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Abstract: L. A. Bokut gave a Gröbner–Shirshov basis of the braid group Bn in band generators. Using this presentation

and solving all the ambiguities we construct a linear system for irreducible words and compute the Hilbert series of the

braid monoid MB4 .
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1. Introduction

The braid group Bn admits the following classical presentation given by E. Artin [3]:

Bn=

⟨
x1, . . . , xn−1

∣∣∣∣∣ xixj = xj xi if | i− j | ≥ 2
xi+1 xi xi+1 = xi xi+1 xi if 1 ≤ i ≤ n− 2

⟩
.

Elements of Bn are words expressed in the generators x1, . . . , xn−1 . The braid group Bn admits another

presentation called the band presentation given by J. Birman, K. H. Ko, and S. J. Lee [5]. This presentation

consists of the generators ats , n ≥ t > s ≥ 1, where ats represents the braid in which the tth string crosses

over the sth string while the sth and tth strings cross in front of all intermediate strings. Therefore, the band

presentation of the braid group Bn is given by

Bn=

⟨
ats, n ≥ t > s ≥ 1

∣∣∣∣∣ atsarq = arqats, (t− r)(s− r)(s− q)(t− q) > 0
atsasr = atrats = asratr, n ≥ t > s ≥ 1

⟩
.

The braid monoid MBn consisting of only positive crossings admits the same presentation of the braid group

Bn :

MBn=

⟨
ats, n ≥ t > s ≥ 1

∣∣∣∣∣ atsarq = arqats, (t− r)(s− r)(s− q)(t− q) > 0
atsasr = atrats = asratr, n ≥ t > s ≥ 1

⟩
.

In [10] we constructed a linear system for the braid monoid MBn in Artin generators and computed

the Hilbert series for the braid monoids MB3 and MB4 . In this paper we construct a similar kind of linear

system to compute the Hilbert series of MB4 in band generators. This linear system is the key behind all the

computations to compute the Hilbert series of MB4 .
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In the Hilbert series 1
qn(t)

of MBn (for n = 3, 4, 5, 6) for Artin generators, the degrees of the polynomials

qn(t) are 3, 6, 10, 15 respectively (for details see [11]), whereas, in the case of band generators, the degrees of

qn(t) are 2 and 3 (for n = 3 and 4). The advantage of the Hilbert series (for band generators) is that the

growth of qn(t) for band generators is much slower than the growth for Artin generators.

2. Preliminaries

In a presentation of a monoid we fix a total order of the generators (between the generators we choose the

natural order a21 < a31 < a32 < a41 < · · · < an(n−1) ). In the monoid the relation α = β will be written as

α > β in the length-lexicographic order. Let α1 = uw and α2 = wv ; then the word of the form uwv is said to

be an ambiguity (for details see [4]). If α1v = uα2 as a relation as well as in the length-lexicographic order then

we say that the ambiguity uwv is solvable (or solved). Such a presentation is complete if and only if all the

ambiguities are solvable (for details see [4], [8]). Corresponding to the relations α = β , the changes γαδ → γβδ

give a rewriting system. A complete presentation is equivalent to a confluent rewriting system.

In a complete presentation (or in the general presentation) of MBn a word containing α will be called a

reducible word and a word that does not contain α will be called an irreducible word (also called normal form

of the word). We will denote B
(m)
∗ as the set of reducible words and A

(m)
∗ as the set of irreducible words in

MBn .

Let U and V be nonempty words; then the word UaijV will be denoted as Uaij ×ij aijV .

Definition 2.1 [9] Let G be a finitely generated group and S be a finite set of generators of G . The word

lenth lS(g) of an element g ∈ G is the smallest integer n for which there exists s1, . . . , sn ∈ S ∪ S−1 such that
g = s1 · · · sn .

Definition 2.2 [9] Let G be a finitely generated group and S be a finite set of generators of G . The growth

function of the pair (G,S) associates to an integer k ≥ 0 the number a(k) of elements g ∈ G such that

lS(g) = k and the corresponding spherical growth series or the Hilbert series is given by PG(t) =
∞∑
k=0

a(k)tk .

