14. yn -n mod a - 1. 

Proof. For n = 0,1 equality holds. Proceeding inductively, using a -1, mod 
a-1: 

Yn+1- 2ayn-Yn-y 

2n-(n-1) mod a-1. 

LEMMA 2.15. If a _ b mod c, then for all n, 

xn(a)-x.(b), yn(a) yj(b) mod c. 

Proof. Again for n = 0, 1 the congruence is an equality. Proceeding by induction: 

yn+1(a) = 2ay,(a) - yl1(a) 

- 2by.(b)-y,,-1(b) mod c 

= 7,. + Il(b). 

LEMMA 2.16. When n is even y,, is even and when n is odd y, is odd. 

Proof Yn + = 2aYnYn - I Yn - , mod 2. So when n is even, Yn Yo = 0 mod 2, 
and when n is odd, Yn-Yi = 1 mod 2. 

LEMMA 2.17. xn(a) - yn(a)(a - y) Y" mod 2ay _ y2 _ 1. 

Proof. xo - yo(a - y) = 1 and xl - yl(a - y) = y, so the result holds for n1 = 0 
and 1. Using Lemma 2.13 and proceeding by induction: 

Xn+ - Yn+(a - y) = 2a[Xn - yn(a - Y)] - [Xn- Yn-1(a - y)] 

= 2ayn _ yn-I 
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= y"nI(2ay-1) 

= yn-I y2 

yn+1 

LEMMA 2.18. For all n, Yn+1 > Yn _ n. 

Proof. By Lemma 2.6, Yn+1 > Yn. Since yo = 0 > 0, it follows by induction that 
yn > n for all n. 

LEMMA 2.19. For all n, xn+1(a) > x"(a) > an; xn(a) < (2a)". 

Proof. By Lemmas 2.6 and 2.13 a x"(a) < xn + 1(a) < (2a)xn(a). The result follows 

by induction. 

Next some periodicity properties of the sequence Xk are obtained. 

LEMMA 2.20. X2" n=- xj mod xn. 

Proof. By the addition formulas (Lemma 2.5) 

X2n j = Xnxn j + dYnYn j 

- dYn(YnXi ?XnYi) mod xn 

- dy 2xj mod xn 

= (x2- _)xj 

- - x; mod xn. 

LEMMA 2.21. X4"+J x; mod 
xn. 

Proof. By Lemma 2.20 

x4n"j -X2n" ijxX mod xn. 

LEMMA 2.22. Let xi- xj mod xn, i<J<2n, n > 0. Then i=j, unless a =2, 
n=1, i=0 and j=2. 

Proof. First suppose xn is odd and let q = (xn - 1)/2. Then the numbers 
-q, -q+1, -q+2, ., -1,0 , 1, , q - 1, q are a complete set of mutually 
incongruent residues modulo xn. Now by Lemma 2.19, 

1 =xo < X < ... <xn-1. 

Using Lemma 2.6, x - I <- xn la < i xn; so xn _1 < q. Also by Lemma 2.20, the numbers 

Xn+1,Xn+29 ...X2n-1,X2n 

are congruent modulo xn respectively to: 
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Thus the numbers x0, x1, x2, **. , x2 are mutually incongruent modulo xn. This gives 
the result. 

Next suppose xn is even and let q = xn/2. In this case, it is the numbers 

- q +1, - q +2, ... - 1, O,1, ... ~q - 1, q 

which are a complete set of mutually incongruent residues modulo x". (For, - q = q 
mod xn.) As above, xn1 < q. So the result will follow as above, unless xn-1 = q 
= x"/2, so that x"+ --q mod x", in which case i = n-1, =n + 1 would 
contradict our result. But, by Lemma 2.6, 

xn= axn_l+ dYn- 1, 

so that xn = 2xn_1 implies a = 2 and yn-i = 0, i.e., n = 1. So the result can fail only 
for a =2, n = 1 and i =0, j =2. 

LEMMA 2.23. Let xj xi mod xn, n > O, O< i < n, O < j < 4n, then either 
j= i or j =4n-i. 

Proof. First suppose j < 2n. Then by Lemma 2.22, i = a unless the exceptional 
case occurs. Since i > 0, this can only happen if j = 0. But then 

i = 2 > 1 = n. 

Otherwise, let j > 2n and set j = 4n -j so 0 < j < 2n. By Lemma 2.21, X _ Xj 
-xi mod xn. Again j = i unless the exceptional case of Lemma 2.22 occurs. But this 
last is out of the question because i, j > 0. 

LEMMA 2.24. If O < i < n and xj xi mod xn, thenj +i mod 4n. 

Proof. Write] = 4nq + j, 0 _ j < 4n. By Lemma 2.21, 

X_Xj_X. mod xn. 

By Lemma 2.23i= j or i = 4n - j. So, ]s j- +i mod 4n. 

3. The exponential function. Consider the system of Diophantine equations: 

(I) x2 - (a2-1)y2 = 1 

(II) u2 - (a2-1)v2 = 1 

(III) s2 - (b2-1)t2 = 1 

(IV) v = ry2 

(V) b = 1+4py=a+qu 

(VI) s = x+cu 

(VII) t = k + 4(d-1)y 
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(VIII) y = k+e-1. 

Then it is possible to prove: 

THEOREM 3.1. For given a, x, k, a > 1, the system I-VIII has a solution in the 
remaining arguments y, u, v, s, t, b, r, p, q, c, d, e if and only ifx = xk(a). 

Proof. First let there be given a solution of I-VIII. By V, b > a > 1. Then I, II, 
III imply (by Lemma 2.4) that there are i, j, n > 0 such that 

x = xi(a), y = yi(a), u = x"(a), v = y(a), s = xj(b), t = yj(b). 

By IV, y < v so that i < n. V and VI yield the congruences 

b-a mod x"(a); xj(b)-xi(a) mod x"(a) 

and by Lemma 2.15 one gets also 

xj(b) xj(a) mod x"(a). 
Thus, 

xi(a) xj(a) mod x"(a). 

By Lemma 2.24, 

(1) ij?+i mod 4n. 

Next, equation IV' yields 

(y, (a))' y| y(a). 

so that by Lemma 2.12, 

yi (a)n 7 

and (1) yields: 

(2) j -+ i mod 4yi(a). 

By equation V 

b -1 mod 4yi(a), 

so by Lemma 2.14, 

(3) yj(b) j mod 4yi(a). 

