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Abstract

In this paper, we extend the Hilbert space
embedding approach to handle conditional
distributions. We derive a kernel estimate
for the conditional embedding, and show its
connection to ordinary embeddings. Condi-
tional embeddings largely extend our ability
to manipulate distributions in Hilbert spaces,
and as an example, we derive a nonpara-
metric method for modeling dynamical sys-
tems where the belief state of the system is
maintained as a conditional embedding. Our
method is very general in terms of both the
domains and the types of distributions that
it can handle, and we demonstrate the ef-
fectiveness of our method in various dynami-
cal systems. We expect that conditional em-
beddings will have wider applications beyond
modeling dynamical systems.

1. Introduction

Recent advances in kernel methods have yielded
a method (Smola et al., 2007) for dealing with
probability distributions by representing them as
points in a suitable reproducing kernel Hilbert space
(RKHS). This method of RKHS embeddings has
proven itself to be a powerful and flexible tool for
dealing with high-order statistics of random variables
and has found wide application, ranging from two-
sample tests (Gretton et al., 2007) to dimensionality
reduction (Song et al., 2008).
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In this paper, we introduce the concept of embedding
conditional distributions into a Hilbert space. Hilbert
space embeddings of conditional distributions are
potentially useful in applications where conditional
distributions are the key quantities of interest,
such as regressing structured response variables. In
particular, we use the embeddings obtained in this
paper to design a novel nonparametric approach for
maintaining the belief state in a dynamical system.
By not committing to fixed parameterizations of the
transition and observation models, our nonparametric
method handles a wider variety of problems than most
existing solutions. Moreover, while typical inference
algorithms for dynamical systems are formulated for
a particular domain (such as Rn), our method can
be applied to any domain admitting an appropriate
kernel function and can thus be applied to not only
Euclidean spaces, but more exotic spaces (both con-
tinuous and discrete) such as the rotation matrices,
permutations, strings, graphs, etc.

In the following, we summarize some of the main
contributions of this paper.

1. We introduce the concept of embedding condi-
tional distributions in an RKHS and present a
novel method for estimating such embeddings
from training data.

2. We consider several useful probabilistic inference
operations such as the sum rule and the chain
rule, and show, using our theory, that these
operations can be performed solely in the RKHS.

3. We apply our inference algorithms to learn
nonparametric models and perform inference
for dynamical systems. Our algorithms are
general first because they handle a wide variety
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Table 1. Table of Notation
random variable X Y Z

domain X Y Z
observation x y z

kernel k(x, x′) l(y, y′) u(z, z′)
kernel matrix K L U
feature map ϕ(x), k(x, ·) φ(y), l(y, ·) ψ(z), u(z, ·)

feature matrix Υ Φ Ψ
RKHS F G H

dynamic system st st+1 ot+1

of possible nonlinear/nongaussian models and
second because they apply in any setting in which
an appropriate kernel function can be defined.

2. Hilbert Space Embedding

We begin by providing an overview of Hilbert space
embeddings in which one represents probability
distributions by elements in a Hilbert space. In our
setting of dynamical systems, we will eventually think
of representing the belief state at each timestep as a
point in an Hilbert space. In the following we denote
by X, a random variable with domain X and refer
to instantiations of X by the lower case character,
x. We endow X with some σ-algebra A and denote
the space of all probability distributions (with respect
to A ) on X by P. Finally, we will consider a single
distribution P (X) on X .

A reproducing kernel Hilbert space (RKHS) F on X
with kernel k is a Hilbert space of functions f : X 7→
R. Its dot product 〈·, ·〉F , satisfies the reproducing
property:

〈f(·), k(x, ·)〉F = f(x), and consequently, (1a)
〈k(x, ·), k(x′, ·)〉F = k(x, x′), (1b)

meaning that we can view the evaluation of a function
f at any point x ∈ X as an inner product, and the lin-
ear evaluation operator is given by k(x, ·), i.e. the ker-
nel function. Alternatively, k(x, ·) can also be viewed
as a feature map ϕ(x) where k(x, x′) = 〈ϕ(x), ϕ(x′)〉F .
Popular kernel functions on Rn include the polynomial
kernel k(x, x′) = 〈x, x′〉d and the Gaussian RBF kernel
k(x, x′) = exp(−λ ‖x− x′‖2). Good kernel functions
have also been defined on graphs, time series, dynami-
cal systems, images, and structured objects (Schölkopf
et al., 2004). Analogously, the above definitions and
notational convention also apply to random variables
Y and Z (See Table 1 for a summary).

