Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2014) 38: $977-984$
(C) TÜBİTAK
doi:10.3906/mat-1401-58

Hilbert series of the braid monoid $M B_{4}$ in band generators

Zaffar IQBAL ${ }^{*}$, Shamaila YOUSAF
Department of Mathematics, University of Gujrat, Pakistan

Received: 23.01.2014 • Accepted: 17.05.2014 • Published Online: 24.10.2014 • Printed: 21.11 .2014

Abstract

L. A. Bokut gave a Gröbner-Shirshov basis of the braid group B_{n} in band generators. Using this presentation and solving all the ambiguities we construct a linear system for irreducible words and compute the Hilbert series of the braid monoid $M B_{4}$.

Key words: Braid monoids, Gröbner-Shirshov basis, reducible and irreducible words, Hilbert series

1. Introduction

The braid group B_{n} admits the following classical presentation given by E. Artin [3]:

$$
B_{n}=\left\langle x_{1}, \ldots, x_{n-1} \left\lvert\, \begin{array}{l}
x_{i} x_{j}=x_{j} x_{i} \text { if }|i-j| \geq 2 \\
x_{i+1} x_{i} x_{i+1}=x_{i} x_{i+1} x_{i} \text { if } 1 \leq i \leq n-2
\end{array}\right.\right\rangle
$$

Elements of B_{n} are words expressed in the generators x_{1}, \ldots, x_{n-1}. The braid group B_{n} admits another presentation called the band presentation given by J. Birman, K. H. Ko, and S. J. Lee [5]. This presentation consists of the generators $a_{t s}, n \geq t>s \geq 1$, where $a_{t s}$ represents the braid in which the $t^{t h}$ string crosses over the $s^{t h}$ string while the $s^{t h}$ and $t^{t h}$ strings cross in front of all intermediate strings. Therefore, the band presentation of the braid group B_{n} is given by

$$
B_{n}=\left\langle a_{t s}, n \geq t>s \geq 1 \left\lvert\, \begin{array}{l}
a_{t s} a_{r q}=a_{r q} a_{t s},(t-r)(s-r)(s-q)(t-q)>0 \\
a_{t s} a_{s r}=a_{t r} a_{t s}=a_{s r} a_{t r}, n \geq t>s \geq 1
\end{array}\right.\right\rangle
$$

The braid monoid $M B_{n}$ consisting of only positive crossings admits the same presentation of the braid group B_{n} :

$$
M B_{n}=\left\langle a_{t s}, n \geq t>s \geq 1 \left\lvert\, \begin{array}{l}
a_{t s} a_{r q}=a_{r q} a_{t s},(t-r)(s-r)(s-q)(t-q)>0 \\
a_{t s} a_{s r}=a_{t r} a_{t s}=a_{s r} a_{t r}, n \geq t>s \geq 1
\end{array}\right.\right\rangle
$$

In [10] we constructed a linear system for the braid monoid $M B_{n}$ in Artin generators and computed the Hilbert series for the braid monoids $M B_{3}$ and $M B_{4}$. In this paper we construct a similar kind of linear system to compute the Hilbert series of $M B_{4}$ in band generators. This linear system is the key behind all the computations to compute the Hilbert series of $M B_{4}$.

[^0]In the Hilbert series $\frac{1}{q_{n}(t)}$ of $M B_{n}$ (for $n=3,4,5,6$) for Artin generators, the degrees of the polynomials $q_{n}(t)$ are $3,6,10,15$ respectively (for details see [11]), whereas, in the case of band generators, the degrees of $q_{n}(t)$ are 2 and 3 (for $n=3$ and 4). The advantage of the Hilbert series (for band generators) is that the growth of $q_{n}(t)$ for band generators is much slower than the growth for Artin generators.

2. Preliminaries

In a presentation of a monoid we fix a total order of the generators (between the generators we choose the natural order $\left.a_{21}<a_{31}<a_{32}<a_{41}<\cdots<a_{n(n-1)}\right)$. In the monoid the relation $\alpha=\beta$ will be written as $\alpha>\beta$ in the length-lexicographic order. Let $\alpha_{1}=u w$ and $\alpha_{2}=w v$; then the word of the form $u w v$ is said to be an ambiguity (for details see [4]). If $\alpha_{1} v=u \alpha_{2}$ as a relation as well as in the length-lexicographic order then we say that the ambiguity $u w v$ is solvable (or solved). Such a presentation is complete if and only if all the ambiguities are solvable (for details see [4], [8]). Corresponding to the relations $\alpha=\beta$, the changes $\gamma \alpha \delta \rightarrow \gamma \beta \delta$ give a rewriting system. A complete presentation is equivalent to a confluent rewriting system.

