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Abstract

Background: Ever since the accidental discovery of Wingless [Sharma R.P., Drosophila information service, 1973, 50,
p 134], research in the field of Wnt signaling pathway has taken significant strides in wet lab experiments and various
cancer clinical trials, augmented by recent developments in advanced computational modeling of the pathway.
Information rich gene expression profiles reveal various aspects of the signaling pathway and help in studying
different issues simultaneously. Hitherto, not many computational studies exist which incorporate the simultaneous
study of these issues.

Results: This manuscript • explores the strength of contributing factors in the signaling pathway, • analyzes the
existing causal relations among the inter/extracellular factors effecting the pathway based on prior biological
knowledge and • investigates the deviations in fold changes in the recently found prevalence of psychophysical laws
working in the pathway. To achieve this goal, local and global sensitivity analysis is conducted on the (non)linear
responses between the factors obtained from static and time series expression profiles using the density
(Hilbert-Schmidt Information Criterion) and variance (Sobol) based sensitivity indices.

Conclusion: The results show the advantage of using density based indices over variance based indices mainly due
to the former’s employment of distance measures & the kernel trick via Reproducing kernel Hilbert space (RKHS) that
capture nonlinear relations among various intra/extracellular factors of the pathway in a higher dimensional space. In
time series data, using these indices it is now possible to observe where in time, which factors get influenced &
contribute to the pathway, as changes in concentration of the other factors are made. This synergy of prior biological
knowledge, sensitivity analysis & representations in higher dimensional spaces can facilitate in time based
administration of target therapeutic drugs & reveal hidden biological information within colorectal cancer samples.

Keywords: Wnt pathway, Sensitivity analysis, Kernels, Psychophysical law, Colorectal cancer, Systems biology, Time
series data

Background

Significance

Recently observed psychophysical laws working down-

stream of the Wnt pathway rely on ratio of deviations

in input & absolute value of input. These deviations are

crucial for observation of a phenotypic behaviour dur-

ing a time interval. This work explores the influences

of fold changes and deviations in fold changes in time
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using density based sensitivity indices which employ ker-

nel methods to capture nonlinear relations among the

involved intra/extracellular factors. On static gene expres-

sion toy example in normal and tumor cases & time series

dataset, they outperformed the variance based sensitivity

indices. Synergy of prior biological knowledge, sensitivity

analysis and representations in higher dimensional spaces

facilitates development of time based target specific inter-

ventions at molecular level within the pathway.

i compartmentalize the manuscript into three different

parts • a short review containing the systems wide analy-

sis of theWnt pathway divided into introduction, problem

statement and a solution to address the same via latest
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sensitivity analysis methods • an extensive description of

the methodology, the description of the dataset and the

design of the experiments and finally • the biological find-

ings from the system wide study of theWnt pathway using

sensitivity analysis.

A short review

Sharma’s [1] accidental discovery of the Wingless played

a pioneering role in the emergence of a widely expanding

research field of the Wnt signaling pathway. A majority

of the work has focused on issues related to • the discov-

ery of genetic and epigenetic factors affecting the pathway

([2] & [3]), • implications of mutations in the pathway

and its dominant role on cancer and other diseases [4],

• investigation into the pathway’s contribution towards

embryo development [5], homeostasis ([6, 7]) and apop-

tosis [8] and • safety and feasibility of drug design for

theWnt pathway ([9–13]). Approximately forty years after

the discovery, important strides have been made in the

research work involving several wet lab experiments and

cancer clinical trials ([9, 13]) which have been augmented

by the recent developments in the various advanced com-

putational modeling techniques of the pathway. More

recent informative reviews have touched on various issues

related to the different types of the Wnt signaling path-

way and have stressed not only the activation of the Wnt

signaling pathway via the Wnt proteins [14] but also the

on the secretion mechanism that plays a major role in the

initiation of the Wnt activity as a prelude [15].

With the rapid development of methods in biotechnol-

ogy and the availability of of vast amounts of datasets

at molecular level, there has arisen a need to under-

stand the mechanism of these signaling pathways at a

greater level. Systems biology is a field where the idea

is to understand the deeper aspects of biology via vari-

ous models that translate the biological problem into a

computational/mathematical framework. Latest opinion

on current trends in systems biology can be found in [16]

and [17]. One of the earliest efforts to translate a biologi-

cal problem into a mathematical framework regarding the

Wnt pathway was done by [18]. The quantitative study

involved the analysis of interactions among the known

components of the pathway using differential equations

that incorporates information regarding kinetics, synthe-

sis/degradation and phosphorylation/dephosphorylation.

Further improvements and analysis on such models have

followed through in later years; for example - [19, 20].

Apart from these methods, bayesian methods have also

played a crucial role in understanding certain aspects of

the pathway. Recent work on parameter free methods by

[21] employs bayesian methods for parameter inference

from data and later use algebraic methods like matroid

theory to analyse the models that fit the data, while not

depending specifically on the parameters. Mixture models

approach has also been employed recently to under-

stand aspects of the Wnt pathway via bayesian parameter

estimation [22]. Besides parameter estimation methods

related to differential equations, bayesian network analysis

methods have also been proposed in investigate the cause-

influence hypotheses among various factors affecting the

pathway, by integrating heterogenous data and using con-

cepts of d-connectivity/separability [23]. The author had

the chance to provide a pedagogical perspective on the

insilico analysis of [23] in the form of computer code in

[24]. Not only have the signaling pathways been stud-

ied but also the some of the phenomenon that have been

prevalent in the pathway have also been studied using

mathematical models. The prevalence of the Weber’s law

(described later) has been shown in [25] using differential

equationmodels and sensitivity analysis. Though the work

has used proposed the use of sensitivity analysis, it is no

evident as to which approach has been employed to con-

duct the study. Sensitivity analysis has been employed to

investigate the pathway in [26] also for indentification of

parameters. In these above cases there is involvement of

the parameters which need to be studied in order to gain

an insight into some mechanism of the pathway. Recently,

a system wide investigation on time course data was con-

ducted by [27] using correlational analysis. The aim of this

study was to understand at a systems level how the com-

ponents of the pathway was behaving in time. Even though

the effort lead to the understanding of a few areas of the

pathway, it has not revealed the entire analysis of the influ-

ence of each of the components at different time points

as well as during the different intermittent time periods

in a coherent simultaneous manner. In this manuscript,

the author takes an extensive analysis of the pathway on

the same time course measurements generated by [27],

using the existing variance based sensitivity indices as well

as the latest density based sensitivity indices. The work

exploits the deeper formulation of the deviations in input

in the logarithmic Bernoulli’s formulations from which

the Weber’s law has been derived (explained later). The

work in this paper investigates a systems wide study of the

Wnt pathway via sensitivity analysis while using static [28]

and time series [27] gene expression data retrieved from

colorectal cancer samples.

Canonical Wnt signaling pathway

Before delving into the problem statement, a brief intro-

duction to the Wnt pathway is given here. From the

recent work of [23], the canonical Wnt signaling pathway

is a transduction mechanism that contributes to embryo

development and controls homeostatic self renewal in

several tissues [4]. Somatic mutations in the pathway are

known to be associated with cancer in different parts of

the human body. Prominent among them is the colorectal

cancer case [29]. In a succinct overview, theWnt signaling
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pathway works when the Wnt ligand gets attached to the

Frizzled(FZD)/LRP coreceptor complex. FZD may inter-

act with the Dishevelled (DVL) causing phosphorylation.

It is also thought that Wnts cause phosphorylation of the

LRP via casein kinase 1 (CK1) and kinase GSK3. These

developments further lead to attraction of Axin which

causes inhibition of the formation of the degradation com-

plex. The degradation complex constitutes of AXIN, the

β-catenin transportation complex APC, CK1 and GSK3.

When the pathway is active the dissolution of the degra-

dation complex leads to stabilization in the concentration

of β-catenin in the cytoplasm. As β-catenin enters into

the nucleus it displaces the GROUCHO and binds with

transcription cell factor TCF thus instigating transcrip-

tion of Wnt target genes. GROUCHO acts as lock on TCF

and prevents the transcription of target genes which may

induce cancer. In cases when the Wnt ligands are not cap-

tured by the coreceptor at the cell membrane, AXIN helps

in formation of the degradation complex. The degradation

complex phosphorylates β-catenin which is then recog-

nized by FBOX/WD repeat protein β-TRCP. β-TRCP is a

component of ubiquitin ligase complex that helps in ubiq-

uitination of β-catenin thus marking it for degradation

via the proteasome. Cartoons depicting the phenomena of

Wnt being inactive and active are shown in Fig. 1a and b,

respectively.

Problem statement in short

Succinctly, the endeavour is to address the following issues

- • explore the strength of contributing factors in the

signaling pathway, • analyse the existing causal relations

among the inter/extracellular factors effecting the path-

way based on prior biological knowledge and • investi-

gate the significance of deviations in fold changes in the

recently found prevalence of psychophysical laws work-

ing in the pathway in a multi-parameter setting. The

issues related to • inference of hidden biological relations

among the factors, that are yet to be discovered and • dis-

covery of new causal relations using hypothesis testing,

will be addressed in a subsequent manuscript. The cur-

rent manuscript analyses the sensitivity indices for fold

changes and deviations in fold changes in 17 different

genes from a set of 74 genes as presented by [27]. An

immediate followup of the manuscript is the analysis of

the remaining 57 genes which happens to the part B of this

manuscript.

A solution to the problem

Sensitivity analysis

In order to address the above issues, sensitivity analy-

sis (SA) is performed on either the datasets or results

obtained from biologically inspired causal models. The

reason for using these tools of sensitivity analysis is that

they help in observing the behaviour of the output and the

importance of the contributing input factors via a robust

and an easy mathematical framework. In this manuscript

both local and global SA methods are used. Where appro-

priate, a description of the biologically inspired causal

models ensues before the analysis of results from these

models.

Seminal work by Russian mathematician [30] lead to

development as well as employment of SA methods to

a b

a

b

Fig. 1 A cartoon of Wnt signaling pathway. Part (a) represents the destruction of β-catenin leading to the inactivation of the Wnt target gene. Part
(b) represents activation of Wnt target gene
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study various complex systems where it was tough tomea-

sure the contribution of various input parameters in the

behaviour of the output. A recent unpublished review

on the global SA methods by [31] categorically delin-

eates these methods with the following functionality •
screening for sorting influential measures ([32] method,

Group screening in [33, 34], Iterated factorial design in

[35], Sequential bifurcation design in [36] and [37]), •
quantitative indicies formeasuring the importance of con-

tributing input factors in linear models ([38–41]) and

nonlinear models ([42–57] and [58]) and • exploring the

model behaviour over a range on input values ([59] and

[60–62]). Iooss and Lema [31] also provide various crite-

ria in a flowchart for adapting a method or a combination

of the methods for sensitivity analysis. Figure 2 shows the

general flow of the mathematical formulation for comput-

ing the indices in the variance based Sobol method. The

general idea is as follows - A model could be represented

as a mathematical function with a multidimensional input

vector where each element of a vector is an input factor.

This function needs to be defined in a unit dimensional

cube. Based on ANOVA decomposition, the function can

then be broken down into f0 and summands of different

dimensions, if f0 is a constant and integral of summands

with respect to their own variables is 0. This implies that

orthogonality follows in between two functions of dif-

ferent dimensions, if at least one of the variables is not

repeated. By applying these properties, it is possible to

show that the function can be written into a unique expan-

sion. Next, assuming that the function is square integrable

variances can be computed. The ratio of variance of a

group of input factors to the variance of the total set of

input factors constitute the sensitivity index of a particular

group.

Besides the above [30]’s variance based indicies, more

recent developments regarding new indicies based on

density, derivative and goal-oriented can be found in

[63–65], respectively. In a latest development, [66] pro-

pose new class of indicies based on density ratio estima-

tion [63] that are special cases of dependence measures.

This in turn helps in exploitingmeasures like distance cor-

relation [67] and Hilbert-Schmidt independence criterion

[68] as new sensitivity indicies. The framework of these

indicies is based on use of [69] f-divergence, concept of

dissimilarity measure and kernel trick [70]. Finally, [66]

propose feature selection as an alternative to screening

methods in sensitivity analysis. The main issue with vari-

ance based indicies [30] is that even though they capture

importance information regarding the contribution of the

input factors, they • do not handle multivariate random

variables easily and • are only invariant under linear trans-
formations. In comparison to these variance methods,

the newly proposed indicies based on density estimations

[63] and dependence measures are more robust. Figure 3

shows the general flow of the mathematical formulation

for computing the indices in the density based HSIC

method. The general idea is as follows - The sensitivity

index is actually a distance correlation which incorporates

the kernel based Hilbert-Schmidt Information Criterion

between two input vectors in higher dimension. The cri-

terion is nothing but the Hilbert-Schmidt norm of cross-

covariance operator which generalizes the covariance

matrix by representing higher order correlations between

the input vectors through nonlinear kernels. For every

operator and provided the sum converges, the Hilbert-

Schmidt norm is the dot product of the orthonormal

bases. For a finite dimensional input vectors, the Hilbert-

Schmidt Information Criterion estimator is a trace of

product of two kernel matrices (or the Gram matrices)

with a centering matrix such that HSIC evaluates to a

summation of different kernel values.

It is this strength of the kernel methods that HSIC is able

to capture the deep nonlinearities in the biological data

and provide reasonable information regarding the degree

of influence of the involved factors within the pathway.

Improvements in variance based methods also provide

ways to cope with these nonlinearities but do not exploit

the available strength of kernel methods. Results in the

later sections provide experimental evidence for the same.

Application in systems biology

Recent efforts in systems biology to understand the

importance of various factors apropos output behaviour

has gained prominence. [71] compares the use of [30] vari-

ance based indices versus [32] screening method which

uses a One-at-a-time (OAT) approach to analyse the sen-

sitivity of GSK3 dynamics to uncertainty in an insulin

signaling model. Similar efforts, but on different pathways

can be found in [72] and [73].

