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Eigenstates of many-body localised (MBL) systems are characterised by area-law bipartite entan-
glement along with multifractal statistics of their amplitudes on Hilbert space. At the same time,
sparse random pure states with fractal statistics are not compatible with area-law and necessarily
exhibit volume-law entanglement. This raises the question that what correlation functions of Hilbert-
space amplitudes MBL eigenstates must possess for their area law entanglement to be compatible
with their multifractality. In this work, we identify and compute such appropriate Hilbert-space
correlations which carry information of entanglement. We find that, for MBL eigenstates, these cor-
relations are qualitatively different not only from those of ergodic states but also of sparse random
states with fractal statistics. This enables us to show that indeed the said correlations lie at the
heart of the coexistence of area-law entanglement and multifractality for MBL eigenstates.

Sufficiently strong quenched disorder in an isolated
quantum many-body system can drive it into a many-
body localised (MBL) phase through a dynamical phase
transition, at least in one spatial dimension [1–9]. Such a
system, unlike a chaotic system, fails to thermalise under
its own dynamics. The many-body localisation transition
is an eigenstate phase transition; across the transition,
the properties of individual eigenstates at arbitrary en-
ergy densities change sharply. In real space, the bipartite
entanglement transitions from a volume law in the er-
godic phase to an area law in the MBL phase [10–15]. At
the same time, the statistics of eigenstate amplitudes in
Hilbert space go from fully ergodic, delocalised to multi-
fractal throughout [16] the MBL phase [17–20]. However,
the precise connection between these two aspects is un-
clear and constitutes the central question of this work.

The question is pertinent as multifractality in Hilbert
space, in general, does not imply area-law bipartite en-
tanglement. Indeed, it was shown that sparse random
pure states with multifractal statistics exhibit volume-
law entanglement; the fractal dimension only controls the
coefficient of the volume law [21]. This, therefore, poses
a sharp question – what features of MBL eigenstates al-
low for multifractality on Hilbert space to coexist with
area-law entanglement in real space?

In this work, we show that appropriately defined
Hilbert-space correlations encode information about en-
tanglement in real space. As such, they distinguish area-
law entangled states not only from volume-law entan-
gled ergodic states but also from volume-law entangled
multifractal states. These are multipoint correlations on
Hilbert space and hence manifestly go beyond multifrac-
tal statistics which formally can be expressed via one-
point correlations.

For concreteness, we consider a chain of spins-1/2
(denoted via the set of Pauli matrices {σµ}) of length
L. We bipartition the system into two equal halves,
A and B. For a state ρ = |ψ〉 〈ψ|, the nth Rényi en-
tropy of entanglement between the bipartitions is given

by SAn = 1
1−n ln Tr[ρnA] with ρA = TrBρ. Here we focus

solely on n = 2 as SA2 = − ln Tr[ρ2A] where P = Trρ2A is
defined as the purity of the state. It is one of the simplest
measures of the mixed-ness of the reduced density ma-
trix ρA. In particular, P is expected to be exponentially
small L in the ergodic phase and independent of L in the
MBL phase. We next discuss how P can be expressed in
terms of Hilbert-space correlations.

We work in the basis of σz-product states, denoted by
{|I〉}, and decompose each basis state as |I〉 = |iA〉⊗|iB〉
where |iA(B)〉 corresponds to the spin configuration in
subsystem A(B) in state |I〉. Any state |ψ〉 can then be
decomposed as

|ψ〉 =
∑
iA,iB

ψiAiB |iA〉 ⊗ |iB〉 , (1)

where {ψiAiB} denotes the set of amplitudes on Hilbert
space. Using Eq. 1, P can be expressed as