In a complete presentation (or in the general presentation) of $M B_{n}$ a word containing α will be called a reducible word and a word that does not contain α will be called an irreducible word (also called normal form of the word). We will denote $B_{*}^{(m)}$ as the set of reducible words and $A_{*}^{(m)}$ as the set of irreducible words in $M B_{n}$.

Let U and V be nonempty words; then the word $U a_{i j} V$ will be denoted as $U a_{i j} \times{ }_{i j} a_{i j} V$.
Definition 2.1 [9] Let G be a finitely generated group and S be a finite set of generators of G. The word lenth $l_{S}(g)$ of an element $g \in G$ is the smallest integer n for which there exists $s_{1}, \ldots, s_{n} \in S \cup S^{-1}$ such that $g=s_{1} \cdots s_{n}$.

Definition 2.2 [9] Let G be a finitely generated group and S be a finite set of generators of G. The growth function of the pair (G, S) associates to an integer $k \geq 0$ the number $a(k)$ of elements $g \in G$ such that $l_{S}(g)=k$ and the corresponding spherical growth series or the Hilbert series is given by $P_{G}(t)=\sum_{k=0}^{\infty} a(k) t^{k}$.

For a sequence $\left\{s_{k}\right\}_{k \geq 1}$ of positive numbers, we define the growth rate:
Definition 2.3 Let r be a positive real number; then the growth rate r of the sequence $\left\{s_{k}\right\}_{k \geq 1}$ of positive numbers is defined as

$$
\varlimsup_{k} \exp \left(\frac{\log s_{k}}{k}\right)
$$

In 2008, L. A. Bokut [6] gave the Gröbner-Shirshov basis (GSB) of B_{n} in band generators. The notion of this basis is in $[2,4,7,8,12]$ under different names: complete presentation, presentation with solvable ambiguities, Gröbner-Shirshov basis, rewriting system, and so on. In [1] we proved that a subset of the GSB of B_{n} given by Bokut [6] is a GSB of $M B_{n}$. Using the notations (used in [1]) (t, s) for generator $a_{t s}$ and $V_{[t, s]}$ or $W_{[t, s]}$ for words in (k, l) such that $t \geq k>l \geq s$, we proved in [1] that:

Theorem 2.4 [1] A GSB of braid monoid $M B_{n}$ consists of the following relations:

$$
(k, l)(i, j)=(i, j)(k, l), \quad k>l>i>j
$$

$$
\begin{aligned}
&(k, l) V_{[j-1,1]}(i, j)=(i, j)(k, l) V_{[j-1,1]}, \quad k>i>j>l \\
&\left(t_{3}, t_{2}\right)\left(t_{2}, t_{1}\right)=\left(t_{2}, t_{1}\right)\left(t_{3}, t_{1}\right) \\
&\left(t_{3}, t_{1}\right) V_{\left[t_{2}-1,1\right]}\left(t_{3}, t_{2}\right)=\left(t_{2}, t_{1}\right)\left(t_{3}, t_{1}\right) V_{\left[t_{2}-1,1\right]} \\
&(t, s) V_{\left[t_{2}-1,1\right]}\left(t_{2}, t_{1}\right) W_{\left[t_{3}-1, t_{1}\right]}\left(t_{3}, t_{1}\right)=\left(t_{3}, t_{2}\right)(t, s) V_{\left[t_{2}-1,1\right]}\left(t_{2}, t_{1}\right) W_{\left[t_{3}-1, t_{1}\right]}^{\prime} \\
&\left(t_{3}, s\right) V_{\left[t_{2}-1,1\right]}\left(t_{2}, t_{1}\right) W_{\left[t_{3}-1, t_{1}\right]}\left(t_{3}, t_{1}\right)=\left(t_{2}, s\right)\left(t_{3}, s\right) V_{\left[t_{2}-1,1\right]}\left(t_{2}, t_{1}\right) W_{\left[t_{3}-1, t_{1}\right]}^{\prime}
\end{aligned}
$$

for $t_{3}>t_{2}>t_{1}, t>t_{3}, t_{2}>s$, and $W_{\left[t_{3}-1, t_{1}\right]}\left(t_{3}, t_{1}\right)=\left(t_{3}, t_{1}\right) W_{\left[t_{3}-1, t_{1}\right]}^{\prime}$ where

$$
W_{\left[t_{3}-1, t_{1}\right]}^{\prime}=\left.W_{\left[t_{3}-1, t_{1}\right]}\right|_{(p, q) \mapsto(p, q)} \text { if } q \neq t_{1} ;\left(p, t_{1}\right) \mapsto\left(t_{3}, p\right)
$$