For a sequence {sk}k≥1 of positive numbers, we define the growth rate:

Definition 2.3 Let r be a positive real number; then the growth rate r of the sequence {sk}k≥1 of positive

numbers is defined as

lim
k

exp
( log sk

k

)
.

In 2008, L. A. Bokut [6] gave the Gröbner–Shirshov basis (GSB) of Bn in band generators. The notion

of this basis is in [2, 4, 7, 8, 12] under different names: complete presentation, presentation with solvable

ambiguities, Gröbner–Shirshov basis, rewriting system, and so on. In [1] we proved that a subset of the GSB of

Bn given by Bokut [6] is a GSB of MBn . Using the notations (used in [1]) (t, s) for generator ats and V[t,s]

or W[t,s] for words in (k, l) such that t ≥ k > l ≥ s, we proved in [1] that:

Theorem 2.4 [1] A GSB of braid monoid MBn consists of the following relations:

(k, l)(i, j) = (i, j)(k, l), k > l > i > j,
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(k, l)V[j−1,1](i, j) = (i, j)(k, l)V[j−1,1], k > i > j > l,

(t3, t2)(t2, t1) = (t2, t1)(t3, t1),

(t3, t1)V[t2−1,1](t3, t2) = (t2, t1)(t3, t1)V[t2−1,1],

(t, s)V[t2−1,1](t2, t1)W[t3−1,t1](t3, t1) = (t3, t2)(t, s)V[t2−1,1](t2, t1)W
′
[t3−1,t1]

,

(t3, s)V[t2−1,1](t2, t1)W[t3−1,t1](t3, t1) = (t2, s)(t3, s)V[t2−1,1](t2, t1)W
′
[t3−1,t1]

,

for t3 > t2 > t1, t > t3, t2 > s, and W[t3−1,t1](t3, t1) = (t3, t1)W
′
[t3−1,t1]

where

W ′
[t3−1,t1]

= W[t3−1,t1]|(p,q)7→(p,q) if q ̸= t1; (p, t1) 7→ (t3, p).

3. Hilbert series of MB4 in Birman–Ko–Lee generators

For the band presentation of the braid monoid MB3 we gave its Hilbert series in [1] as

P
(3)
M (t) =

1

(1− t)(1− 2t)
.

In this paper we compute the Hilbert series of MB4 (in band presentation). From 1 we have the following

band-presentation of MB4 :⟨
a43, a42, a41, a32, a31, a21

∣∣R(3)
1 , R

(3)
2 , R

(4)
i , i = 3, . . . , 10

⟩
,

where R
(3)
1 : a31a32 = a21a31 , R

(3)
2 : a32a21 = a21a31 , R

(4)
3 : a41a32 = a32a41 ,

R
(4)
4 : a41a42 = a21a41 , R

(4)
5 : a41a43 = a31a41 , R

(4)
6 : a42a21 = a21a41 , R

(4)
7 : a42a43 = a32a42 , R

(4)
8 : a43a21 =

a21a43 , R
(4)
9 : a43a31 = a31a41 and R

(4)
10 : a43a32 = a32a42 are the given basic relations.

For the braid monoid MB4 we give another form of Theorem 2.4 that is directly used to compute the

Hilbert series of MB4 . This form is obtained by solving all the ambiguities in the presentation of MB4 .

Proposition 3.1 A complete presentation of MB4 for band generators is given by⟨
a43, a42, a41, a32, a31, a21

∣∣R(3)
1 , R

(3)
2 , R

(3)
19 , R

(4)
i , i = 3, . . . , 18

⟩
,

where R
(3)
1 , R

(3)
2 , R

(4)
i , i = 3, . . . , 10 are the basic relations and the new relations R

(4)
11 , . . . , R

(4)
18 are given as

follows:

R
(4)
11 : a41a

s+1
21 a31 = a32a41a21a

s
32 ,

R
(4)
12 : a41a

s+1
21 a41 = a21a41a21a

s
42 ,

R
(4)
13 : a41a

r
21a

s+1
32 a42 = a31a41a

r
21a32a

s
43 ,

R
(4)
14 : a41a

r
21a43 = a31a41a

r
21 ,

R
(4)
15 : a42a

s+1
32 a42 = a32a42a32a

s
43 ,

R
(4)
16 : a41a

s+1
21 W (32)a41 = a21a41a21W

′(32) ,
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R
(4)
17 : a41a31W (31)a41 = a31a41a31W