P =
∑

iA,iB ;jA,jB

ψiAiBψ
∗
iAjBψ

∗
jAiBψjAjB , (2)

which is a sum of four-point correlations between the
state amplitudes on Hilbert space. The amplitudes on
the four basis states involved in each term of the sum in
Eq. 2 are made up of two basis states from each subsys-
tem, (iA/B , jA/B). In order to recast P as a spatial corre-
lation on Hilbert space, it is useful to organise the basis
states in terms of two Hamming distances, rA and rB ,
corresponding to each subsystem; rA(B) is the number of
spins in subsystem A(B) different between the two con-
figurations in question. Specifically, between two configu-
rations |I〉 = |iA〉 |iB〉 and |J 〉 = |jA〉 |jB〉, the Hamming
distance is rIJ = riAjA +riBjB . With this convention for
distances, P can be written in terms of a Hilbert-spatial

correlation, C(rA, rB), as P =
∑L/2
rA=0

∑L/2
rB=0 C(rA, rB)

where the C(rA, rB) is defined as

C(rA, rB) =
∑

iA,jA:riAjA
=rA

iB ,jB :riBjB
=rB

ψiAiBψ
∗
iAjBψ

∗
jAiBψjAjB . (3)
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FIG. 1. The annealed second Rényi entropy, SA
2,ann = − ln 〈P〉

as a function of W for different L (left), and as a function of L
for different W (right). The black dashed line is ∝ (L/2) ln 2.
The data clearly shows volume-law for W < Wc and area-law
for W > Wc.

Note that C(rA = 0, rB = 0) =
∑
iA,iB

|ψiAiB |4 is the
inverse participation ratio (IPR) of the state. However,
the entanglement properties of the state contained in P
depends on the entire function C(rA, rB). This already
indicates that multifractality is not enough to determine
entanglement. In the following, we will average the corre-
lation function over disorder realisations and states and
denote it by 〈C(rA, rB)〉. This leads us to the average
purity 〈P〉 and hence to an annealed second Rényi en-
tropy SA2,ann = − ln 〈P〉. However, like the average sec-

ond Rényi entropy, SA2,ann is also expected to transition
from a volume law in the ergodic phase [22–24] to an area
law in the MBL phase [25].

To study how the correlation C(rA, rB) changes across
the MBL transition, we consider an archetypal model,
namely a disordered spin-chain described by the Hamil-
tonian

H =

L−1∑
`=1

J`σ
z
`σ

z
`+1 +

L∑
`=1

[h`σ
z
` + Γσx` ] , (4)

where J` ∈ [J−∆, J+∆] and h` ∈ [−W,W ] are indepen-
dent random numbers drawn from a uniform distribution.
We use J = Γ = 1 and ∆ = 0.2. For these parameters
and the kind of system sizes accessible to exact diagonali-
sation (ED), the model has an estimated critical disorder
strength of Wc ≈ 3.75 [26]. However, recent works have
suggested that a genuine MBL phase, stable in the ther-
modynamic limit, can set in only at much larger values
of W for standard disordered models [27–29] and the ap-
parent localisation for finite systems at W > Wc can
be understood partially via many-body resonances [30–
34] or alternatively via the proximity of the MBL phase
to an Anderson localised one [35]. We take the view
that the phenomenology observed at W > Wc for sys-
tem sizes accessible to ED persist in the thermodynamic
limit, albeit for much larger W . We compute C(rA, rB)
and P using a few eigenstates from the middle of the
spectrum extracted from ED and average the data over
several thousand samples.

In Fig. 1, we show SA2,ann for different L and W . The
data clearly shows that in the ergodic regime (W < Wc),
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FIG. 2. The average correlation function, 〈C(rA, rB)〉 (see
Eq. 3), as a heatmap in the (rA, rB) for different values of W .
Data for L = 18 and the colours in each panel are normalised
to the respective maximum and minimum values.

the entanglement follows a volume law, SA2,ann ∼ sL with
0 < s ≤ (ln 2)/2 whereas in the MBL regime (W > Wc),
it follows an area-law, SA2,ann ∼ O(1). Equivalently, for

W < Wc, the average purity 〈P〉 ∼ N−γH where NH = 2L

is the total Hilbert-space dimension and 0 < γ ≤ 1/2
whereas for W > Wc, 〈P〉 is independent of L.