3. Hilbert series of $M B_{4}$ in Birman-Ko-Lee generators

For the band presentation of the braid monoid $M B_{3}$ we gave its Hilbert series in [1] as

$$
P_{M}^{(3)}(t)=\frac{1}{(1-t)(1-2 t)}
$$

In this paper we compute the Hilbert series of $M B_{4}$ (in band presentation). From 1 we have the following band-presentation of $M B_{4}$:

$$
\left\langle a_{43}, a_{42}, a_{41}, a_{32}, a_{31}, a_{21} \mid R_{1}^{(3)}, R_{2}^{(3)}, R_{i}^{(4)}, i=3, \ldots, 10\right\rangle
$$

where $R_{1}^{(3)}: a_{31} a_{32}=a_{21} a_{31}, R_{2}^{(3)}: a_{32} a_{21}=a_{21} a_{31}, \quad R_{3}^{(4)}: a_{41} a_{32}=a_{32} a_{41}$, $R_{4}^{(4)}: a_{41} a_{42}=a_{21} a_{41}, R_{5}^{(4)}: a_{41} a_{43}=a_{31} a_{41}, R_{6}^{(4)}: a_{42} a_{21}=a_{21} a_{41}, R_{7}^{(4)}: a_{42} a_{43}=a_{32} a_{42}, R_{8}^{(4)}: a_{43} a_{21}=$ $a_{21} a_{43}, R_{9}^{(4)}: a_{43} a_{31}=a_{31} a_{41}$ and $R_{10}^{(4)}: a_{43} a_{32}=a_{32} a_{42}$ are the given basic relations.

For the braid monoid $M B_{4}$ we give another form of Theorem 2.4 that is directly used to compute the Hilbert series of $M B_{4}$. This form is obtained by solving all the ambiguities in the presentation of $M B_{4}$.

Proposition 3.1 A complete presentation of $M B_{4}$ for band generators is given by

$$
\left\langle a_{43}, a_{42}, a_{41}, a_{32}, a_{31}, a_{21} \mid R_{1}^{(3)}, R_{2}^{(3)}, R_{19}^{(3)}, R_{i}^{(4)}, i=3, \ldots, 18\right\rangle
$$

where $R_{1}^{(3)}, R_{2}^{(3)}, R_{i}^{(4)}, i=3, \ldots, 10$ are the basic relations and the new relations $R_{11}^{(4)}, \ldots, R_{18}^{(4)}$ are given as follows:

$$
\begin{aligned}
& R_{11}^{(4)}: a_{41} a_{21}^{s+1} a_{31}=a_{32} a_{41} a_{21} a_{32}^{s} \\
& R_{12}^{(4)}: a_{41} a_{21}^{s+1} a_{41}=a_{21} a_{41} a_{21} a_{42}^{s} \\
& R_{13}^{(4)}: a_{41} a_{21}^{r} a_{32}^{s+1} a_{42}=a_{31} a_{41} a_{21}^{r} a_{32} a_{43}^{s} \\
& R_{14}^{(4)}: a_{41} a_{21}^{r} a_{43}=a_{31} a_{41} a_{21}^{r} \\
& R_{15}^{(4)}: a_{42} a_{32}^{s+1} a_{42}=a_{32} a_{42} a_{32} a_{43}^{s} \\
& R_{16}^{(4)}: a_{41} a_{21}^{s+1} W(32) a_{41}=a_{21} a_{41} a_{21} W^{\prime}(32)
\end{aligned}
$$

$$
\begin{aligned}
& R_{17}^{(4)}: a_{41} a_{31} W(31) a_{41}=a_{31} a_{41} a_{31} W^{\prime}(31) \\
& R_{18}^{(4)}: a_{42} a_{31} W(31) a_{41}=a_{32} a_{42} a_{31} W^{\prime}(31) \\
& R_{19}^{(4)}: a_{31} a_{21}^{s+1} a_{31}=a_{21} a_{31} a_{21} a_{32}^{s}
\end{aligned}
$$

where r is a positive and s is a nonnegative integer, $W(3 k)$ an irreducible word in $M B_{3}$ starting with $a_{3 k},(k=1,2)$ and $W^{\prime}(3 k)=W(3 k): a_{32} \rightarrow a_{32}, a_{21} \rightarrow a_{41}, a_{31} \rightarrow a_{43}$ (as mentioned in Theorem 2.4).
Proof It is obvious from solving all the ambiguities and from the presentation given in [1]. Hence the proof is omitted.