′(31) ,

R
(4)
18 : a42a31W (31)a41 = a32a42a31W

′(31) ,

R
(4)
19 : a31a

s+1
21 a31 = a21a31a21a

s
32 ,

where r is a positive and s is a nonnegative integer, W (3k) an irreducible word in MB3 starting with

a3k, (k = 1, 2) and W ′(3k) = W (3k) : a32 → a32 , a21 → a41 , a31 → a43 (as mentioned in Theorem 2.4).

Proof It is obvious from solving all the ambiguities and from the presentation given in [1]. Hence the proof

is omitted. 2

As defined above, the set A
(m)
∗ denotes the set of irreducible words and B

(m)
∗ the set of reducible words

in MBm . In particular, B
(m)
ij·kl;uv denotes the set of reducible words starting with aijakl and ending with auv

and B
(m)
ij·kl·pq;uv denotes the set of reducible words starting with aija

s+1
kl apq and ending with auv . Hence we

have the following sets of reducible words in MB4 :

B
(3)
31·21;31 = {a31as+1

21 a31} , B
(4)
42·32;42 = {a42as+1

32 a42} , B
(4)
41·21;41 = {a41as+1

21 a41} ,

B
(4)
41·21;43 = {a41ar21a43} , B

(4)
41·21;31 = {a41as+1

21 a31} ,

B
(4)
41·21;42 = {a41ar21as+1

32 a42} , B(4)
41·21·32;41 = {a41as+1

21 W (32)a41} ,

B
(4)
41·31;41 = {a41a31W (31)a41} , B

(4)
42·31;41 = {a42a31W (31)a41} .

We are using the other notions as follows:

• We denote the set {a21, a221, a321, . . .} by A
(2)
21 .

• A
(n)
ij denotes the set of irreducible words starting with aij and A

(n)

ij
denotes {aij , a2ij , a3ij , . . .} .

• A
(n)
nj·kl denotes the set of irreducible words starting with anjakl , where j = 2, 3, k = 2, 3 and l = 1, 2.

• The Hilbert series of B
(m)
∗ , A

(m)
∗ , and MB4 are denoted by Q

(m)
∗ , P

(m)
∗ , and P

(4)
M (t) respectively. It is

obvious that P
(k)

k(k−1)
= P

(2)
21 , where P

(2)
21 = t

1−t .

Note that as B
(3)
31·21;31 = {a31} ×A

(2)
21 × {a31} and P

(2)
21 = t

1−t , hence Q
(3)
31·21;31 = t3

1−t .

Now we construct a linear system for reducible words in MB4 .

Proposition 3.2 The following equalities hold for reducible words in MB4 .

1) Q
(4)
41·21;31 = t3

1−t ,

2) Q
(4)
41·21;41 = t3

1−t ,

3) Q
(4)
41·21·32;41 = t4

(1−t)(1−2t) ,

4) Q
(4)
41·21;43 = t3

1−t ,

5) Q
(4)
41·21;42 = t4

(1−t)2 ,

6) Q
(4)
41·31;41 = t3

1−2t ,

7) Q
(4)
42·32;42 = t3

1−t ,

8) Q
(4)
42·31;41 = t3

1−2t ,

980



IQBAL and YOUSAF/Turk J Math

Proof Using simply the decomposition of words we have:

1) B
(4)
41·21;31 = {a41ar+1

21 a31} = {a41} ×A
(2)
21 × {a31} implies Q

(4)
41·21;31 = t3

1−t .

2) B
(4)
41·21;41 = {a41ar+1

21 a41} = {a41} ×A
(2)
21 × {a41} gives us Q

(4)
41·21;41 = t3

1−t .

3) The decomposition B
(4)
41·21·32;41 = {a41ar+1

21 W (32)a41} = {a41} ×A
(2)
21 ×A

(3)
32 × {a41} gives the Hilbert series

Q
(4)
41·21·31;41 = t4

(1−t)(1−2t) .

4) B
(4)
41·21;43 = {a41ar21a43} = {a41} ×A

(2)
21 × {a43} implies Q

(4)
41·21;43 = t3

1−t .