Having established the behaviour of SA2,ann or equiva-
lently that of 〈P〉 across the transition, we next turn to
the correlation function C(rA, rB). The results for it are
presented in Fig. 2, which clearly shows a stark differ-
ence in the profiles of 〈C(rA, rB)〉 between the ergodic
and MBL regimes. In the former, the correlations are
totally dominated by rA = 0 or rB = 0. On increasing
W correlations develop for rA, rB 6= 0 and in the MBL
regime, 〈C(rA, rB)〉 is peaked at some rA, rB 6= 0 which
again shifts towards rA, rB = 0 as W becomes very large.
To make this quantitative, note that 〈C(rA, rB)〉 can be
interpreted as an (unnormalised) probability distribution
over rA and rB and its covariance quantifies precisely
the information said in words above. Appropriately nor-
malised, the covariance is defined as

〈rArB〉 = 〈P〉−1
L/2∑
rA=0

L/2∑
rB=0

rArB 〈C(rA, rB)〉 , (5)

and the results are shown in Fig. 3(left). In the ergodic
regime, 〈rArB〉 /L2 decays towards zero with increasing
L consistent with the fact that C(rA, rB) is finite only
for rA = 0 or rB = 0. In the MBL regime on the other
hand, 〈rArB〉 ∝ L2 with the constant of proportionality
decaying monotonically with W as the peak shifts to-
wards the origin. In order to account for this decay one
can renormalise 〈rArB〉 by defining [36]

R =
〈rArB〉
〈rA + rB〉2

, (6)

where 〈rA + rB〉 is defined in the same way as in Eq. 5.
The results for R are shown in Fig. 3(right), where it is
clear that in the ergodic regimeR→ 0 as L→∞ whereas
in the MBL regime R is finite and L-independent, and it
approaches 1/4 in the limit of W →∞. In fact, from the
data in Fig. 3, it is tempting to identify R as a diagnostic
for the many-body localisation transition.
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FIG. 3. The covariance 〈rArB〉 defined in Eq. 5 rescaled with
L2 (left) and the ratio of 〈rArB〉 to 〈rA + rB〉2 defined in Eq. 6
(right), as a function of W for different L. The red dashed
lines in both panels correspond to the case with J` = 0.

The phenomenology that emerges from the collection
of numerical results above is that the Hilbert-space cor-
relation C(rA, rB) which contains information about the
purity P indeed changes qualitatively across the many-
body localisation transition. We next try to understand
some of these features analytically.

Deep in the ergodic phase, the eigenstates are very
well approximated as random Gaussian vectors with zero

mean and standard deviation of N
−1/2
H [37, 38],

〈ψiAiB 〉 = 0; 〈ψiAiBψjAjB 〉 = N−1H δiAjAδiBjB . (7)

Note that the model in Eq. 4 is time-reversal symmet-
ric and hence it is sufficient to consider real eigenstate
amplitudes. Using Eq. 7 in Eq. 3 and performing the
average using Wick’s probability theorem, we obtain

〈C(rA, rB)〉 =
δrA0δrB0 +

(
L/2
rA

)
δrB0 +

(
L/2
rB

)
δrA0

NH
, (8)

which is exactly the form seen in Fig. 2 for W �Wc. A
crucial ingredient in the above result is that the eigen-
state amplitudes can be considered independent ran-
dom numbers. Since 〈C(rA, rB)〉 in Eq. 8 is vanish-
ing unless rA = 0 or rB = 0, 〈rArB〉 also vanishes
trivially. Summing Eq. 8 over rA and rB we obtain

〈P〉 = 2N
−1/2
H (1+1/2N

1/2
H ) such that SA2,ann ≈ (L/2) ln 2

for large L, thus recovering the volume-law entanglement
seen in Fig. 1.

We next discuss the MBL phase. It is expected that
deep in this phase, the interacting model is perturba-
tively connected to its non-interacting limit with J` =
0 [10, 39, 40]. In this limit, the model is trivially MBL
as it is a set of non-interacting spins. The eigenstates
are tensor products over the states of the two subsys-
tems |ψ〉 =

∑
iA
ψiA |iA〉 ⊗

∑
iB
ψiB |iB〉 which trivially

implies P = 1. The tensor product structure also leads
to C(rA, rB) splitting into a product of two-point corre-
lations for each subsystem as

C(rA, rB) =
∑
iA,jA:

riAjA
=rA

|ψiAψjA |2
∑
iB ,jB :

riBjB
=rB

|ψiBψjB |2 . (9)