SA provides a way of analyzing various factors tak-

ing part in a biological phenomena and deals with the

effects of these factors on the output of the biological sys-

tem under consideration. Usually, the model equations are

differential in nature with a set of inputs and the asso-

ciated set of parameters that guide the output. SA helps

in observing how the variance in these parameters and

inputs leads to changes in the output behaviour. The goal

of this manuscript is not to analyse differential equations

and the parameters associated with it. Rather, the aim is to

observe which input genotypic factors have greater con-

tribution to observed phenotypic behaviour like a sample

being normal or cancerous in both static and time series

data. In this process, the effect of fold changes and devia-

tions in fold changes in time is also considered for analysis

in the light of the recently observed psychophysical laws

acting downstream of the Wnt pathway [25].

There are two approaches to sensitivity analysis. The

first is the local sensitivity analysis in which if there is a
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Fig. 2 Computation of variance based sobol sensitivity indices. For detailed notations, see Appendix

required solution, then the sensitivity of a function apro-

pos a set of variables is estimated via a partial derivative

for a fixed point in the input space. In global sensitivity, the

input solution is not specified. This implies that the model

function lies inside a cube and the sensitivity indices are

regarded as tools for studying the model instead of the

solution. The general form of g-function (as the model or

output variable) is used to test the sensitivity of each of the

input factor (i.e expression profile of each of the genes).

This is mainly due to its non-linearity, non-monotonicity

as well as the capacity to produce analytical sensitivity

indices. The g-function takes the form -

f (x) = �d
i=1

|4 ∗ xi − 2| + ai

1 + ai
(1)

were, d is the total number of dimensions and ai ≥ 0

are the indicators of importance of the input variable xi.

Note that lower values of ai indicate higher importance

of xi. In our formulation, we randomly assign values of

ai ∈ [0, 1]. For the static (time series) data d = 18(71) (fac-

tors affecting the pathway). Thus the expression profiles

of the various genetic factors in the pathway are consid-

ered as input factors and the global analysis conducted.

Note that in the predefined dataset, the working of the sig-

naling pathway is governed by a preselected set of genes

that affect the pathway. For comparison purpose, the local

sensitivity analysis method is also used to study how the

individual factor is behaving with respect to the remaining

factors while working of the pathway is observed in terms

of expression profiles of the various factors.

Finally, in context of [25]’s work regarding the recent

development of observation of Weber’s law working

downstream of the pathway, it has been found that the

law is governed by the ratio of the deviation in the input

and the absolute input value. More importantly, it is

these deviations in input that are of significance in study-

ing such a phenomena. The current manuscript explores

the sensitivity of deviation in the fold changes between

Fig. 3 Computation of density based hsic sensitivity indices. For detailed notations, see Appendix
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measurements of fold changes at consecutive time points

to explore in what duration of time, a particular factor

is affecting the pathway in a major way. This has deeper

implications in the fact that one is now able to observe

when in time an intervention can be made or a gene be

perturbed to study the behaviour of the pathway in tumor-

ous cases. Thus sensitivity analysis of deviations in the

mathematical formulation of the psychophysical law can

lead to insights into the time period based influence of

the involved factors in the pathway. Thus, both global and

local anaylsis methods are employed to observe the entire

behaviour of the pathway as well as the local behaviour of

the input factors with respect to the other factors, respec-

tively, via analysis of fold changes and deviations in fold

changes, in time.

Given the range of estimators available for testing the

sensitivity, it might be useful to list a few which are going

to be employed in this research study. These have been

described in the Appendix.

The logarithmic psychophysical law

In a recent development, [25] point to two findings

namely, • the robust fold changes of β-catenin and • the

transcriptional machinery of the Wnt pathway depends

on the fold changes in β-catenin instead of absolute lev-

els of the same and some gene transcription networks

must respond to fold changes in signals according to the

Weber’s law in sensory physiology. In an unpublished

work by [74], preliminary analysis of results in [23] shows

that the variation in predictive behaviour of β-catenin

based transcription complex conditional on gene evi-

dences follows power and logarithmic psychophysical law

crudely, implying deviations in output are proportional

to increasing function of deviations in input and show-

ing constancy for higher values of input. This relates to

the work of [75] on power and logarithmic law albeit at a

coarse level. A description of these laws ensues before the

analysis of the results.

Masin et al. [76] states theWeber’s law as follows - Con-

sider a sensation magnitude γ determined by a stimulus

magnitude β . Fechner [77] (vol 2, p. 9) used the symbol

�γ to denote a just noticeable sensation increment, from

γ to γ + �γ , and the symbol �β to denote the corre-

sponding stimulus increment, from β to β + �β . Fechner

[77] (vol 1, p. 65) attributed to the German physiologist

Ernst Heinrich Weber the empirical finding [78] that �γ

remains constant when the relative stimulus increment
�β
β

remains constant, and named this finding Weber’s

law. [77] (vol 2, p. 10) underlined that Weber’s law was

empirical. �

It has been found that Bernoulli’s principle [79] is dif-

ferent from Weber’s law [78] in that it refers to �γ as any

possible increment in γ , while the Weber’s law refers only

to just noticeable increment in γ . Masin et al. [76] shows

that Weber’s law is a special case of Bernoulli’s principle

and can be derived as follows - Eq. 2 depicts the Bernoulli’s

principle and increment in sensation represented by �γ

is proportional to change in stimulus represented by �β .

γ = b × log
β

α
(2)

were b is a constant and α is a threshold. To evalu-

ate the increment, the following Eq. 3 and the ensuing

simplification gives -

�γ = b × log
β + �β

α
− b × log

β

α

= b × log(
β + �β

β
) = b × log(1 +

�β

β
) (3)

Since b is a constant, Eq. 3 reduces to �γ ◦ �β
β

were

◦ means “is constant when there is constancy of” from

[76]. The final reduction is a formulation of Weber’s laws

in wordings and thus Bernoulli’s principles imply Weber’s

law as a special case. Using [77] derivation, it is possi-

ble to show the relation between Bernoulli’s principles

and Weber’s law. Starting from the last line of Eq. 3, the

following steps yield the relation -

e�γ = e
b×log(1+ �β

β
) =⇒

kp = e
log(1+ �β

β
)b
; werekp = e�γ

kp = (1 +
�β

β
)b; sinceelog(x) = x

b

√
kp = 1 +

�β

β
=⇒ kq − 1 =

�β

β
; were b

√
kp = kq

kr =
�β

β
; the weber’s law s.t. kr = b

√
e�γ − 1

(4)

The reduction �γ ◦ �β
β

holds true given the last line

of Eq. 4. By observation, it is important to note that the

deviation � in the stimulus β plays a crucial role in the

above depicted formulations. In the current study, instead

of computing the sensitivity of the laws for each involved

factor, the sensitivity of the deviations in the fold changes

of each factor is taken into account. This is done in order

to study the affect of deviations in fold changes in time

as concentrations of WNT3A changes at a constant rate.

Without loss of generality, it was observed over time that

most involved factors had sensitivity indices or strength

of contributions, parts or whole of whose graphs follow a

convex or a concave curvature. These are usually repre-

sented by either an exponentially increasing or decreasing

curve or nonlinear curves. This points towards the fact

that with increasing changes in stimulated concentration

of WNT3A the deviations in fold changes of an involved

factor behave either in an increasing or decreasing fash-

ion. Thus deviations in fold changes of various involved

factors does affect the working of the signaling pathway
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over time. Finally, these deviations approximately cap-

ture the difference in fold changes recorded between two

time frames and are thus a measure of how much the

involvement of a factor affects the pathway due to these

differences. This measure of involvement is depicted via

the estimated sensitivity indices. The study of deviations

in fold changes might help in deciding when a therapeutic

drug could be administered in time. Future wet lab tests

can confirm the findings of the above solution.

Methods

Variance based sensitivity indices

The variance based indices as proposed by [30] prove

a theorem that an integrable function can be decom-

posed into summands of different dimensions. Also, a

Monte Carlo algorithm is used to estimate the sensitiv-

ity of a function apropos arbitrary group of variables. It

is assumed that a model denoted by function u = f (x),

x = (x1, x2, . . . , xn), is defined in a unit n-dimensional

cube Kn with u as the scalar output. The requirement of

the problem is to find the sensitivity of function f (x) with

respect to different variables. If u∗ = f (x∗) is the required
solution, then the sensitivity of u∗ apropos xk is estimated

via the partial derivative (∂u/∂xk)x=x∗ . This approach is

the local sensitivity. In global sensitivity, the input x =
x∗ is not specified. This implies that the model f (x) lies

inside the cube and the sensitivity indices are regarded

as tools for studying the model instead of the solution.

Detailed technical aspects with examples can be found in

[42] and [80].

Let a group of indices i1, i2, . . . , is exist, where 1 ≤ i1 <

· · · < is ≤ n and 1 ≤ s ≤ n. Then the notation for sum

over all different groups of indices is -

�̂Ti1,i2,...,is = �n
i=1Ti+�n

s=1�1≤i<j≤nTi,j+· · ·+T1,2,...,n

(5)

Then the representation of f (x) using Eq. 5 in the form -

f (x) = f0 + �̂fi1,i2,...,is (6)

= f0 + �ifi(xi) + �i<jfi,j(xi, xj) + . . .

+ f1,2,...,n(x1, x2, . . . , xn) (7)

is called ANOVA-decomposition from [55] or expansion

into summands of different dimensions, if f0 is a constant

and integrals of the summands fi1,i2,...,is with respect to

their own variables are zero, i.e,

f0 =
∫

Kn
f (x)dx (8)

∫ 1

0
fi1,i2,...,is(xi1 , xi2 , . . . , xis)dxik = 0, 1 ≤ k ≤ s (9)

It follows from Eq. 7 that all summands on the right

hand side are orthogonal, i.e if at least one of the indices

in i1, i2, . . . , is and j1, j2, . . . , jl is not repeated i.e

∫ 1

0
fi1,i2,...,is(xi1 , . . . , xis)fj1,...,jl (xj1 , xj2 , . . . , xjs)dx = 0

(10)

[30] proves a theorem stating that there is an existence

of a unique expansion of Eq. 7 for any f (x) integrable in

Kn. In brief, this implies that for each of the indices as

well as a group of indices, integrating equation 7 yields the

following -
∫ 1

0
..

∫ 1

0
f (x)dx/dxi = f0 + fi(xi) (11)

∫ 1

0
..

∫ 1

0
f (x)dx/dxidxj = f0 + fi(xi) + fj(xj)

+ fi,j(xi, xj) (12)

were, dx/dxi is
∏

∀k∈{1,..,n};i/∈k dxk and dx/dxidxj is∏
∀k∈{1,..,n};i,j/∈k dxk . For higher orders of grouped indices,

similar computations follow. The computation of any

summand fi1,i2,...,is(xi1 , xi2 , . . . , xis) is reduced to an integral

in the cubeKn. The last summand f1,2,...,n(x1, x2, . . . , xn) is

f (x) − f0 from Eq. 7. Homma and Saltelli [42] stresses that

use of Sobol sensitivity indices does not require evaluation

of any fi1,i2,...,is(xi1 , xi2 , . . . , xis) nor the knowledge of the

form of f (x) which might well be represented by a compu-

tational model i.e a function whose value is only obtained

as the output of a computer program.

Finally, assuming that f (x) is square integrable, i.e f (x) ∈
L2, then all of fi1,i2,...,is(xi1 , xi2 , ..., xis) ∈ L2. Then the

following constants
∫

Kn
f 2(x)dx − f 20 = D (13)

∫ 1

0
..

∫ 1

0
f 2i1,..,is(xi1 , .., xis)dxi1 ..dxis = Di1,..,is (14)

are termed as variances. Squaring Eq. 7, integrating over

Kn and using the orthogonality property in Eq. 10, D

evaluates to -

D = �̂Di1,i2,...,is (15)

Then the global sensitivity estimates is defined as -

Si1,i2,...,is =
Di1,i2,...,is

D
(16)

It follows from Eqs. 15 and 16 that

�̂Si1,i2,...,is = 1 (17)

Clearly, all sensitivity indices are non-negative, i.e an

index Si1,i2,...,is = 0 if and only if fi1,i2,...,is ≡ 0. The

true potential of Sobol indices is observed when vari-

ables x1, x2, . . . , xn are divided into m different groups

with y1, y2, . . . , ym such that m < n. Then f (x) ≡
f (y1, y2, . . . , ym). All properties remain the same for the

computation of sensitivity indices with the fact that inte-

gration with respect to yk means integration with respect

to all the xi’s in yk . Details of these computations with
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examples can be found in [30]. Variations and improve-

ments over Sobol indices have already been stated in

“Sensitivity analysis” section.

Density based sensitivity indices

As discussed before, the issue with variance based meth-

ods is the high computational cost incurred due to the

number of interactions among the variables. This further

requires the use of screening methods to filter out redun-

dant or unwanted factors that might not have significant

impact on the output. Recent work by [66] proposes a

new class of sensitivity indicies which are a special case

of density based indicies [63]. These indicies can han-

dle multivariate variables easily and relies on density ratio

estimation. Key points from [66] are mentioned below.

Considering the similar notation in previous section,

f : Rn → R (u = f (x)) is assumed to be continuous.

It is also assumed that Xk has a known distribution and

are independent. Baucells and Borgonovo [81] state that a

function which measures the similarity between the dis-

tribution of U and that of U|Xk can define the impact of

Xk on U. Thus the impact is defined as -

SXk
= E(d(U ,U|Xk)) (18)

were d(·, ·) is a dissimilarity measure between two random

variables. Here d can take various forms as long as it sat-

isfies the criteria of a dissimilarity measure. Csiszar [69]’s

f-divergence between U and U|Xk when all input random

variables are considered to be absolutely continuous with

respect to Lebesgue measure onR is formulated as -

dF(U||U|Xk) =
∫

R

F(
pU(u)

pU|Xk
(u)

)pU|Xk
(u)du (19)

were F is a convex function such that F(1) = 0 and pU
and pU|Xk

are the probability distribution functions of U

and U|Xk . Standard choices of F include Kullback-Leibler

divergence F(t) = − loge(t), Hellinger distance (
√
t − 1)2,

Total variation distance F(t) = |t − 1|, Pearson χ2 diver-

gence F(t) = t2 − 1 and Neyman χ2 divergence F(t) =
(1 − t2)/t. Substituting Eq. 19 in equation 18, gives the

following sensitivity index -

SFXk
=

∫

R

dF(U||U|Xk)pXk
(x)dx

=
∫

R

∫

R

F(
pU(u)

pU|Xk
(u)

)pU|Xk
(u)pXk

(x)dxdu

=
∫

R2
F(

pU(u)pXk
(x)

pU|Xk
(u)pXk

(x)
)pU|Xk

(u)pXk
(x)dxdu

=
∫

R2
F(

pU(u)pXk
(x)

pXk ,U(x,u)
)pXk ,U(x,u)dxdu (20)

were pXk
and pXk ,Y are the probability distribution

functions of Xk and (Xk ,U), respectively. Csiszar [69]

f-divergences imply that these indices are positive and

equate to 0 when U and Xk are independent. Also, given

the formulation of SFXk
, it is invariant under any smooth

and uniquely invertible transformation of the variables Xk

and U [82]. This has an advantage over Sobol sensitivity

indices which are invariant under linear transformations.