As defined above, the set $A_{*}^{(m)}$ denotes the set of irreducible words and $B_{*}^{(m)}$ the set of reducible words in $M B_{m}$. In particular, $B_{i j \cdot k l ; u v}^{(m)}$ denotes the set of reducible words starting with $a_{i j} a_{k l}$ and ending with $a_{u v}$ and $B_{i j \cdot k l \cdot p q ; u v}^{(m)}$ denotes the set of reducible words starting with $a_{i j} a_{k l}^{s+1} a_{p q}$ and ending with $a_{u v}$. Hence we have the following sets of reducible words in $M B_{4}$:
$B_{31 \cdot 21 ; 31}^{(3)}=\left\{a_{31} a_{21}^{s+1} a_{31}\right\}, \quad B_{42 \cdot 32 ; 42}^{(4)}=\left\{a_{42} a_{32}^{s+1} a_{42}\right\}, \quad B_{41 \cdot 21 ; 41}^{(4)}=\left\{a_{41} a_{21}^{s+1} a_{41}\right\}$,
$B_{41 \cdot 21 ; 43}^{(4)}=\left\{a_{41} a_{21}^{r} a_{43}\right\}, \quad B_{41 \cdot 21 ; 31}^{(4)}=\left\{a_{41} a_{21}^{s+1} a_{31}\right\}$,
$B_{41 \cdot 21 ; 42}^{(4)}=\left\{a_{41} a_{21}^{r} a_{32}^{s+1} a_{42}\right\}, B_{41 \cdot 21 \cdot 32 ; 41}^{(4)}=\left\{a_{41} a_{21}^{s+1} W(32) a_{41}\right\}$,
$B_{41 \cdot 31 ; 41}^{(4)}=\left\{a_{41} a_{31} W(31) a_{41}\right\}, B_{42 \cdot 31 ; 41}^{(4)}=\left\{a_{42} a_{31} W(31) a_{41}\right\}$.
We are using the other notions as follows:

- We denote the set $\left\{a_{21}, a_{21}^{2}, a_{21}^{3}, \ldots\right\}$ by $A_{21}^{(2)}$.
- $A_{i j}^{(n)}$ denotes the set of irreducible words starting with $a_{i j}$ and $A_{\overline{i j}}^{(n)}$ denotes $\left\{a_{i j}, a_{i j}^{2}, a_{i j}^{3}, \ldots\right\}$.
- $A_{n j \cdot k l}^{(n)}$ denotes the set of irreducible words starting with $a_{n j} a_{k l}$, where $j=2,3, k=2,3$ and $l=1,2$.
- The Hilbert series of $B_{*}^{(m)}, A_{*}^{(m)}$, and $M B_{4}$ are denoted by $Q_{*}^{(m)}, P_{*}^{(m)}$, and $P_{M}^{(4)}(t)$ respectively. It is obvious that $P_{\overline{k(k-1)}}^{(k)}=P_{21}^{(2)}$, where $P_{21}^{(2)}=\frac{t}{1-t}$.

Note that as $B_{31 \cdot 21 ; 31}^{(3)}=\left\{a_{31}\right\} \times A_{21}^{(2)} \times\left\{a_{31}\right\}$ and $P_{21}^{(2)}=\frac{t}{1-t}$, hence $Q_{31 \cdot 21 ; 31}^{(3)}=\frac{t^{3}}{1-t}$.
Now we construct a linear system for reducible words in $M B_{4}$.

Proposition 3.2 The following equalities hold for reducible words in $M B_{4}$.

