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Abstract. Hilbert schemes of suitable smooth, projective threefold scrolls over the Hirze-
bruch surface Fe, e ≥ 2, are studied. An irreducible component of the Hilbert scheme
parametrizing such varieties is shown to be generically smooth of the expected dimension
and the general point of such a component is described.

1. Introduction

Projective varieties are distributed in families, obtained by suitably varying the coefficients
of their defining equations. The description of such families and, in particular, of the properties
of their parameter spaces is a central theme in algebraic geometry.

Milestones to approach such problems have been both the introduction of technical tools,
like flatness, base change, Hilbert polynomial, etc., and the proof (due to Grothendieck with
refinements by Mumford) of the existence of the so called Hilbert scheme, a closed, pro-
jective scheme, parametrizing families of projective varieties with suitable constant numeri-
cal/projective invariants, together with some other fundamental universal properties.

Since then, Hilbert schemes of projective varieties with given Hilbert polynomial have intere-
sted several authors over the years, especially because of the deep connections of the subject
with several other important theories in algebraic geometry: zero-dimensional schemes on
smooth projective varieties, Brill-Noether theory of line bundles on curves, moduli spaces of
genus g curves and their stratifications in terms of suitable subvarieties, vector bundles on
smooth projective varieties, just to mention a few (for an overview the reader is referred, for
instance, to the bibliography in [38]).

For particular cases of projective varieties, one can find in the literature sufficiently detailed
descriptions of their Hilbert schemes. For example special classes of threefolds in P5 were
studied in [20]; results for codimension–two projective varieties are due to [17, 14, 15]; in
codimension three, [32] considered the case of arithmetically Gorenstein closed subschemes in
a projective space, whereas [31] dealt with determinantal schemes. For codimension greater
than or equal to two, Hilbert schemes of Palatini scrolls in Pn, with n odd, have been treated
in [18] while in [19] Hilbert schemes of varieties defined by maximal minors were considered.
We also mention results in [33] concerning Hilbert schemes of determinantal schemes.

An important class of projective varieties is that of r-scrolls in Pn, namely ruled varieties
over a smooth base which are embedded in Pn in such a way that the rulings are r-dimensional
linear subspaces of Pn. This class is important not only because it usually comes out as a
fundamental special case from problems in classical adjunction theory (cf. e.g. [5, 36]), but
mainly because it is strictly related to the study of vector bundles of rank (r+1) over smooth
projective varieties.

2000 Mathematics Subject Classification. Primary 14J30, 14J27, 14J60, 14C05; Secondary 14M07, 14N25,
14N30.

Key words and phrases. Ruled varieties, Vector bundles, Rational surfaces, Hilbert scheme.
The authors thank C.Ciliberto and E. Sernesi for having pointed out questions on Hilbert schemes of three-

fold scrolls over Fe, with e ≥ 2, during the talk of the first author at the Workshop ”Algebraic geometry: two
days in Rome two”, held in Rome in February 2012. The authors are also greateful to the referee for helpful
comments and for having posed a question which allowed us to realize that there was a mistake in the first
version of the paper. Both authors are members of GNSAGA-INdAM. We acknowledge partial support from
MIUR funds, PRIN 2010-2011 project “Geometria delle Varietà Algebriche”.

1



2 MARIA LUCIA FANIA AND FLAMINIO FLAMINI

For rank-two, degree d vector bundles over genus g curves (equivalently, surface scrolls of
degree d and sectional genus g), apart from the classical approach of C. Segre ([37]) and of
some other more recent partial results as, for instance, in [27, 3, 25, 26], a systematic study of
Hilbert schemes of such surface scrolls has been developed in the series of papers [10, 11, 12, 13],
where the authors bridged the Hilbert scheme approach with the vector-bundle one, showing
in particular how projective geometry and degeneration techniques can be used in order to
improve some known results about rank-two vector bundles on curves and also to obtain some
new ones.

A similar approach has been used to study Hilbert schemes of r-scrolls, r ≥ 1, over smooth
projective surfaces S, with S either a K3 ([21]) or the Hirzebruch surfaces F0 and F1 ([6, 7]).
In the authors’ opinion, it would be interesting to develop the use of projective geometry and
of degeneration techniques in order to study possible limits of vector-bundles, of any rank, on
classes of smooth, projective varieties.

In this paper we focus on some classes of 1–scrolls over Hirzebruch surfaces Fe, with e ≥ 2.
Rank–two vector bundles on Hirzebruch surfaces are classified in [9]; some of their cohomo-
logical and ampleness properties are studied in [1]; moduli spaces of rank-two vector bundles
on Hirzebruch surfaces are considered, for example, in [2]. On the other hand, very little is
known about Hilbert schemes of 1–scrolls over Fe.

We consider vector bundles Ee arising as extensions of suitable line bundles over Fe and with
Chern classes c1(Ee) = 3Ce + bef , c2(Ee) = ke, where Ce and f are respectively the section
of minimal self-intersection and a fiber of Fe, whereas be and ke are integers suitably chosen
(cf. Assumptions 3.1, 4.3). Such a choice of c1(Ee) = 3Ce + bef and of the integers be, ke gives
the first case for which the bundle Ee is both uniform and very-ample (cf.§ 4 and Remark 4.2).

Let therefore Xe be a threefold in Pne which is a scroll over Fe, ne ≥ 6, e ≥ 2, that is
Xe

∼= P(Ee) is the projectivization of a rank–two vector bundle Ee over Fe as above. We
assume ne ≥ 6 because it is known that there are no such scrolls when ne ≤ 5, see [36].

If one wants to parametrize varieties Xe of this type, the first tasks to be tackled are:

(i) looking at [Xe] as a point of a component of Hde,ne

3 , the Hilbert scheme parametrizing
3-dimensional subvarieties of Pne of degree de having same Hilbert polynomial PXe

(T ) as that
of Xe, and

(ii) understanding the general point of such a component in H
de,ne

3 .

For e = 0, 1, the above problems have been considered in [6, 7], where the Hilbert schemes
of threefold scrolls X0 and X1 were studied. Namely, it was proved that the irreducible
component containing such scrolls is generically smooth, of the expected dimension, and its
general point is actually a threefold scroll, that is the component is filled up by scrolls. The
aim of this paper is to see what happens if the base of the scroll is Fe, with e ≥ 2.

Our main results, Theorems 5.1, and 5.7, in particular answer a question on Hilbert schemes
of threefold scrolls over Fe, e ≥ 2, pointed out to us by C. Ciliberto and E. Sernesi and for
which we thank them.

In this paper, we prove that there exists an irreducible component Xe of H
de,ne

3 , containing
such scrolls, which is generically smooth, of the expected dimension and such that [Xe] belongs
to the smooth locus of Xe (cf. Theorem 4.5). In contrast with the e = 0, 1 cases, we show
that the family of constructed scrolls Xe’s surprisingly does not fill up the component Xe (cf.
Theorem 5.1).

We thus exhibit a smooth variety Xǫ ⊂ Pne , which is a candidate to represent the general
point of Xe. More precisely, we show that Xǫ corresponds to the general point of an irreducible

component, of the same Hilbert schemeHde,ne

3 , which is generically smooth and of the expected
dimension. We then show that Xǫ flatly degenerates in Pne to a general threefold scroll Xe

as above, in such a way that the base–scheme of the flat, embedded degeneration is entirely
contained in Xe. By the generic smoothness of Xe, we can conclude that Xǫ is actually the
general point of Xe (cf. §’s 5.1, 5.2).
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The paper is structured in the following way. In Section 2 notation is fixed. In Section 3,
following [6, 7], we consider suitable rank-two vector bundles over Fe, with e ≥ 2. In Section 4
we consider Hilbert schemes parametrizing families of 3-dimensional scrolls over Fe, e ≥ 2. In
Section 5 a description of the general point of the component Xe determined in Theorem 4.5
is presented. More precisely, in § 5.1 we first construct the candidate Xǫ and analyze some of
its properties, similar to those investigated for Xe in Sections 3, 4; then, in § 5.2, we show that
Xǫ actually corresponds to the general point of Xe. Finally, Section 6 contains some concrete
examples of Hilbert scheme of scrolls over some Fe, with e ≥ 2 and e both even and odd.

2. Notation and Preliminaries

The following notation will be used throughout this work.

X is a smooth, irreducible, projective variety of dimension 3 (or simply a threefold);
χ(F) =

∑
(−1)ihi(F), the Euler characteristic of F, where F is any vector bundle of

rank r ≥ 1 on X;
ci(F), the i-th Chern class of F;
F|Y the restriction of F to a subvariety Y ;
KX the canonical bundle of X. When the context is clear, X may be dropped, so
KX = K;
ci = ci(X), the i-th Chern class of X;
d = degX = L3, the degree of X in the embedding given by a very-ample line bundle
L;
g = g(X), the sectional genus of (X,L) defined by 2g − 2 = (K + 2L)L2;
if S is a smooth surface, ≡ will denote the numerical equivalence of divisors on S.

For non-reminded terminology and notation, we basically follow [29].

Definition 2.1. A pair (X,L), where L is an ample line bundle on a threefold X, is a scroll
over a normal variety Y if there exist an ample line bundle M on Y and a surjective morphism
ϕ : X → Y with connected fibers such that KX + (4− dimY )L = ϕ∗(M).

In particular, if Y is smooth and (X,L) is a scroll over Y , then (see [5, Prop. 14.1.3])
X ∼= P(E), where E = ϕ∗(L) and L is the tautological line bundle on P(E). Moreover, if
S ∈ |L| is a smooth divisor, then (see e.g. [5, Thm. 11.1.2]) S is the blow up of Y at c2(E)
points; therefore χ(OY ) = χ(OS) and

(2.1) d := L3 = c21(E)− c2(E).

Throughout this work, the scroll’s base Y will be the Hirzebruch surface Fe = P(OP1 ⊕
OP1(−e)), with e ≥ 0 an integer.

Let πe : Fe → P1 be the natural projection onto the base. Then Num(Fe) = Z[Ce] ⊕ Z[f ],
where:
• Ce denotes the unique section corresponding to the morphism OP1 ⊕ OP1(−e) →→ OP1(−e)
on P1, and
• f = π∗(p), for any p ∈ P1.
In particular

C2
e = −e, f2 = 0, Cef = 1.

Let Ee be a rank-two vector bundle over Fe and let ci(Ee) be its ith-Chern class. Then
c1(Ee) ≡ aCe + bf , for some a, b ∈ Z, and c2(Ee) ∈ Z.

3. Some rank-two vector bundles over Fe, for e ≥ 2

In [6, 7] the authors considered suitable rank-two vector bundles over Fe, for e = 0, 1. In
this and the following section, we will focus on the case e ≥ 2. Therefore, unless otherwise
stated, from now on we will use the following:
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Assumptions 3.1. Let e ≥ 2, be, ke be integers. Let Ee be a rank-two vector bundle over Fe,
with

c1(Ee) ≡ 3Ce + bef and c2(Ee) = ke,

such that

(i) h0(Ee) ≥ 7
(ii) be ≥ 3e+ 1
(iii) ke + e > be

(cf. § 4 below and [1, Prop.7.2], for motivation). Moreover, there exists an exact sequence

(3.1) 0 → Ae → Ee → Be → 0,

where Ae and Be are line bundles on Fe such that

(3.2) Ae ≡ 2Ce + (2be − ke − 2e)f and Be ≡ Ce + (ke − be + 2e)f

(cf. [1, Prop.7.2] and [9]).