5) The decomposition B
(4)
41·21;42 = {a41ar21as+1

32 a42} = {a41} × A
(2)
21 × A

(3)

32
× {a41} gives the Hilbert series

Q
(4)
41·21;42 = t4

(1−t)2 .

6) B
(4)
41·31;41 = {a41a31W (31)a41} = {a41} ×A

(3)
31 × {a41} implies Q

(4)
41·31;41 = t3

1−2t .

7) B
(4)
42·32;42 = {a42ar+1

32 a42} = {a42} ×A
(3)

32
× {a42} implies Q

(4)
42·32;42 = t3

1−t .

8) B
(4)
42·31;41 = {a42a31W (31)a41} = {a42} ×A

(3)
31 × {a41} implies Q

(4)
42·31;41 = t3

1−2t . 2

Next we construct a linear system for canonical forms in MB4 .

Proposition 3.3 The following equalities hold for irreducible words in MB4 .

1) P
(4)
31 = t

1−2t

(
1 +

3∑
i=1

P
(4)
4i

)
,

2) P
(4)
32 = t

1−2t

(
1 +

3∑
i=1

P
(4)
4i

)
,

3) P
(4)
21 = t(1−2t)

1−t

(
1 +

3∑
i=1

P
(4)
4i

)
,

4) P
(4)
41 = t+ tP

(4)
41 +

3∑
i=2

P
(4)
41·i1 ,

5) P
(4)
42 = t+ t

2∑
i=1

P
(4)
4i +

2∑
i=1

P
(4)
42·3i ,

6) P
(4)
43 = t+ t

3∑
i=1

P
(4)
4i ,

7) P
(4)
41·31 = tP

(4)
31 − t2

1−2tP
(4)
41 ,

8) P
(4)
42·31 = tP

(4)
31 − t2

1−2tP
(4)
41 ,

9) P
(4)
42·32 = tP

(4)
32 − t2

1−tP
(4)
42 ,

10) P
(4)
41·21 = tP

(4)
21 − t2

1−tP
(4)
31 − t2

1−2tP
(4)
41 − t3

(1−t)2P
(4)
42 − t2

1−tP
(4)
43 .

Proof We compute the Hilbert series inductively. Here we use the series of the irreducible words of MB3 ,

which we have computed in [1]. The series are: P
(3)
31 = t

1−2t , P
(3)
32 = t

1−2t , P
(3)
21 = t(1−2t)

1−t . If ⊔ denotes the

disjoint union of sets, then using the GSB of MB4 and the decomposition of words we have:
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1) A
(4)
31 = A

(3)
31 ⊔

(
A

(3)
31 ×A

(4)
41

)
⊔
(
A

(3)
31 ×A

(4)
42

)
⊔
(
A

(3)
31 ×A

(4)
43

)
. This gives us

P
(4)
31 =

(
1 +

3∑
i=1

P
(4)
4i

)
P

(3)
31

=
t

1− 2t

(
1 +

3∑
i=1

P
(4)
4i

)
.

2) A
(4)
32 = A

(3)
32 ⊔

(
A

(3)
32 ×A

(4)
41

)
⊔
(
A

(3)
32 ×A

(4)
42

)
⊔
(
A

(3)
32 ×A

(4)
43

)
implies

P
(4)
32 =

(
1 +

3∑
i=1

P
(4)
4i

)
P

(3)
32

=
t

1− 2t

(
1 +

3∑
i=1

P
(4)
4i

)
.

3) A
(4)
21 = A

(3)
21 ⊔

(
A

(3)
21 ×A

(4)
41

)
⊔
(
A

(3)
21 ×A

(4)
42

)
⊔
(
A

(3)
21 ×A

(4)
43

)
implies

P
(4)
21 =

(
1 +

3∑
i=1

P
(4)
4i

)
P

(3)
21

=
t(1− 2t)

1− t

(
1 +

3∑
i=1

P
(4)
4i

)
.

The set A
(4)
4i consists of all the words starting with the generator a4i . Therefore, the set {a4i}×A

(4)
4i is a subset

of A
(4)
4i consisting of all the words starting with a24i . We apply this concept in the proofs of (4), (5), and (6).