1) $Q_{41 \cdot 21 ; 31}^{(4)}=\frac{t^{3}}{1-t}$,
2) $Q_{41 \cdot 21 ; 41}^{(4)}=\frac{t^{3}}{1-t}$,
3) $Q_{41 \cdot 21 \cdot 32 ; 41}^{(4)}=\frac{t^{4}}{(1-t)(1-2 t)}$,
4) $Q_{41 \cdot 21 ; 43}^{(4)}=\frac{t^{3}}{1-t}$,
5) $Q_{41 \cdot 21 ; 42}^{(4)}=\frac{t^{4}}{(1-t)^{2}}$,
6) $Q_{41 \cdot 31 ; 41}^{(4)}=\frac{t^{3}}{1-2 t}$,
7) $Q_{42 \cdot 32 ; 42}^{(4)}=\frac{t^{3}}{1-t}$,
8) $Q_{42 \cdot 31 ; 41}^{(4)}=\frac{t^{3}}{1-2 t}$,

Proof Using simply the decomposition of words we have:

1) $B_{41 \cdot 21 ; 31}^{(4)}=\left\{a_{41} a_{21}^{r+1} a_{31}\right\}=\left\{a_{41}\right\} \times A_{21}^{(2)} \times\left\{a_{31}\right\}$ implies $Q_{41 \cdot 21 ; 31}^{(4)}=\frac{t^{3}}{1-t}$.
2) $B_{41 \cdot 21 ; 41}^{(4)}=\left\{a_{41} a_{21}^{r+1} a_{41}\right\}=\left\{a_{41}\right\} \times A_{21}^{(2)} \times\left\{a_{41}\right\}$ gives us $Q_{41 \cdot 21 ; 41}^{(4)}=\frac{t^{3}}{1-t}$.
3) The decomposition $B_{41 \cdot 21 \cdot 32 ; 41}^{(4)}=\left\{a_{41} a_{21}^{r+1} W(32) a_{41}\right\}=\left\{a_{41}\right\} \times A_{21}^{(2)} \times A_{32}^{(3)} \times\left\{a_{41}\right\}$ gives the Hilbert series $Q_{41 \cdot 21 \cdot 31 ; 41}^{(4)}=\frac{t^{4}}{(1-t)(1-2 t)}$.
4) $B_{41 \cdot 21 ; 43}^{(4)}=\left\{a_{41} a_{21}^{r} a_{43}\right\}=\left\{a_{41}\right\} \times A_{21}^{(2)} \times\left\{a_{43}\right\}$ implies $Q_{41 \cdot 21 ; 43}^{(4)}=\frac{t^{3}}{1-t}$.
5) The decomposition $B_{41 \cdot 21 ; 42}^{(4)}=\left\{a_{41} a_{21}^{r} a_{32}^{s+1} a_{42}\right\}=\left\{a_{41}\right\} \times A_{21}^{(2)} \times A_{\overline{32}}^{(3)} \times\left\{a_{41}\right\}$ gives the Hilbert series $Q_{41 \cdot 21 ; 42}^{(4)}=\frac{t^{4}}{(1-t)^{2}}$.
6) $B_{41 \cdot 31 ; 41}^{(4)}=\left\{a_{41} a_{31} W(31) a_{41}\right\}=\left\{a_{41}\right\} \times A_{31}^{(3)} \times\left\{a_{41}\right\}$ implies $Q_{41 \cdot 31 ; 41}^{(4)}=\frac{t^{3}}{1-2 t}$.
7) $B_{42 \cdot 32 ; 42}^{(4)}=\left\{a_{42} a_{32}^{r+1} a_{42}\right\}=\left\{a_{42}\right\} \times A_{32}^{(3)} \times\left\{a_{42}\right\}$ implies $Q_{42 \cdot 32 ; 42}^{(4)}=\frac{t^{3}}{1-t}$.
8) $B_{42 \cdot 31 ; 41}^{(4)}=\left\{a_{42} a_{31} W(31) a_{41}\right\}=\left\{a_{42}\right\} \times A_{31}^{(3)} \times\left\{a_{41}\right\}$ implies $Q_{42 \cdot 31 ; 41}^{(4)}=\frac{t^{3}}{1-2 t}$.

Next we construct a linear system for canonical forms in $M B_{4}$.

Proposition 3.3 The following equalities hold for irreducible words in $M B_{4}$.