By substituting the different formulations of F in Eqs 20,

‘[66]’s work claims to be the first in establishing the link

that previously proposed sensitivity indices are actually

special cases of more general indices defined through

[69]’s f-divergence. Then Eq. 20 changes to estimation

of ratio between the joint density of (Xk ,U) and the

marginals, i.e -

SFXk
=

∫

R2
F(

1

r(x,u)
)pXk ,U(x,u)dxdu

= E(Xk ,U)F(
1

r(Xk ,U)
) (21)

were, r(x, y) = (pXk ,U(x,u))/(pU(u)pXk
(x)). Multivariate

extensions of the same are also possible under the same

formulation.

Finally, given two random vectors X ∈ Rp and Y ∈
Rq, the dependence measure quantifies the dependence

between X and Y with the property that the measure

equates to 0 if and only if X and Y are independent. These

measures carry deep links [83] with distances between

embeddings of distributions to reproducing kernel Hilbert

spaces (RHKS) and here the related Hilbert-Schmidt inde-

pendence criterion (HSIC by [68]) is explained.

In a very brief manner from an extremely simple intro-

duction by [84] - “We first defined a field, which is a space

that supports the usual operations of addition, subtrac-

tion, multiplication and division. We imposed an ordering

on the field and described what it means for a field to

be complete. We then defined vector spaces over fields,

which are spaces that interact in a friendly way with

their associated fields. We defined complete vector spaces

and extended them to Banach spaces by adding a norm.

Banach spaces were then extended to Hilbert spaces with

the addition of a dot product.” Mathematically, a Hilbert

space H with elements r, s ∈ H has dot product 〈r, s〉H
and r · s. WhenH is a vector space over a field F , then the

dot product is an element in F . The product 〈r, s〉H fol-

lows the below mentioned properties when r, s, t ∈ H and

for all a ∈ F -

• Associative : (ar) · s = a(r · s)
• Commutative : r · s = s · r
• Distributive : r · (s + t) = r · s + r · t

Given a complete vector space V with a dot product

〈·, ·〉, the norm onV defined by ||r||V =
√

(〈r, r〉)makes this

space into a Banach space and therefore into a full Hilbert

space.
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A reproducing kernel Hilbert space (RKHS) builds on

a Hilbert space H and requires all Dirac evaluation func-

tionals in H are bounded and continuous (on implies the

other). AssumingH is theL2 space of functions from X to

R for some measurable X. For an element x ∈ X, a Dirac

evaluation functional at x is a functional δx ∈ H such that

δx(g) = g(x). For the case of real numbers, x is a vector

and g a function which maps from this vector space toR.

Then δx is simply a function which maps g to the value g

has at x. Thus, δx is a function from (Rn �→ R) intoR.

The requirement of Dirac evaluation functions basi-

cally means (via the [85] representation theorem) if φ is

a bounded linear functional (conditions satisfied by the

Dirac evaluation functionals) on a Hilbert space H, then

there is a unique vector ℓ in H such that φg = 〈g, ℓ〉H for

all ℓ ∈ H. Translating this theorem back into Dirac eval-

uation functionals, for each δx there is a unique vector kx
inH such that δxg = g(x) = 〈g, kx〉H. The reproducing ker-

nel K forH is then defined as : K(x, x′) = 〈kx, kx′〉, were kx
and kx′ are unique representatives of δx and δx′ . The main

property of interest is 〈g,K(x, x′)〉H = g(x′). Furthermore,

kx is defined to be a function y �→ K(x, y) and thus the

reproducibility is given by 〈K(x, ·),K(y, ·)〉H = K(x, y).

Basically, the distance measures between two vectors

represent the degree of closeness among them. This

degree of closeness is computed on the basis of the dis-

criminative patterns inherent in the vectors. Since these

patterns are used implicitly in the distance metric, a ques-

tion that arises is, how to use these distance metric for

decoding purposes?

The kernel formulation as proposed by [70], is a solu-

tion to our problem mentioned above. For simplicity, we

consider the labels of examples as binary in nature. Let

xi ∈ Rn, be the set of n feature values with corresponding

category of the example label (yi) in data set D. Then the

data points can be mapped to a higher dimensional space

H by the transformation φ:

φ : xi ∈ Rn �→ φ(xi) ∈ H (22)

ThisH is the Hilbert Space which is a strict inner prod-

uct space, along with the property of completeness as well

as separability. The inner product formulation of a space

helps in discriminating the location of a data point w.r.t a

separating hyperplane in H. This is achieved by the eval-

uation of the inner product between the normal vector

representing the hyperplane along with the vectorial rep-

resentation of a data point in H (Fig. 4 represents the

geometrical interpretation). Thus, the idea behind Eq. (22)

is that even if the data points are nonlinearly clustered

in space Rn, the transformation spreads the data points

into H, such that they can be linearly separated in its

range inH.

Often, the evaluation of dot product in higher dimen-

sional spaces is computationally expensive. To avoid

Fig. 4 A geometrical interpretation of mapping nonlinearly separable
data into higher dimensional space where it is assumed to be linearly
separable, subject to the holding of dot product

incurring this cost, the concept of kernels in employed.

The trick is to formulate kernel functions that depend on

a pair of data points in the space Rn, under the assump-

tion that its evaluation is equivalent to a dot product in

the higher dimensional space. This is given as:

κ(xi, xj) =< φ(xi),φ(xj) > (23)

Two advantages become immediately apparent. First,

the evaluation of such kernel functions in lower dimen-

sional space is computationally less expensive than eval-

uating the dot product in higher dimensional space.

Secondly, it relieves the burden of searching an appro-

priate transformation that may map the data points in

Rn to H. Instead, all computations regarding discrimi-

nation of location of data points in higher dimensional

space involves evaluation of the kernel functions in lower

dimension. The matrix containing these kernel evalua-

tions is referred to as the kernel matrix. With a cell in the

kernel matrix containing a kernel evaluation between a

pair of data points, the kernel matrix is square in nature.

As an example in practical applications, once the kernel

has been computed, a pattern analysis algorithm uses the

kernel function to evaluate and predict the nature of the

new example using the general formula:

f (z) = < w,φ(z) > +b

= <

N∑

i=1

αi × yi × φ(xi),φ(z) > +b

=
N∑

i=1

αi × yi× < φ(xi),φ(z) > +b

=
N∑

i=1

αi × yi × κ(xi, z) + b

(24)
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where w defines the hyperplane as some linear combina-

tion of training basis vectors, z is the test data point, yi
the class label for training point xi, αi and b are the con-

stants. Various transformations to the kernel function can

be employed, based on the properties a kernel must sat-

isfy. Interested readers are referred to [86] for description

of these properties in detail.

The Hilbert-Schmidt independence criterion (HSIC)

proposed by [68] is based on kernel approach for finding

dependences and on cross-covariance operators in RKHS.

Let X ∈ X have a distribution PX and consider a RKHS

A of functions X → R with kernel kX and dot prod-

uct 〈·, ·〉A. Similarly, Let U ∈ Y have a distribution PY
and consider a RKHS B of functions U → R with ker-

nel kB and dot product 〈·, ·〉B. Then the cross-covariance

operator CX,U associated with the joint distribution PXU
of (X,U) is the linear operator B → A defined for every

a ∈ A and b ∈ B as -

〈a,CXUb〉A = EXU [ a(X), b(U)]−EXa(X)EUb(U)

(25)

The cross-covariance operator generalizes the covari-

ance matrix by representing higher order correlations

between X and U through nonlinear kernels. For every

linear operator C : B → A and provided the sum

converges, the Hilbert-Schmidt norm of C is given by -

||C||2HS = �k,l〈ak ,Cbl〉A (26)

were ak and bl are orthonormal bases of A and B,

respectively. The HSIC criterion is then defined as the

Hilbert-Schmidt norm of cross-covariance operator -

HSIC(X,U)A,B =

⎧
⎪⎪⎨
⎪⎪⎩

||CXU ||2HS =
EX,X′,U ,U ′kX (X,X′)kU (U ,U ′)+
EX,X′kX (X,X′)EU ,U ′kU (U ,U ′)−
2EX,Y

[
EX′kX (X,X′)EU ′kU (U ,U ′)

]
(27)

were the equality in terms of kernels is proved in [68].

Finally, assuming (Xi,Ui) (i = 1, 2, ..., n) is a sample of the

random vector (X,U) and KX and KU denote the Gram

matrices with entries KX (i, j) = kX (Xi,Xj) and KU (i, j)

= kU (Ui,Uj). [68] proposes the following estimator for

HSICn(X,U)A,B -

HSICn(X,U)A,B =
1

n2
Tr(KXHKUH) (28)

were H is the centering matrix such that H(i, j) = δi,j − 1
n .

Then HSICn(X,U)A,B can be expressed as -

HSIC(X,U)A,B =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
n2

�n
i,j=1kX (Xi,Xj)kU (Ui,Uj)

+ 1
n2

�n
i,j=1kX (Xi,Xj)×

1
n2

�n
i,j=1kU (Ui,Uj)

− 2
n�n

i=1[
1
n�n

j=1kX (Xi,Xj)×
1
n�n

j=1kU (Ui,Uj)]

(29)

Finally, [66] proposes the sensitivity index based on dis-

tance correlation as -

S
HSICA,B

Xk
= R(Xk ,U)A,B (30)

were the kernel based distance correlation is given by -

R2(X,U)A,B =
HSIC(X,U)A,B√

(HSIC(X,X)A,AHSIC(U ,U)B,B)

(31)

were kernels inducing A and B are to be chosen within a

universal class of kernels. Similar multivariate formulation

for Eq. 28 are possible.

Description of the dataset & design of experiments

STATIC DATA - A simple static dataset containing expres-

sion values measured for a few genes known to have

important role in human colorectal cancer cases has been

taken from [28]. Most of the expression values recorded

are for genes that play a role in Wnt signaling pathway

at an extracellular level and are known to have inhibitory

affect on the Wnt pathway due to epigenetic factors. For

each of the 24 normal mucosa and 24 human colorectal

tumor cases, gene expression values were recorded for 14

genes belonging to the family of SFRP, DKK, WIF1 and

DACT. Also, expression values of established Wnt path-

way target genes like LEF1,MYC, CD44 and CCND1 were

recorded per sample.

TIME SERIES DATA - Contrary to the static data

described above, [27] presents a bigger set of 71 Wnt-

related gene expression values for 6 different times points

over a range of 24-hour period using qPCR. The changes

represent the fold-change in the expression levels of genes

in 200 ng/mL WNT3A-stimulated HEK 293 cells in time

relative to their levels in unstimulated, serum-starved

cells at 0-hour. The data are the means of three biolog-

ical replicates. Only genes whose mean transcript levels

changed bymore than two-fold at one ormore time points

were considered significant. Positive (negative) numbers

represent up (down) -regulation.

Note that green (red) represents activation (repression)

in the heat maps of data in [28] and [27].

GENERAL ISSUES - • Here the input factors are the

gene expression values for both normal and tumor cases

in static data. For the case of time series data, the input

factors are the fold change (deviations in fold change)

expression values of genes at different time points (peri-

ods). Also, for the time series data, in the first experiment

the analysis of a pair of the fold changes recorded at to dif-

ferent consecutive time points i.e ti & ti+1 is done. In the

second experiment, the analysis of a pair of deviations in

fold changes recorded at ti & ti+1 and ti+1 & ti+2. In this

work, in both the static and the time series datasets, the

analysis is done to study the entire model/pathway rather
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than find a particular solution to themodel/pathway. Thus

global sensitivity analysis is employed. But the local sensi-

tivity methods are used to observe and compare the affect

of individual factors via 1st order analysis w.r.t total order

analysis (i.e global analysis). In such an experiment, the

output is the sensitivity indices of the individual factors

participating in the model. This is different from the gen-

eral trend of observing the sensitivity of parameter values

that affect the pathway based on differential equations

that model a reaction. Thus the model/pathway is studied

as a whole by observing the sensitivities of the individual

factors.

• Static data - Note that the 24 normal and tumor cases

are all different from each other. The 18 genes that are

used to study in [28] are the input factors and it is unlikely

that there will be correlations between different patients.

The phenotypic behaviour might be similar at a grander

scale. Also, since the sampling number is very small for

a network of this scale, large standard deviations can

be observed in many results, especially when the Sobol

method is used. But this is not the issue with the sampling

number. By that analysis, large deviations are not observed

in kernel based density methods. The deviations are more

because of the fact that the nonlinearities are not captured

in an efficient way in the variance based Sobol methods.

Due to this, the resulting indicies have high variance in

numerical value. For the same number of samplings, the

kernel based methods don’t show high variance.

• Time series data - All the measurement data at each

time point are generated by a normal distribution with

fixed standard deviation of 0.005 plus a noise term. One

might enquire as to how does this data generation match

with the real experimental data? The kernel based den-

sity methods requires a distribution of data. The original

experimental data of fold change was taken from each

of the genes per time point. Gujral and MacBeath [27]

states that to determine the fold-change in gene expres-

sion induced by stimulation with Wnt3a, the normalized

expression of each gene in the Wnt3a-stimulated sam-

ple was divided by the normalized expression of the same

gene in the unstimulated sample. The qPCR data pre-

sented are mean of three biological replicates. By using a

stringent margin of 0.005 and a noise term, the distribu-

tion of the data near the mean value is kept constricted.