By equation VII, 

(4) yj(b) k mod 4y,(a). 

Combining (2), (3), (4), 

(5) k-+ i mod 4y,(a). 
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Equation VIII yields 

k < yi(a) 

and by Lemma 2.18, 

i < yi(a). 

Since the numbers 

- 2y+ 1, -2y +2, , 1, 0, 1, 2y 

form a complete set of mutually incongruent residues modulo 4y 4y,(a), these 
inequalities show that (5) implies k = i. Hence 

x ix(a) = Xk(a). 

Conversely, let x = xk(a). Set y yk(a) so that I holds. Let m = 2kyk(a) and let 
u = x"(a), v =yr(a). Then II is satisfied. By Lemmas 2.9 and 2.11 y2' v. Hence one 
can choose r satisfying IV. Moreover by Lemma 2.16, v is even so that u is odd. By 
Lemma 2.7, (u,v) = 1. Hence (u, v 4y) = 1. (If p is a prime divisor of u and of 4y, then 
p j y because u is odd, and hence p Iv since y v.) So by the Chinese Remainder 
Theorem (Theorem 1.2), one can find bo such that 

bo-1 mod 4y 

bo-a mod u. 

Since bo + 4juy will also satisfy these congruences, b, p, q satisfying V can be found. 
III is satisfied by setting s = xk(b), t = yk(b). Since b > a, s = xk(b) > xk(a) = x. 
By Lemma 2.15 (using V), s -x mod u. So c can be chosen to satisfy VI. By Lemma 
2.18, t> k and by Lemma 2.14, t = k mod b-I and hence using V, t = k mod 4y. 
So d can be chosen to satisfy VIT. By Lemma 2.18 again, y > k, so VIII can be 
satisfied by setting e = y - k + 1. 

COROLLARY 3.2. The function 

g(z,k) = Xk(Z + 1) 
is Diophantine. 

Proof. Adjoin to the system I-VIII: 

(A) a = z +1. 

By the theorem, the system (A), 1-VIII has a solution if and only if x = xk(a) = g(z, k). 
Thus a Diophantine definition of g can be obtained in the usual way by summing 
the squares of 9 polynomials. 

Now at last it is possible to prove: 

THEOREM 3.3. The exponentialfunction h(n, k) = -nk is Diophantine. 
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First, a simple inequality: 

LEMMA 3.4. If a > yk, then 2ay - y- - 1 > yk. 

Proof. Set g(y) =2ay - y2 - 1. Then (since a _2) g(1) =2a-2 > a. For 
1<y<a, g'(y)=2a-2y>0. So g(y)> a for 1< y<a. Then for a>y y y, 
2ay _ y2 1 > a > yk 

Now, adjoin to equations I-VIII: 

IX (x-y(a-n)-m)2 =(f-1)2(2an-n2 - 1)2 

X m + g = 2an-n2 2 

XI w-n + h = k + l 

XII a2 -(w2-1) (w-1)2z2 = 1. 

Theorem 3.3 then follows at once from: 

LEMMA 3.5. m = nk if and only if equations I-XII have a solution in the remain- 
ing argumen?ts. 

Proof. Suppose I-XII hold. By XI, w > 1. Hence (w - 1)z > 0 and so by XII 
a > 1. So Theorem 3.1 applies and it follows that x = xk(a), y = yk(a). By IX and 
Lemma 2.17, 

m-nk mod 2an-n2 1. 

XI yields 

k,n <w. 

By XII (using Lemma 2.4), for some j, a = xj(w), (w - 1)z = yj(w). By Lemma 2.14, 

j 0 mod w - 1 

so that j > w - 1. So by Lemma 2.19, 

a ? ww1 > n 

Now by X, m < 2an-n2 - 1, and by Lemma 3.4, 

nk < 2an-n2 _ 1. 

Since m and nk are congruent and both less than the modulus, they must be equal. 
Conversely, suppose that m = nk. Solutions must be found for I-XII. Choose any 

number w such that w > n and w > k. Set a = xw_I(w) so that a > 1. By Lemma 
2.14, 

Yw-l(w) 0 mod w - 1. 
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So one can write 

Yw- (W) = z(w -1); 

thus XII is satisfied. XI can be satisfied by setting 

h=w-n, I=w-k. 

As before, a > nk so that again by Lemma 3.4, 

m = nk < 2an - n 1 

and X can be satisfied. Setting x = xk(a), y = yk(a), Lemma 2.17 permits one to 
define f such that 

x - y(a - n) - m (f- 1)(2an -n2 

so that IX is satisfied. Finally, I-VIII can be satisfied by Theorem 3.1. 

4. The language of Diophantine predicates. Now that it has been proved that the 
exponentialfunction is Diophantine, many other functions and sets can be handled. 
As an example, let 

h(u, v, w) = uv . 

The claim is that h is a Diophantine function. For: 

y uvW (3z) (y = z& vw) 

where "&" is the logician's symbol for "and". Using Theorem 3.3, there is a 
polynomial P such that: 

y = u4Z (3rj, *,rn) [P(y, u, z, rl, r 0,7n ]9 z~~~~~~~~~~~~ 

Z = Vw 3S 1, *sSO [P(Z, VI ,Ws SSn = I O ] 

Then, 

y = uVW (3(z,ri, *,rn,si, * ,sn) [Pp2(y, u, z, ri,.*,r) 

+ P2(Z, V,W, S1, *', S) = 0]. 

Now this procedure is perfectly general: Expressions which are already known 
to yield Diophantine sets may be combined freely using the logical operations of 
"&" and "(3)"; the resulting expression will again define a Diophantine set. (Such 
expressions are sometimes called Diophantine predicates.) In this "language" it is 
also permissible to use the logician's "V" for "or", since: 

(3 rl, -, rn) [PI = O] V( OSI, ', Sm) EP2 = ?] 
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Three important Diophantine functions are given by: 

THEOREM 4.1. The following functions are Diophantine: 

(1) f(n,k) =( 

(2) g(n) = n! 

y 

(3) h(a, b, y) = H (a + bk). 
k=1 

In proving this theorem the familiar notation [oc], where a is a real number, will 
be used to mean the unique integer such that 

[ac] ? a < Lx] + 1. 

LEMMA 4.1. For 0 < k ! n, u > 2n 

[(u + 1)n/uk] = I', u 
i= k 

Proof. 