From (3.1), in particular, one has c1(Ee) = Ae +Be and c2(Ee) = AeBe.

Exact sequence (3.1) gives important preliminary information on the cohomology of Ee, Ae
and Be. Indeed, one has

Lemma 3.2. With Assumptions 3.1, one has

hj(Ee) = hj(Ae) = 0, for j ≥ 2, hi(Be) = 0, for i ≥ 1,

h0(Ae) = 6be − 3ke − 9e+ 3 + h1(Ae), h0(Be) = 2ke − 2be + 3e+ 2

and

(3.3) h0(Ee) = 4be − ke − 6e+ 5 + h1(Ee).

Proof. For dimension reasons, it is clear that hj(Ee) = hj(Fe, Ae) = hj(Fe, Be) = 0, j ≥ 3.
By Serre duality on Fe,

h2(Ae) = h0(−4Ce− (2be−ke−e+2)f) = 0 and h2(Be) = h0(−3Ce− (ke− be+3e+2)f) = 0,

since KFe
≡ −2Ce − (e+ 2)f . In particular, this implies that also h2(Ee) = 0.

We claim that, under Assumptions 3.1, we also have h1(Be) = 0. Indeed, since Be ≡
Ce + (ke − be + 2e)f , it follows that R1π∗(Be) = 0 and thus by Leray’s isomorphism,

h1(Be) = h1(P1, (OP1 ⊕ OP1(−e))⊗ OP1(ke − be + 2e))

= h1(P1,OP1(ke − be + 2e)) + h1(P1,OP1(ke − be + e)) = 0,

by Assumptions 3.1-(iii).
Thus we have

(3.4) χ(Ae) = h0(Ae)− h1(Ae), χ(Be) = h0(Be), χ(Ee) = h0(Ee)− h1(Ee).

From the Riemann-Roch formula, we have

χ(Ae) =
1

2
Ae(Ae −KFe

) + 1 =

1

2
(2Ce + (2be − ke − 2e)f) (4Ce + (2be − ke − e+ 2)f) + 1 = 6be − 3ke − 9e+ 3,

whereas

χ(Be) = h0(Be) =
1

2
Be(Be −KFe

) + 1 =

1

2
(Ce + (ke − be + 2e)f) (3Ce + (ke − be + 3e+ 2)f) + 1 = 2ke − 2be + 3e+ 2.

Since χ(Ee) = χ(Ae)+χ(Be), the remaining statements follow from the cohomology sequence
associated with (3.1) and from (3.4). �
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From Lemma 3.2 we have:

(3.5) 0 → H0(Ae) → H0(Ee) → H0(Be)
∂

−→ H1(Ae) → H1(Ee) → 0,

where ∂ is the coboundary map determined by the extension (3.1). Thus

(3.6) h1(Ee) ≤ h1(Ae).

Remark 3.3. From (3.3), Assumption 3.1(i) is equivalent to 4be − ke − 6e+ 5 + h1(Ee) ≥ 7,
that is ke ≤ 4be − 6e− 2 + h1(Ee).

3.1. Vector bundles in Ext1(Be, Ae). This subsection is devoted to an analysis of vector
bundles fitting in the exact sequence (3.1). We need the following:

Lemma 3.4. With Assumptions 3.1, one has

(3.7) dim(Ext1(Be, Ae)) =





0 for be − e < ke <
3be+2−5e

2

5e+ 2ke − 3be − 1 for 3be+2−5e
2 ≤ ke <

3be+2−4e
2

9e+ 4ke − 6be − 2 for 3be+2−4e
2 ≤ ke ≤ 4be − 6e− 2 + h1(Ee).

Proof. By standard facts, Ext1(Be, Ae) ∼= H1(Ae −Be). From (3.2),

(3.8) Ae −Be ≡ Ce + (3be − 2ke − 4e)f.

Now Riπe∗(Ce + (3be − 2ke − 4e)f) = 0, for i > 0, and πe∗(Ce + (3be − 2ke − 4e)f) ∼=
(OP1 ⊕ OP1(−e))⊗ OP1(3be − 2ke − 4e), hence, from Leray’s isomorphism we have

h1(Ae −Be) = h1(P1, (OP1 ⊕ OP1(−e))⊗ OP1(3be − 2ke − 4e))

= h1(OP1(3be − 2ke − 4e)) + h1(OP1(3be − 2ke − 5e))

By Serre’s duality on P1, the previous sum coincides with

h0(OP1(2ke + 4e− 3be − 2)) + h0(OP1(2ke + 5e− 3be − 2)).

Put α := 2ke + 4e− 3be − 2 and β := 2ke + 5e− 3be − 2; note that β = α+ e.

• If β < 0 then also α < 0 and thus h1(Ae −Be) = 0.

• If β ≥ 0 and α < 0 then h1(Ae −Be) = β + 1.

• Finally, if α ≥ 0 then β > 0 and thus h1(Ae −Be) = α+ β + 2.
Now observe that

β < 0 ⇔ ke <
3be + 2− 5e

2
and α < 0 ⇔ ke <

3be + 2− 4e

2
.

Moreover, since e ≥ 2, by Assumptions 3.1-(ii) one easily verifies that all such numerical
conditions are compatible with Assumptions 3.1-(i) and (iii) (cf. also Rem. 3.3), in other
words one has

be − e <
3be + 2− 5e

2
<

3be + 2− 4e

2
< 4be − 6e− 2 ≤ 4be − 6e− 2 + h1(Ee).

Hence (3.7) follows. �

Corollary 3.5. With Assumptions 3.1, for be − e < ke <
3be+2−5e

2 , one has Ee = Ae ⊕Be.

In § 5 (cf. the proof of Theorem 5.1), we shall also need to know dim(Aut(Ee)) = h0(Ee⊗E∨
e ).

Lemma 3.6. With Assumptions 3.1, take any Ee ∈ Ext1(Ae, Be). Then:

(3.9) h0(Ee ⊗ E
∨

e ) =























6be − 4ke − 9e+ 4 for be − e < ke < 3be+2−5e
2

3be − 2ke − 4e+ 2 for 3be+2−5e
2

≤ ke ≤
3be−4e

2
and Ee general

1 for 3be−4e
2

< ke ≤ 4be − 6e− 2 + h1(Ee) and Ee general.
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Proof. (i) According to Corollary 3.5, for be − e < ke <
3be+2−5e

2 , Ee = Ae ⊕Be. Therefore

Ee ⊗ E∨
e
∼= O⊕2

Fe
⊕ (Ae −Be)⊕ (Be −Ae).

From (3.2),

(3.10) Be −Ae ≡ −Ce + (2ke − 3be + 4e)f,

so it is not effective, since it negatively intersects the irreducible, moving curve f .
From (3.8) and from the proof of Lemma 3.4, one has

h0(Ae−Be) = h0(Ce+(3be− 2ke− 4e)f) = h0(OP1(3be− 2ke− 4e))+h0(OP1(3be− 2ke− 5e)).

Put α′ := 3be − 2ke − 4e and β′ := 3be − 2ke − 5e; note that β′ = α′ − e
Since ke <

3be−5e+2
2 , OP1(3be − 2ke − 4e) is always effective whereas OP1(3be − 2ke − 5e) is

effective unless 3be − 2ke − 5e = −1. So h0(OP1(3be − 2ke − 4e)) + h0(OP1(3be − 2ke − 5e)) =
6be − 4ke − 9e+ 2; taking into account also h0(O⊕2

Fe
), we conclude in this case.

(ii)-(iii) We treat here the remaining cases in (3.9). Recall that the upper-bound ke ≤ 4be −
6e− 2 + h1(Ee) comes from Assumptions 3.1-(i) (cf. Remark 3.3).

According to Lemma 3.4, when ke ≥
3be+2−5e

2 , one has dim(Ext1(Be, Ae)) > 0. Therefore,

let Ee ∈ Ext1(Be, Ae) be general. Using the fact that Ee is of rank two and fits in the exact
sequence (3.1), we have

E∨
e
∼= Ee ⊗ O(−Ae −Be),

since c1(Ee) = Ae + Be. Tensoring (3.1) respectively by E∨
e , −Be, −Ae, we get the following

exact diagram

(3.11)

0 0 0
↓ ↓ ↓

0 → Ae −Be → Ee(−Be) → OFe
→ 0

↓ ↓ ↓
0 → Ee(−Be) → Ee ⊗ E∨

e → Ee(−Ae) → 0
↓ ↓ ↓

0 → OFe
→ Ee(−Ae) −→ Be −Ae → 0

↓ ↓ ↓
0 0 0

We want to compute both h0(Ee(−Be)) and h
0(Ee(−Ae)).

From the cohomology sequence associated to the first row of diagram (3.11) we get

0 → H0(Ae −Be) → H0(Ee(−Be)) → H0(OFe
)

∂̂
−→ H1(Ae −Be).

Observe that the coboundary map

H0(OFe
)

∂̂
−→ H1(Ae −Be),

has to be injective since it corresponds to the choice of the non-trivial extension class ηEe
∈

Ext1(Be, Ae) associated to Ee general. Thus

h0(Ee(−Be)) = h0(Ae −Be)) = h0(OP1(α′)) + h0(OP1(β′)),

with α′ and β′ as in Case (i) above.
Since ke ≥

3be+2−5e
2 , then β′ ≤ −2 hence h0(OP1(β′)) = 0. Thus, h0(Ee(−Be)) = h0(OP1(α′)).

Morover, h0(OP1(α′)) = 0 if and only if ke >
3be−4e

2 ; thus

(3.12) h0(Ee(−Be)) =

{
3be − 2ke − 4e+ 1 for 3be+2−5e

2 ≤ ke ≤
3be−4e

2

0 for ke >
3be−4e

2

From the third row of diagram (3.11), since Be − Ae is not effective (cf. (3.10)), it follows
that h0(Ee(−Ae)) = h0(OFe

) = 1, thus H0(Ee(−Ae)) ∼= C.
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From the second column of diagram (3.11), we have

0 → H0(Ee(−Be)) → H0(Ee ⊗ E∨
e )

ψ
−→ H0(Ee(−Ae)) ∼= C → H1(Ee(−Be)) → · · · .

Claim 3.7. The map ψ is surjective.

Proof of Claim 3.7. From the first two columns of diagram (3.11) and the fact that the

coboundary map ∂̂ is injective, as remarked above, we have

0 H0(Ee ⊗ E∨
e )

↓ ↓ψ

0 → H0(OFe
)

∼=
−→ H0(Ee(−Ae)) → 0

↓∂̂ ↓∂̃

H1(Ae −Be) −→ H1(Ee(−Be))

Since H0(Ee(−Ae))) ∼= C, ψ is not surjective iff ψ ≡ 0, which is equivalent to ∂̃ injective and
this is impossible since, from the first column of diagram (3.11), we have

H0(OFe
)

∂̂
−→ H1(Ae −Be) → H1(Ee(−Be))

and the composition of the above two maps is ∂̃. This proves the claim. �

From Claim 3.7, we conclude that

(3.13) h0(Ee ⊗ E∨
e ) = h0(Ee(−Be)) + 1.