Howmuch it deviates from the reality beyond the errors of

measurement is not known to the author! Finally, 74 gene

expression values are taken as input per time point for

evaluting the sensitivity of each of the genetic factor that

affect the model/pathway. Again, one is not looking for a

solution to the model in terms of good value for param-

eters but studying the degree of influence of each of the

input factors that constitute the model/pathway.

DESIGN OF EXPERIMENTS - The reported results will

be based on scaled as well as unscaled datasets. For the

static data, only the scaled results are reported. This is

mainly due to the fact that the measurements vary in

a wide range and due to this there is often an error in

the computed estimated of these indices. The data for

time series does not vary in a wide range and thus the

results are reported for both the scaled and the non

scaled versions. Total sensitivity indices and 1st order

indices will be used for sensitivity analysis. For address-

ing a biological question with known prior knowledge,

the order of indices might be increased. While studying

the interaction among the various genetic factors using

static data, tumor samples are considered separated from

normal samples. Bootstrapping without replicates on a

smaller sample number is employed to generate estimates

of indices which are then averaged. This takes into account

the variance in the data and generates confidence bands

for the indices. For the case of time series data, inter-

actions among the contributing factors are studied by

comparing (1) pairs of fold-changes at single time points

and (2) pairs of deviations in fold changes between pairs of

time points. Generation of distribution around measure-

ments at single time points with added noise is done to

estimate the indices.

Results and discussion

Static data

To measure the strength of the contributing factors in the

static dataset by [28], 1st order and total sensitivity indices

were generated. For each of the expression values of the

genes recorded in the normal and tumor cases, the com-

putation of the indices was done using bootstrapped sam-

ples in three different experiments each with a sample size

of 8, 16 and 24, respectively. With only 24 samples in total,

20 bootstraps were generated for each set and the results

were generated. From these replicates, the mean of the

indices is reported along with the 95% confidence bands.

Figure 5 represents the cartoon of the experimental setup

followed to acheive the desired results. Note that plots of

sensitivity indices have been relegated to Appendix.

Using the sensiFdiv, all indices are computed as posi-

tive and those nearing to zero indicate the contribution

of a factor as independent from the behaviour under con-

sideration. Here, while comparing the indices of the gene

expression values for normal and tumor cases, it was

found that most of the involved intra/extracellular fac-

tors had some degree of contribution in the normal case

and almost negligible contribution in the tumor case (see

Figs. 6, 7 and 8). Apart from the negative reading for

the KL divergence Fig. 9 the interpretations remain the

same. This implies that the basic [69] f-divergence based

indices might not capture the intrinsic genotypic effects

for the normal and the tumorous cases. From the biolog-

ical perspective, these graphs do not help in interpreting

the strength of the contributions in normal and tumor
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Fig. 5 A cartoon of experimental setup. Step - (1) Segregation of data into normal and tumor cases. (2) Further data division per case and bootstrap
sampling with no repetitions for different iterations. (3) Assembling bootstrapped data and application of SA methods. (4) Generation of SI’s for
normal and tumor case per gene per iteration. (5) Generation of averaged SI and confidence bands per case per gene

Fig. 6 sensiFdiv indices using Total Variation distance. Red - indices for normal. Blue - indices for tumor
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Fig. 7 sensiFdiv indices for Hellinger distance. Red - indices for normal. Blue - indices for tumor

cases. One might rank the indices for relative contribu-

tions, but this might not shed enough light on the how the

factors are behaving in normal and tumor cases.

A more powerful way to analyse the contributions is

the newly proposed HSIC based measures by [66]. These

distances use the kernel trick which can capture intrin-

sic properties inherent in the recorded measurements by

transforming the data into a higher dimensional space.

Using these distances in sensiHSIC, it was found that the

contributions of the various factors in the normal and the

Fig. 8 sensiFdiv indices for Pearson χ2 distance. Red - indices for normal. Blue - indices for tumor
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Fig. 9 sensiFdiv indices for Kullback-Leibler divergence. Red - indices for normal. Blue - indices for tumor

tumor cases vary drastically. This is shown in Figs. 10, 11

and 12. The laplace and the rbf kernels give more reli-

able sensitivity estimates for the involved factors than the

linear kernel. Studying the results in figures 6 and 7 of

[23] based on prior biological knowledge encoded in the

Bayesian network models along with the indices of afore-

mentioned figures, it can be found that indices of the

family of DACT − 1/2/3 show higher (lower) sensitivity

in the normal (tumor) case where the activation (repres-

sion) happens. Again, of the DACT family, DACT − 1 has

Fig. 10 sensiHSIC indices for linear kernel. Red - indices for normal. Blue - indices for tumor
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Fig. 11 sensiHSIC indices for laplace kernel. Red - indices for normal. Blue - indices for tumor

greater influence than DACT − 3 (than DACT − 2) based

on the values of the sensitivity indices. These indices indi-

cate the dependence of a factor on the output of the model

characterized by the signaling being active (passive) in

the normal (tumor) cases. 0(1) mean no (full) dependence

of the output on the input factor. The laplace and the

rbf kernels were found to give more consistent results

than the linear kernel and the following description dis-

cusses the results from these kernels. For the SFRP family

SFRP − 1/2/5 show higher (lower) sensitivity in normal

Fig. 12 sensiHSIC indices for rbf kernel. Red - indices for normal. Blue - indices for tumor
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(tumor) case where the activation (repression) happens

(see Figs. 11 and 12). For SFRP−3/4 the influence is higher

(lower) in the tumor (normal) case. In all the three types of

kernels,WIF1,MYC and CCND1 show stronger (weaker)

influence of repression (activation) in the normal (tumor)

case (see Figs. 11 and 12).CD44 showed variable influence

while observing the normal and tumor cases. [23] could

not derive proper inferences for LEF1 but the sensitivity

indices indicate that the influence of LEF1 in tumor sam-

ples to be higher than in normal samples. This points to

the LEF1’s major role in tumor cases. Finally, for the fam-

ily of DKK, DKK1 and DKK3 − 2 show similar behaviour

of expression (repression) in normal (tumor cases) (see

[23]). For the former, the prominence of the influence is

shown in the higher (lower) sensitivity for tumor (normal)

case. For the latter higher (lower) sensitivity was recorded

for normal (tumor) case. This implies that the latter has

more influential role in normal while the former has more

influential role in tumor case. DKK3 − 1 was found to

be expressed (repressed) in normal (tumor) and its domi-

nant role is prominent from the higher bar sensitivity bar

for normal than the tumor. Similar behavior of DKK2 was

inferred by [23] but the sensitivity indices point to var-

ied results and thus a conclusion cannot be drawn. Note

that greater the value of the sensitivity index, greater is an

input factor’s contribution to the model.

The first order indices generated by sobol functions

implemented in sobol2002 (Fig. 13), sobol2007 (Fig. 14),

soboljansen (Fig. 15), sobolmartinez (Fig. 16) and sobol

(Fig. 17) do not point to significant dependencies of the

input factors. This can be attributed to the fact that there

are less number of samples that help in the estimation of

the sensitivity indicies. Finally, the total order indices need

to be investigated in the context of the first order indices.

It can be observed , sobol2002 (Fig. 18) and sobol2007

(Fig. 18) give much better estimates than soboljansen

(Fig. 19) and sobolmartinez (Fig. 20). Most importantly,

it is the former two that closely match with the sensitiv-

ity indices estimated using the HSIC distance measures.

Interpretations from sobol2002 (Fig. 18) and sobol2007

(Fig. 21) are the same as those described above using

the laplace and the rbf kernels from density based HSIC

measure.

In summary, the sensitivity indices confirm the inferred

results in [23] but do not help in inferring the causal

relations using the static data. In combination with the

results obtained from the Bayesian network models in

[23] it is possible to study the effect of the input factors

for the pathway in both normal and tumor cases. The

results of sensitivity indices indicate how much these fac-

tors influence the pathway in normal and tumor cases.

Again, not all indices reveal important information. So

users must be cautious of results and see which measures

reveal information that are close to already established or

computationally estimated biological facts. Here the den-

sity based sensitivity indices captured information more

precisely than the variance based indices (except for the

total order indices from sobol2002/7 which gave similar

Fig. 13 Sobol 2002 first order indices. Red - indices for normal. Blue - indices for tumor
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Fig. 14 Sobol 2007 first order indices. Red - indices for normal. Blue - indices for tumor

Fig. 15 Sobol jansen first order indices. Red - indices for normal. Blue - indices for tumor
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Fig. 16 Sobol martinez first order indices. Red - indices for normal. Blue - indices for tumor

Fig. 17 Sobol first order indices. Red - indices for normal. Blue - indices for tumor
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Fig. 18 Sobol 2002 total order indices. Red - indices for normal. Blue - indices for tumor

Fig. 19 Sobol jansen total order indices. Red - indices for normal. Blue - indices for tumor
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Fig. 20 Sobol martinez total order indices. Red - indices for normal. Blue - indices for tumor

Fig. 21 Sobol 2007 total order indices. Red - indices for normal. Blue - indices for tumor
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results as sensiHSIC). This is attributed to the analytical

strength provided by the distance measures using the ker-

nel trick via RKHS that capture nonlinear relations in

higher dimensional space, more precisely. Finally, in a

recent unpublished work by [87], it has been validated that

the HSIC indices prove to be more sensitive to the global

behaviour than the Sobol indices.

Time series data

Next, the analysis of the time series data is addressed using

the sensitivity indices. THERE ARE TWO EXPERIMENTS

THAT HAVE BEEN PERFORMED. FIRST IS RELATED TO

THE ANALYSIS OF A PAIR OF THE FOLD CHANGES

RECORDED AT TWO DIFFERENT CONSECUTIVE TIME

POINTS I.E ti & ti+1. THE SECOND IS RELATED TO

THE ANALYSIS OF A PAIR OF DEVIATIONS IN FOLD

CHANGES RECORDED AT ti & ti+1 AND ti+1 & ti+2. The

former compares the measurements in time while the lat-

ter takes into account the deviations that happens in time.

For each measurement at a time point a normal distri-

bution was generated with original recorded value as the

mean, a standard deviation of 0.005 and an added noise

in the form of jitter (see function jitter in R langauge).

For the time measurements of each of the genes recorded

in [27] an analysis of the sensitivity indices for both the

scaled and the non-scaled data was done. Here the analysis

for non-scaled data is presented. The reason for not pre-

senting the scaled data is that the sample measurements

did not vary drastically as found in the case of static data

which caused troubles in the estimation of indices earlier.

Another reason for not reporting the results on the scaled

data is that the non-scaled ones present raw sensitive

information which might be lost in scaling via normaliza-

tion. Note that [27] uses self organizing maps (SOM) to

cluster data and use correlational analysis to derive their

conclusions. In this work, the idea of clustering is aban-

doned and sensitivity indices are estimated for recorded

factors participating in the pathway. Also the simple cor-

relational analysis is dropped in favour of highly analytical

kernel based distance measures which easily capture the

nonlinearities inherent in the data. Figure 22 represents

the experimental setup in a pictorial format.

Also, in a recent development, [25] point to two findings

namely, • the robust fold changes of β-catenin and • the

transcriptional machinery of the Wnt pathway depends

on the fold changes in β-catenin instead of absolute

levels of the same and some gene transcription networks

must respond to fold changes in signals according to the

Weber’s law in sensory physiology. The second study also

carries a weight in the fact that due to the study of the

deviations in the fold changes it is possible to check if

the recently observed and reported natural psychophysi-

cal laws in the signaling pathway hold true or not. Finally,

using the sensitivity indicies an effort is made to confirm

the existing biological causal relations that have been

shown in [23].

Analysis of fold changes at different time points

Lets begin with the gene WNT3A as changes in its con-

centration lead to recording of the measurements of the

different genes by [27]. Of the list of genes recorded, the

indices of the those which are influenced by the con-

centration of WNT3A are analysed. Next based on these

confirmations and patterns of indices over time, conclu-

sions for other enlisted genes are drawn. For the for-

mer list, the following genes FZD1, FZD2, LEF1, TCF7,

TCF7L1, LRP6, DVL1, SFRP1, SFRP4, CTBP1, CTBP2,

PORCN, GSK3β , MYC, APC and CTNNB1 are con-

sidered. Figures 23 and 24 represent the indices com-

puted over time. Columns represent the different kinds

of indices computed while the rows show the respective

genes. Each graph contains the sensitivity index computed

at a particular time point (represented by a coloured bar).

It should be observed from the aforementioned figures

that the variants of the Sobol first order (FO) and the

total order (TO) indices computed under different for-

mulations were not very informative. This can be seen in

graphs were some indices are negative and at some places

the behaviour across time and genes remain the same.

In contrast to this, the indices generated via the origi-

nal Sobol function (under the column Sobol-SBL) as well

as the sensiHSIC were found to be more reliable. Again,

the rbf and laplace kernels under the HSIC formulations

showed similar behaviour in comparison to the use of the

linear kernel.

Gujral and MacBeath [27] simulate the serum starved

HEK293 cells with 200 ng/mL of WNT3A at different

lengths of time. After the first hour (t1), (under HSIC-

rbf/laplace) it was observed that the sensitivity ofWNT3A

was low (red bar). Themaximum contribution ofWNT3A

can be recoreded after the 12th stimulation. But due to

increased stimulation by WNT3A later on, there is an

increased sensitivity of FZD-1/2 as well as LRP6. The

FZD or the frizzled family of 7-transmember protein [88]

works in tandem with LRP-5/6 as binding parameters for

the Wnt ligands to initiate the Wnt signaling. Consis-

tent with the findings of [89] and [90], FZD1 was found

to be expressed. But there is a fair decrease in the con-

tribution of the same in the next two time frames i.e

after 3rd and the 6th hour. The maximum contribution of

FZD1 is found after the WNT3A simulation at 12th hour.

This probably points to repetitive involvement of FZD1

after a certain period of time to initiate the working of

the signaling pathway. FZD2 showed increasing signifi-

cance in contribution after the first two time frames. The

contribution drops significantly after the 3rd simulation

and gradually increases in the next two time frames. The

repetitive behaviour is similar to FZD1, yet it’s role is not
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Fig. 22 A cartoon of experimental setup. Step - (1) Time recordings of different gene expression values after WNT3A stimulation at different hrs. (2)
Generation of normal distribution for every FC & �FC for Gx at & between different time snapshots, respectively. mean - original Gx exp value;
standard dev. - 0.005 + noise from jitter function in R (3) Generation of data set for FC & �FC. (4) Generation of samples for SA. (5) Compute SI for FC
& �FC

well studied as it appears to bind to both WNT3A which

promotesWnt/beta-catenin signaling andWNT5A which

inhibits it as shown by [91], respectively.