Exploiting the non-interacting nature of the spins, the
two-point correlations in Eq. 9 can be evaluated ex-
actly [20] to give

〈C(rA, rB)〉 =

( L
2

rA

)( L
2

rB

)
prA+rB (1− p)L−rA−rB , (10)

where p = (tan−1W )/2W . This immediately im-
plies that 〈C(rA, rB)〉 is sharply peaked at (rA, rB) =
(pL/2, pL/2) which is qualitatively different from that
of the ergodic regime. The form in Eq. 10 also yields
〈rArB〉 = p2L2/4 consistent with the L2 scaling of 〈rArB〉
in the MBL phase in the data in Fig. 3(left). Addition-
ally, we have 〈rA〉 = 〈rB〉 = pL/2 such that R = 1/4.
This is indeed the value that the data in Fig. 3(right)
approaches for large W .

The above results for non-interacting spins along with
the numerical results presented in Figs. 2 and 3 suggest
that the features of 〈C(rA, rB)〉 are robust for generic
MBL states. However to make this more concrete, we
next present analytical results for an MBL state beyond
non-interacting spins. Since the MBL eigenstates are
related to product states via finite-depth local unitary
operators [10, 11, 39], we can construct a proxy for an

MBL state as |ψMBL〉 = U ⊗
∏L
`=1 |↑〉, where U is the

finite-depth local unitary depicted in Fig. 4(left) and we
can choose the parent product state to be the all-up state
without any loss of generality. Each 2-local gate depicted
by the grey rectangles is a 4 × 4 Haar-random unitary.
This along with the geometry of U allows us to derive
an expression for 〈C(rA, rB)〉 analytically. The expres-
sions are unwieldy enough that we relegate them to the
supplementary material [41] and instead show the results
graphically in Fig. 4 for large L. The middle panel again
shows that 〈C(rA, rB)〉 is sharply peaked at a value of
rA, rB ∼ L and correspondingly 〈rArB〉 ∼ L2 as shown
in the right panel.

The conclusion that one draws from all of the above
is that the Hilbert-space correlation function 〈C(rA, rB)〉
which contains information about 〈P〉 is qualitatively dif-
ferent in the ergodic and MBL phases and is intimately
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FIG. 4. Left: The state |ψMBL〉 is constructed by a finite-
depth local unitary made out of Haar random unitaries acting
on a product state. We ignore the unitaries in the second layer
away from the bipartition as they do not affect the entangle-
ment. Middle: 〈C(rA, rB)〉 for the state above for L = 256 as
a colourmap. Right: The corresponding 〈rArB〉 as function
of L scales as L2 as denoted by the red dashed line.
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FIG. 5. Left: Interpreting the SRPS geometrically as links
between iA and iB for every non-zero ψiAiB . The filled cir-
cles denote iA and iB which have at least one link connected
to them whereas the empty circles denote those that have no
links. For D ≶ 1/2, the link terminations sample the sets
{iA} and {iB} sparsely/densely. Right: Numerical results for
〈C(rA, rB)〉 for SRPS with D = 0.25 (top) and D = 0.75 (bot-
tom). The insets show 〈C(rA, 0)〉 (errorbars are smaller than
marker sizes) with the red dashed curve (bottom) denoting
the result in Eq. 13 for D > 1/2.

related to the volume-law and area-law bipartite entan-
glement in the two phases respectively. In order to show
that these correlations are indeed at the heart of area-
law entanglement in the MBL phase we next discuss the
fate of these correlations for sparse random pure states
(SRPS) which exhibit volume-law bipartite entanglement
along with (multi)fractality on Hilbert space.

We construct a set of SRPS by considering a NH-
dimensional vector and populating ND

H entries with inde-
pendent Gaussian random numbers with zero mean and

standard deviation N
−D/2
H where 0 < D < 1. The con-

struction ensures that the average generalised IPR of the

state
∑
iAiB
〈|ψiAiB |2q〉 ∼ N

−D(q−1)
H and the state there-

fore has fractal statistics on Hilbert space. In order to
compute 〈C(rA, rB)〉 we can again use Wick’s probabil-
ity theorem to average over the independent Gaussian
random numbers and obtain

〈C(rA, rB)〉 =δrA0

∑
iA

∑
iBjB :

riBjB
=rB

〈|ψiAiB |2|ψiAjB |2〉+

δrB0

∑
iB

∑
iAjA:

riAjA
=rA

〈|ψiAiB |2|ψjAiB |2〉 .