1) $P_{31}^{(4)}=\frac{t}{1-2 t}\left(1+\sum_{i=1}^{3} P_{4 i}^{(4)}\right)$,
2) $P_{32}^{(4)}=\frac{t}{1-2 t}\left(1+\sum_{i=1}^{3} P_{4 i}^{(4)}\right)$,
3) $P_{21}^{(4)}=\frac{t(1-2 t)}{1-t}\left(1+\sum_{i=1}^{3} P_{4 i}^{(4)}\right)$,
4) $P_{41}^{(4)}=t+t P_{41}^{(4)}+\sum_{i=2}^{3} P_{41 \cdot i 1}^{(4)}$,
5) $P_{42}^{(4)}=t+t \sum_{i=1}^{2} P_{4 i}^{(4)}+\sum_{i=1}^{2} P_{42 \cdot 3 i}^{(4)}$,
6) $P_{43}^{(4)}=t+t \sum_{i=1}^{3} P_{4 i}^{(4)}$,
7) $P_{41 \cdot 31}^{(4)}=t P_{31}^{(4)}-\frac{t^{2}}{1-2 t} P_{41}^{(4)}$,
8) $P_{42 \cdot 31}^{(4)}=t P_{31}^{(4)}-\frac{t^{2}}{1-2 t} P_{41}^{(4)}$,
9) $P_{42 \cdot 32}^{(4)}=t P_{32}^{(4)}-\frac{t^{2}}{1-t} P_{42}^{(4)}$,
10) $P_{41 \cdot 21}^{(4)}=t P_{21}^{(4)}-\frac{t^{2}}{1-t} P_{31}^{(4)}-\frac{t^{2}}{1-2 t} P_{41}^{(4)}-\frac{t^{3}}{(1-t)^{2}} P_{42}^{(4)}-\frac{t^{2}}{1-t} P_{43}^{(4)}$.

Proof We compute the Hilbert series inductively. Here we use the series of the irreducible words of $M B_{3}$, which we have computed in [1]. The series are: $P_{31}^{(3)}=\frac{t}{1-2 t}, P_{32}^{(3)}=\frac{t}{1-2 t}, P_{21}^{(3)}=\frac{t(1-2 t)}{1-t}$. If \sqcup denotes the disjoint union of sets, then using the GSB of $M B_{4}$ and the decomposition of words we have:

1) $A_{31}^{(4)}=A_{31}^{(3)} \sqcup\left(A_{31}^{(3)} \times A_{41}^{(4)}\right) \sqcup\left(A_{31}^{(3)} \times A_{42}^{(4)}\right) \sqcup\left(A_{31}^{(3)} \times A_{43}^{(4)}\right)$. This gives us

$$
\begin{aligned}
P_{31}^{(4)} & =\left(1+\sum_{i=1}^{3} P_{4 i}^{(4)}\right) P_{31}^{(3)} \\
& =\frac{t}{1-2 t}\left(1+\sum_{i=1}^{3} P_{4 i}^{(4)}\right) .
\end{aligned}
$$

2) $A_{32}^{(4)}=A_{32}^{(3)} \sqcup\left(A_{32}^{(3)} \times A_{41}^{(4)}\right) \sqcup\left(A_{32}^{(3)} \times A_{42}^{(4)}\right) \sqcup\left(A_{32}^{(3)} \times A_{43}^{(4)}\right)$ implies

$$
\begin{aligned}
P_{32}^{(4)} & =\left(1+\sum_{i=1}^{3} P_{4 i}^{(4)}\right) P_{32}^{(3)} \\
& =\frac{t}{1-2 t}\left(1+\sum_{i=1}^{3} P_{4 i}^{(4)}\right) .
\end{aligned}
$$

3) $A_{21}^{(4)}=A_{21}^{(3)} \sqcup\left(A_{21}^{(3)} \times A_{41}^{(4)}\right) \sqcup\left(A_{21}^{(3)} \times A_{42}^{(4)}\right) \sqcup\left(A_{21}^{(3)} \times A_{43}^{(4)}\right)$ implies

$$
\begin{aligned}
P_{21}^{(4)} & =\left(1+\sum_{i=1}^{3} P_{4 i}^{(4)}\right) P_{21}^{(3)} \\
& =\frac{t(1-2 t)}{1-t}\left(1+\sum_{i=1}^{3} P_{4 i}^{(4)}\right) .
\end{aligned}
$$