(u+1)n/uk= ? (I . u =S + R 

where 

S = j 3 R = '7 ( .)uik n- nI- i- k ikk 

Then S is an integer and 

R < u ' (. 
i=0 
i- Ivi 

< ui 1 ( 
i0O 

- u(I. + 1)n 

< 1. 

So, 

S ? (u + 1)n/uk < S + I 

which gives the result. 
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LEMMA 4.2. For 0 < k < n, u > 2 , 

[(U + 1)nlUk]- kn odu 

Proof. In Lemma 4.1 all terms of the sum for which i > k are divisible by u. 

LEMMA 4.3. f(n, k) = () is Diophantine. 

Proof. Since 

(k--) =2n <u, 

Lemma 4.2 determines (n) as the unique positive integer congruent to 
[(u + 1)n/uk] modulo u and < u. Thus, 

z-( ) (3u, v, w) (v = 2n & u > v 
k 

&w = [(u + I)n!uk] &z W mod u&z<u). 

To see that (k) is Diophantine, it then suffices to note that each of the above 
expressions separated by "&" are Diophantine predicates; v =2" is of course Diophan- 
tine by Theorem 3. The inequality u > v is of course Diophantine since u > v 
(3x)(u = v + x). Also, 

z3w mod u & z<u*(3x,y)(w=z+(x-1)u&u=z+y). 

Finally 
w = [(u + 1)n /uk] 

(3x,y,t) (t = u + 1 &x = tn&y =u k&w ?xIy < w + 1), 

and w < x/y < w + 1 wy < x < (w + l)y. 

LEMMA 4.4. If r > (2x)x+1 then 

x= [r (rx)l] 

Proof. Let r > (2x)x+l. Then, 

X/ r ~~~rxx! 
x = r(r - 1) ..(r-x +1) 

= x! -, 4 \ x , 
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< xx x 

Now, 
1 = 1 + x x 2 

1 --+ x r r 

r~ ~~~ ll r 2 

<1+-{1 + + 3: + + r r r 

2x 
r 

And, 

2x +2x (x) r~~~ j =l r 

2x 
< 1+- 2 

< I + 2x x 
r 

So, 

rxi(r) < x! + - .x!2x 

2x+1 xx+' 
< x! + _ 

r 

< X! + 1. 

LEMMA 4.5. n! is a Diophantine function. 

Proof: m = n! * 

(3r,s, t, u, v) {s = 2x + 1 & t = x + 1 &r = St 

&u= r&v =(r) & mv < u < (m + 1)v}. 
n 

LEMMA 4.6. Let bq -a mod M. Then, 

I (a + bk) bYy!(y Y) mod M. 
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Proof 

byY! 
q + 

= by(q +y) (q +y-l)-. (q+l1) 

= (bq + yb) (bq + (y-1)b) *.. (bq + b) 

3 (a + yb) (a + (y-I)b) **(a + b) (mod M). 

LEMMA 4.7. h(a, b, y) = fkj= 1 (a + bk) is a Diophantine function. 

Proof. In Lemma 4.6 choose M = b(a + by)' + 1. Thein, (M, b) = 1 and 
M > fJ7k 1 (a + bk). Hence the congruence bq _ a mod M is solvable for q and then 
fk=1 (a + bk) is determined as the unique number which is congruent modulo M 

to byy! q + Y) and is also < M. I.e., 

y 
Z HI (a + bk) (M, p, q, r,s, t, u, v, w, x) 

k=1 

r = a + by &s = rY & M = bs + 1 

&bq a + Mt & u- by&v = y! &z < M 

& w =q?y &x= (w)&z+MP=uvx} 

Using the previous expressions for the exponential function, for v = y! and for 
x -(), we obtain the result. 

The assertion of Theorem 4.1 is contained in Lemmas 4.3, 4.5, and 4.7. 

5. Bounded quantifiers. The language of Diophantine predicates permits use of 
&, V, and 3. Other operations used by logicians are: 

for "not" 

(Vx) for "for all x" 

for "if*.., then ..." 

However, as will be clear later, the use of any of these other operations can lead to 
expressions which define sets that are not Diophantine. There are also the bounded 
existential quantifiers: 

'6(3y)s , " which means "(3y) (y < x & 

and the bounded universal quantifiers: 

"(Vy)x X which means "(Vy) (y > xV P) 
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It turns out that these operations may be adjoined to the language of Diophantine 
predicates; that is, the sets defined by expressions of this extended language will 
still be Diophantine. I.e., 

THEOREM 5.1. If P is a polynomial, 

R = {<y,x1, **,xn>| (3z)s5(3y1 * *,Ym) [P(Y Z,X1, **,Xn,Y1, * ,Ym) = 0]} 

and 

S {<y, XI, *, xn> I (Vz)5(y(3y1 , Ym) [P(Y, z, xI, .*, Xn,Y,1, , Ym) = OD} 

then R and S are Diophantine. 

That R is Diophantine is trivial. Namely, 

<Y, XI, IXn> c-R .t(3z, yl, , ym) (z < y &P = O). 

The proof of the other half of the theorem is far more complicated. 

LEMMA 5.1. 

(Vk)gY(3y1, , Ym) [I(Y, k, XI, ,Xn, Y,, Ym) = 0] 

(3u) (Vk):,Y(3yI, *I* Ym) -u[P(y, k, xl1, * * , xn, Y I,* Ym) = ?] 

Proof. The fight side of the equivalence trivially implies the left side. For the 
converse, suppose the left side is true for given y, x1, * xn. Then for each k = 1, 2, . ,y 
there are definite numbers (k)**, y(k) for which: 

P(y, k, x1 ** ,,(k) , , y(k)) 0. 

Taking u to be the maximum of the my numbers 

{(k)| j = J, **, m; k = 1, 2, **, y}, 

it follows that the right side of the equivalence is likewise true. 