Embedding distribution. At the heart of the ap-
proach lie two simple embeddings — the expected fea-

ture map and its empirical estimate:

(a) µX := EX [ϕ(X)] , (b) µ̂X :=
1
m

∑m

i=1
ϕ(xi), (2)

where DX = {x1, . . . , xm} is a training set assumed
to have been drawn i.i.d. from P (X). If the condition
EX [k(X,X)] <∞ is satisfied, then the mapping µX is
guaranteed to be an element of the RKHS. By virtue of
the reproducing property of F , both mappings satisfy
〈µX , f〉F = EX [f(X)] and 〈µ̂X , f〉F = 1

m

∑m
i=1 f(xi),

thus showing that we can compute expectations and
empirical means with respect to P (X) and DX respec-
tively by taking inner products with the embeddings
µX and µ̂X . We will hence also refer to the two em-
beddings as mean maps. Mean maps are attractive
for several reasons (Smola et al., 2007; Sriperumbudur
et al., 2008). First, it turns out that for certain choices
of kernel functions, we can guarantee that distinct dis-
tributions map to distinct points in an RKHS. We say
that such a kernel function is characteristic. More pre-
cisely, we have:

Definition 1 When the mean map µX : P → F is
injective, the kernel function k is called characteristic.

Secondly, while we rarely have access to the true un-
derlying distribution, a finite sample of size m from a
distribution P suffices to (with high probability) com-
pute an approximation within an error of Op(m−

1
2 ):

Theorem 2 The empirical mean µ̂X converges to µX

in the RKHS norm at a rate of Op(m−
1
2 ).

Cross-covariance operator. To incorporate the
transition and observation models that arise in
Markovian dynamics, we will present in the next sec-
tion, as one of our main contributions, a method for
embedding conditional distributions. Our technique
relies on a generalization of the covariance matrix
known as the cross-covariance operator CXY : G → F ,
which is defined as (Baker, 1973):

CXY = EXY [ϕ(X)⊗ φ(Y )]− µX ⊗ µY , (3)

where ⊗ is the tensor product. Alternatively, CXY

can also be viewed as an element in the tensor
product space G ⊗F . Given two functions, f ∈ F and
g ∈ G, their cross-covariance, CovXY [f(X), g(Y )] :=
EXY [f(X)g(Y )]−EX [f(X)]EY [g(Y )], is computed as:

〈f, CXY g〉F or equivalently 〈f ⊗ g, CXY 〉F⊗G . (4)

Given m pairs of training examples DXY =
{(x1, y1), . . . , (xm, ym)} drawn i.i.d. from P (X,Y ),
we denote by Υ = (ϕ(x1), . . . , ϕ(xm)) and
Φ = (φ(y1), . . . , φ(ym)) the feature matrices. The
covariance operator CXY can then be estimated as
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ĈXY = 1
m (Υ − µ̂X1>)(Φ − µ̂Y 1>)> = 1

mΥHΦ>

where H is an idempotent centering matrix defined
by H = I − 1

m11>.

3. Conditional Embeddings

In this section, we discuss our first main contribu-
tion: embedding conditional distributions of the form
P (Y |X) into an RKHS. Unlike the embeddings dis-
cussed in the previous section, the conditional embed-
dings which we will define shortly will not be single
elements in the RKHS, but will instead sweep out a
family of points in the RKHS, each one indexed by a
fixed value of the conditioning variable X. It is only
by fixing X to a particular value x, that we will be
able to obtain a single RKHS element, µY |x ∈ G. In
other words, UY |X will be viewed as an operator map-
ping from F to G. In order to define the conditional
embedding, UY |X , we will want it to satisfy two prop-
erties:

1. µY |x := EY |x[φ(Y )|x] = UY |Xk(x, ·), and
2. EY |x[g(Y )|x] =

〈
g, µY |x

〉
G .

Assume now that for all g ∈ G, the conditional ex-
pectation EY |X [g(Y )|X] is an element of F . We now
show that the conditional embedding can be defined
in terms of cross-covariance operators using a relation
provided by Fukumizu et al. (2004),

CXXEY |X [g(Y )|X] = CXY g. (5)

Definition 3 The operator UY |X is defined as:
UY |X := CY XC−1

XX .

We can now show that that under our definition, UY |X
satisfies the properties that we wanted.
Theorem 4 Assuming that EY |X [g(Y )|X] ∈ F , the
embedding of conditional distributions in Definition 3
satisfies properties 1 and 2.