(11)

The above form already implies that 〈C(rA, rB)〉 is finite
only if rA = 0 or rB = 0 which is in stark contrast to
that of MBL states and already indicates why SRPS are
not compatible with area-law entanglement. To make
this concrete, we next calculate 〈C(rA, rB)〉 explicitly.

Note that the sparse construction of the states implies
that several of the summands in Eq. 11 are vanishing.
In order to estimate the number of non-zero elements,
the following geometrical picture is useful, see Fig. 5.
Consider {iA(B)} to be sets each with

√
NH elements.

Every non-zero ψiAiB corresponds to a link between the
respective iA and iB . By construction there are ND

H such
links and hence ND

H link terminations in each set.
For D < 1/2, ND

H �
√
NH and hence the link ter-

minations sample the sets sparsely. As such, one can
approximate that each element of the sets has only one
or zero links connected to it. This implies that any iA(B)

is either connected to a unique iB(A) or not connected to
anything. In this case, Eq. 11 becomes

〈C(rA, rB)〉 =δrA0δrB0

∑′

iA,iB

〈|ψiAiB |4〉 = 3δrA0δrB0N
−D
H ,

(12)

where the primed summation denotes that sum is over
the ND

H non-zero elements. The result derived above in
Eq. 12 is indeed corroborated by numerical results shown
in Fig. 5(top right). From Eq. 12, 〈P〉 = 3N−DH and
hence SA2,ann = DL ln 2 which is volume law.

For D > 1/2, ND
H �

√
NH and hence the link ter-

minations sample the sets densely. Each iA(B) has a
large number of links connected to it. Therefore each
term in the summation over iA(B) in the first (second)
line of Eq. 11 contributes. At the same time, φiA ≡∑
iB
|ψiAiB |2 is the iA

th diagonal matrix element of ρA.
Since each φiA is a sum of exponentially large in L in
random numbers whose distribution’s width decays ex-
ponentially in L, it is reasonable to assume that all φiA
are same on average. Normalisation of ρA ensures that

〈φiA〉 ∼ N
−1/2
H . Moreover, one can also assume equipar-

tition on average for the sum in φiA . Using these in
Eq. 11, we find

〈C(rA, rB)〉 ≈
δrA0

(
L/2
rB

)
+ δrB0

(
L/2
rA

)
NH

+
3δrA0δrB0

ND
H

,

(13)

which is in perfect agreement with the exact numerical
result shown in Fig. 5(bottom right). From Eq. 13, 〈P〉 ≈
2N
−1/2
H and hence SA2,ann ≈ L(ln 2)/2 which is the same

result as for fully extended ergodic states. Within the
realm of SRPS, we therefore have SA2,ann = DL ln 2 with
D = D for D ≤ 1/2 and D = 1/2 for 1/2 < D < 1,
consistent with earlier work [21].

The analysis for SRPS shows that while they exhibit
(multi)fractal statistics on Hilbert space, exactly like
MBL states, the behaviour of 〈C(rA, rB)〉 is completely
different. For MBL states 〈C(rA, rB)〉 is finite for and
sharply peaked at some rA, rB ∼ L. On the contrary,
for SRPS (and also for ergodic states) 〈C(rA, rB)〉 is fi-
nite only if rA = 0 or rB = 0. The calculations above
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show that this difference arises precisely due to the state
amplitudes on Hilbert space being independent random
numbers for SRPS and ergodic states but for MBL states,
the amplitudes are strongly correlated. This can be in-
tuitively understood as if the MBL state for a system
of size L is interpreted approximately as a tensor prod-
uct of L/ξ states corresponding to subsystems of size ξ
(thinking of ξ as a proxy for localisation length), then the
state is specified using eξL/ξ random numbers which is
� ND

H . The amplitudes are then naturally correlated.