LEMMA 5.2. Let Q(y,Ux1 ...X) be a polynomial with the properties: 

(1) ~~Q(Y' U, X1, *,Xn) > U, (2) Q(Y,U, X1, *" Xn) > Y, 
(3) k < y and yl, **, Ym _ u imply |P(y,k,xl-,*,xn,Yl, , IYm)| <! Q(Y,U,X1,***,Xn)* 
Then, 

(Vk)5 Sy(3y I *y, Y5)u [P(y, k, xl ** "' Xns Y, I * .. ~Ym) = 0] 

y 
(3c,t,a,, ...$am) [1 +ct= (1 + kt) 

k=1 
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u 

&t = QU3o8eX13 ... 3,x)! & 1 + ct f I (a,l-j) 
j=i 

&... &1 +Ct f (amJ-(j) 
j =1 

&P(y,c,-x,,xn,al, *,am)-=O mod 1+ct]. 

The point of this lemma is that while the right side of the equivalence seems the 
more complicated of the two, it is free of bounded universal quantifiers. 

Proof. First the implication in the - direction: 
For each k = 1, 2, **, y, let Pk be a prime factor of 1 + kt. Let y,k) be the remainder 

when a' is divided by pk (k = 1,2, ***,y; i = 1,2, **,m). It will follow that for each 
k, i: 

(a) 1< Yk) < u 

(b) P(y,k, x, ...xnyk) mk)) - 0. 

To demonstrate(a), note that Pk i + kt, 1 + kt| 1 + ct and 1 + ct f[J> =1 (a, -j). I.e., .~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
pk I1iJ=l(ai -j). Since Pk is a prime, Pkj ai -j for some j 1j2, *.*?u. That is 

jaai= ) mod Pk. 

Since t = Q(y, u, x1, ,x)!, (2) implies that every divisor of 1 + kt must be 
> Q(y, u, xi, * * *, xn"). So Pk > Q(y,, u, xi, .. * * x") and by (1), pk > u. Hence j<u < Pk. 

Since y(k)is the remainder when ai is divided by Pk, also )(5c <Pk. So, 

yik) = j 

To demonstrate (b), first note that 

1+ct=1+kt=0 mod Pk. 

Hence 

k+kct-=c+kct mod Pk, 

i.e., k-c mod Pk. We have already obtained 

yk)-=ai mod p,. 

Thus, 

Y(f k, x1, * ",y)-P(y, c, xi , Xn. a,, X , am) 

0 modpk. 

Finally 
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|P(y, k, xl, ,n,( ...Y )| _ (Y(ksx) <Pk..' 

This proves (b) and completes the proof of the = implication. 
To prove the => implication, let 

P(Y' k> (k) ... Ymk) = ?~ 

for each k = 1, 2, .* , t, where each yj(k)< u . We set t = Q(y,u,x1, ..., x")!, and since 
Hk= (1 + kt) =1 mod t, we can find c such that 

y 
1+ Ct = H (1 + kt). 

k= 1 

Now, it is claimed that for 1 ? k < I< y, 

(1 + kt, 1 + It) = 1. 

For, let p 11 + kt,p| l + It. Then P I-k, so p < y. But since Q(y,u,x1, ,xn) > y 
this implies p I t which is impossible. Thus the numbers 1 + kt form an admissible 
sequence of moduli and the Chinese Remainder Theorem (Theorem 1.2) may be 
applied to yield, for each i, 1 < i < m, a number ai such that 

a, _yek) mod I + kt, k-=1, 2, -*, y. 

As above, k _ c mod I + kt. So 

P(y c, x -X,n aj, - am) P(y, k, xl, **, X", k) ... y(k)) mod 1 + kt, 
- 0. 

Since the numbers 1 + kt are relatively prime in pairs and each divides 
P(y, c, x1, ., x", a1, **, am) so does their product. I.e., 

P(y, c, x x., xna 1, .. am) -0 mod 1 + ct. 

Finally, 

ai y=k) mod 1 + kt, 
i.e., 

1 + kt az _ (k) 

Since 1 <y(k)<u 

1kt |IIf (ai -J) 
j=1 

And again since the 1 + kt's are relatively prime to one another, 
u 

I+ ct H rl (ai -j). 
j=1 
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Now it is easy to complete the proof of Theorem 5.1 using Lemmas 5.1 and 5.2. 
First find a polynomial Q satisfying (1), (2), (3) of Lemma 5.2. This is easy to do: 
Write 

N 

P(yu k, xj,. sX., Yi ..sYm) Ya tr 
r=1 

where each tr has the form 
S= |cy Xq,Xq,2. qnyl S2 .Sm 

tr=c'k 2 y 2 Y 

for c an integer positive or negative. Set Ur = cya+bX 1XX2... xqnus1?S2+--+Sm and let 
N 

Q(Y' UsX,,.. sxn) = u + Y + E Ur. 
r =1 

Then (1), (2), and (3) of Lemma 5.2 hold trivially. Thus: 

(Vk)< Y(3y 1, *,Ym) [P(ys k, x X'n* , Y" Y1, **, Ym) = ? 

Y 

(3u, c, t, a,***,am) + ct ( + kt) 
k =1 

&t=Q(y,uxI X ,x n)!&1 +ctI 171 (a1 -j) 
j=1 

u 

& ...&1 + ctlH i (a,n -]) 
j=l 

&P(Y'c,xj,-,x,,aj,-,am)--0 mod I + ct] 

(hu, c, t, a *a+ , ejh, g&1, *, gm, h1, , hn e ) 

, Y 

&a t =f! &gD =iao-aU &e2 =ya2-Uh &e&4gm.am1u 
u ti 

& h,= f (gI+ k) &h2 = fl (92 +k) 
k=1 k=1 

t 

& .. &hm = rI (gmn+ k) &e| hj&e| h2 &}&e| hm 
k=1 

& I= P(y' , xl,s,, x, a,,,,",an) &e 1 

and this is Diophantine by Theorem 4.1. 
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6. Recursive functions. So far one trick after another has been used to show 
that various sets are Diophantine. But now very powerful methods are available: it 
turns out that the expanded version of the language of Diophantine predicates, 
permitting the use of bounded quantifiers (sanctioned by Theorem 5.1) together with 
the Sequence Number Theorem (Theorem 1.3) enables one to show in quite a straight- 
forward way that almost any set we please is Diophantine. 

Some examples are in order: 
(i) the set P of prime numbers: 

xeP x > I &(Vy,z)<x[yz <xv yz > x V y = 1 V z = 1]. 

Another Diophantine definition of the primes is: 

X GP-=x > I &((x -1)! ,x) = I 

x > 1 &(3y,z,u,v) [y = x -1 &z = y! &(uz - vx)2 = 1]; 

but the first definition is the more natural one. 
From Theorem 1.4 it follows that there is a "prime-representing" polynomial 

P, i.e., a positive integer is prime if and only if it is in the range of P. For an 
explicit construction of such a polynomial P, cf. [23a]. 