Combining (3.12) and (3.13) we determine h0(Ee ⊗ E∨
e ) in the case Ee ∈ Ext1(Be, Ae) is

general. �

Remark 3.8. (1) Note that when 3be+2−5e
2 ≤ ke ≤ 3be−4e

2 (which makes sense only for

e ≥ 2), any Ee ∈ Ext1(Ae, Be) is such that h0(Ee ⊗ E∨
e ) > 1, that is Ee is not simple. This

gives a different situation with respect to cases e = 0, 1. Indeed, for e = 1, b1 ≥ 4, when
dim(Ext1(B1, A1)) > 0, E1 ∈ Ext1(B1, A1) general is always simple (cf. [7, Lemmas 3.4, 3.6]).
Similar computations hold for the case e = 0 (cf. (5.16) below).

(2) When h0(Ee ⊗ E∨
e ) = 1 (from (3.9) this, for instance, happens when Ee ∈ Ext1(Be, Ae) is

general with 3be−4e
2 < ke ≤ 4be − 6e+ 2 + h1(Ee)), Ee has to be necessarily indecomposable.

3.2. Non-special bundles Ee. For our analysis in § 4, it is fundamental to deal with vector
bundles Ee with no higher cohomology, in particular non-special that is with h1(Ee) = 0.
Indeed, if Ee turns out to be very-ample, the fact that Ee has no higher cohomology not only
implies that the ruled threefold P(Ee) isomorphically embeds via the tautological linear system
as a smooth, linearly normal scroll Xe in the projective space Pne of (the expected) dimension
ne := h0(Ee)−1, but mainly its non-speciality ensures good behavior of the Hilbert point [Xe]
in its Hilbert scheme (cf. proof of Claim 4.6).

From Lemma 3.2, having Ee with no higher cohomology is equivalent to having Ee non-
special. In this subsection, we therefore find sufficient conditions for the non-speciality of Ee,
coming from (3.6) and the cohomology of Ae.

Lemma 3.9. With Assumptions 3.1, one has

(3.14) h1(Ae) =





0 for be − e < ke < 2be + 2− 4e

4e+ ke − 2be − 1 for 2be + 2− 4e ≤ ke < 2be + 2− 3e

7e+ 2ke − 4be − 2 for 2be + 2− 3e ≤ ke < 2be + 2− 2e

9e+ 3ke − 6be − 3 for 2be + 2− 2e ≤ ke ≤ 4be − 6e− 2 + h1(Ee).
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Proof. Fom (3.2) πe∗(Ae) ∼= Sym2(OP1 ⊕OP1(−e))⊗OP1(2be−ke− 2e) and Riπe∗(Ae) = 0 for
i > 0. Hence by Leray’s isomorphism,

h1(Ae) = h1(Sym2(OP1 ⊕ OP1(−e))⊗ OP1(2be − ke − 2e))

= h1((OP1 ⊕ OP1(−e)⊕ OP1(−2e))⊗ OP1(2be − ke − 2e))

= h1(OP1(2be − ke − 2e)) + h1(OP1(2be − ke − 3e)) + h1(OP1(2be − ke − 4e))

Let α′ := 2e+ ke − 2be − 2. By Serre Duality theorem on P1, from above we have

h1(Ae) = h0(OP1(α′)) + h0(OP1(α′ + e)) + h0(OP1(α′ + 2e)).

• If α′+2e < 0, that is ke < 2be+2−4e, then h1(Ae) = 0 (observe that condition ke < 2be+2−4e
is compatible with ke > be − e, because of Assumptions 3.1-(ii)).

• If α′ + e < 0 ≤ α′ + 2e, i.e. 2be + 2− 4e ≤ ke < 2be + 2− 3e, then

h1(Ae) = h0(OP1(α′ + 2e))) = h0(OP1(4e+ ke − 2be − 2)) = 4e+ ke − 2be − 1.

• If α′ < 0 ≤ α′ + e, equivalently 2be + 2− 3e ≤ ke < 2be + 2− 2e, then

h1(Ae) = h0(OP1(α′ + 2e)) + h0(OP1(α′ + e)) = 2α′ + 3e+ 2 = 7e+ 2ke − 4be − 2.

• Finally, if α′ ≥ 0, which is ke ≥ 2be + 2− 2e then

h1(Ae) = 3α′ + 3e+ 3 = 9e+ 3ke − 6be − 3

(notice that condition ke ≥ 2be + 2− 2e is compatible with what computed in Remark 3.3; in
other words one has 2be+2−2e < 4be−6e−2 ≤ 4be−6e−2+h1(Ee) because of Assumptions
3.1-(ii)). Hence h1(Ae) is as in (3.14). �

Corollary 3.10. Assumptions 3.1 and ke < 2be + 2− 4e imply that any Ee ∈ Ext1(Be, Ae) is
such that h1(Ee) = 0.

Remark 3.11. (1) Computations as in Remark 3.3 show that ke < 2be + 2 − 4e implies
h0(Ee) = 4be − ke − 6e + 5 ≥ 2be − 2e + 3 which, from Assumption 3.1(iii) and e ≥ 2, turns
out to be greater than or equal to 4e + 5 ≥ 13. Therefore, conditions be ≥ 3e + 1 and
be − e < ke < 2be + 2− 4e are sufficient for Assumptions 3.1 to hold.
(2) When moreover be > 4e− 4, then 3be−4e

2 < 2be + 2− 4e holds. In this case, as observed in

Remark 3.8-(2), Lemmas 3.4 and 3.6 ensure that a general Ee ∈ Ext1(Be, Ae) is indecompo-
sable.

Remark 3.12. As costumary, 0 ∈ Ext1(Be, Ae) corresponds to the trivial bundle Ae ⊕ Be.
When ke ≥ 2be+2− 4e (i.e. when h1(Ae) > 0), a given Ee ∈ Ext1(Be, Ae) \ {0} is non-special
if and only if the coboundary map ∂ : H0(Be) → H1(Ae) (corresponding to the choice of Ee)

is surjective. From (3.5), Im(∂) ∼= Coker
{
H0(Ee)

ρ
→ H0(Be)

}
; thus the surjectivity of ∂ can

be geometrically interpreted with the fact that the linear system induced by the tautological
line bundle OP(Ee)(1) onto the section Σe ⊂ P(Ee), corresponding to the quotient line bundle

Ee →→ Be, is not complete with codimH0(OΣe
(1))(Im(ρ)) = h1(Ae). When ke ≥ 2be+2−4e, it is

a very tricky problem to find conditions granting the existence of a sublocus U ⊂ Ext1(Be, Ae)
s.t. h1(Ee) = 0 for any Ee ∈ U.

4. 3-dimensional scrolls over Fe and their Hilbert schemes

In this section, results from § 3 are used for the study of suitable 3-dimensional scrolls over
Fe in projective spaces and of some components of their Hilbert schemes.

The choice of c1(Ee) = 3Ce + bef and of the integers be, ke (cf. Assumptions 3.1, 4.3), give
the first case for which the bundle Ee is both uniform and very-ample. Indeed, if Ee is assumed
to be ample with c1(Ee) = 3Ce + bef then the restriction of Ee|f to any πe-fiber f has to be
ample; hence

Ee|f = Of (a)⊕ Of (b), with a, b > 0
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and a + b = 3 because c1(Ee)f = 3. Therefore, up to reordering, the only possibility is
a = 2, b = 1 for any πe-fiber f , i.e. Ee is uniform (cf. e.g. [35] and [2, Def. 3]). Moreover,
c1(Ee) = 3Ce + bef , together with very-ampleness hypothesis, naturally lead to Assumptions
3.1.

Indeed, one has the following necessary condition for very-ampleness:

Proposition 4.1. (see [1, Prop. 7.2]) Let Ee be a very-ample, rank-two vector bundle over Fe
such that

c1(Ee) ≡ 3Ce + bef and c2(Ee) = ke.

Then Ee satisfies all the hypotheses in Assumptions 3.1.

Remark 4.2. (1) By Lemma 3.4, when ke is such that be − e < ke <
3be+2−5e

2 the only

bundle in Ext1(Be, Ae) is Ee := Ae ⊕ Be. The very-ampleness of Be and Ae implies that of
Ee := Ae ⊕ Be, [5, Lemma 3.2.3]. On the other hand the very-ampleness of Ee := Ae ⊕ Be
implies the ampleness of Be and Ae, but on Fe ampleness of a line bundle is equivalent to
very-ampleness, [29, V,Cor. 2.18], and thus Ee := Ae ⊕ Be very-ample implies that both
Be and Ae are very-ample. Assumption 3.1(iii) (resp., ke < 2be − 4e) is a necessary and
sufficient condition for Be (resp., for Ae) to be very-ample. Since very-ampleness is an open
condition, when dim(Ext1(Be, Ae)) > 0 and ke < 2be − 4e holds, then the general bundle Ee

in Ext1(Be, Ae) is very-ample too.

(2) From the previous sections, condition be − e < ke < 2be − 4e is compatible because of
Assumption 3.1(ii) and gives also that any Ee ∈ Ext1(Be, Ae) is non-special.

(3) Comparing Lemmas 3.4 and 3.6 with this new bound on ke, we notice that 3be+2−5e
2 <

2be − 4e holds if and only if be ≥ 3e + 3; similarly 3be+2−4e
2 < 2be − 4e holds if and only if

be ≥ 4e+ 3 and, finally, 3be−4e
2 < 2be − 4e holds if and only if b ≥ 4e+ 1. In particular, when

be ≥ 4e+1 and 3be−4e
2 < ke < 2be−4e, Lemma 3.6 also ensures the existence of indecomposable

bundles in Ext1(Be, Ae) (cf. Remark 3.11(2)).

From Remark (4.2), it is clear that from now on we will focus on be − e < ke < 2be − 4e. In
other words, Assumptions 3.1 will be replaced by:

Assumptions 4.3. Let e ≥ 2, ke, be be integers. Let Ee be a rank-two vector bundle over Fe
such that

c1(Ee) ≡ 3Ce + bef, c2(Ee) = ke,

with

(4.1) be ≥ 3e+ 1 and be − e < ke < 2be − 4e.

Let

(P(Ee),OP(Ee)(1))

be the 3-dimensional scroll over Fe, and let πe : Fe → P1 and ϕ : P(Ee) → Fe be the usual
projections.

Proposition 4.4. Let Ee be as in Assumptions 4.3. Moreover, when dim(Ext1(Be, Ae)) > 0,
we further assume that Ee ∈ Ext1(Be, Ae) is general. Then OP(Ee)(1) defines an embedding

(4.2) Φe := Φ|OP(Ee)(1)|
: P(Ee) →֒ Xe ⊂ Pne ,

where Xe = Φe(P(Ee)) is smooth, non-degenerate, of degree de, with

(4.3) ne = 4be − ke − 6e+ 4 ≥ 4e+ 4 ≥ 12 and de = 6be − 9e− ke.