To summarise, we showed that the purity, a measure
of the bipartite entanglement, of a quantum state can be
mapped onto a specific four-point correlation function
of the amplitudes on Hilbert space, C(rA, rB) defined in
Eq. 3, which naturally goes beyond multifractality. Using
numerical calculations for a disordered spin-chain and an-
alytic calculations in limiting cases, we showed that this
correlation function is fundamentally different between
volume-law entangled ergodic states and area-law entan-
gled MBL states and as an aside, it can be possibly used
to diagnose the many-body localisation transition. Fi-
nally we calculated C(rA, rB) for SRPS which have frac-
tal statistics on the Hilbert space but are devoid of the
correlations present in MBL states and exhibit volume-
law bipartite entanglement. This allowed us to show that
these correlations are at the heart of the coexistence of
multifractality on Hilbert space and area-law bipartite
entanglement for MBL states, thus answering the funda-
mental question which motivated this work.

Our analysis in this work centred on eigenstates of an
MBL system. The next natural step is consider dynami-
cal versions of these correlations. The motivation for this
will be to understand the logarithmic growth of entangle-
ment in the MBL phase [42, 43] from a Hilbert-space per-
spective. This might also allow us to theoretically under-
stand the role of resonances [28, 31–33] in the dynamics of
entanglement in the MBL phase. While this work focused
on area-law entanglement of MBL eigenstates, a question
of immediate future interest is the fate of these correla-
tions dynamically across measurement-induced entangle-
ment transitions [44, 45]. In such a setting multifractality
is known to set in for any finite measurement rate [46].
The ideas could possibly be extended to measurement-
induced transitions in operator entanglement relevant for
all-to-all coupled models [47].
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AN ALTERNATIVE RENORMALISATION

In the main text, we showed that in the MBL phase, 〈rArB〉 decays monotonically with W . This is because the
peak in 〈C(rA, rB)〉 shifts towards the origin, as the state gets more and more localised in the Hilbert space. In order

to account for this we renormalised 〈rArB〉 with 〈rA + rB〉2 to define the ratio R in Eq. 6. However, one could also
define an alternative renormalisation

Q =
〈rArB〉
〈rA〉 〈rB〉

. (S1)

In the ergodic phase, we again expect Q→ 0 as the numerator in Eq. S1 itself goes to zero. On the other hand, in the
MBL phase since 〈rArB〉 ∼ L2 and each of 〈rA〉 and 〈rB〉 ∼ L, we expect Q to remain finite. In the limit of W →∞,
〈rArB〉 = 〈rA〉 〈rB〉 such that Q → 1. We show results for Q for the disordered spin chain (4) as a function of W in
Fig. S1. The results are qualitatively similar to those of R shown in Fig. 3(right).
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FIG. S1. The ratio Q defined in Eq. S1 as a function of W for several L. The red dashed line denotes Q = 1, the result
expected for W →∞.

DETAILS OF CALCULATION FOR MBL STATE IN FIG. 4

In this section, we sketch the calculation of 〈C(rA, rB)〉 for the area-law entangled state in Fig. 4 constructed
by applying a finite-depth, local Haar-random unitary circuit to a product state. For concreteness we will consider
L = 4N where N is an integer, however, generalisations to other cases are straightforward. The spatial bipartition
implies that sites ` = 1, 2, · · · , 2N lie in subsystem A and sites ` = 2N + 1, 2N + 2, · · · , 4N lie in B. The structure
of the circuit in Fig. 4 suggests that one can tripartition the system into a subsystem A′ comprising sites ` =
1, 2, · · · , 2N − 2, a subsystem A′′B′′ comprising the four sites, ` = 2N − 1, · · · , 2N + 2, and a subsystem B′ with sites
2N + 3, 2N + 4, · · · , 4N such that

|ψMBL〉 = |ψA′〉 ⊗ |ψA′′B′′〉 ⊗ |ψB′〉 . (S2)

We will denote by {iA′(B′)} the set of basis states in A′(B′) and by {iA′′B′′} = {iA′′}⊗{iB′′} the ones in A′′B′′. With
this notation, the state |ψMBL〉 can be written as

|ψMBL〉 =
∑
iA′

∑
jA′

∑
iA′′ iB′′

ψiA′ψiA′′ iB′′ψiB′ |iA′〉 |iA′′〉 |iB′′〉 |iB′〉 . (S3)