Klapholz-Brown et al. [92] and [93] show that there is

increased β-catenin due to WNT3A stimulation which is

depicted by the increased sensitivity of CTNNB1 expres-

sion in one of the above mentioned figures. MYC (i.e

c − MYC) is known to be over expressed in colorectal

cancer cases mainly due to the activation of TCF −4 tran-

scription factor via intra nuclear binding of β-catenin [94],

either byAPCmutations [95] or β-cateninmutations [96].

The sensitivity ofMYC increased monotonically but after

the 6th h it dropped significantly. ProbablyMYC does not

play important role at later stages. As found in [97] and

Fig. 23 Column wise - methods to estimate sensitivity indices. Row wise - sensitivity indicies for each gene. For each graph, the bars represent
sensitivity indices computed at t1 (red), t2 (blue), t3 (green), t4 (gray) and t5 (yellow). Indices were computed using non scaled time series data. TO -
total order; FO - first order; SBL - Sobol
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Fig. 24 Column wise - methods to estimate sensitivity indices. Row wise - sensitivity indicies for each gene. For each graph, the bars represent
sensitivity indices computed at t1 (red), t2 (blue), t3 (green), t4 (gray) and t5 (yellow). Indices were computed using non scaled time series data. TO -
total order; FO - first order; SBL - Sobol

[98], DVL family interacts with the frizzled FZD mem-

bers leading to disassembly of the β-catenin destruction

complex and subsequent translocation of β-catenin to the

nucleus. Development on DVL family have been exten-

sively recorded in [99] and [100], and significance ofDVL1

in Taiwanese colorectal cancer in [101]. DVL1 shows a

marked increase in sensitivity as the concentration of the

WNT3A increases in time. This is supported by the fact

that ligand binding at the membrane leads to formation of

complex including DVL1, FZD and AXIN.

Negative regulators like SFRP4 were found to have

lower sensitivity as WNT3A concentration increases,

but remained constant for most period. Meanwhile the

significance of Wnt antagonist SFRP1 ([102], [103] and

[104]) decreases over the period as the concentration

of WNT3A increases. [105] reviews the co-repressor

ability of the CTBP family, while [106] shows CTBP as a

binding factor that interacts with APC thus lowering the

availability of free nuclear β-catenin. This interaction is

further confirmed in the recent research work by [107].

As shown by [93] CTBP1 showed increased sensitivity

with increased stimulation of WNT3A in the first hour.

The latter stages show a decreased contribution of CTBP1

as the concentration of WNT3A was increased. This

is in line with what [27] show in their manuscript and

indicate the lowering of the co-repressor effect of CTBP

at later stages. On the other hand, CTBP2 showed reverse

behaviour of sensitivity in comparison to CTBP1 across

different time points. Increased significance of CTBP2

was observed in the first two time frames, i.e after 1st and

3rd hour of stimulation, followed by lower contribution to

the pathway at the latter stages. In both cases, the dimin-

ishing co-repressive nature of CTBP in time is observed.

Contrary to these finding, recent results in [108] suggest

that both CTBP1 and CTBP2 are up-regulated in colon

cancer stem cells.

PORCN showed less sensitivity in the initial stages than

in final stages indicating its importance in the contribu-

tion to Wnt secretion which is necessary for signaling

[109]. The sensitivity of GSK3β and APC decreased in

time indicating the lowering of its significance in later

stages due to no formation of the degradation complex.

Activity of TCF gains greater prominence in the first and

the second time frames after the initial WNT3A stimu-

lation. This is in conjugation with the pattern showed by

CTBP2. Regarding TCF7L2, the activity is observed to be

maximum during the first time frame with decrease in the

contribution in the later time frames.

Indicies for remaining 57 genes as well as analysis of

the same will be presented in the following B part of

this manuscript. Graphs for these 57 genes have been

presented in Figures 27 and 28 in Appendix.

Analysis of deviations in fold changes

In comparison to the contributions estimated via the

sensitivity indices using fold changes at different time

points separately, this section analyzes the contributions

due to deviations in the fold changes recorded between

two time points i.e ti & ti+1. These analyses are also

a way to test the efficacy of deviations in fold changes

versus the absolute levels that have been stressed upon

in [25]. I PRESENT HERE A DETAILED ANALYSIS OF

HOW SOME OF THE COMPONENTS OF THE PATHWAY

INFLUENCE THE PATHWAY AT WHICH TIME POINT

AND TIME PERIOD. OF THE EXPRESSION PROFILES OF

71 GENES RECORDED DURING THE STIMULATION, I

PRESENT ONLY A FEW OF THEM AS AN EXAMPLE OF

SYSTEM WIDE ANALYSIS AT THE COMPUTATIONAL
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LEVEL. NOTE THAT IT IS THESE TIME PERIODS

WHICH HAVE BEEN IDENTIFIED BY OBSERVING THE

NUMERICAL VALUES OF THE SENSITIVITY INDICES

IN WHICH THE INFLUENCE OF A PARTICULAR FAC-

TOR/COMPONENT IS REPORTED. IDENTIFICATION OF

EARLY TIME POINTS AND TIME PERIODS INDICATE

HOW THE PATHWAY IS AFFECTED AT AN EARLY STAGE

AND VICE VERSA. THUS, THE SYSTEM WIDE ANALYSIS

CONDUCTED AT TIME COURSE LEVEL, GIVES A DEEPER

PICTURE OF THE INFLUENCES OF THE COMPONENTS

IN THE WORKING OF THE PATHWAY. Some of these

findings are in line with [27]. But some provide more

deeper analysis where [27] fails to do so.

In such an already extensive computational study

at systems level, it is not possible to provide wet lab

tests to validate the above findings and neither does

the author currently have the resources to test the

same in a wet lab setting. INSTEAD, SUCH INSILICO

FINDINGS FACILITATE THE BIOLOGISTS TO VERIFY

AND STUDY THE PATHWAY DEEPLY IN WET LAB. IN

THE AUTHOR’S LIMITED AWARENESS, SUCH A STUDY

HAS NOT BEEN UNDERTAKEN BEFORE. FINALLY, THE

FOLLOWING DESCRIPTIONS JUST DO NOT EXPLAIN

THE GRAPH. THEY RATHER POINT TO THE TAKE

HOME MESSAGES REGARDING THE INFLUENCE OF

FACTORS/COMPONENTS AT DIFFERENT TIME POINTS

AND TIME PERIODS AT INSILICO LEVEL.

As with the analysis of the fold changes at different time

points, the estimates obtained using the rbf, linear and

laplacian kernels in the HSIC based sensitivity analysis

have been used here. Of these, the rbf and laplacian ker-

nels give almost similar results. Plots of the time series

expression profiles from [27] have been relegated to the

Appendix and shown in Figures 31 and 32.

� WNT3A - Figure 31 in Appendix shows the profile of

mRNA expression levels of WNT3A after external stimu-

lation. There is a series of (+ − ++) deviations in the fold

change recordings at different time points. A repetitive

behaviour is observed in the contribution of the deviations

in fold changes for WNT3A estimated via the sensitivity

indices. For intervals in t1, t3 and t6 there is an increase in

the significance of the contribution of WNT3A in Fig. 25

(see the first two bars for < t1, t3 > & < t3, t6 >), even

though in the first three time frames levels ofWNT3A are

shown to be down-regulated (see Figure 31 in Appendix).

This behaviour is again repeated in Fig. 25 for intervals

t6, t12 and t24 (see the next two bars for < t6, t12 > & <

t12, t24 >). In both cases one finds an increase in the con-

tribution of the deviation in the fold change. Comparing

the contribution of levels of fold changes in Fig. 23 were it

was found that there is a dip in contribution of WNT3A

after t3 and then a further increase in the contribution at

a latter time frame, one finds that the deviations in fold

changes involving < t1, t3 > &< t3, t6 > have higher

significance than the deviations in fold changes involving

< t6, t12 > &< t12, t24 >. It can be noted that even in

the deregulated state from < t1, t3 and t6 > the devia-

tions are minimal and the contributions are significantly

high. In case of the regulated states from < t6, t12 and

t24 > the deviation is extremely high between the first

two time frames and low in the next two. This results

in greater significant contribution in the latter deviation

than the former deviation. Thus when deviations are low

and the fold changes over time do not vary much, the

contributions of the involved factor to the signaling path-

way is expected to be high and vice versa. This points

to the fact that low variations in fold changes over time

have a stablizing influence of WNT3A rather than abrupt

high variations in fold changes that might not have the

same influence. Thus measurments of deviations in fold

changes provide greater support for studying the affect of

WNT3A over time.

� CTNNB1 - Figure 31 in Appendix shows the profile

of mRNA expression levels of CTNNB1 after external

stimulation. There is a series of (+ + −+) deviations

in the fold change recordings at different time points.

An initial increase in the influence of CTNNB1 is

observed from < t1, t3 > to < t3, t6 > (first two bars in

Fig. 25) followed by a gradual decrease of influence from

< t3, t6 > to < t6, t12 > to < t12, t24 > (last three bars

in Fig. 25). This is observed even though there is an up-

regulation in levels of CTNNB1 with a slight dip at t12 (see

Figure 31 in Appendix). In comparison to the contribution

of levels of fold changes in Fig. 23 were it was found that

there is a gradual decrease in the influence of CTNNB1

till t6 and then a further increase in the contribution at

latter time frames, one finds that the deviations in fold

changes involving < t3, t6 > have the highest significance

with an almost exponential decrease in the deviations in

fold changes involving < t6, t12 > &< t12, t24 >. Even

though in a regulated state the influence of deviations in

the fold changes indicate a different scenario altogether

in comparison to influences of fold changes at distinct

time frames. This might point to the fact that the affect

of CTNNB1 is maximum during < t3, t6 > in comparison

to other stages even after constantly increasing external

stimulation with WNT3A at different time points. Expo-

nential decrease in the influence in the deviations in latter

time frames points to the ineffectiveness of CTNNB1

in the pathway at later stages. Finally, in contrast to

the behaviour of influence of WNT3A in the foregoing

paragraph, CTNNB1 showed higher (lower) influence for

greater (lesser) deviations in fold changes.

� APC - Figure 31 in Appendix shows the profile of

mRNA expression levels of APC after external stimula-

tion. The profile of the deviations of APC in a deregu-

lated state show the following (− + +−) pattern. While

the CTNNB1 expression profile shows non-monotonic
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Fig. 25 Column wise - methods to estimate sensitivity indices. Row wise - sensitivity indicies for each gene on deviations in fold change. For each
graph, the bars represent sensitivity indices computed at < t1, t2 > (red), < t2, t3 > (blue), < t3, t4 > (green) and < t4, t5 > (gray). Indices were
computed using non scaled time series data. TO - total order; FO - first order; SBL - Sobol

increase in levels of fold changes in upregulated state,APC

expression profile shows a nonlinear behaviour in levels

of fold changes in down regulated state. The significance

of deviation in fold changes for APC is maximum during

< t3, t6 > when the downregulation is weakened. Further

weaking of the downregulation during < t6, t12 > does

not have much significance. This attenuation in signifi-

cance of deviations in fold change might support the fact

that APC’s weaking in downregulation amplifies shutting

down of the Wnt pathway after the intial strong downreg-

ulation (where Wnt activity is high). This is corroborated

by the finding of [27] which observes the initial (later) pos-

itive (negative) feedback that strenghtens (weakens) the

Wnt pathway activity. An initial increase in the influence

of APC is observed from < t1, t3 > to < t3, t6 > (first two

bars in Fig. 25) followed by a gradual decrease of influ-

ence from < t3, t6 > to < t6, t12 > to < t12, t24 > (last

three bars in Fig. 25). This is observed even though there

is an down-regulation in levels of APC with slight weak-

ing at t6, t12 and t24 in comparison to recordings at other

time frames (see Figure 31 in Appendix). In comparison

to the contribution of levels of fold changes in Fig. 23

where it was found that there is a gradual decrease in the

influence of APC till t6 and then a further increase in

the contribution at latter time frames, one finds that the

deviations in fold changes involving < t3, t6 > have the

highest significance with an almost exponential decrease

in the deviations in fold changes involving < t6, t12 >

&< t12, t24 >.

� MYC - Figure 31 in Appendix shows the pro-

file of mRNA expression levels of MYC after external

stimulation. The profile of the deviations in fold changes

ofMYC in an up-regulated state show the following (− +
++) pattern. After an initial dip in the up-regulation at

t6 there is an exponential increase in the fold changes of

MYC as time progresses. While Fig. 23 shows an increas-

ing sensitivity ofMYC for the first three time frames, later

up-regulated state of MYC due to increasing WNT3A

stimulations do not hold much significance. In contrast,

it is not possible to observe a pattern in the sensitivity of

deviations in fold changes forMYC except for the fact that

the maximum contribution of deviation in fold change is

observed for the period of < t6, t12 >. This is a period

whenMYC’s significance in the pathway is maximum.

� GSK3B - Figure 31 in Appendix shows the profile of

mRNA expression levels of GSK3β after external stim-

ulation. The profile of the deviations in fold changes of

GSK3β in an varied regulated state show the following

(− + ++) pattern. After an initial up-regulation at t3
there is down regulation at t6 before which up-regulation

follows for latter stages. It is widely known that WNT

stimulation leads to inhibition of GSK3β . In contrast to

this regard GSK3β shows a up-regulated levels at t3, t12
and t24. The author is currently unaware of why this con-

tasting behaviour is exhibited. Later upregulation might

point to the fact that the effectiveness of Wnt stimula-

tion has decreased andGSK3β plays the role of stabilizing

and controlling the behaviour of the pathway by work-

ing against the Wnt stimulation and preventing further

degradation. While work by [27] does not shed light on

this aspect, contrasting models of inhibitions for GSK3

has been recently proposed in [110] which might support

this behaviour. Figure 23 shows an decreasing sensitivity

of GSK3β for the first two time frames, after which there

is an increasing sensitivity for the next three time frames.