Denoting by (Xe, Le) := (Xe,OXe
(H)) ∼= (P(Ee),OP(Ee)(1)), one also has

(4.4) hi(Xe, Le) = 0, i ≥ 1.
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Proof. The very-ampleness of Le is equivalent to that of Ee, and the latter follows from Remark
4.2(1) and Assumptions 4.3. The formula on the degree de of Xe in (4.3) follows from (2.1).
From Leray’s isomorphisms, Lemma 3.2 and Corollary 3.10 we get (4.4). Finally, since ne+1 :=
h0(Xe, Le) = h0(Fe,Ee), then ne + 1 ≥ 4e+ 5 ≥ 13 follows from Remark 3.11(2) and the fact
that e ≥ 2. �

4.1. The component Xe of the Hilbert scheme containing [Xe]. In what follows, we
will be interested in studying the Hilbert scheme parametrizing subvarieties of Pne having the
same Hilbert polynomial P (T ) := PXe

(T ) ∈ Q[T ] of Xe, which is the numerical polynomial
defined by

(4.5) P (m) = χ(Xe,mLe) =
1

6
m3L3

e−
1

4
m2L2

e ·K+
1

12
mLe ·(K

2+c2)+χ(OXe
), for all m ∈ Z,

as it follows from [24, Example 15.2.5, pg 291].
For basic terminology and facts on Hilbert schemes we follow, for instance, [28, 38, 39].

The scroll Xe ⊂ Pne corresponds to a point [Xe] ∈ H
de,ne

3 , where Hde,ne

3 denotes the Hilbert
scheme parametrizing 3-dimensional subvarieties of Pne with Hilbert polynomial P (T ) as above

(in particular of degree de), where ne and de are as in (4.3). When [Xe] ∈ H
de,ne

3 is a smooth
point, Xe is said to be unobstructed in Pne . Let

(4.6) Ne := NXe/Pne

be the normal bundle of Xe in Pne . From standard facts on Hilbert schemes (cf. e.g. [38,
Corollary 3.2.7]), one has

(4.7) T[Xe](H
de,ne

3 ) ∼= H0(Ne)

and

(4.8) h0(Ne)− h1(Ne) ≤ dim[Xe](H
de,ne

3 ) ≤ h0(Ne),

where the left-most integer in (4.8) is the expected dimension of Hde,ne

3 at [Xe] and where
equality holds on the right in (4.8) iff Xe is unobstructed in Pne .

The next result shows that Xe is unobstructed and such that [Xe] sits in an irreducible

component of Hde,ne

3 with “nice” behaviour.

THEOREM 4.5. There exists an irreducible component Xe ⊆ H
de,ne

3 , which is generically
smooth and of (the expected) dimension

(4.9) dim(Xe) = ne(ne + 1) + 3ke − 2be + 3e− 5,

such that [Xe] belongs to the smooth locus of Xe.

Proof. By (4.7) and (4.8), the statement will follow by showing that H i(Xe, Ne) = 0, for i ≥ 1,
and conducting an explicit computation of h0(Xe, Ne) = χ(Xe, Ne).

To do this, let

0 −→ OXe
−→ OXe

(1)⊕(ne+1) −→ TPne |Xe
−→ 0(4.10)

be the Euler sequence on Pne restricted to Xe. Since (Xe, Le) is a scroll over Fe,

H i(Xe,OXe
) = H i(Fe,OFe

) = 0, for i ≥ 1.(4.11)

From (4.4), (4.11), the cohomology sequence associated to (4.10) and from the fact that Xe

is non–degenerate, one has:

(4.12) h0(Xe, TPne |Xe
) = (ne + 1)2 − 1 and hi(Xe, TPne |Xe

) = 0, for i ≥ 1.

The normal sequence

0 −→ TXe
−→ TPne |Xe

−→ Ne −→ 0(4.13)
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gives therefore

H i(Xe, Ne) ∼= H i+1(Xe, TXe
) for i ≥ 1.(4.14)

Claim 4.6. H i(Xe, Ne) = 0, for i ≥ 1.

Proof of Claim 4.6. From (4.12), (4.13) and dimension reasons, one has hj(Xe, Ne) = 0, for
j ≥ 3. For the other cohomology spaces, we can use (4.14).

In order to compute Hj(Xe, TXe
), j = 2, 3, we use the scroll map ϕ : P(Ee) −→ Fe and we

consider the relative cotangent bundle sequence:

0 → ϕ∗(Ω1
Fe
) → Ω1

Xe
→ Ω1

Xe|Fe
−→ 0.(4.15)

From (4.15) and the Whitney sum, one obtains

c1(Ω
1
Xe

) = c1(ϕ
∗(Ω1

Fe
)) + c1(Ω

1
Xe|Fe

)

thus
Ω1
Xe|Fe

= KXe
+ ϕ∗(−c1(Ω

1
Fe
)) = KXe

+ ϕ∗(−KFe
).

The adjunction theoretic characterization of the scroll gives

KXe
= −2Le + ϕ∗(KFe

+ c1(Ee)) = −2Le + ϕ∗(KFe
+ 3Ce + bef)

thus
Ω1
X|Fe

= KXe
+ ϕ∗(−KFe

) = −2Le + ϕ∗(3Ce + bef)

which, combined with the dual of (4.15), gives

0 → 2Le − ϕ∗(3Ce + bef) → TXe
→ ϕ∗(TFe

) → 0.(4.16)

In what follows, we compute the cohomology of the left and right-most bundles in (4.16).

(i) First we concentrate on ϕ∗(TFe
). By Leray’s isomorphism, one has

H i(ϕ∗(TFe
)) ∼= H i(TFe

), for any i ≥ 0.

Consider therefore the relative cotangent bundle sequence of πe : Fe → P1

0 → π∗eΩ
1
P1 → Ω1

Fe
→ Ω1

Fe|P1 → 0.(4.17)

Since Ω1
Fe|P1 = KFe

+ π∗eOP1(2) = −2Ce − ef , dualizing (4.17) we get

0 → 2Ce + ef → TFe
→ π∗eTP1 → 0.(4.18)

Since π∗eTP1
∼= π∗eOP1(2), by Leray’s isomorphism

h0(π∗eTP1) = 3, hi(π∗eTP1) = 0, for i ≥ 1.

As in the proof of Lemma 3.9, Leray’s isomorphism gives

hi(2Ce + ef) = hi(P1, [OP1 ⊕ OP1(−e)⊕ OP1(−2e)]⊗ OP1(e)), for any i ≥ 1.

Thus,

h0(2Ce + ef) = e+ 2, h1(2Ce + ef) = e− 1, hj(2Ce + ef) = 0, for j ≥ 2.

From [34, Lemma 10], one has
h0(Fe, TFe

) = e+ 5.

Therefore, putting all together in the cohomology sequence associated to (4.18), we get

h0(Xe, ϕ
∗(TFe

)) = h0(Fe, TFe
) = e+ 5,

h1(Xe, ϕ
∗(TFe

)) = h1(Fe, TFe
) = e− 1,(4.19)

hj(Xe, ϕ
∗(TFe

)) = hj(Fe, TFe
) = 0, for j ≥ 2.

(ii) We now devote our attention to the cohomology of 2Le−ϕ
∗(3Ce+bef) in (4.16). Noticing

that Riϕ∗(2Le) = 0 for i ≥ 1 (see [29, Ex. 8.4, p. 253]), projection formula and Leray’s
isomorphism give

(4.20) H i(Xe, 2Le − ϕ∗(3Ce + bef)) ∼= H i(Fe, Sym
2Ee ⊗ (−3Ce − bef)), ∀ i ≥ 0.
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Therefore

(4.21) hj(Xe, 2Le − ϕ∗(3Ce + bef)) = 0, j ≥ 3,

for dimension reasons.
We now want to show that H2(Fe, Sym

2Ee ⊗ (−3Ce − bef)) = 0. To do this, recall that Ee
fits in the exact sequence (3.1), with Ae and Be as in (3.2). By [29, 5.16.(c), p. 127], there is
a finite filtration of Sym2(Ee),

Sym2(Ee) = F 0 ⊇ F 1 ⊇ F 2 ⊇ F 3 = 0

with quotients

F p/F p+1 ∼= Symp(Ae)⊗ Sym2−p(Be),

for each 0 ≤ p ≤ 2. Hence

F 0/F 1 ∼= Sym0(Ae)⊗ Sym2(Be) = 2Be

F 1/F 2 ∼= Sym1(Ae)⊗ Sym1(Be) = Ae +Be

F 2/F 3 ∼= Sym2(Ae)⊗ Sym0(Be) = 2Ae, that is F
2 = 2Ae,

since F 3 = 0. Thus, we get the following exact sequences

(4.22) 0 → F 1 → Sym2(Ee) → 2Be → 0

(4.23) 0 → F 2 → F 1 → Ae +Be → 0

(4.24) F 2 = 2Ae

Twisting (4.22), (4.23) with −c1(Ee) = −3Ce − bef = −Ae −Be and using (4.24) we get

(4.25) 0 → F 1(−3Ce − bef) → Sym2(Ee)⊗ (−3Ce − bef) → Be −Ae → 0

(4.26) 0 → Ae −Be → F 1(−3Ce − bef) → OFe
→ 0

First we focus on (4.26); from (3.8) and from the same arguments used in Lemma 3.4, one
gets

hi(Ae −Be) = hi(P1,OP1(3be − 2ke − 4e)⊕ OP1(3be − 2ke − 5e));

so, for dimension reasons, hi(Ae − Be) = 0, for any i ≥ 2. Since moreover hi(OFe
) = 0 for

i ≥ 1, then (4.26) gives

(4.27) h2(F 1(−3Ce − bef)) = 0.

Passing to (4.25) observe that, from (3.10) and from the fact that KFe
≡ −2Ce − (e+ 2)f ,

one gets

h2(Be −Ae) = h0(−Ce + (3be − 2ke − 5e− 2)f) = 0.

Thus, from (4.27), (4.25) and (4.20), one has

(4.28) h2(Fe, Sym
2Ee ⊗ (−3Ce − bef)) = h2(Xe, 2Le − ϕ∗(3Ce + bef)) = 0.

Using (4.19), (4.21) and (4.28) in the cohomology sequence associated to (4.16), we get

(4.29) hj(Xe, TXe
) = 0, for j ≥ 2.

Isomorphism (4.14) concludes the proof of Claim 4.6. �

Using (4.7) and (4.8), Claim 4.6 implies that there exists an irreducible component Xe of

H
de,ne

3 containing [Xe] as a smooth point.
Since smoothness is an open condition, Xe is generically smooth. Moreover, always from

(4.8) and Claim 4.6, it follows that dim(Xe) = h0(Xe, Ne) = χ(Ne) i.e. Xe has the expected
dimension.
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The Hirzebruch-Riemann-Roch theorem gives

χ(Ne) =
1

6
(n31 − 3n1n2 + 3n3) +

1

4
c1(n

2
1 − 2n2)(4.30)

+
1

12
(c21 + c2)n1 + (ne − 3)χ(OXe

)

where ni := ci(Ne) and ci := ci(Xe).
If K := KXe

, the Chern classes of Ne can be obtained from (4.13):

n1 = K + (ne + 1)Le;

n2 =
1

2
ne(ne + 1)L2

e + (ne + 1)LeK +K2 − c2;(4.31)

n3 =
1

6
(ne − 1)ne(ne + 1)L3

e +
1

2
ne(ne + 1)KL2

e + (ne + 1)K2Le

−(ne + 1)c2Le − 2c2K +K3 − c3.

The numerical invariants of Xe can be easily computed by:

KL2
e = −2de + 4be − 6e− 6; K2Le = 4de − 14be + 21e+ 20;

c2Le = 2be − 3e+ 10; K3 = −8de + 36be − 54e− 48;

−Kc2 = 24; c3 = 8.