(ii) the function g(y) = ,7ly=1 (I + k2). Here we use the Sequence Number 
Theorem to "encode" the sequence g(1), g(2), . ,g(y) into a single number u, i.e., 
so that 

S(i,u) = g(i), i = 1,2, .,y. 

Thus, z = g(y) 

>(3u) {S(1,u) = 2 &(Vk)<Y[k = 1 V(S(k,u) = (1 + k2)S(k - 1, u))] & z = S(y, u)} 

(3u) {S(l,u) = 2 & (Vk)?y[k = 1 V (3a,b,c) (a k - 1 

& b-S(a, u) & c = S(k, u) & c = (1 + k2)b)] & z S(y,-u)}. 

By now it is clear that the available methods are quite general. They are so 
powerful that the question becomes: how can any "reasonable" set or function 
escape these methods, i.e., not be Diophantine? 

The strength of the methods can be tested by considering the class of all compu- 
table or recursive functions. These are the functions which can be computed by a 
finite program or computing machine having arbitrarily large amounts of time and 
memory at its disposal. Many rigorous definitions of this class (all of them equivalent) 
are available. One of the simplest is as follows: 

The recursive functions3 are all those functions obtainable from the initial 
functions 
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c(x) = ,s(X) =x + 1; U"(x1', **x) t i < i <n; 

S(i, u) (The sequence number function)4 

iteratively applying the three operations: composition, primitive recursion, and 
minimalization defined below: 

COMPOSITION yields the function 

h(X 1, , , "XJ)fg 1 (x 1,* ,X.),* g(x, ,X.)) 

from the given functions g1, , gn and f(t1, * ,r, .) 

PRIMITIVE RECURSION yields the function h(xl, **, x",z) which satisfies the 
equations: 

h(xl, x., t) =f(xl, ** x.) 

h(xl, * * x" t + 1) = g(t, h(x1, * * *, Xn, t) xl, * * , xJ, 

rom the given functions f, g. 
When n = 0,f becomes a constant so that h is obtained directly from g. 

MINIMALIZATION yields the function: 

h (x 1, * , xj= mi'n,U(x 1, *. *1 X, x,y) = g(X, X, XnY)] 

from the given functionsf, g assuming thatf, g are such that for each x1, , x. there 
is at least one y satisfying the equationf(x1, . ,x",y) = g(x1, .,x",y); (i.e., h must 
be everywhere defined). 

The main result of this article is: 

TEILOREM 6.1. Afunction isDDiophantine if and only if it is recursive. 

To begin with, consider the following short list of recursive functions: 
(1) x + y is recursive since 

x + I = s(x), 

x + (t + 1) = s(x + t) = g(t, x + t, x), 

where g(u, V, w) = S(U3(U, V, W)). 

(2) x * y is recursive since 

x l = U1(x) 

x (t+ 1)=(x t)+x=g(t,x tx), 

where g(u, v, w) = U3(u, V, W) + U3(u, V, W). 
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(3) For each fixed k, the constant function Ck(X) = k is recursive, since c1(x) is 
one of the initial functions and Ck+I(X) = Ck(X) + c(x). 

(4) Any polynomial P(x1, ***, x") with positive integer coefficients is recursive, 
since any such function can be expressed by a finite iteration of additions and mul- 
tiplications of variables and c(x). E.g., 

2x2y + 3xz3 + 5 = C2(X) * X * X * y + C3(X) * X * Z * Z * Z + C5(X). 

So (1), (2), (3), and composition gives the result. 
Now it is easy to see that every Diophantine function is recursive: 
Let f be Diophantine, and write: 

y =f(xj, *w,x.)<*(3tls *ss tm) [P(X1, ..,Xng Y9 tIg 
... tm) 

= Q(XD, *' Xn * Y, tl, 
.. 

9 tm)] 9 

where P, Q are polynomials with positive integer coefficients. Then, by the sequence 
number theorem: 

f(x1, x.., x) = S(1, min,,[P(x1, X., x",S(1, u), S(2, u), ... , S(m + 1, u)) 

= Q(xl, ..., x,, S(1, u), S(2, u), ..., S(m + 1, u))]). 

Since P, Q, S(i, u) are recursive, so isf (using composition and minimalization). 
To obtain the converse: S(i, u) is known to be Diophantine; the other initial 

functions are trivially Diophantine. Hence it suffices to prove that the Diophantine 
functions are closed under composition, primitive recursion and minimalization. 

Composition: If h(xl, **, Xn) =w(gj(xj9 ** I xn), ** m(x * , X.)), where f,g , 
9m g are Diophantine, then so is h since 

y = h(xl **, Xn) ->(3t19 
.. 
* * tm) [tj I g(XI,* , Xn) & ... 

& tm g m(Xlx * Xn) & y =f(tl, ... tm)] 

Primitive Recursion: If 

h(xls *-*9Xn,1) = f(XI, -qssXn) 

h(xl , ** Xn, t + 1) = g(t, h(xl, * n * 9 X*, ... t) xl ,Xn), 

and f, g are Diophantine, then (using the sequence number theorem to "code" the 
numbers h(xl, ... , xn,1), h(xl Xn,2),* ,h(xj,***,x z): 

y = h (x, I 9.., Xn 9 Z) < 

(3u) {(3v) [v) = S(, u) & v =f(x1, I, xn)] 

(Vt) z [(t=z) V (3v) (v = S(t + 1,u) 

& v = g(t, S(t, u), xI, . .,x))] & y = S(z, u)} 
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so that (using Theorem 5.1) h is Diophantine. 

Minimalization: If 

h(x1 , - -x mnU[(x1, j..,y) = g(xl, ...,x" y)], 

wheref, g are Diophantine, then so is h since, 

y = h(x-,X*> 

(3Iz)[z =A(XI, ---Xn,Y)&Z = XXI, **?,Xn-Y)] 

? (Vt):5y [(t = Y) V (3u, v) (u f(x,, ... 9Xn 9t) 

&v=g(xl, ..X ot)&( < v Vv< u)]. 