The set $A_{4 i}^{(4)}$ consists of all the words starting with the generator $a_{4 i}$. Therefore, the set $\left\{a_{4 i}\right\} \times A_{4 i}^{(4)}$ is a subset of $A_{4 i}^{(4)}$ consisting of all the words starting with $a_{4 i}^{2}$. We apply this concept in the proofs of (4), (5), and (6).
4) The set $A_{41}^{(4)}$ is a disjoint union of the sets $\left\{a_{41}\right\},\left\{a_{41}\right\} \times A_{41}^{(4)}, A_{41 \cdot 21}^{(4)}$, and $A_{41 \cdot 31}^{(4)}$, i.e. $A_{41}^{(4)}=\left\{a_{41}\right\} \sqcup$ $\left(\left\{a_{41}\right\} \times A_{41}^{(4)}\right) \sqcup A_{41 \cdot 21}^{(4)} \sqcup A_{41 \cdot 31}^{(4)}$. Therefore, we have

$$
P_{41}^{(4)}=t+t P_{41}^{(4)}+\sum_{i=2}^{3} P_{41 \cdot i 1}^{(4)} .
$$

Similarly, we have
5) $A_{42}^{(4)}=\left\{a_{42}\right\} \sqcup\left(\left\{a_{42}\right\} \times A_{42}^{(4)}\right) \sqcup\left(\left\{a_{42}\right\} \times A_{41}^{(4)}\right) \sqcup A_{42 \cdot 31}^{(4)} \sqcup A_{42 \cdot 32}^{(4)}$ implies

$$
P_{42}^{(4)}=t+t \sum_{i=1}^{2} P_{4 i}^{(4)}+\sum_{i=1}^{2} P_{42 \cdot 3 i}^{(4)} .
$$

6) $A_{43}^{(4)}=\left\{a_{43}\right\} \sqcup\left(\left\{a_{43}\right\} \times A_{41}^{(4)}\right) \sqcup\left(\left\{a_{43}\right\} \times A_{42}^{(4)}\right) \sqcup\left(\left\{a_{43}\right\} \times A_{43}^{(4)}\right)$ implies

$$
P_{43}^{[4]}=t+t \sum_{i=1}^{3} P_{4 i}^{(4)} .
$$

7) $A_{41 \cdot 31}^{(4)}=\left\{a_{41}\right\} \times A_{31}^{(4)} \backslash\left(B_{41 \cdot 31 ; 41} \times{ }_{41} A_{41}^{(4)}\right)$ implies

$$
P_{41 \cdot 31}^{(4)}=t P_{31}^{(4)}-\frac{t^{2}}{1-2 t} P_{41}^{(4)}
$$

8) $A_{42 \cdot 31}^{(4)}=\left\{a_{42}\right\} \times A_{31}^{(4)} \backslash\left(B_{42 \cdot 31 ; 41} \times{ }_{41} A_{41}^{(4)}\right)$ implies

$$
P_{42 \cdot 31}^{(4)}=t P_{31}^{(4)}-\frac{t^{2}}{1-2 t} P_{41}^{(4)}
$$

9) $A_{42 \cdot 32}^{(4)}=\left\{a_{42}\right\} \times A_{32}^{(4)} \backslash\left(B_{42 \cdot 32 ; 42} \times{ }_{42} A_{42}^{(4)}\right)$ implies

$$
P_{42 \cdot 32}^{(4)}=t P_{32}^{(4)}-\frac{t^{2}}{1-2 t} P_{42}^{(4)}
$$

10) $A_{41 \cdot 21}^{(4)}=\left\{a_{41}\right\} \times A_{21}^{(4)} \backslash\left[\left(B_{41 \cdot 21 ; 41} \times{ }_{41} A_{41}^{(4)}\right) \sqcup\left(B_{41 \cdot 21 ; 31} \times{ }_{31} A_{31}^{(4)}\right) \sqcup\left(B_{41 \cdot 21 ; 43} \times{ }_{43} A_{43}^{(4)}\right) \sqcup\left(B_{41.21 ; 42} \times{ }_{42} A_{42}^{(4)}\right)\right]$ implies

$$
P_{41 \cdot 21}^{(4)}=t P_{21}^{(4)}-\frac{t^{2}}{1-t} P_{31}^{(4)}-\frac{t^{2}}{1-2 t} P_{41}^{(4)}-\frac{t^{3}}{(1-t)^{2}} P_{42}^{(4)}-\frac{t^{2}}{1-t} P_{43}^{(4)}
$$