Plugging these in (4.31) and then in (4.30), one gets

χ(Ne) = (de + 3e− 2be + 5)ne − 5− 24e+ 16be − 3de.

From (4.3), one has de = 6be − 9e− ke; in particular

de + 3e− 2be + 5 = 4be − 6e− ke + 5 = ne + 1,

as it follows from (4.3). Thus

χ(Ne) = (ne + 1)ne − 5− 3(6be − 9e− ke)− 24e+ 16be = ne(ne + 1) + 3ke − 2be + 3e− 5,

as in (4.9). �

Remark 4.7. The proof of Theorem 4.5 gives

(4.32) h0(Ne) = ne(ne + 1) + 3ke − 2be + 3e− 5, hi(Ne) = 0, i ≥ 1.

Using (4.12) and (4.32) in the exact sequence (4.13), one gets

(4.33) χ(TXe
) = h0(TPne |Xe

)− h0(Ne) = 6be − 4ke + 9− 9e.

Moreover, from (4.13) and (4.12), one has:

(4.34) 0 → H0(TXe
) → H0(TPne |Xe

)
α
→ H0(Ne)

β
→ H1(TXe

) → 0,

In the sequel (cf. the proof of Theorem 5.1 below) we will make use of the following
consequences of Theorem 4.5, interpreted via (4.34).

Corollary 4.8. When dim(Ext1(Be, Ae)) = 0, one has

h0(TXe
) = 6be − 4ke − 8e+ 8, h1(TXe

) = e− 1, hj(TXe
) = 0, for j ≥ 2.

In particular,

(4.35) dim(Coker(α)) = e− 1,

where α is the map in (4.34).
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Proof. From Lemma 3.4 and Remark 4.2(3), notice that dim(Ext1(Be, Ae)) = 0 occurs when,
either be = 3e + 1, 3e + 2 and for any be − e < ke < 2be − 4e, or for be ≥ 3e + 3 and
be − e < ke <

3be+2−5e
2 < 2be − 4e.

Now hj(TXe
) = 0, for j ≥ 2, is (4.29) which more generally holds for any be, ke as in (4.1).

We thus concentrate on hj(TXe
), for j = 0, 1. Since h1(Ae − Be) = dim(Ext1(Be, Ae)) = 0,

from (4.26) one has

h0(F 1(−3Ce − bef)) = h0(Ae −Be) + 1 = 6be − 4ke − 9e+ 3, h1(F 1(−3Ce − bef)) = 0.

Passing to (4.25), from (3.10) and Leray’s isomorphism, one has hi(Be−Ae) = 0 for any i ≥ 0.
Thus

hi(Sym2Ee ⊗ (−3Ce − bef)) = hi(F 1(−3Ce − bef)), for 0 ≤ i ≤ 2,

and thus

h0(Sym2Ee ⊗ (−3Ce − bef)) = 6be − 4ke − 9e+ 3, h1(Sym2Ee ⊗ (−3Ce − bef)) = 0.

The cohomology sequence associated to (4.16) along with (4.20) and (4.19) gives the first part
of the statement.

Finally, for (4.35), it suffices to notice that the map β in (4.34) is surjective. �

5. The general point of the component Xe

In this section a description of the general point of Xe, determined in Theorem 4.5, is pre-
sented. The following preliminary result shows that in general scrolls arising from Proposition
4.4 do not fill up Xe.

THEOREM 5.1. Let Ye be the locus in Xe filled up by threefold scrolls Xe as in Proposition
4.4. Then
(i) if be − e < ke <

3be+2−5e
2 , one has codimXe

(Ye) = e− 1,

(ii) if 3be+2−5e
2 ≤ ke ≤ 2be − 4e, one has codimXe

(Ye) ≤ e− 1.

Proof. In case (i), from Lemma 3.4, dim(Ext1(Be, Ae)) = 0. Therefore Xe
∼= P(Ae ⊕ Be) is

uniquely determined, so dim(Ye) = dim(Im(α)), where α is the map in (4.34). Thus

codimXe
(Ye) = dim(Coker(α)) = e− 1

where the last equality comes from (4.35).
In case (ii) we have dim(Ext1(Be, Ae)) > 0; consider the following quantities.

(a) Denote by τe the number of parameters counting isomorphism classes of projective
bundles P(Ee) as in Proposition 4.4. In other words, τe takes into account weak
isomorphism classes of extensions, which are parametrized by P(Ext1(Be, Ae)) (cf.
[22, p. 31]), see Lemma 3.4 for the calculation of Ext1(Be, Ae). In particular, τe =
dim(Ext1(Be, Ae))− 1 and, from Lemma 3.4, this number is as follows:

(5.1) τe :=

{
5e+ 2ke − 3be − 2 3be+2−5e

2 ≤ ke <
3be+2−4e

2

9e+ 4ke − 6be − 3 3be+2−4e
2 ≤ ke < 2be − 4e

(more precisely, note that if 3be+2−5e
2 ≤ ke < 2be − 4e ≤ 3be+2−4e

2 , that is, when
3e+ 3 ≤ be ≤ 4e+ 2, then (5.1) simply reads τe := 5e+ 2ke − 3be − 2).

(b) GXe
⊂ PGL(ne+1,C) denotes the projective stabilizer of Xe ⊂ Pne , i.e. the subgroup

of projectivities of Pne fixing Xe. In particular (cf. (4.13))

(5.2) dim(PGL(ne + 1,C))− dim(GXe
) = ne(ne + 2)− h0(TXe

)

is the dimension of the full orbit of Xe ⊂ Pne under the action of all the projective
transformations of Pne . This equals dim(Im(α)), where α is the map in (4.34).
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The rest of the proof now reduces to a parameter computation to obtain a lower bound for
the dimension of Ye. From the exact sequence (3.1), we observe that:

(*) the line bundle Ae is uniquely determined on Fe, since Ae ∼= OFe
(2Ce)⊗πe

∗OP1(2be−ke−2e);

(**) the line bundle Be is uniquely determined on Fe, similarly.
Let us compute how many parameters are needed to describe Ye. To do this, we have to

add up the following quantities:

1) 0 parameters for Ae on Fe, by (*);

2) 0 parameters for Be, by (**);

3) τe as in (5.1), for isomorphism classes of P(Ee);

4) ne(ne + 2)− h0(TXe
), as in (5.2), for the dimension of the full orbit of Xe ⊂ Pne chosen.

Thus,

(5.3) dim(Ye) = τe + ne(ne + 2)− dim(GXe
)

The next step is to find an upper bound for dim(GXe
). It is clear that there is an obvious

inclusion

(5.4) GXe
→֒ Aut(Xe),

where Aut(Xe) denotes the algebraic group of abstract automorphisms of Xe. Since Xe, as
an abstract variety, is isomorphic to P(Ee) over Fe, then

dim(Aut(Xe)) = dim(Aut(Fe)) + dim(AutFe
(P(Ee))),

where AutFe
(P(Ee)) denotes the group of automorphisms of P(Ee) fixing the base (cf. e.g.

[34]). From the fact that Aut(Fe) is an algebraic group, in particular smooth, it follows that

dim(Aut(Fe)) = h0(Fe, TFe
) = e+ 5

since e ≥ 2 (cf. [34, Lemma 10, p. 105]). On the other hand, dim(AutFe
(P(Ee))) = h0(Ee ⊗

E∨
e )− 1, since AutFe

(P(Ee)) are given by endomorphisms of the projective bundle.
To sum up,

dim(Aut(Xe)) = h0(Ee ⊗ E∨
e ) + 4 + e.

From (5.4), dim(GXe
) ≤ dim(Aut(Xe)), then from (5.3) we deduce

(5.5) dim(Ye) ≥ τe + ne(ne + 2)− h0(Ee ⊗ E∨
e )− 4− e.

According to Lemma 3.6, one has

h0(Ee ⊗ E∨
e ) =





3be − 2ke − 4e+ 2 for 3be+2−5e
2 ≤ ke < 2be − 4e ≤ 3be−4e

2

1 for 3be−4e
2 ≤ ke < 2be − 4e,

As for τe, we use (5.1) and hence we get

(a) for 3be+2−5e
2 ≤ ke <

3be−4e
2 , τe = 5e+2ke−3be−2 and h0(E⊗E∨) = 3be−2ke−4e+2,

(b) for 3be−4e
2 ≤ ke <

3be+2−4e
2 , τe = 5e+ 2ke − 3be − 2 and h0(E⊗ E∨) = 1;

(c) for 3be+2−4e
2 ≤ ke < 2be − 4e, τe = 9e+ 4ke − 6be − 3 and h0(E⊗ E∨) = 1.

In all cases, from (5.5) we get dim(Ye) ≥ ne(ne+2)− 6be+4ke+8e− 8. From (4.9), we get

codimXe
(Ye) = dim(Xe)− dim(Ye)

≤ ne(ne + 1) + 3ke − 2be + 3e− 5− (ne(ne + 2)− 6be + 4ke + 8e− 8) = e− 1.

�
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5.1. A candidate for the general point of Xe. From Theorem 5.1, we need to exhibit a
smooth variety in Pne which is a candidate to represent the general point of Xe as in Theorem
4.5. In other words, this candidate must flatly degenerate in Pne to the threefold scroll Xe,
corresponding to [Xe] ∈ Ye general, in such a way that the base-scheme of this flat, embedded
degeneration is contained in Xe.

In this section we first construct this candidate and analyze some of its properties similar to
those investigated for Xe in §’s 3, 4. In § 5.2, we show that this candidate actually corresponds
to the general point of Xe.

For e ≥ 2 integer, consider

(5.6) ǫ = 0, 1 according to ǫ ≡ e (mod 2).

Consider the Hirzebruch surface Fǫ, let πǫ : Fǫ → P1 be the natural projection and let Cǫ be
the unique section of Fǫ corresponding to OP1 ⊕ OP1(−ǫ) →→ OP1(−ǫ) on P1. Thus C2

ǫ = −ǫ.
With notation as in Assumptions 4.3, consider

(5.7) bǫ := be −
3(e− ǫ)

2
and kǫ := ke.

This choice of bǫ is needed in order to ensure that the Hilbert polynomial data (in particular
the degree) of Xǫ are the same as those of Xe, as it will become clear in (5.14).

Lemma 5.2. With (5.7) above, conditions (4.1) on be and ke read as

(5.8) bǫ ≥
3

2
(e+ ǫ) + 1 ≥

3ǫ

2
+ 4 and bǫ − ǫ < bǫ +

(e− 3ǫ)

2
< kǫ < 2bǫ − 3ǫ− e.

Proof. The proof is given by straightforward computations using (4.1) and (5.7). Indeed, by

(5.7), be ≥ 3e + 1 in (4.1) reads as bǫ +
3(e−ǫ)

2 ≥ 3e + 1 which is bǫ ≥
3
2e + 1 + 3ǫ

2 ; the latter

is greater than or equal to 3ǫ
2 + 4 since e ≥ 2 and from hypotheses on ǫ. Similarly, one has

bǫ +
(e−3ǫ)

2 = bǫ − ǫ+ (e−ǫ)
2 > bǫ − ǫ for the same reasons.

Using bǫ = be −
3(e−ǫ)

2 , one finds

(5.9) be − e = bǫ +
1

2
(e− 3ǫ).

Using (5.9), one gets

(5.10) 2be − 4e = 2(be − e)− 2e = 2bǫ − 3ǫ− e.