7. A universal Diophantine set. An explicit enumeration of all the Diophantine 
sets of positive integers will now be described. Any polynomial with positive integer 
coefficients can be built up from 1 and variables by successi've additions and multiplica- 
tions. We fix the alphabet 

Xo, X1, X2, X3,' 

of variables and then set up the following enumeration of all such polynomials 
(using the pairing functions): 

P1I = 

P3i1 = Xi- 

P3 - PL(i) + PR(i) 

P3i+ I PL(i) PR(i) 

Write Pi = Pi(x0, x, * x), where n is large enough so that all variables occurring 
in Pi are included. (Of course Pi will not in general depend on all of these variables.) 
Finally, let 

n= {xoj (3x1 , ...,x") [PL(fn)(X0 o * I, Xn) PR(n)(x0 l X 1 .,x X)}. 

Here, PL(,) and PR(n) do not actually involve all of the variables xo, x1, I xn-but 
clearly cannot involve any others. (Recall that L(n), R(n) ? n.) By the way the se- 
quence Pi has been constructed, it is seen that the sequence of sets: 

DI1, 23, D39 D4, * 

includes all Diophantine sets. Moreover: 

THEOREM 7.1 (Universality Theorem5). 

{<n, x> I x Dn} is Diophantine. 
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Proof. Once again using the sequence number theorem, it is claimed that: 

x e Dn. (3u) {S(1, u) = 1 & S(2, u) = x 

& (Vi):5[S(3i, u) = S(L(i), u) + S(R(i), u)] 

&(Vi)sn[S(3i + 1,u) = S(L(i), u) S(R(i), u)] 

& S(L(n), u) = S(R(n), u)}. 

It is clear enough that the predicate on the right-hand side of this equivalence is 
Diophantine, so it is only necessary to verify the claim: 

Let x E Dn for given x, n. Then there are numbers t1, ** *, tn such that 
PL(n) (X, tl, ***, tn) = QL(n) (X, tl, * *., ta). Choose u (by the sequence number theorem) 
so that 

(*) ~~~~SOS, u) =Pj(x1, t, I *. , tn)3 j = ,2 3n + 2. 

Then in particular S(2, u) = x and S(3i - 1, u) = ti-1, i = 2,3, *,n + 1. Thus the 
right-hand side of the equivalence is true. 

Conversely, let the right-hand side hold for given n, x. Set 

t, = S(5, u), t2 = S(8, u), ... , t = S(3n + 2, u). 

Then, (*) must be true. Since S(L(n), u) = S(R(n), u), it must be the case that 

PL(n)(X4 t3, *s*,tn) = pR(n)(X3, t I . 
tn)9 

so that x E Dn* 
Since DI, D2, D3, .*', gives an enumeration of all Diophantine sets, it is easy to 

construct a set different from all of them and hence non-Diophantine. That is, define: 

v = {n f n Dnl} 

THEOREM 7.2. V is not Diophantine. 

Proof. This is a simple application of Cantor's diagonal method. If V were 
Diophantine, then for some fixed i, V = Di. Does i E V? We have: 

i c- V.>i c-Di; i e- V i 0 Di. 

This is a contradiction. 

THEOREM 7.3. Thefunction g(n,x) defined by: 

g(n,x)=1 if xq Dn, 

g(n,x)=2 if xeDn, 

is not recursive. 

Proof. If g were recursive then it would be Diophantine (Theorem 6.1), say: 
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y = g(n, x) *(3y1,* *, Ym) [P(n, xy,yl Y,Y,**,Ym) =0?] 

But then, it would follow that 

V-={x I (3y,, * * , Ym) [P(x, x, 11 Yll, ... Ym) = ?]} 
which contradicts Theorem 7.2. 

Using Theorem 7.1, write: 
X c- Dn* (3zl ** "' Zk) [P(n, x, z, Zk ) = O]. 

where P is some definite (though complicated) polynomial. Suppose there were an 
algorithm for testing Diophantine equations for possession of positive integer 
solutions; i.e., an algorithm for Hilbert's tenth problem! Then for given n, x this 
algorithm could be used to test whether or not the equation 

P(n, x, ZI, - z Zk) = 

has a solution, i.e., whether or not x E Dn. Thus the algorithm could be used to 
compute the function g(n, x). Since the recursive functions are just those for which a 
computing algorithm exists, g would have to be recursive. This would contradict 
Theorem 7.3, and this contradiction proves: 

THEOREM 7.4. Hilbert's tenth problem is unsolvable! 

Naturally this result gives no information about the existence of solutions for 
any specific Diophantine equation; it merely guarantees that there is no single 
algorithm for testing the class of all Diophantine equations. Also note that: 

X E- v - (3z,, **' Zk) [P(X, X, ZI, ", ZJ) = 0] 

J(3z ", ,ZO [P(X, X, Z1s 
... 

Zk) = 01 -+ I = 0} 

(VZ1,** Zk) [P(X, X, Z 1, Zk 9) > ? 

V P(x, X, Z, ..., Zk) < 0] 

which shows that if either - or unbounded universal quantifiers (Vz) or implication 
( ) are permitted in the language of Diophantine predicates, then non-Diophantine 
sets will be produced. 

It is natural to associate with each Diophantine set a dimension and a degree; 
i.e., the dimension of S is the least n for which a polynomial P exists for which: 

(*) S-{xl (3y1, Yn) [P(X,Y Yn = ?]} 

and the degree of S is the least degree of a polynomial P satisfying (*) (permitting n 
to be as large as one likes). Now it is easy to see: 

THEOREM 7.5. Every Diophantine set has degree ? 4. 

Proof The degree of P satisfying (*) may be reduced by introducing additional 
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variables Zj satisfying equations of the forim 

Zi YiYk 

zj = Yi zi 

Zj = XYi 

zj = x 

By successive substitutions of the zj's into P its degree can be brought down to 2. 
Hence the equation is equivalent to a system of simultaneous equations each of 
degree 2. Summing the squares gives an equation of degree 4. 

A less trivial (and more surprising) fact is: 

THEOREM 7.6. There is an integer m such that every Diophantine set has 
dimension < m. 

Proof. Write 

Dn = {xl (3Y I,.. Ym) [P(x n, yl, .. IYm) = 0]}s 

which is possible by the universality theorem. Then the dimension of Dn is <m for 
all n. 

An interesting example is given by the sequence of Diophantine sets: 

Sq = {X I (3y1 , yq) [X = (Yt + 1) .. (Yq + 1)]}. 