S2

This allows for the correlation C(rA, rB) to be expressed as

C(rA, rB) =

2∑
rA′′ ,rB′′=0

CA′(rA − rA′′)CA′′B′′(rA′′ , rB′′)CB′(rB − rB′′) , (S4)

where

CA′(rA′ = rA − rA′′) =
∑

iA′ ,jA′ :
ri

A′ jA′=rA′

|ψiA′ |2|ψjA′ |2 , (S5)

is the correlation function in A′ (and similarly for B′) and

CA′′B′′(rA′′ , rB′′) =
∑

iA′′ ,jA′′ :ri
A′′ jA′′ =rA′′

iB′′ ,jB′′ :ri
B′′ jB′′=rB′′

ψiA′′ iB′′ψ
∗
iA′′ jB′′ψ

∗
jA′′ iB′′ψjA′′ jB′′ . (S6)

is the correlation function in A′′B′′.
We next evaluate 〈CA′(rA′)〉 exactly. It will be useful for to define two quantities which are averages of matrix

elements of Haar random unitaries as

w = 〈|uαα|4〉 = 1/10 , v = 〈|uαβuαγ |2〉 = 1/20 with β 6= γ , (S7)

where u is a 4× 4 Haar random unitary denoted by the grey rectangles in Fig. 4. The structure of the circuit implies
that the state |ψA′〉 can be expressed as a tensor product over 2-spin states between consecutive odd and even sites,

` = 2x − 1 and ` = 2x with x = 1, 2, · · · , N − 1. This leads to ψiA′ =
∏N−1
x=1 ψ

(2x−1,2x)
iA′ from which one can obtain

|ψiA′ |2|ψjA′ |2 =
∏N−1
x=1 |ψ

(2x−1,2x)
iA′ |2|ψ(2x−1,2x)

jA′ |2. Upon averaging over disorder realisations we obtain

〈|ψiA′ |2|ψjA′ |2〉 = wb
(i

A′ jA′ )
0 vb

(i
A′ jA′ )

1 +b
(i

A′ jA′ )
2 , (S8)

where b
(iA′ jA′ )
µ is the number of pairs of sites (2x − 1 and 2x) where the number of spins different between iA′ and

jA′ is µ. They obviously satisfy the constraints

2∑
µ=0

b(iA′ jA′ )
µ = N − 1 ; and b

(iA′ jA′ )
1 + 2b

(iA′ jA′ )
2 = riA′ jA′ . (S9)

We therefore have

〈CA′(rA′)〉 = 22(N−1)
∑′

b0,b1,b2

(
N − 1

b0

)(
N − 1− b0

b1

)
2b1wb0vb1+b2 , (S10)

where the primed summation denotes that the summation is subject to the constraints in Eq. ?? with riA′ jA′ = rA′ .
Let us briefly discuss the different factors in the above equation. The first factor is the simply the Hilbert space
dimension of subsystem A′. Inside the summation, the first and second binomial coefficients are the number of ways
of having b0 and b1 pairs with 0 and 1 spins different. The factor 2b1 accounts for the fact that for pairs with 1
spin different, it could be either the odd or the even site, and finally the factors with w and v account for the state
amplitudes. The constraints can be put in explicitly to convert the sum in Eq. ?? into one just over b0 as

〈CA′(rA′)〉 = 22(N−1)
bN−1−

r
A′
2 c∑

b0=max[0,N−1−rA′ ]

(
N − 1

b0

)(
N − 1− b0

2(N − 1)− 2b0 − rA′

)
22(N−1)−2b0−rA′wb0vN−1−b0 , (S11)

which can be evaluated for arbitrarily large systems. An identical calculation yields 〈CB′(rB′)〉. As far as
CA′′B′′(rA′′ , rB′′) is concerned, it too can be evaluated explicitly as it involves only 4 sites. However, the expres-
sion is opaque enough that we do not present it explicitly and evaluate it numerically. Using that and the expression
derived in Eq. ??, 〈C(rA, rB)〉 can be evaluated for |ψMBL〉 as in Fig. 4(left) for arbitrarily large system sizes. We use
that to obtain the results shown in Fig. 4(centre and right).
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