Since from (5.7) one has kǫ = ke, then one concludes by (4.1). �

Consider now the following line bundles on Fǫ (cf. (3.2)):

(5.11) Aǫ ≡ 2Cǫ + (2bǫ − kǫ − 2ǫ)f

and

(5.12) Bǫ ≡ Cǫ + (kǫ − bǫ + 2ǫ)f.

Remark 5.3. Notice that, with these choices, both Aǫ and Bǫ are very-ample. Indeed, from
[29, VCor. 2.18], Bǫ is very-ample if and only if kǫ > bǫ − ǫ, wheras Aǫ is very-ample if and
only if kǫ < 2bǫ − 4ǫ. Both conditions are implied by (5.8), since e ≥ 2.

As in (3.1), we consider Eǫ a rank–two vector bundle on Fǫ fitting in the exact sequence

(5.13) 0 → Aǫ → Eǫ → Bǫ → 0.

Thus
c1(Eǫ) = Aǫ +Bǫ ≡ 3Cǫ + bǫf and c2(Eǫ) = AǫBǫ = kǫ = ke.

From (2.1) one has deg(Eǫ) = (3Cǫ + bǫf)
2 − kǫ = −9ǫ+ 6bǫ − kǫ. Thus (5.7) gives

(5.14) deg(Eǫ) = 6be − 9e− ke = de,

where de = deg(Ee) is as in (4.3).



HILBERT SCHEMES OF SOME THREEFOLD SCROLLS OVER Fe 17

Now Ext1(Bǫ, Aǫ) ∼= H1(Aǫ − Bǫ), where Aǫ − Bǫ ≡ Cǫ + (3bǫ − 2kǫ − 4ǫ)f from (5.11),
(5.12). In particular, πǫ∗(Aǫ − Bǫ) ∼= (OP1 ⊕ OP1(−ǫ)) ⊗ OP1(3bǫ − 2kǫ − 4ǫ). We then use
similar computations as in the proofs of Lemmas 3.4 and 3.6, in the range (5.8) for kǫ of
interest for us (recall Lemma 5.2), and we get:

(5.15) dim(Ext1(Bǫ, Aǫ)) =





0 for bǫ +
e−3ǫ
2 < kǫ <

3bǫ+2−5ǫ
2

4kǫ − 6bǫ − 2 + 9ǫ for 3bǫ+2−5ǫ
2 ≤ kǫ < 2bǫ − 3ǫ− e

and

(5.16) h0(Eǫ ⊗ E
∨

ǫ ) =







6bǫ − 4kǫ − 9ǫ+ 4 for bǫ +
e−3ǫ

2
< kǫ <

3bǫ+2−5ǫ
2

1 for 3bǫ+2−5ǫ
2

≤ kǫ < 2bǫ − 3ǫ− e and Eǫ general;

(the reader will easily realize that the distinction of cases in (5.15) and in (5.16) occurs when
3bǫ+2−5ǫ

2 < 2bǫ−3ǫ− e, that is for bǫ > 2e+ ǫ+2, i.e. for be >
7e−ǫ
2 +2 as it follows from (5.7);

otherwise, only the first case in (5.15) and in (5.16) occurs, but we will not dwell on this).

Using (5.13) and same reasoning as in Lemma 3.2, under numerical assumptions (5.8) we
get

(5.17) hj(Bǫ) = 0, for j ≥ 1.

Using the same strategy as in Lemma 3.2, considerations similar to (3.5), (3.6) and (3.3) can
be done for Eǫ and one gets

(5.18) h1(Eǫ) ≤ h1(Aǫ) and h0(Eǫ) = 4bǫ − kǫ − 6ǫ+ 5 + h1(Eǫ)

In particular, from (5.7), one has:

(5.19) h0(Eǫ) = 4be − ke − 6e+ 5 + h1(Eǫ) = (ne + 1) + h1(Eǫ),

where ne = χ(Ee)− 1 = h0(Ee)− 1 as in (4.3).
To compute h1(Aǫ) we follow the same strategy as in Lemma 3.9. Since πǫ∗(Aǫ) ∼=

Sym2(OP1 ⊕ OP1(−ǫ)) ⊗ OP1(2bǫ − kǫ − 2ǫ), by Leray’s isomorphism one gets that h1(Aǫ) =
h1(πǫ∗(Aǫ)) = 0 as soon as kǫ < 2bǫ+2− 4ǫ. Considering the upper–bound for kǫ in (5.8), we
notice that 2bǫ − 3ǫ− e < 2bǫ + 2− 4ǫ; in other words, for kǫ as in (5.8), one has

(5.20) h1(Aǫ) = 0.

As in Corollaries 3.5, 3.10, we get therefore:

Corollary 5.4. Assumptions (5.8) imply that any Eǫ ∈ Ext1(Bǫ, Aǫ) is such that h1(Eǫ) = 0.
In particular,

(5.21) h0(Eǫ) = ne + 1,

with ne as in (4.3).

Proof. (5.21) follows from (5.19) and from what proved above. �

Let now (P(Eǫ),OP(Eǫ)(1)) be the 3-dimensional scroll over Fǫ associated to any Eǫ as above.
From Remark 5.3, Aǫ ⊕ Bǫ is very-ample. Since very-ampleness is an open condition, when
dim(Ext1(Bǫ, Aǫ)) > 0, the general Eǫ ∈ Ext1(Bǫ, Aǫ) is also very-ample and thus OP(Eǫ)(1)
defines an embedding

(5.22) Φǫ := Φ|OP(Eǫ)(1)|
: P(Eǫ) →֒ Xǫ ⊂ Pne ,

(see (5.21)), where Xǫ := Φǫ(P(Eǫ)) is smooth, non-degenerate of degree de (cf. (5.14)).
Moreover, letting (Xǫ, Lǫ) := (Xǫ,OXǫ

(H)) ∼= (P(Eǫ),OP(Eǫ)(1)), one has h
i(Xǫ, Lǫ) = 0, i ≥ 1.

One can easily see that Xǫ and Xe have the same Hilbert polynomial P (T ), defined by

(4.5), so Xǫ ⊂ Pne corresponds to a point [Xǫ] of the Hilbert scheme H
de,ne

3 as in § 4.1.
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Proposition 5.5. For any ǫ, bǫ and kǫ as in (5.6), (5.7) and (5.8), there exists an irreducible

component Xǫ ⊆ H
de,ne

3 which is generically smooth, of (the expected) dimension

(5.23) dim(Xǫ) = ne(ne + 1) + 3kǫ − 2bǫ + 3ǫ− 5,

such that [Xǫ] belongs to the smooth locus of Xǫ. Moreover, the general point of Xǫ parametrizes
a scroll Xǫ as in (5.22).

Remark 5.6. Notice that, from (5.7), the right hand side of the equality in (5.23) coincides
with that of (4.9), in other words dim(Xǫ) = dim(Xe).

Proof of Proposition 5.5. Let Nǫ := NXǫ/Pne denote the normal bundle of Xǫ in Pne . As in
Theorems 4.5, 5.1, the statement will follow by proving the following intermediate steps:
(a) show that H i(Xǫ, Nǫ) = (0), for i ≥ 1,
(b) conduct an explicit computation of h0(Xǫ, Nǫ) = χ(Xǫ, Nǫ),
(c) perform a parameter computation to estimate the dimension of the locus Yǫ filled up by
scrolls Xǫ as in (5.22). Therefore dim(Yǫ) gives a lower bound for dim(Xǫ). Finally,
(d) show that dim(Yǫ) equals the number in (5.23).

Case ǫ = 1. From (5.8), we have 5 ≤ b1 ≤ b1 +
e−3
2 < k1 < 2b1 − 3 − e, indeed by (5.6) the

case e odd gives e ≥ 3. Notice that the upper and lower bound are compatible since, by (5.8),
b1 ≥

3
2(e+ 1) + 1. Using (5.11), (5.12), we get

A1 ≡ 2C1 + (2b1 − k1 − 2)f and B1 ≡ C1 + (k1 − b1 + 2)f.

All steps (a)-(d) are already proved in [7, Prop. 5.5, Thm. 5.7] (cases considered here all come
from cases therein coming from the first line of [7, (16) in Lemma3.7]).

Case ǫ = 0. In this case, we have b0 +
e
2 < k0 < 2b0 − e where, from (4.1), b0 > 3 for e ≥ 2

even and the upper and lower bound on k0 are compatible. By (5.11), (5.12), we have

A0 ≡ 2C0 + (2b0 − k0 − 2)f and B0 ≡ C0 + (k0 − b0 + 2)f,

where C0 and f are generators of the two different rulings on F0.
For Steps (a) and (b), we will use the same strategy of Theorem 4.5. By Corollary 5.4,

H i(X0, L0) = 0, for i ≥ 1.
Thus, using the Euler sequence restricted to X0 as in (4.10), the fact that (X0, L0) is a scroll

over F0, non–degenerate in Pne (cf. (4.11) and (4.12)) and the normal sequence of X0 ⊂ Pne

as in (4.13), we get

(5.24) H i(X0, N0) ∼= H i+1(X0, TX0) for i ≥ 1.

Consequently h3(X0, N0) = 0 for dimension reasons; for h1(X0, N0), h
2(X0, N0), we can use

(5.24).
In order to compute Hj(X0, TX0), j = 2, 3, let ϕ : P(E0) −→ F0 be the scroll map. We use

the relative cotangent bundle sequence as in (4.15) and adjunction on X0 to get, as in (4.16),
the exact sequence

(5.25) 0 → 2L0 − ϕ∗(3C0 + b0f) → TX0 → ϕ∗(TF0) → 0.

By Leray’s isomorphism, one has Hj(ϕ∗(TF0))
∼= Hj(TF0), for any j ≥ 0. Since F0

∼=
P1 × P1, then hj(TF0) = 2hj(OP1(2)), for any j ≥ 0. Thus,

(5.26) h0(X0, ϕ
∗(TF0)) = h0(F0, TF0) = 6 and hj(X0, ϕ

∗(TF0)) = hj(F0, TF0) = 0, for j ≥ 1.

For the cohomology of 2L0 − ϕ∗(3C0 + b0f), since R
iϕ∗(2L0) = 0 for i ≥ 1 (see [29, Ex.

8.4, p. 253]), projection formula and Leray’s isomorphism give

(5.27) H i(X0, 2L0 − ϕ∗(3C0 + b0f)) ∼= H i(F0, Sym
2E0 ⊗ (−3C0 − b0f)), ∀ i ≥ 0.

Therefore

(5.28) hj(X0, 2L0 − ϕ∗(3C0 + b0f)) = 0, j ≥ 3,
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for dimension reasons. Finally, we use filtrations as in (4.22), (4.23), (4.24) and argue as in
the proof of Claim 4.6-(ii), to get also

(5.29) h2(F0, Sym
2E0 ⊗ (−3C0 − b0f)) = h2(X0, 2L0 − ϕ∗(3C0 + b0f)) = 0.

From (5.25), using (5.26), (5.27) and (5.28), we deduce that hj(X0, TX0) = 0, for any j ≥ 2,
so from (5.24) we get hi(N0) = 0, for i ≥ 1.

In particular, generic smoothness of X0 and the fact that it has the expected dimension
follow from (4.7), (4.8).