Here S2 is the set of composite numbers; Sq is the set of "q-fold" composite numbers. 
It is surely surprising that it is possible to give a Diophantine definition of Sq (for 
large q) requiring fewer than q parameters (cf. [19]). 

How large is m, the number of parameters in the universal Diophantine set? 
A direct calculation using the arguments given here would yield a number around 50. 
Actually Matiyacevic and Julia Robinson have very recently shown that m = 14 
will suffice! 

The unsolvability of Hilbert's tenth problem can be used to obtain a strengthened 
form of Godel's famous incompleteness theorem: 

THEOREM 7.7. Corresponding to any given axiomatization of number theory, 
there is a Diophantine equation which has no positive integer solutions, but such 
that this fact cannot be proved within the given axiomatization. 

A rigorous proof would involve a precise definition of "axiomatization of number 
theory" which is outside the scope of this article. An informal heuristic argument 
follows: 

One uses the given axiomatization to systematically generate all of the theorems 
(i.e., consequences of the axioms). Among these theorems will be some asserting 
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that some Diophantine equation has no solution. Whenever such is encountered it 
is placed on a special list called LISTA. At the same time a list, LIST B, is made of 
Diophantine equations which have solutions. LIST B is constructed by a search 
procedure, e. g., at the nth stage of the search look at the first n Diophantine equations 
(in a suitable list) and test for solutions in which each argument is < n. Thus every 
Diophantine equation which has positive integer solutions will eventually be placed in 
LIST B. If likewise each Diophantine equation with no solutions would eventually 
appear in LIST A, then one would have an algorithm for Hilbert's tenth problem. 
Namely, to test a given equation for possession of a solution simply begin generating 
LIST A and LIST B until the given equation appears in one list or the other. Since 
Hilbert's tenth problem is unsolvable, some equation with no solution must be 
omitted from LIST A. But this is just the assertion of the theorem. 

8. Recursively enumerable sets. It is now time to settle the question raised at the 
beginning: which sets are Diophantine? 

DEFINITION. 8.1. A set S of n-tuples of positive integers is called recursively 
enumnerable if there are recursive functions f(x,x1, 1 ., x), g(x,gx1. -qXn) such that: 

S = {<xl, ..*sxn>I (3x) [AX,Xi, xn)=g(x,x -, xJ)]} 

THEOREM 8.1. A set S isDiophantine if and only if it is recursively enumerable. 

Proof. If S is Diophantine there are polynomials P, Q with positive coefficients 
such that: 

<x x,, > c-S(3y,1, -,YM) [P(X I X .. ",yi," Ym) -= Q(X i .. ~Xn Yi1.., Ym)] 

4 (3u) [P(x1, ... x , SO1 u), u..,S(M,U)) = Q(X , * * SO x u), * *S(m, )] 

so that S is recursively enumerable. 
Conversely if S is recursively enumerable there are recursive functions 

f(x, x1, .. ,x"), g(x, xI,--- ,xn) such that 

<xi, Xn> x">S.*S (3x) [J(x,1, XI, . xn) = g(x, x1, Xn)] 

.* (3x, z) [z =Xf(x, x1, .*X,xn) &z = (X,x, ,x")].n 

Thus by Theorem 6.1, S is Diophantine. 

9. Historical appendix. The present exposition has ignored the chronological 
order in which the ideas were developed. The first contribution was by Godel in 
his celebrated 1931 paper [16]. The main point of Godel's investigation was the 
existence of undecidable statements in formal systems. The undecidable statements 
Godel obtained involved recursive functions, and in order to exhibit the simple 
number-theoretic character of these statements, Godel used the Chinese remainder 
theorem to reduce them to "arithmetic" form. The technique used is just what is 
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used here in proving Theorem 1.3 (the sequence number theorem) and Theorem 6.1 
(in the direction: every recursive function is Diophantine). However without the 
techniques for dealing with bounded universal quantifiers as discussed in this paper, 
the best result yielded by Godel's methods is that every recursive function (and 
indeed every recursively enumerable set) can be defined by a Diophantine equation 
preceded by a finite number of existential and bounded universal quantifiers6. In my 
doctoral dissertation (cf. [5], [6]), I showed that all but one of the bounded universal 
quantifiers could be eliminated, so that every recursively enumerable set S could be 
defined as 

S = {x I (3y) (Vk)<y(3y 1 " Ym) [P(k, x, y, y1, ,Ym) = O]}. 

This representation became known as the Davis normal form. (Later R. M. Robinson 
[31], [32] showed that in this normal form one could take m = 4. More recently 
Matiyacevic has shown that one can even take m = 2. It is known that one cannot 
always have m = 0; whether one can always get m = 1 is open.) 

Independent of my work and at about the same time, Julia Robinson began her 
study [27] of Diophantine sets. Her investigations centered about the question: 
Is the exponential function Diophantine? The main result was that a certain hypoth- 
esis implied that the exponential function was Diophantine. The hypothesis, which 
became known as the Julia Robinson hypothesis, has played a key role in work on 
Hilbert's tenth problem. Its statement is simply: 

There exists a Diophantine set D such that: 
(1) <u, v> ED D implies v ? u'. 
(2) For each k, there is <u, v> E D such that V > Uk. 
The hypothesis remained an open question for about 2 decades. (Actually the set 

D = {<u,v> Iv=xx(2)&u>3} 

satisfies (1) and (2) by Lemma 2.19 and is Diophantine by Corollary 3.2, so the truth 
of Julia Robinson's hypothesis follows at once from the results in this article.) 
Julia Robinson's proof that this hypothesis implies that the exponential function is 
Diophantine used the Pell equation. And, the proof that the exponential function is 
indeed Diophantine given here is closely related to a more recent proof [28] by 
her of this same implication. 

In [27], Julia Robinson studied also sets and functions which were exponential 
Diophantine (or existentially definable in terms of exponentiation) that is which 
possess definitions of the form: 

(3u,, ..X Ung VI, * 
.. 

* Vng Wl, 
.. 
* * Wn) EP(X 1 * *. *,XWsU19 

- 
' Un1V19-, ** 1Vni WD -9%* W) = O 

&u1 =vI '&. &u" = Vln]. 