Comparing this with plots in Fig. 25 it is found that there

is greater significance of deviations in fold changes of

GSK3β during later stages of < t6, t12 > and < t12, t24 >.
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� PORCN - Figure 31 in Appendix shows the pro-

file of mRNA expression levels of PORCN after external

stimulation. The profile of the deviations in fold changes

of PORCN in an up regulated state show the following

(+ − −−) pattern. After an initial hike in up-regulation

at t3 there is continuous decrease in the up regulation.

PORCN is known to help in the secretion of the Wnt lig-

ands that later on help in the instigation of the signaling

activity [111]. Sustanined stimulation by WNT3A over a

period of time might lead to decrease in the up regula-

tion of PORCN which helps in Wnt secretion. Graph for

PORCN in Fig. 23 shows increasing significance of the

influence of PORCN as time passes, even though there

is lower regulation of the same at later stages (Figure 31

in Appendix). The highly significant influence of lower

regulation at later stages indicates the lessened effective-

ness of PORCN due to sustainedWNT3A stimulation that

might have suppressed the functionality of secretion car-

ried out via PORCN. Contrary to this, the influences of the

deviations in the fold changes over time show the reverse

behaviour. The maximum influence is during the first two

time frames of < t1, t3 > and this influence of deviations

decreases at later stages. This points to the fact that the

deviations in the fold changes at intial stage has greater

significance in the pathway than the deviations at later

stages. It follows that in initial stages of Wnt stimulation

the expression of PORCN has significant influence.

� CTBP2 - Figure 31 in Appendix shows the profile of

mRNA expression levels of CTBP2 after external stim-

ulation. The profile of the deviations in fold changes of

CTBP2 in an up regulated state show the following (− +
+−) pattern. It is known that CTBP2 shows co-repressive

nature [112] and the pattern of sensitivity indicates this

heigthened effect at< t3, t6 > and< t12, t24 >. In contrast

to this in Fig. 23 one finds that the significance of upreg-

ulation at t12 and t24 is minimal and yet the sensitivity for

the deviations in fold changes for this period is second to

< t3, t6 >. The probable explanation for this might be that

for higher upregulation (in terms of numeric representa-

tions), even small deviations might play a sigificant role

while the sensitivity at individual time frames remains low.

� CTBP1 - Figure 31 in Appendix shows the profile of

mRNA expression levels of CTBP1 after external stim-

ulation. The profile of the deviations in fold changes

of CTBP1 in an up regulated state show the following

(+ + +−) pattern. As with the heightened sensitivity

at time frame t1 the sensitivity of deviations in the fold

changes exhibits heightened effect in the pathway at <

t1, t3 >. Further analysis might not be possible as one finds

lowered sensitivity even at heightened up regulation for

individual recordings as well as deviations.

� SFRP4 - Figure 31 in Appendix shows the profile of

mRNA expression levels of SFRP4 after external stimula-

tion. The profile of the deviations in fold changes of SFRP4

in an down regulated (except in the last time frame) state

show the following (− + ++) pattern. Known to be a

negative regulator of the Wnt pathway, it was found that

its sensitivity in extremely high as it is down regulated

during the stimulation. This is depicted in the figures plot-

ted in Fig. 23. This heightened sensitivity during most of

the down regulation points towards the significant role of

hypermethylation that leads to silencing of this gene. Con-

trary to this, there is amonotonically increasing sensitivity

for deviations in the fold changes during down regulation

from t1 to t12. A dip in the sensitivity of the deviation for

the final time frame < t12, t24 > happens when the up

regulation is recorded in the last time frame. Based on

the maximum sensitivity for deviation in fold change dur-

ing < t6, t12 >, up regulation of SFRP4 in this period is

expected to have greatest reverse effect on the activation

of the Wnt pathway. It appears that the hypermethylation

that causes the silencing of the SFRP4 is maximal during

this stage and thus a potential period for the pathway to

be inhibited via reversal of silencing [103].

� SFRP1 - Figure 32 in Appendix shows the profile of

mRNA expression levels of SFRP1 after external stimu-

lation. The profile of the deviations in fold changes of

SFRP4 in an up regulated (except in during the second

time frame) state show the following (− + −−) pattern.

It is widely known that SFRP1 is a Wnt antagonist and

is known for inactivation in the canconical Wnt path-

way due to hypermethylation thus leading to upregulation

of the pathway [104]. [103] further indicates that SFRP1

is thought to silence ligand-dependent Wnt signaling by

binding of the cysteine rich-domain (CRD) to Wnt pro-

teins, thus preventing interaction with FRZ receptors.

Recent in silico results by [113] confirm hypermethylation

of SFRP1 in colorectal cancers. Given the above profile,

it is possible to see that there is a down regulation at t3
but the significance of its influence on the pathway is not

much as revealed in Fig 24. Figure 24 shows a decreas-

ing significance in the influence of the SFRP1 with the

maximum influence in the last stage of theWNT3A stim-

ulation, where there is an up regulation. In similar way, in

Fig. 26 there is significance of the sensitivity in the devi-

ations in fold changes during the up regulation of SFRP1

during the < t6, t12 > and < t12, t24 >. The activation

at later stages show that SFRP1 has a greater antago-

nistic effect on the Wnt pathway. In comparison to up

regulation, one finds the down regulation at t3 does not

play a significant role. These are in line with [27]’s claim

regarding reversal of behaviour at different time stages.

� DVL1 - Figure 32 in Appendix shows the profile of

mRNA expression levels of DVL1 after external stimula-

tion. The profile of the deviations in fold changes of DVL1

in an up regulated state show the following (− + +−)

pattern. DVL1 is an adaptor protein that helps in sig-

nal transmission that leads to stabilization of cytosolic



Sinha BMC Systems Biology  (2017) 11:120 Page 27 of 38

Fig. 26 Column wise - methods to estimate sensitivity indices. Row wise - sensitivity indicies for each gene on deviations in fold change. For each
graph, the bars represent sensitivity indices computed at < t1, t2 > (red), < t2, t3 > (blue), < t3, t4 > (green) and < t4, t5 > (gray). Indices were
computed using non scaled time series data. TO - total order; FO - first order; SBL - Sobol

β-catenin for further processing. [101] report high expres-

sion ofDVL1 in Taiwanese colorectal cancer patients with

liver metastasis and it has also been observed as a poten-

tial biomarker in CRC [114]. In Fig 24 the time frame

t12 at which DVL1 shows maximum up regulation is the

most insignificant one due to the lowest sensitivity while

moderate upregulation during t3 and t6 show high sensi-

tivity. The same is true for upregulation at t24. Comparing

this with the deviations in the fold changes in 26, one

finds that there is maximum sensitivity during the period

of < t3, t6 > preceeded by a lower sensitivity index

for the perioud of < t1, t3 >. At other intervals there

was a decreased sensitivity even though the deviations in

the fold changes were very high. This indicates that the

high deviations might not influence the signaling activ-

ity significantly. Also the best period of intervention is

at < t3, t6 >.

� LRP6 - Figure 32 in Appendix shows the profile of

mRNA expression levels of Lrp6 after external stimula-

tion. The profile of the deviations in fold changes of Lrp6

in an up regulated state (except at t3) show the following

(− + +−) pattern. In an extensive work on the molec-

ular differences of LRPs [115] investigate and show that

LRP5/6 along with the frizzled family members form a

Wnt inducible co-receptor complex that helps in signal

transmission after LRP phosphorylation. Earlier wet lab

work by [116] and in silico findings by [117] have shown

highly expressed participation of LRP5/6 inWnt signaling

pathway. Latest work by [118] shows that KRAS signal-

ing promotes canonical Wnt activity via LRP6. In Fig. 24,

LRP6 shows significant influences during the t1, t6 and t12.

The only period in which it is down regulated during t3
has little significance in comparison to the significance of

the up regulated states. It is not known why LRP6 shows

down regulation at this stage. Finally, for unkown rea-

sons, the influence of LRP6 during t12 was found to be

the lowest. It was not possible to read into the sensitiv-

ity of LRP6 for deviations in fold changes the HSIC based

indices. The laplace kernel shows a pattern of increasing

sensitivity with the heightest during < t6, t12 >. But this is

not so in the other two formulations. Thus wet lab experi-

ments might aid in confirming these results and shedding

more light on the duration during which a drug could be

administered.

� TCF7L16 - Figure 32 in Appendix shows the profile of

mRNA expression levels ofTCF7L1 (also known asTCF3)

after external stimulation. The profile of the deviations in

fold changes of TCF7L1 in a down regulated state (except

at t3) show the following (+ − +−) pattern. It is known

that Wnt stimulation promotes the phosphorylation of

repressor-acting TCF7L1 by homeodomain-interacting

protein kinase (HIPK2), which results in its dissociation

from the WRE [119]. Gujral and MacBeath [27]’s results

also indicate the same repression of TCF7L1 during

WNT3A simulation as shown in Figure 32 in Appendix.

But in contradiction to this recent findings of [120],

TCF7L1 is found to be expressed in the colon crypt and

in colon cancer. Their results indicate that TCF7L1 may

have an as yet unidentified role in transmission of tumor-

related β-catenin signals. Evidence of this up regulation is

found at t3 time period as shown in Figure 32 in Appendix.

From Fig. 24 it can be seen that the sensivitiy of TCF7L1

is maximum during the first time period. Later on the

sensitivity subsides as time passes untill the sensitivity

shots up in the last time frame t24. In comparison to this

with respect to the deviations in fold changes over time in

Fig. 26, < t1, t3 > showed the maximum period of influ-

ence. Later on there is a drop in the sensitivity which is
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followed by an approximately monotonic increase. It is

the first transition from down regulation to up regulation

< t1, t3 > that might be the time for intervention. Also

the last stage might be of some value but during down

regulation only.

� TCF7 - Figure 32 in Appendix shows the profile of

mRNA expression levels of TCF7 after external stimula-

tion. The profile of the deviations in fold changes of TCF7

in an up regulated state show the following (− − ++) pat-

tern. TCF7 is found to be regulated uponWnt stimulation

as it binds with LEFs to activate the transcription pro-

cedure after interacting with β-catenin [121]. In Fig. 24,

the sensitivity of the activation of TCF7 decreases mono-

tonically as time progresses. But this behaviour is not the

same for deviations in the fold changes. The maximum

influence is found for the duration of < t6, t12 >. The next

best consistent influence is in the duration < t12, t24 >.

These are the two time periods when the influence of

the deviations in the fold changes is maximum and thus

susceptible to therapeutic interference.

� LEF1 - Figure 32 in Appendix shows the profile of

mRNA expression levels of LEF1 after external stimula-

tion. The profile of the deviations in fold changes of LEF1

in an up regulated state (except at t3) show the following

(−−++) pattern. Generally, LEF1 is found to be up regu-

lated uponWnt stimulation when it works in tandem with

TCF7 [121]. Yet, in Fig. 24, the sensitivity of the activation

of LEF1 is not similar to that of TCF7. In contradiction

to what is observed, one finds a down regulation during

the time period t3. More importantly this is the period

in which the most significant influence of down regu-

lated LEF1 is observed. The Initial down regulation at this

subinterval indicates that LEF1 is not facilitating the Wnt

pathway positiviely. Conclusive results cannot be stated

regarding the deviations in fold changes from Fig. 26.

� FZD2 - Figure 32 in Appendix shows the profile of

mRNA expression levels of FZD2 after external stimula-

tion. The profile of the deviations in fold changes of FZD2

in an up regulated state (except at t3 and t6) show the fol-

lowing (−−++) pattern. The FZD or the frizzled family of

7-transmember protein [88] works in tandem with LRP-

5/6 as binding parameters for the Wnt ligands to initiate

the Wnt signaling. In comparison to the repetitive behav-

ior shown in Fig. 24 it is not possible to draw conclusions

on the deviations in fold changes.

� FZD1 - Figure 32 in Appendix shows the profile of

mRNA expression levels of FZD1 after external stimu-

lation. The profile of the deviations in fold changes of

FZD1 in an down regulated state (except at t3) show the

following (+ − −+) pattern. Consistent with the findings

of [89] and [90], FZD1 was found to be expressed at t3. In

the rest of the time periods, it was down regulated. But

the significance of the influence shows a different pattern

in Fig. 24 with the down regulation at t12 being the most

influencial. In contrast to this, while observing the devi-

ations in the fold changes, it was found that the first two

durations < t1, t3 > and < t3, t6 > showed consistent

decreasing behaviour in terms of influence. It is during

the first period that the deviations in fold changes are

significant and thus it is possible to intervene therapeuti-

cally during the activation stage. Indicies for remaining 57

genes as well as analysis of the same will be presented in

the following B part of this manuscript. Graphs for these

57 genes have been presented in Figures 29 and 30 in the

Appendix.

Conclusion

COMPUTATIONAL SIGNIFICANCE

Local and global sensitivity analysis on static and

time series measurements in Wnt signaling pathway

for colorectal cancer is done. Density based Hilbert-

Schmidt Information Criterion indices outperformed the

variance based Sobol indices. This is attributed to the

employment of distance measures & the kernel trick via

Reproducing kernel Hilbert space (RKHS) that captures

nonlinear relations among various intra/extracellular fac-

tors of the pathway in a higher dimensional space. The

gained advantage is confirmed on the inferred results

obtained via a Bayesian network model based on prior

biological knowledge and static gene expression data.

In time series data, using these indices it is now pos-

sible to observe when and in which period of time

and to what degree a factor gets influenced & con-

tributes to the pathway, as changes in concentration

of the another factor is made. This facilitates in time

based administration of target therapeutic drugs & reveal

hidden biological information within colorectal cancer

samples.

DEVIATIONS IN FORMULATION OF PSYCHOPHYSICAL

LAW

In context of [25]’s work regarding the recent develop-

ment of observation of Weber’s law working downstream

of the pathway, it has been found that the law is gov-

erned by the ratio of the deviation in the input and the

absolute input value. More importantly, it is these devi-

ations in input that are of significance in studing any

phemomena. The current manuscript explores the sen-

sitivity of deviation in the fold changes between mea-

surements of fold changes at consecutive time points

to explore in what duration of time i.e < ti, ti+1 >,

a particular factor is affecting the pathway in a major

way. This has deeper implications in the fact that one

is now able to observe when in time an intervention

can be made or a gene be perturbed to study the

behaviour of the pathway in tumorous cases. Thus sen-

sitivity analysis of deviations in mathematical formula-

tions of the psychophysical law can lead to insights into

the time period based influence of the involved factors
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in the pathway. This will also shed light on the dura-

tion in which the psychophysical laws might be most

prevalent.