To compute the expected dimension (i.e. Step (b)), we use the Hirzebruch-Riemann-Roch
theorem as in (4.30), with values as in (4.31). This gives

h0(N0) = χ(N0) = (d0 − 2b0 + 5)n0 − 5 + 16b0 − 3d0.

Using (4.3) and (5.7), one gets

h0(N0) = (n0 + 1)n0 + 3k0 − 2b0 − 5.

As for Step (c), consider the exact sequence (5.13). A0 and B0 are uniquely determined on
F0. As in the proof of Theorem 5.1, to compute dim(Y0) we have to add up the quantities τ0,
that is the number of parameters counting isomorphism classes of projective bundles P(E0),
and the dimension of the full orbit of X0 ⊂ Pn0 under the action of PGL(n0 + 1,C).

From (5.15) we get

τ0 =

{
0 for b0 +

e
2 < k0 <

3b0+2
2

4k0 − 6b0 − 3 for 3b0+2
2 ≤ k0 < 2b0 − e,

(cf. the proof of Theorem 5.1).
The dimension of the orbit of X0 is given by

dim(PGL(n0 + 1,C))− dim(GX0) = n0(n0 + 2)− h0(TX0),

where GX0 ⊂ PGL(n0 + 1,C) is the projective stabilizer. In particular,

dim(Y0) = τ0 + n0(n0 + 2)− dim(GX0).

As in the proof of Theorem 5.1, one obviously has

dim(GX0) ≤ dim(Aut(X0)) = dim(Aut(F0)) + dim(AutF0(P(E0)),

whereAut(X0) denotes the algebraic group of abstract automorphisms ofX0 whereasAutF0(P(E0))
the group of automorphisms of P(E0) fixing the base (cf. e.g. [34]).

From (5.26), we have dim(Aut(F0)) = 6 (cf. also [34, Lemma 10]).
For dim(AutF0(P(E0))), from (5.16) one gets

dim(AutF0(P(E0))) =

{
6b0 − 4k0 + 3 for b0 +

e
2 < k0 <

3b0+2
2

0 for 3b0+2
2 < k0 < 2b0 − e and E0 general

In all cases, one gets

dim(Y0) ≥ n0(n0 + 2) + 4k0 − 6b0 − 9.

For Step (d), we recall (5.23). So we have

n0(n0 + 1) + 3k0 − 2b0 − 5 = dim(X0) ≥ dim(Y0) ≥ n0(n0 + 2) + 4k0 − 6b0 − 9.

Observe that the left and right most sides of the previous inequalities are equal: indeed
n0(n0 + 1) + 3k0 − 2b0 − 5− (n0(n0 + 2) + 4k0 − 6b0 − 9) = 4b0 + 4− k0 − n0 = 0 as it follows
from (5.21). Thus dim(X0) = dim(Y0) which concludes the proof. �
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5.2. The components Xe and Xǫ coincide.

THEOREM 5.7. With Assumptions 4.3, one has Xe = Xǫ.

Proof. Notice that, from the proof of Lemma 5.2, Assumptions 4.3 are equivalent to conditions
in (5.8) which are exactly the values for which Xǫ has been constructed.

Recall that Xe and Xǫ have the same dimension (cf. Remark 5.6) and are both components of

the same Hilbert scheme Hde,ne

3 as in § 4.1, since Xe and Xǫ have the same Hilbert polinomial
(cf. § 5.1). From Theorems 4.5 and 5.1, we furthermore have that [Xe] ∈ Ye general is a smooth
point for Xe and similarly, Proposition 5.5 states that [Xǫ] ∈ Xǫ general is a smooth point
too. Thus, by smoothness and the fact that dim(Xǫ) = dim(Xe), to prove the theorem it will
be enough to exhibit a flat, embedded (in Pne) degeneration of Xǫ to Xe which is entirely
contained in the smooth locus of Xǫ; in other words, we need to show that there exist a flat
family

F

π
��

⊂ Pne ×∆

pr2yy

∆

where ∆ is a smooth, irreducible affine curve, pr2 is the projection onto the second factor,
F ⊂ Pne ×∆ is a closed subscheme of relative dimension three, π is the restriction to it of pr2,
which is proper, flat and such that π−1(t) := Ft

∼= Xǫ, for t 6= 0, and π−1(0) = F0
∼= Xe, and

∆ maps to an (affine) irreducible curve in H
de,ne

3 (which, by abuse of notation, we will always
denote by ∆) connecting [Xǫ] with [Xe] and such that ∆ ⊂ (Xǫ)sm, the smooth locus of Xǫ.

To exhibit this degeneration, recall that Xe and Xǫ are respectively determined by the pairs
(Fe,Ee) and (Fǫ,Eǫ) (cf. Prop. 4.4 and (5.22)). According to what was proved in the previous
sections, when dim(Ext1(Be, Ae)) > 0 it is clear that the bundle Ee flatly degenerates (or
specializes, in the sense of [4, p. 126]) inside the vector space Ext1(Be, Ae) to the decomposable
bundle Ae ⊕ Be; when otherwise dim(Ext1(Be, Ae)) = 0 one simply has Ee = Ae ⊕ Be. The
same occurs for bundles in Ext1(Bǫ, Aǫ) on Fǫ.

Denote by De (respectively Dǫ) the decomposable scroll determined by the pair
(P(Ae ⊕Be),OP(Ae⊕Be)(1)) (respectively (P(Aǫ ⊕Bǫ),OP(Aǫ⊕Bǫ)(1))).

From the proofs of Theorem 4.5 and Proposition 5.5, [Xe], [De], [Xǫ] and [Dǫ] are all smooth

points of the Hilbert scheme Hde,ne

3 and the flat (abstract) degenerations of general bundles in
Ext1(Be, Ae) and in Ext1(Bǫ, Aǫ) to the decomposable ones Ae⊕Be and Aǫ⊕Bǫ, respectively,
clearly give rise to flat degenerations, embedded in Pne , of Xe to De and of Xǫ to Dǫ, which
are contained in the smooth locus of Xe and Xǫ, respectively. The assertions follow from
the fact that, since all the bundles involved are very-ample and with no higher cohomology
(cf. previous sections), the corresponding threefold scrolls are smooth with non-special normal
bundles in Pne .

It is therefore enough to show that there exists a flat, embedded degeneration of Dǫ to De

which is entirely contained in the smooth locus of Xǫ; if this is the case, by smoothness at
each step and by dim(Xe) = dim(Xǫ), we must have Xe = Xǫ as desired.

Now, the decomposable scroll De has two disjoint sections, say Sαe and Sβe , where
αe := deg(Sαe) = deg(Ae) = 8be − 4ke − 12e and βe := deg(Sβe) = deg(Be) = 2ke − 2be + 3e
(cf. (3.2)), which correspond to the two quotients Ae ⊕Be →→ Ae and Ae ⊕Be →→ Be respec-
tively. Precisely, Sαe (respectively Sβe) is given by the embedding of Fe via the very-ample
linear system |Ae| (respectively |Be|); from Lemma 3.2 and the non-speciality of both Ae
and Be, the projective linear spans of such surfaces 〈Sαe〉 ∼= Pℓe and 〈Sβe〉 ∼= Pre , where
ℓe := h0(Ae)− 1 = 6be − 3ke − 9e+ 2 and re := h0(Be)− 1 = 2ke − 2be + 3e+ 1 = βe + 1, are
skew, spanning the whole Pne , and De turns out to be the join of these two surfaces.

Similarly Dǫ is the joint in Pne of two smooth, rational surfaces Sαǫ and Sβǫ , with Sαǫ

and Sβǫ respectively given by the embedding of Fǫ via |Aǫ| and |Bǫ|, where αǫ = deg(Sαǫ) =
deg(Aǫ) = αe and βǫ = deg(Sβǫ) = deg(Bǫ) = βe, the last equalities following from (5.7),
(5.11), (5.12). As above, these two surfaces are (disjoint) sections of Dǫ, whose linear spans
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〈Sαǫ〉 ∼= Pℓe and 〈Sβǫ〉 ∼= Pre are skew, spanning the whole Pne (all the assertions follow
from (5.7), (5.11), (5.12), the non–speciality of Aǫ and of Bǫ and the fact that the bundle is
decomposable).

Since |Bǫ| (respectively |Be|) is very-ample and unisecant to the fibers of Fǫ (respectively
of Fe), the image surface Sβǫ (respectively Sβe) is a smooth, rational normal scroll inside Pre .

If we denote by H
βe,re
2 the Hilbert scheme of rational normal scrolls of degree βe in Pre , it is

well-known that it is irreducible, smooth at points corresponding to smooth scrolls and that
its general point is given by balanced scrolls, i.e. those arising from Fǫ. In particular, there is
a flat degeneration of Sβǫ to Sβe , embedded in Pre , represented by an affine curve denoted by
∆, connecting the Hilbert point [Sβǫ ] to [Sβe ] and which is entirely contained in the smooth

locus of Hβe,re
2 (cf. e.g. [10, Def. 2.15, Rem. 3.9] and [16, Lemma 3] or read details below for the

case with |Aǫ| and |Ae|).

Similarly, denoting by H
αe,ℓe
2 the Hilbert scheme of closed subschemes of Pℓe having the

same Hilbert polynomial as Sαǫ (equivalently Sαe), one can easily show that there exists a flat
embedded (in Pℓe) degeneration of Sαǫ to Sαe , represented by the same ∆ as above, connecting

[Sαǫ ] to [Sαe ] and which is entirely contained in the smooth locus of a component of Hαe,ℓe
2 .

To do this, for simplicity we focus on the case e even, i.e. ǫ = 0, since for e odd the arguments
hold almost verbatim. Take therefore for a moment e = 2k ≥ 2; the non-trivial extension
0 → OP1(−k) → OP1 ⊕ OP1 → OP1(k) → 0 over P1 gives rise to a line of the vector space
Ext1(OP1(k),OP1(−k)) ∼= Ext1(OP1 ,OP1(−e)), which can be identified with a 1-dimensional,
affine base scheme ∆ of a flat degeneration (or specialization, in the sense of [4, p. 126]) of the
bundle OP1 ⊕ OP1 to OP1(k)⊕ OP1(−k) over P1, and so of F0 to P(OP1(k)⊕ OP1(−k)) ∼= Fe.