Theorem 3.4 The Hilbert series of the braid monoid $M B_{4}$ in band generators is given by

$$
P_{M}^{(4)}(t)=\frac{1}{(1-t)\left(1-5 t+5 t^{2}\right)}
$$

Proof Solving the system of linear equations constructed in Proposition 3.3 we get $P_{21}^{(4)}=\frac{t}{(1-t)\left(1-5 t+5 t^{2}\right)}$, $P_{31}^{(4)}=\frac{t}{1-5 t+5 t^{2}}, \quad P_{32}^{(4)}=\frac{t}{1-5 t+5 t^{2}}, \quad P_{41}^{(4)}=\frac{t-2 t^{2}}{1-5 t+5 t^{2}}, \quad P_{42}^{(4)}=\frac{t-t^{2}}{1-5 t+5 t^{2}}, \quad P_{43}^{(4)}=\frac{t-2 t^{2}}{1-5 t+5 t^{2}}$. Therefore, we have the Hilbert series of the braid monoid $M B_{4}$ as

$$
\begin{aligned}
P_{M}^{(4)}(t) & =1+P_{21}^{(4)}+\sum_{i=1}^{2} P_{3 i}^{(4)}+\sum_{j=1}^{3} P_{4 j}^{(4)} \\
& =\frac{1}{(1-t)\left(1-5 t+5 t^{2}\right)}
\end{aligned}
$$

Corollary 3.5 The growth rate of braid monoid $M B_{4}$ (in Birman-Ko-Lee generators) is 3.618.
Proof By partial fractions we have $\frac{1}{(1-t)\left(1-5 t+5 t^{2}\right)}=\frac{1}{1-t}-\frac{\sqrt{5}}{1-\frac{5-\sqrt{5}}{2} t}+\frac{\sqrt{5}}{1-\frac{5+\sqrt{5}}{2} t}$. The only term that contributes in approximation of the series is $\frac{\sqrt{5}}{1-\frac{5+\sqrt{5}}{2} t}$ and $\frac{\sqrt{5}}{1-\frac{5+\sqrt{5}}{2} t}=\sqrt{5}\left(1+\frac{5+\sqrt{5}}{2} t+\left(\frac{5+\sqrt{5}}{2}\right)^{2} t^{2}+\cdots\right)$. Therefore, the growth function is $a_{k}^{(4)}=\sqrt{5}\left(\frac{5+\sqrt{5}}{2}\right)^{k}$ and hence the growth rate of $M B_{4}$ is $\frac{5+\sqrt{5}}{2}$ (approximately equal to 3.618). The growth rate of $M B_{3}$ is 2 .

IQBAL and YOUSAF/Turk J Math

References

[1] Ali U, Iqbal Z, Nazir S. Canonical forms and infimums of positive braids. Algebr Colloq 2011 (spec. no. 1); 18: 1007-1016.
[2] Anick DJ. On the homology of associative algebras. T Am Math Soc 1986; 296: 641-659.
[3] Artin E. Theory of braids. Ann Math 1947; 48: 101-126.
[4] Bergman G. The diamond lemma for ring theory. Adv Math 1978; 29: 178-218.
[5] Birman J. Braids links and mapping-class groups. Ann Math Stud, Princeton, USA: Princeton University Press, 1974.
[6] Bokut LA. Gröbner-Shirshov basis for the braid group in the Birman-Ko-Lee generators. J Algebra 2009; 321: 361-376.
[7] Brown KB. The geometry of rewriting systems: a proof of Anick-Groves-Squeir theorem. Algorithms and Classification in Combinatorial Group Theory, MSRI Publications, Springer NY 1992; 23: 137-164.
[8] Cohn PM. Further Algebra and Applications. India: Springer, 2004.
[9] Harpe PD. Topics in Geometric Group Theory. Chicago, IL, USA: The University of Chicago Press, 2000.
[10] Iqbal Z. Hilbert series of positive braids. Algebr Colloq 2011 (spec. no. 1); 18: 1017-1028.
[11] Iqbal Z, Yousaf S, Noureen S. Growth rate of the Braid monoids $M B_{n+1}, n \leq 5$. The 5th International Conference On Research And Education In Mathematics: ICREM5. AIP Conference Proceedings 2012; 1450: pp. 346-350.
[12] Ufnarovskij VA. Combinatorial and asymptotic methods in algebra. Encyclopaedia of mathematical sciences, vol. 57, Algebra VI. Berlin, Germany: Springer, 1995.

[^0]: *Correspondence: zaffar.iqbal@uog.edu.pk
 2010 AMS Mathematics Subject Classification: 20F36, 20F05, 13D40.