SPECIFIC EXAMPLES OF BIOLOGICAL INTERPRETA-

TIONS

GSK3β - It is widely known thatWNT stimulation leads

to inhibition of GSK3β . In contrast to this regard GSK3β

shows a up-regulated levels at t3, t12 and t24. The author

is currently unaware of why this contasting behaviour is

exhibited. Later upregulation might point to the fact that

the effectiveness of Wnt stimulation has decreased and

GSK3β plays the role of stabilizing and controlling the

behaviour of the pathway by working against the Wnt

stimulation and preventing further degradation. While

work by [27] does not shed light on this aspect, con-

trasting models of inhibitions for GSK3 has been recently

proposed in [110] which might support this behaviour.

Considering analysis of fold changes at different time

points, decreasing sensitivity of GSK3β was observed for

the first two time frames, after which there is an increas-

ing sensitivity for the next three time frames. Comparing

this with plots of analysis of deviations in fold changes, it

is observed that there is greater significance of deviations

in fold changes ofGSK3β during later stages of< t6, t12 >

and < t12, t24 >. It is in these periods that one might

be able to pertube and study significant affects on the

pathway.

PORCN - PORCN is known to help in the secretion of

the Wnt ligands that later on help in the instigation of

the signaling activity. Sustanined stimulation by WNT3A

over a period of time might lead to decrease in the up reg-

ulation of PORCN which helps in Wnt secretion. Graph

for PORCN in analysis of fold changes shows increasing

significance of the influence of PORCN as time passes,

even though there is lower regulation of the same at later

stages. The highly significant influence of lower regula-

tion at later stages indicates the lessened effectiveness

of PORCN due to sustained WNT3A stimulation that

might have suppressed the functionality of secretion car-

ried out via PORCN. Contrary to this, the influences of

the deviations in the fold changes over time show the

reverse behaviour. The maximum influence is during the

first two time frames of < t1, t3 > and this influence

of deviations decreases at later stages. This points to the

fact that the deviations in the fold changes at intial stage

has greater significance in the pathway than the devia-

tions at later stages. It follows that in initial stages of

Wnt stimulation the expression of PORCN has significant

influence.

Appendix

Choice of sensitivity indices

The SENSITIVITY PACKAGE ([122] and [31]) in R

langauge provides a range of functions to compute

the indices and the following indices will be taken

into account for addressing the posed questions in this

manuscript.

1. sensiFdiv - conducts a density-based sensitivity

analysis where the impact of an input variable is

defined in terms of dissimilarity between the original

output density function and the output density

function when the input variable is fixed. The

dissimilarity between density functions is measured

with Csiszar f-divergences. Estimation is performed

through kernel density estimation and the function

kde of the package ks [63] and [66].

2. sensiHSIC - conducts a sensitivity analysis where the

impact of an input variable is defined in terms of the

distance between the input/output joint probability

distribution and the product of their marginals when

they are embedded in a Reproducing Kernel Hilbert

Space (RKHS). This distance corresponds to HSIC

proposed by [68] and serves as a dependence

measure between random variables.

3. soboljansen - implements the Monte Carlo

estimation of the Sobol indices for both first-order

and total indices at the same time (all together 2p

indices), at a total cost of (p+2) × n model

evaluations. These are called the Jansen estimators

[58] and [50].

4. sobol2002 - implements the Monte Carlo estimation

of the Sobol indices for both first-order and total

indices at the same time (all together 2p indices), at a

total cost of (p+2) ×n model evaluations. These are

called the Saltelli estimators. This estimator suffers

from a conditioning problem when estimating the

variances behind the indices computations. This can

seriously affect the Sobol indices estimates in case of

largely non-centered output. To avoid this effect, you

have to center the model output before applying

“sobol2002”. Functions “soboljansen” and

“sobolmartinez” do not suffer from this problem [44].

5. sobol2007 - implements the Monte Carlo estimation

of the Sobol indices for both first-order and total

indices at the same time (all together 2p indices), at a

total cost of (p+2) × n model evaluations. These are

called the Mauntz estimators [57].

6. sobolmartinez - implements the Monte Carlo

estimation of the Sobol indices for both first-order

and total indices using correlation coefficients-based

formulas, at a total cost of (p + 2) × n model

evaluations. These are called the Martinez estimators.

7. sobol - implements the Monte Carlo estimation of

the Sobol sensitivity indices. Allows the estimation of

the indices of the variance decomposition up to a

given order, at a total cost of (N + 1) × n where N is

the number of indices to estimate [30].
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Fig. 27 Column wise - methods to estimate sensitivity indices. Row wise - sensitivity indicies for each gene. For each graph, the bars represent
sensitivity indices computed at t1 (red), t2 (blue), t3 (green), t4 (gray) and t5 (yellow). Indices were computed using non scaled time series data. TO -
total order; FO - first order; SBL - Sobol
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Fig. 28 Column wise - methods to estimate sensitivity indices. Row wise - sensitivity indicies for each gene. For each graph, the bars represent
sensitivity indices computed at t1 (red), t2 (blue), t3 (green), t4 (gray) and t5 (yellow). Indices were computed using non scaled time series data. TO -
total order; FO - first order; SBL - Sobol
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Fig. 29 Column wise - methods to estimate sensitivity indices. Row wise - sensitivity indicies for each gene on deviations in fold change. For each
graph, the bars represent sensitivity indices computed at < t1, t2 > (red), < t2, t3 > (blue), < t3, t4 > (green) and < t4, t5 > (gray). Indices were
computed using non scaled time series data. TO - total order; FO - first order; SBL - Sobol
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Fig. 30 Column wise - methods to estimate sensitivity indices. Row wise - sensitivity indicies for each gene on deviations in fold change. For each
graph, the bars represent sensitivity indices computed at < t1, t2 > (red), < t2, t3 > (blue), < t3, t4 > (green) and < t4, t5 > (gray). Indices were
computed using non scaled time series data. TO - total order; FO - first order; SBL - Sobol
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Fig. 31mRNA expression levels of genes at 1st , 3rd , 6th , 12th and 24th hour from [27]

Fig. 32mRNA expression levels of genes at 1st , 3rd , 6th , 12th and 24th hour from [27]
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KL-divergence: Kullback–Leibler divergence; KREMEN1: kringle containing
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proteins; LEF1: Lymphoid enhancer binding factor 1; MYC: MYC
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kernel Hilbert space; SENP2: SUMO1/sentrin/SMT3 specific peptidase 2;
SLC9A3R1: SLC9A3 regulator 1; SFRP: Secreted frizzled-related protein; SOM:
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factor; TLE: transducin like enhancer of split; TCF7L2: Transcription factor 7-like
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8. Pećina-Šlaus N. Wnt signal transduction pathway and apoptosis: a
review. Cancer Cell Int. 2010;10(1):1–5.

9. Kahn M. Can we safely target the wnt pathway? Nat Rev Drug Discov.
2014;13(7):513–32.

10. Garber K. Drugging the wnt pathway: problems and progress. J Natl
Cancer Inst. 2009;101(8):548–50.

11. Voronkov A, Krauss S. Wnt/beta-catenin signaling and small molecule
inhibitors. Curr Pharm Des. 2012;19(4):634.

12. Blagodatski A, Poteryaev D, Katanaev V. Targeting the wnt pathways for
therapies. Mol Cell Ther. 2014;2:28.

13. Curtin JC, Lorenzi MV. Drug discovery approaches to target wnt
signaling in cancer stem cells. Oncotarget. 2010;1(7):552.

14. Rao TP, Kühl M. An updated overview on wnt signaling pathways a
prelude for more. Circ Res. 2010;106(12):1798–1806.

15. Yu J, Virshup DM. Updating the wnt pathways. Biosci Rep. 2014;34(5):
593–607.

16. Antebi YE, Nandagopal N, Elowitz MB. An operational view of
intercellular signaling pathways. Curr Opin Syst Biol. 2017;1:16–24.

17. Goentoro L. Cross-hierarchy systems principles. Curr Opin Syst Biol.
2016;1:80–83.

18. Lee E, Salic A, Kruger R, Heinrich R, Kirschner MW. The roles of apc and
axin derived from experimental and theoretical analysis of the wnt
pathway. PLoS Biol. 2004;2(3):405–6.

19. Kogan Y, Halevi-Tobias KE, Hochman G, Baczmanska AK, Leyns L,
Agur Z. A new validated mathematical model of the wnt signalling
pathway predicts effective combinational therapy by sfrp and dkk.
Biochem J. 2012;444(1):115–25.

20. Lee M, Chen GT, Puttock E, Wang K, Edwards RA, Waterman ML,
Lowengrub J. Mathematical modeling links wnt signaling to emergent
patterns of metabolism in colon cancer. Mol Syst Biol. 2017;13(2):912.

21. MacLean AL, Rosen Z, Byrne HM, Harrington HA. Parameter-free
methods distinguish wnt pathway models and guide design of
experiments. Proc Natl Acad Sci. 2015;112(9):2652–7.

22. Koutroumpas K, Ballarini P, Votsi I, Cournède PH. Bayesian parameter
estimation for the wnt pathway: an infinite mixture models approach.
Bioinformatics. 2016;32(17):781–9.

23. Sinha S. Integration of prior biological knowledge and epigenetic
information enhances the prediction accuracy of the bayesian wnt
pathway. Integr Biol. 2014;6:1034–48. doi:10.1039/c4ib00124a.

24. Sinha S. A pedagogical walkthrough of computational modeling and
simulation of wnt signaling pathway using static causal models in
matlab. EURASIP J Bioinforma Syst Biol. 2016;2017(1):1.

25. Goentoro L, Kirschner MW. Evidence that fold-change, and not absolute
level, of β-catenin dictates wnt signaling. Mol Cell. 2009;36:872–84.

26. Azam M, Bhatti A, Arshad A, Babar M. Sensitivity analysis of wnt
signaling pathway. In: Applied Sciences and Technology (IBCAST), 2013
10th International Bhurban Conference On. IEEE. 2013. p. 122–7.

27. Gujral TS, MacBeath G. A system-wide investigation of the dynamics of
wnt signaling reveals novel phases of transcriptional regulation. PloS
ONE. 2010;5(4):10024.

28. Jiang X, Tan J, Li J, Kivimäe S, Yang X, Zhuang L, Lee PL, Chan MT,
Stanton LW, Liu ET, et al. Dact3 is an epigenetic regulator of
wnt/β-catenin signaling in colorectal cancer and is a therapeutic target
of histone modifications. Cancer Cell. 2008;13(6):529–41.

29. Gregorieff A, Clevers H. Wnt signaling in the intestinal epithelium: from
endoderm to cancer. Gene Dev. 2005;19(8):877–90.

30. Sobol’ IM. On sensitivity estimation for nonlinear mathematical models.
Matematicheskoe Modelirovanie. 1990;2(1):112–8.

31. Iooss B, Lemaître P. A review on global sensitivity analysis methods.
2014. arXiv preprint arXiv:1404.2405.

32. Morris MD. Factorial sampling plans for preliminary computational
experiments. Technometrics. 1991;33(2):161–74.

33. Moon H, Dean AM, Santner TJ. Two-stage sensitivity-based group
screening in computer experiments. Technometrics. 2012;54(4):376–87.

34. Dean A, Lewis S. Screening: Methods for Experimentation in Industry,
Drug Discovery, and Genetics: Springer; 2006.

35. Andres TH, Hajas WC. Using iterated fractional factorial design to screen
parameters in sensitivity analysis of a probabilistic risk assessment
model. 1993.

36. Bettonvil B, Kleijnen JP. Searching for important factors in simulation
models with many factors: Sequential bifurcation. Eur J Oper Res.
1997;96(1):180–94.

37. Cotter SC. A screening design for factorial experiments with interactions.
Biometrika. 1979;66(2):317–20.

38. Christensen R. Linear Models for Multivariate, Time Series, and Spatial
Data: Springer; 1991.

39. Saltelli A, Chan K, Scott E. Sensitivity analysis wiley series in probability
and statistics. 2000.

40. Helton JC, Davis FJ. Latin hypercube sampling and the propagation of
uncertainty in analyses of complex systems. Reliab Eng Syst Saf.
2003;81(1):23–69.

41. McKay MD, Beckman RJ, Conover WJ. Comparison of three methods for
selecting values of input variables in the analysis of output from a
computer code. Technometrics. 1979;21(2):239–45.

42. Homma T, Saltelli A. Importance measures in global sensitivity analysis
of nonlinear models. Reliab Eng Syst Saf. 1996;52(1):1–17.

43. Sobol IM. Global sensitivity indices for nonlinear mathematical models
and their monte carlo estimates. Math Comput Simul. 2001;55(1):271–80.

44. Saltelli A. Making best use of model evaluations to compute sensitivity
indices. Comput Phys Commun. 2002;145(2):280–97.

45. Saltelli A, Ratto M, Tarantola S, Campolongo F. Sensitivity analysis for
chemical models. Chem Rev. 2005;105(7):2811–28.

46. Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D,
SaisanaM, Tarantola S. Global Sensitivity Analysis: the Primer: Wiley; 2008.

47. Cukier R, Fortuin C, Shuler KE, Petschek A, Schaibly J. Study of the
sensitivity of coupled reaction systems to uncertainties in rate
coefficients. i theory. J Chem Phys. 1973;59(8):3873–8.

48. Saltelli A, Tarantola S, Chan KS. A quantitative model-independent
method for global sensitivity analysis of model output. Technometrics.
1999;41(1):39–56.

49. Tarantola S, Gatelli D, Mara TA. Random balance designs for the
estimation of first order global sensitivity indices. Reliab Eng Syst Saf.
2006;91(6):717–27.

50. Saltelli A, Annoni P, Azzini I, Campolongo F, Ratto M, Tarantola S.
Variance based sensitivity analysis of model output. design and
estimator for the total sensitivity index. Comput Phys Commun.
2010;181(2):259–70.

51. Janon A, Klein T, Lagnoux A, Nodet M, Prieur C. Asymptotic normality
and efficiency of two sobol index estimators. ESAIM Probab Stat.
2014;18:342–64.