4) The set A
(4)
41 is a disjoint union of the sets {a41} , {a41} × A

(4)
41 , A

(4)
41·21 , and A

(4)
41·31 , i.e. A

(4)
41 = {a41} ⊔(

{a41} ×A
(4)
41

)
⊔A

(4)
41·21 ⊔A

(4)
41·31 . Therefore, we have

P
(4)
41 = t+ tP

(4)
41 +

3∑
i=2

P
(4)
41·i1.

Similarly, we have

5) A
(4)
42 = {a42} ⊔

(
{a42} ×A

(4)
42

)
⊔
(
{a42} ×A

(4)
41

)
⊔A

(4)
42·31 ⊔A

(4)
42·32 implies

P
(4)
42 = t+ t

2∑
i=1

P
(4)
4i +

2∑
i=1

P
(4)
42·3i.

6) A
(4)
43 = {a43} ⊔

(
{a43} ×A

(4)
41

)
⊔
(
{a43} ×A

(4)
42

)
⊔
(
{a43} ×A

(4)
43

)
implies

P
[4]
43 = t+ t

3∑
i=1

P
(4)
4i .
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7) A
(4)
41·31 = {a41} ×A

(4)
31 ∖

(
B41·31;41 ×41 A

(4)
41

)
implies

P
(4)
41·31 = tP

(4)
31 − t2

1− 2t
P

(4)
41 .

8) A
(4)
42·31 = {a42} ×A

(4)
31 ∖

(
B42·31;41 ×41 A

(4)
41

)
implies

P
(4)
42·31 = tP

(4)
31 − t2

1− 2t
P

(4)
41 .

9) A
(4)
42·32 = {a42} ×A

(4)
32 ∖

(
B42·32;42 ×42 A

(4)
42

)
implies

P
(4)
42·32 = tP

(4)
32 − t2

1− 2t
P

(4)
42 .

10) A
(4)
41·21 = {a41}×A

(4)
21 ∖

[(
B41·21;41×41A

(4)
41

)
⊔
(
B41·21;31×31A

(4)
31

)
⊔
(
B41·21;43×43A

(4)
43

)
⊔
(
B41.21;42×42A

(4)
42

)]
implies

P
(4)
41·21 = tP

(4)
21 − t2

1− t
P

(4)
31 − t2

1− 2t
P

(4)
41 − t3

(1− t)2
P

(4)
42 − t2

1− t
P

(4)
43 .

2

Theorem 3.4 The Hilbert series of the braid monoid MB4 in band generators is given by

P
(4)
M (t) =

1

(1− t)(1− 5t+ 5t2)
.

Proof Solving the system of linear equations constructed in Proposition 3.3 we get P
(4)
21 = t

(1−t)(1−5t+5t2) ,

P
(4)
31 = t

1−5t+5t2 , P
(4)
32 = t

1−5t+5t2 , P
(4)
41 = t−2t2

1−5t+5t2 , P
(4)
42 = t−t2

1−5t+5t2 , P
(4)
43 = t−2t2

1−5t+5t2 . Therefore, we have

the Hilbert series of the braid monoid MB4 as

P
(4)
M (t) = 1 + P

(4)
21 +

2∑
i=1

P
(4)
3i +

3∑
j=1

P
(4)
4j ;

=
1

(1− t)(1− 5t+ 5t2)
.

2

Corollary 3.5 The growth rate of braid monoid MB4 (in Birman–Ko–Lee generators) is 3.618 .

Proof By partial fractions we have 1
(1−t)(1−5t+5t2) =

1
1−t−

√
5

1− 5−
√

5
2 t

+
√
5

1− 5+
√

5
2 t

. The only term that contributes

in approximation of the series is
√
5

1− 5+
√

5
2 t

and
√
5

1− 5+
√

5
2 t

=
√
5
(
1 + 5+

√
5

2 t + ( 5+
√
5

2 )2t2 + · · ·
)
. Therefore, the

growth function is a
(4)
k =

√
5( 5+

√
5

2 )k and hence the growth rate of MB4 is 5+
√
5

2 (approximately equal to

3.618). The growth rate of MB3 is 2. 2
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