Since F0 and F2k are endowed with very-ample line bundles A0 and A2k, respectively, of
same degree and same projective dimension, it is a standard procedure to identify ∆ as above
with also the base scheme of a flat, embedded (in Pℓ0) degeneration of smooth, rational sur-
faces Sα0 to Sα2k (cf. e.g. [23] and [10, Constr. 3.6, 3.7] for procedures in even more degenerate

situations). Briefly, one takes the trivial family T := F0 × ∆
pr2−→ ∆, which is also endowed

with a relative line bundle A resticting to A0 on any pr2-fiber. One then performs standard
operations involving: (1) blowing-ups and blowing-downs in the central fiber of T, and (2)
twisting A by components of the central fiber. Doing this, one gets a birational modification
of the (original) central fiber (T0,A|T0

) = (F0, A0) and a (no more trivial) proper, flat family

T′ π′

−→ ∆, together with a relative line bundle A′ → T′ s.t.: the total space T′ is smooth,
if T′

t := π′−1(t) for t ∈ ∆, then h0(A′
|
T′

t

) = α0 + 1, for any t ∈ ∆, (T′
t,A

′
|
T′

t

) = (Tt,A|Tt
) =

(F0, A0) ∼= Sα0 ⊂ Pℓ0 , for t 6= 0, whereas (T′
0,A

′
|
T′

0

) ∼= (F2k, A2k) ∼= Sα2k ⊂ Pℓ0 (cf. e.g. [23] and

[10] for full details). This means that ∆ can be identified as an affine curve, always denoted by

∆, in H
αe,ℓe
2 with the desired properties (the fact that ∆ is entirely contained in the smooth

locus of a component of Hαe,ℓe
2 follows from the fact that the normal bundles in Pℓ0 of both

Sα0 and Sα2k are non-special, as it follows from the Euler sequence restricted to them).
Turning back to the general case with any e and ǫ = 0, 1, it is then clear that for t ∈ ∆\{0}

approaching to 0 we have ”simultaneous” specializations of Sαǫ to Sαe in Pℓe and of Sβǫ to
Sβe in Pre and so of their respective join in Pne . Formally one applies the same procedures
explained above to both pairs (Fǫ, Aǫ) and (Fǫ, Bǫ) and so also to (Fǫ, Aǫ⊕Bǫ); in this way ∆

can be identified with the base scheme of the desired flat family F
π
→ ∆ as in the beginning

of the proof, whose general fiber is given by (Fǫ, Aǫ ⊕ Bǫ) ∼= Dǫ and whose central fiber is
(Fe, Ae ⊕ Be) = De (notice that flatness of F over ∆ follows from the facts that ∆ is integral
and that all the fibers have the same Hilbert polynomial as in (4.5), cf.[38, Prop. 4.2.1 (ii)]).
Very-ampleness and non-speciality of Ae ⊕Be imply that De and Dǫ are smooth, non-special
threefold scrolls in Pne with h1(NDǫ/Pne ) = h1(NDe/Pne ) = 0 (cf. proofs of Claim 4.6 and of

Prop. 5.5), i.e. the curve ∆ is entirely contained in the smooth locus of Hde,ne

3 and so of Xǫ,
being one irreducible component of the Hilbert scheme. This forces Xǫ = Xe as desired. �
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Remark 5.8. The proof of Theorem 5.7 can be interpreted as a projective-geometry coun-
terpart of (abstract) specializations of rank-five vector bundles over P1 as in [4, Prop. 2.3].
Applying the direct image functors Rjπe∗ to the exact sequence (3.1) gives the following exact
sequence of bundles on P1

0 →πe∗(Ae) ∼= Sym2(OP1 ⊕ OP1(−e))⊗ OP1(2be − ke − 2e) → πe∗(Ee)

→πe∗(Be) ∼= (OP1 ⊕ OP1(−e))⊗ OP1(ke − be + 2e) → 0,

that is

0 →OP1(2be − ke − 2e)⊕ OP1(2be − ke − 3e)⊕ OP1(2be − ke − 4e) → πe∗(Ee)

→OP1(ke − be + 2e)⊕ OP1(ke − be + e) → 0.

Thus the push-forward via πe∗ defines a natural map

Ext1(Be, Ae)
Πe−→ Ext1(πe∗(Be), πe∗(Ae)), s.t. Πe(Ee) := πe∗(Ee).

Now πe∗(Ee) is a rank-five vector bundle on P1 with δe := deg(πe∗(Ee)) = 4be − ke − 6e so

πe∗(Ee) =
⊕5

i=1 OP1(αi), for some αi ∈ Z with Σ5
i=1αi = 4be − ke − 6e.

Similarly, from (5.13) one gets

0 →πǫ∗(Aǫ) ∼= Sym2(OP1 ⊕ OP1(−ǫ))⊗ OP1(2bǫ − kǫ − 2e) → πǫ∗(Eǫ)

→πǫ∗(Bǫ) ∼= (OP1 ⊕ OP1(−ǫ))⊗ OP1(kǫ − bǫ + 2e) → 0

which reads also

0 →OP1(2bǫ − kǫ − 2ǫ)⊕ OP1(2bǫ − kǫ − 3ǫ)⊕ OP1(2bǫ − kǫ − 4ǫ) → πǫ∗(Eǫ)

→OP1(kǫ − bǫ + 2ǫ)⊕ OP1(kǫ − bǫ + ǫ) → 0.

As above πǫ∗(Eǫ) is decomposable, of rank five on P1, with deg(πǫ∗(Eǫ)) = 4bǫ− kǫ− 6ǫ. From
(5.7) one has 4bǫ − kǫ − 6ǫ = 4be − ke − 6e, i.e. deg(πǫ∗(Eǫ)) = deg(πe∗(Ee)) = δe.

It is clear that, inside Ext1(πe∗(Be), πe∗(Ae)), the bundle πe∗(Ee) flatly degenerates (or is
equal) to the bundle

Te := OP1(2be−ke−2e)⊕OP1(2be−ke−3e)⊕OP1(2be−ke−4e)⊕OP1(ke− be+2e)⊕OP1(ke− be+ e).

For simplicitly, put

ξ′1 := 2be − ke − 2e, ξ′2 := 2be − ke − 3e, ξ′3 := 2be − ke − 4e

and

η′1 := ke − be + 2e, η′2 := ke − be + e.

Similarly, inside Ext1(πǫ∗(Bǫ), πǫ∗(Aǫ)), the vector bundle πǫ∗(Eǫ) flatly degenerates (or is
equal) to

Tǫ := OP1(2bǫ − kǫ − 2ǫ)⊕OP1(2bǫ − kǫ − 3ǫ)⊕OP1(2bǫ − kǫ − 4ǫ)⊕OP1(kǫ − bǫ +2ǫ)⊕OP1(kǫ − bǫ + ǫ).

Using (5.7), the latter reads

Tǫ = OP1(2be − ke − 3e+ ǫ)⊕ OP1(2be − ke − 3e)⊕ OP1(2be − ke − 3e− ǫ)

⊕OP1(ke − be +
(3e+ǫ)

2 )⊕ OP1(ke − be +
(3e−ǫ)

2 ).

As above, for simplicity, put

ξ1 := 2be − ke − 3e+ ǫ, ξ2 := 2be − ke − 3e, ξ3 := 2be − ke − 3e− ǫ

and

η1 := ke − be +
(3e+ ǫ)

2
, η2 := ke − be +

(3e− ǫ)

2
.

By [4, Prop 2.3], one deduces that Te is a flat specialization of Tǫ; indeed, they have same
rank and same degree but the latter is more balanced since, for any 1 ≤ i ≤ 2:

{0, 1} ∋ ǫ = η2 − η1 = ξi+1 − ξi whereas 2 ≤ e = η′2 − η′1 = ξ′i+1 − ξ′i.
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6. Examples

We give some examples of Hilbert schemes of threefold scrolls over Fe, with e both even
and odd. We use notation and assumptions as in the previous sections.

(1) Take e = 2, b2 = 11, k2 = 11, which are compatible with (4.1). Consider vector bundles
E2 over F2 fitting in

0 → A2 = 2C2 + 7f → E2 → B2 = C2 + 4f → 0.

More precisely, since Ext1(B2, A2) ∼= H1(C2 + 3f) = (0), then E2 = (2C2 + 7f) ⊕ (C2 + 4f).
One has h0(E2) = 26, hi(E2) = 0, for i ≥ 1, and d2 = deg(E2) = 37.

For X2 ⊂ P25 we know that h1(N2) = h1(NX2/P25) = 0 (cf. the proof of Claim 4.6). Then
[X2] ∈ X2 is a smooth point, where X2 is generically smooth of dimension 662.

From (5.7), on F0
∼= P1 × P1 we take vector bundles E0 fitting in

0 → A0 = 2C0 + 5f → E0 → B0 = C0 + 3f → 0,

compatible with (5.8). As above, since Ext1(B0, A0) ∼= H1(C0 + 2f) = (0), then E0 =
(2C0 + 5f)⊕ (C0 + 3f). E0 has the same degree and the same cohomology as that of E2. Let
X0 ⊂ P25 be the associated threefold scroll. From Proposition 5.5 and Theorem 5.7, [X0] ∈ X2

is the general point.
In terms of vector bundles as in Remark 5.8, notice that up to a descending reorder of the

summands we have

π2∗(E2) = T2 = OP1(7)⊕ OP1(5)⊕ OP1(4)⊕ OP1(3)⊕ OP1(2)

and
π0∗(E0) = T0 = OP1(5)⊕3 ⊕ OP1(3)⊕2

so π2∗(E2) = T2 is a flat specialization of π0∗(E0) = T0 ([4, Prop. 2.3]).

(2) From (4.1), take e = 3, b3 = 15, k3 = 15. Consider vector bundles E3 over F3 fitting in

0 → A3 = 2C3 + 8f → E3 → B3 = C3 + 7f → 0.

Since 15 = k3 < 2b3 − 4e = 18, from the first line of (3.14), h1(A3) = 0 so the same holds for
any E3 ∈ Ext1(B3, A3) ∼= H1(C3 + f) ∼= C (cf. Corollary 3.10). All E3’s have degree d3 = 47,
h0(E3) = 32 and no higher cohomology. Moreover, any E3 corresponding to a non-zero vector
in Ext1(B3, A3) flatly degenerates inside this vector space to the trivial bundle T3 := A3⊕B3.

From (5.7), on F1 we correspondingly take

0 → A1 = 2C1 + 6f → E1 → B1 = C1 + 6f → 0.

Now Ext1(B1, A1) ∼= H1(C1) ∼= (0) and thus E1 = A1 ⊕ B1 is the unique bundle. From the

proof of Theorem 5.7, these all correspond to smooth points of the Hilbert scheme H
27,31
3 , in

particular contained in the same irreducible component X3, which is generically smooth.
In terms of vector bundles on P1, we have that

π3∗(T3) := OP1(8)⊕ OP1(7)⊕ OP1(5)⊕ OP1(2)⊕ OP1(4),

which corresponds to the zero-vector of Ext1(π3∗(B3), π3∗(A3)). Similarly,

π1∗(T1) = OP1(6)⊕2 ⊕ OP1(5)⊕2 ⊕ OP1(4).

The bundle π1∗(T1) degenerates to π3∗(T3) since it is more balanced than π3∗(T3) (apply [4,
Prop 2.3]).

(3) Take e = 4, b4 = 18, k4 = 18. Consider vector bundles E4 over F4 fitting in

0 → A4 = 2C4 + 10f → E4 → B4 = C4 + 8f → 0.

As above, Ext1(B4, A4) ∼= C, all bundles have degree d4 = 58 and are such that hi(E4) = 0,
for i ≥ 1, and h0(E4) = 35. The general element in Ext1(B4, A4) flatly degenerates to the
trivial one T4 = A4 ⊕B4.
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On F0
∼= P1 × P1 consider bundles fitting in

0 → A0 = 2C0 + 6f → E0 → B0 = C0 + 6f → 0.

Now Ext1(B0, A0) ∼= H1(C0) = (0). Similarly as in (2),

π4∗(T4) = OP1(10)⊕ OP1(8)⊕ OP1(6)⊕ OP1(4)⊕ OP1(2)

corresponds to the zero-vector of Ext1(π4∗(B4), π4∗(A4)) wheras

π0∗(E0) = O⊕5
P1 (6)

flatly degenerates to π4∗(T4), since it is more balanced (apply e.g. [4, Prop 2.3]). As in
example (2), we can conclude.
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