52. Owen AB. Better estimation of small sobol’sensitivity indices. ACM Trans
Model Comput Simul (TOMACS). 2013;23(2):11.

53. Tissot JY, Prieur C. Bias correction for the estimation of sensitivity indices
based on random balance designs. Reliab Eng Syst Saf. 2012;107:205–13.

54. Da Veiga S, Gamboa F. Efficient estimation of sensitivity indices. J
Nonparametric Stat. 2013;25(3):573–95.

55. Archer G, Saltelli A, Sobol I. Sensitivity measures, anova-like techniques
and the use of bootstrap. J Stat Comput Simul. 1997;58(2):99–120.

56. Tarantola S, Gatelli D, Kucherenko S, Mauntz W, et al. Estimating the
approximation error when fixing unessential factors in global sensitivity
analysis. Reliab Eng Syst Saf. 2007;92(7):957–60.

57. Saltelli A, Annoni P. How to avoid a perfunctory sensitivity analysis.
Environ Model Softw. 2010;25(12):1508–17.

58. Jansen MJ. Analysis of variance designs for model output. Comput Phys
Commun. 1999;117(1):35–43.

http://dx.doi.org/10.1039/c4ib00124a


Sinha BMC Systems Biology  (2017) 11:120 Page 37 of 38

59. Storlie CB, Helton JC. Multiple predictor smoothing methods for
sensitivity analysis: Description of techniques. Reliab Eng Syst Saf.
2008;93(1):28–54.

60. Da Veiga S, Wahl F, Gamboa F. Local polynomial estimation for
sensitivity analysis on models with correlated inputs. Technometrics.
2009;51(4):452–63.

61. Li G, Rosenthal C, Rabitz H. High dimensional model representations. J
Phys Chem A. 2001;105(33):7765–77.

62. Hajikolaei KH, Wang GG. High dimensional model representation with
principal component analysis. J Mech Des. 2014;136(1):011003.

63. Borgonovo E. A new uncertainty importance measure. Reliab Eng Syst
Saf. 2007;92(6):771–84.

64. Sobol IM, Kucherenko S. Derivative based global sensitivity measures
and their link with global sensitivity indices. Math Comput Simul.
2009;79(10):3009–17.

65. Fort JC, Klein T, Rachdi N. New sensitivity analysis subordinated to a
contrast. 2013. arXiv preprint arXiv:1305.2329.

66. Da Veiga S. Global sensitivity analysis with dependence measures. J Stat
Comput Simul. 2015;85(7):1283–305.

67. Székely GJ, Rizzo ML, Bakirov NK, et al. Measuring and testing
dependence by correlation of distances. Ann Stat. 2007;35(6):2769–794.

68. Gretton A, Bousquet O, Smola A, Schölkopf B. Measuring statistical
dependence with hilbert-schmidt norms. In: Algorithmic Learning
Theory. Springer. 2005. p. 63–77.

69. Csiszar I, et al. Information-type measures of difference of probability
distributions and indirect observations. Studia Sci Math Hungar. 1967;2:
299–318.

70. Aizerman M, Braverman E, Rozonoer L. Theoretical foundations of the
potential function method in pattern recognition learning. Autom
Remote Control. 1964;25:821–37.

71. Sumner T, Shephard E, Bogle I. A methodology for global-sensitivity
analysis of time-dependent outputs in systems biology modelling. J R
Soc Interface. 2012;9(74):2156–66.

72. Zheng Y, Rundell A. Comparative study of parameter sensitivity analyses
of the tcr-activated erk-mapk signalling pathway. IEE Proc-Syst Biol.
2006;153(4):201–11.

73. Marino S, Hogue IB, Ray CJ, Kirschner DE. A methodology for
performing global uncertainty and sensitivity analysis in systems
biology. J Theor Biol. 2008;254(1):178–96.

74. Sinha S. Sensitivity analysis of wnt β-catenin based transcription
complex might bolster power-logarithmic psychophysical law and
reveal preserved gene gene interactions. 2015. bioRxiv, 015834.
doi:10.1101/015834.

75. Adler M, Mayo A, Alon U. Logarithmic and power law input-output
relations in sensory systems with fold-change detection. PLoS Comput
Biol. 2014;10(8):1003781.

76. Masin SC, Zudini V, Antonelli M. Early alternative derivations of
fechner’s law. J Hist Behav Sci. 2009;45:56–65. doi:10.1002/jhbs.20349.

77. Fechner GT. Elemente der Psychophysik (2 Vols): Breitkopf and Hartel;
1860.

78. Weber EH. De Pulsu Resorptione, Auditu et Tactu: Annotationes
anatomicae et physiologicae; 1834.

79. Bernoulli D. Specimen theoriae novae de mensura sortis. Commentarii
Acad Sci Imperialis Petropolitanae. 1738;5:175–92.

80. Sobol S, andKucherenko IM. Global sensitivity indices for nonlinear
mathematical models. review. Wilmott Magazine, 2–7.

81. Baucells M, Borgonovo E. Invariant probabilistic sensitivity analysis.
Manag Sci. 2013;59(11):2536–49.

82. Kraskov A, Stögbauer H, Grassberger P. Estimating mutual information.
Phys Rev E. 2004;69(6):066138.

83. Sejdinovic D, Sriperumbudur B, Gretton A, Fukumizu K, et al.
Equivalence of distance-based and rkhs-based statistics in hypothesis
testing. Ann Stat. 2013;41(5):2263–91.

84. Daumé III H. From zero to reproducing kernel hilbert spaces in twelve
pages or less. 2004.

85. Riesz F. Sur une espèce de géométrie analytique des systèmes de
fonctions sommables. CR Acad Sci Paris. 1907;144:1409–11.

86. Taylor JS, Cristianini N. Properties of Kernels: Cambridge University Press;
2004. Chap. 3.

87. De Lozzo M, Marrel A. New improvements in the use of dependence
measures for sensitivity analysis and screening. 2014. arXiv preprint
arXiv:1412.1414.

88. Ueno K, Hirata H, Hinoda Y, Dahiya R. Frizzled homolog proteins,
micrornas and wnt signaling in cancer. Int J Cancer. 2013;132(8):1731–40.

89. Holcombe R, Marsh J, Waterman M, Lin F, Milovanovic T, Truong T.
Expression of wnt ligands and frizzled receptors in colonic mucosa and
in colon carcinoma. Mol Pathol. 2002;55(4):220.

90. Planutis K, Planutiene M, Nguyen AV, Moyer MP, Holcombe RF.
Invasive colon cancer, but not non-invasive adenomas induce a
gradient effect of wnt pathway receptor frizzled 1 (fz1) expression in the
tumor microenvironment. J Transl Med. 2013;11(50):10–1186.

91. Sato A, Yamamoto H, Sakane H, Koyama H, Kikuchi A. Wnt5a regulates
distinct signalling pathways by binding to frizzled2. EMBO J. 2010;29(1):
41–54.

92. Klapholz-Brown Z, Walmsley GG, Nusse YM, Nusse R, Brown PO.
Transcriptional program induced by wnt protein in human fibroblasts
suggests mechanisms for cell cooperativity in defining tissue
microenvironments. PloS ONE. 2007;2(9):945.

93. Yokoyama N, Yin D, Malbon CC. Abundance, complexation, and
trafficking of wnt/β-catenin signaling elements in response to wnt3a.
J Mol Signal. 2007;2(1):11.

94. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ,
Vogelstein B, Kinzler KW. Identification of c-myc as a target of the apc
pathway. Science. 1998;281(5382):1509–12.

95. Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kinzler KW,
Vogelstein B, Clevers H. Constitutive transcriptional activation by a
β-catenin-tcf complex in apc-/- colon carcinoma. Science.
1997;275(5307):1784–7.

96. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B,
Kinzler KW. Activation of β-catenin-tcf signaling in colon cancer by
mutations in β-catenin or apc. Science. 1997;275(5307):1787–90.

97. Hino SI, Michiue T, Asashima M, Kikuchi A. Casein kinase iε enhances
the binding of dvl-1 to frat-1 and is essential for wnt-3a-induced
accumulation of β-catenin. J Biol Macromol. 2003;278(16):14066–73.

98. You XJ, Bryant PJ, Jurnak F, Holcombe RF. Expression of wnt pathway
components frizzled and disheveled in colon cancer arising in patients
with inflammatory bowel disease. Oncol Rep. 2007;18(3):691–4.

99. González-Sancho JM, Brennan KR, Castelo-Soccio LA, Brown AM. Wnt
proteins induce dishevelled phosphorylation via an lrp5/6-independent
mechanism, irrespective of their ability to stabilize β-catenin. Mol Cell
Biol. 2004;24(11):4757–68.

100. Gao C, Chen YG. Dishevelled: The hub of wnt signaling. Cell Signal.
2010;22(5):717–27.

101. Huang MY, Yen LC, Liu HC, Liu PP, Chung FY, Wang TN, Wang JY,
Lin SR. Significant overexpression of dvl1 in taiwanese colorectal cancer
patients with liver metastasis. Int J Mol Sci. 2013;14(10):20492–507.

102. Galli LM, Barnes T, Cheng T, Acosta L, Anglade A, Willert K, Nusse R,
Burrus LW. Differential inhibition of wnt-3a by sfrp-1, sfrp-2, and sfrp-3.
Dev Dyn. 2006;235(3):681–90.

103. Suzuki H, Watkins DN, Jair KW, Schuebel KE, Markowitz SD, Chen WD,
Pretlow TP, Yang B, Akiyama Y, van Engeland M, et al. Epigenetic
inactivation of sfrp genes allows constitutive wnt signaling in colorectal
cancer. Nat Genet. 2004;36(4):417–22.

104. Caldwell GM, Jones C, Gensberg K, Jan S, Hardy RG, Byrd P, Chughtai S,
Wallis Y, Matthews GM, Morton DG. The wnt antagonist sfrp1 in
colorectal tumorigenesis. Cancer Res. 2004;64(3):883–8.

105. Chinnadurai G. Ctbp, an unconventional transcriptional corepressor in
development and oncogenesis. Mol Cell. 2002;9(2):213–24.

106. Hamada F, Bienz M. The apc tumor suppressor binds to c-terminal
binding protein to divert nuclear β-catenin from tcf. Dev Cell. 2004;7(5):
677–85.

107. Schneikert J, Brauburger K, Behrens J. Apc mutations in colorectal
tumours from fap patients are selected for ctbp-mediated
oligomerization of truncated apc. Hum Mol Genet. 2011;20(18):3554–64.

108. Patel J, Baranwal S, Love IM, Patel NJ, Grossman SR, Patel BB. Inhibition
of c-terminal binding protein attenuates transcription factor 4 signaling
to selectively target colon cancer stem cells. Cell Cycle. 2014;13(22):
3506–18.

109. Willert K, Nusse R. Wnt proteins. Cold Spring Harb Perspect Biol.
2012;4(9):007864.

110. Metcalfe C, Bienz M. Inhibition of gsk3 by wnt signalling–two
contrasting models. J Cell Sci. 2011;124(21):3537–44.

111. Lum L, Clevers H. The unusual case of porcupine. Science.
2012;337(6097):922–3.

http://dx.doi.org/10.1101/015834
http://dx.doi.org/10.1002/jhbs.20349


Sinha BMC Systems Biology  (2017) 11:120 Page 38 of 38

112. Chinnadurai G. Ctbp family proteins: more than transcriptional
corepressors. Bioessays. 2003;25(1):9–12.

113. Kim J, Kim S. In silico identification of sfrp1 as a hypermethylated gene
in colorectal cancers. Genomics Inf. 2014;12(4):171–80.

114. Wu CH, Chung FY, Chang JY, Wang JY. Rapid detection of gene
expression by a colorectal cancer enzymatic gene chip detection kit.
Biomark Genomic Med. 2013;5(3):87–91.

115. MacDonald BT, Semenov MV, Huang H, He X. Dissecting molecular
differences between wnt coreceptors lrp5 and lrp6. PLoS ONE. 2011;6(8):
23537.

116. Liu G, Bafico A, Harris VK, Aaronson SA. A novel mechanism for wnt
activation of canonical signaling through the lrp6 receptor. Mol Cell Biol.
2003;23(16):5825–35.

117. Watanabe T, Kobunai T, Toda E, Kanazawa T, Kazama Y, Tanaka J,
Tanaka T, Yamamoto Y, Hata K, Kojima T, et al. Gene expression
signature and the prediction of ulcerative colitis–associated colorectal
cancer by dna microarray. Clin Cancer Res. 2007;13(2):415–20.

118. Lemieux E, Cagnol S, Beaudry K, Carrier J, Rivard N. Oncogenic kras
signalling promotes the wnt/β-catenin pathway through lrp6 in
colorectal cancer. Oncogene. 2014;34:4914–27.

119. Hikasa H, Sokol SY. Phosphorylation of tcf proteins by
homeodomain-interacting protein kinase 2. J Biol Chem. 2011;286(14):
12093–100.

120. Leushacke M, Spörle R, Bernemann C, Brouwer-Lehmitz A, Fritzmann J,
Theis M, Buchholz F, Herrmann BG, Morkel M. An rna interference
phenotypic screen identifies a role for fgf signals in colon camangancer
progression. PLoS ONE. 2011;6(8):23381.

121. Cadigan KM, Waterman ML. Tcf/lefs and wnt signaling in the nucleus.
Cold Spring Harb Perspect Biol. 2012;4(11):007906.

122. Faivre R, Iooss B, Mahévas S, Makowski D, Monod H. Analyse de
Sensibilité et Exploration de Modèles: Application aux Sciences de la
Nature et de L’environnement: Editions Quae; 2013.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:


	Abstract
	Background
	Results
	Conclusion
	Keywords

	Background
	Significance
	A short review
	Canonical Wnt signaling pathway
	Problem statement in short
	A solution to the problem
	Sensitivity analysis
	Application in systems biology
	The logarithmic psychophysical law


	Methods
	Variance based sensitivity indices
	Density based sensitivity indices
	Description of the dataset & design of experiments

	Results and discussion
	Static data
	Time series data
	Analysis of fold changes at different time points
	Analysis of deviations in fold changes


	Conclusion
	Appendix
	Choice of sensitivity indices

	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' information
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	References