In particular, the functions (k) and n! were shown by her to be exponential 
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Diophantine. This is really what is shown in proving (1) and (2) of Theorem 4.1. 
The present proof of (2) is just hers; the proof of (1) given here is a simplified var- 
iant of that in [27]. (It is due independently to Julia Robinson and Matiyasevic.) 

The idea of using the Chinese remainder theorem to code the effect of a bounded 
universal quantifier first occurred in the work of myself and Putnam [7]. In [8], we 
refined our methods and were able to show, beginning with the Davis normal form, 
that IF there are arbitrarily long arithmetic progressions consisting entirely of 
primes (still an open question), then every recursively enumerable set is exponential 
Diophantine. In our proof we needed to establish that h(a, b, y) = fly= (a + bk) is 
exponential Diophantine, which we did extending Julia Robinson's methods. (The 
proof given here of (3) of Theorem 4.1 is a much simplified argument found much 
later by Julia Robinson-cf. [29].) Julia Robinson then showed first how to eliminate 
the hypothesis about primes in arithmetic progression, and then how to greatly 
simplify the proof along the lines of Lemma 5.2 of this article. Thus we obtained the 
theorem of [9] that every recursively enumerable set is exponential Diophantine. 

Attention was now focused on the Julia Robinson hypothesis since it was plain 
that it would imply that Hilbert's tenth problem was unsolvable. 

Many intelesting propositions were found to imply the Julia Robinson hypoth- 
esis.7. However the hypothesis seemed implausible to many, especially because it 
was realized that an immediate and surprising consequence would be the existence of 
an absolute upper bound for the dimensions of Diophantine sets (cf. Theorem 7.6). 
Thus in his review [19] Kreisel said concerning the results of [9]: "... it is likely the 
present result is not closely connected with Hilbert's tenth problem. Also it is not 
altogether plausible that all (ordinary) Diophantine problems are uniformly reducible 
to those in a fixed number of variables of fixed degree.... " 

The Julia Robinson hypothesis was finally proved by Matiyasevic [23], [24]. 
Specifically he showed that if we define 

d-=a2 = 1, an+1 = an + an-1 

so that an is the nth Fibonacci number, then the function a2n is diophantine. Then 
since, for n > 3, as is easily seen by induction, 

)< an <2 n2 

the set 

D = {<u,v> j v = a2,,&u > 2} 

satisfies the Julia Robinson hypothesis. Subsequently, direct diophantine definitions 
of the exponential function were given by a number of investigators, several of 
them using the Pell equation as in this article (cf. [3], [4], [14], [18a]). The treatment 
in ?2, 3 is based on Matiyasevic's methods, although the details are Julia Robinson's. 
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In particular, it was Matiyasevic who taught us how to use results like Lemmas 2.11, 
2.12, and 2.22 of the present exposition. (Matiyasevic himself used analogous results 
for the Fibonacci numbers.) 

It was soon noticed (by S. Kochen) that by a simple inductive argument the use 
of the Davis normal form could now be entirely avoided, as has been done in the 
present exposition. 

Let #(P) be the number of solutions of the Diophantine equation P = 0. Thus 
O ? #(P) ? 8R. Hilbert's tenth problem seeks an algorithm for deciding of a given 
P whether or not #(P) = 0. But there are many related questions: Is there an 
algorithm for testing whether #(P) = N, or #(P) = 1, or #(P) is even? I was able 
to show easily (beginning with the unsolvability of Hilbert's tenth problem) that all 
of these problems are unsolvable. In fact if 

A = {0,1,2,3, 4o} 

and B ' A, B # 0, B # A, then one can readily show that there is no algorithm for 
determining whether or not #(P) E B (cf. [15]). 

The fact that no general algorithm such as Hilbert demanded will be forthcoming 
adds to the interest of algorithms for dealing with special classes of Diophantine 
equations. Alan Baker and his coworkers [1], [2] have in recent years made con- 
siderable progress in this direction. 

Notes 

1. These pairing functions (but of course not their baing Diophantine) were used by Cantor in 
his proof of the countability of the rational numbers. J. Roberts and D. Siefkes each corrected an 
error in the definition of these functions. They, as well as W. Emerson, M. Hausner, Y. Matiyasevic, 
and Julia Robinson made helpful suggestions. 

2. For example, cf. [25], pp. 175-180. Matiyasevic used instead the equations x2 - xy- = 1, 
U2- muv + V2 1. 

3. The recursive functions are usually defined on the nonnegative integers. This creates a minor 
but annoying technical problem in comparing the present definition with one in the literature (e.g., 
cf. [6], p. 41; also Theorem 4.2 on p. 51). Thus one can simply note that f(xl,..., x") is recursive in 
the present sense if and only if f(t1 + 1, . *, tn + 1) - 1 is recursive in the usual sense. From the 
point of view of the intuitive "computability" of the functions involved this doesn't matter at all; 
one is simply in the position of using the positive integers as a "code" for the nonnegative integers - 
using n + 1 to represent n. 

4. Inclusion of S (i, u) in this list is redundant. That is, S (i, u) can bs obtained using our three 
operations from the remaining initial functions. 

5. The method of proof is Julia Robinson's, [28], [30]. If one were permitted to use the enumera- 
tion theorem in recursive function theory ([6], p. 67. Theorem 1.4), the Universality Theorem would 
follow at once from Theorem 6.1. 

6. Actually the result which G6del stated (as opposed to what can be obtained at once by use of 
his techniques) was somewhat weaker. Indeed, the very definition of the class of recursive functions 
and the perception of their significance came several years later in the work of G6del, Church, and 
Turing. In particular ths sugg-stion that recursiveness was a precise equivalent of the intuitive 
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notion of being computable by an explicit algorithm was made independently by Church and by 
Turing. And of course it is this identification which is essential in regarding the technical results 
discussed in this account as constituting a negative solution of Hilbert's tenth problem. (For further 
discussion and references, cf. [6].) 

7. For example, I showed ([13]) that the Julia Robinson hypothesis would follow from the non- 
existence of nontrivial solutions of the equation 

9 (U2 -!- 7i2)2 __ 7(x2 + 7y2)2 - 2. 

The methods used readily show that the same conclusion follows if the equation has only finitely 
many solutions. Cudnovskii [4] claims to have proved that 2x is diophantine (and hence the Julia 
Robinson hypothesis) using this equation. Apparently there is a possibility that some of Cudnovskii's 
work may have been done independently of Matiyasevic - but I have not been able to obtain definite 
information about this. 
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