Proof By virtue of the reproducing property, given an
x, we have EY |x [g(Y )|x] =

〈
EY |X [g(Y )|X] , k(x, ·)

〉
F .

Using relation (5) and taking the conjugate
transpose of C−1

XXCXY , we have EY |x [g(Y )|x] =〈
g, CY XC−1

XXk(x, ·)
〉
G which proves the theorem.

We remark that while the assumption
EY |X [g(Y )|X] ∈ F always holds for finite do-
mains with characteristic kernels, it is not necessarily
true for continuous domains. In the cases where the
assumption does not hold, We use the expression
CY XC−1

XXk(x, ·) as an approximation of the conditional
mean µY |x and propose a kernel estimate based on
the expression for practical use. Given a dataset
DXY of size m, the conditional embedding µ̂Y |x
can be estimated using the following theorem (proof
omitted).

Theorem 5 Let kx := Υ>ϕ(x). Then µ̂Y |x can
be estimated as: µ̂Y |x = Φ(HK + λmI)−1Hkx =∑m

i=1 βi(x)φ(yi), where each βi is a real-valued weight.

Theorem 5 shows that the empirical estimator of the
conditional embedding bears a remarkable similarity
to the estimator of the ordinary embedding from Equa-
tion (2). The difference is that, instead of applying
uniform weights 1

m , the former applies non-uniform
weights, βi, on observations which are, in turn, de-
termined by the conditioning variable. These non-
uniform weights reflect the effects of conditioning on
Hilbert space embeddings.

A special case of this conditional embedding was em-
ployed in Quadrianto et al. (2008) for discrete con-
ditioning variables x (multiclass labels), where a delta
kernel is applied on x and the space of observations (y)
is partitioned according to the value of x. In this case,
the conditional embedding is given by a βi(x) = 1

n if
xi = x otherwise βi(x) = 1

n−m , where n ≤ m is the
total number of xi with label x.1 Our new definition
of conditional embedding does not require an explicit
partitioning of the observation space and is thus ap-
plicable to larger, more general spaces such as images
and strings.

We can further show that our estimator is consistent
(proof omitted).

Theorem 6 Assume k(x, ·) is in the range of CXX .
The empirical conditional embedding µ̂Y |x converges to
µY |x in the RKHS norm at a rate of Op((mλ)−

1
2 +λ

1
2 ).

Theorem 6 suggests that conditional embeddings are
harder to estimate than ordinary embeddings. If we
seek an estimator with a bias level of ε, we can fix λ to
the order of O(ε2) and obtain an overall convergence
rate of O(m−

1
2 ).

4. Operations on RKHS Embeddings

Conditional embeddings and cross-covariance opera-
tors largely extend our ability to manipulate distribu-
tions embedded in an RKHS. In this section, we discuss
several examples of this new vocabulary of operations.

Sum rule: Given a joint distribution over X and
Y , we would like to compute the marginal distribu-
tion over a single variable X by summing out Y .
P (X) =

∫
Y
P (X,Y ) =

∫
Y
P (X|Y )P (Y ), We would

like to now derive the Hilbert space counterpart of
this operation. Using the law of total expectation, we
have µX = EXY [ϕ(X)] = EY EX|Y [ϕ(X)|Y ]. Plugging
in the conditional embedding, we have

µX = EY [UX|Y φ(Y )] = UX|Y EY [φ(Y )] = UX|Y µY . (6)

1Negative weights 1
n−m

are due to centering matrix H.
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Chain rule: The chain rule is given by P (X,Y ) =
P (X|Y )P (Y ) = P (Y |X)P (X), where we factorize the
joint distribution into a product of two distributions.
This rule builds the connection between the two ways
of factorization which form the basis for Bayes rule.
In this case, if we use a tensor product joint feature
map ϕ(X) ⊗ φ(Y ), there are two equivalent ways of
factoring µXY = EXY [ϕ(X)⊗ φ(Y )] according to the
law of total expectation:

EY [EX|Y [ϕ(X)|Y ]⊗ φ(Y )] = UX|Y EY [φ(Y )⊗ φ(Y )]
EX [EY |X [φ(Y )|X]⊗ φ(X)] = UY |XEX [ϕ(X)⊗ ϕ(X)].

Let µ⊗X := EX [ϕ(X) ⊗ ϕ(X)] and µ⊗Y := EY [φ(Y ) ⊗
φ(Y )], we have:

µXY = UX|Y µ
⊗
Y = UY |Xµ

⊗
X (7)

Conditional cross-covariance. Sometimes, we
would like to measure the strength of dependence be-
tween two random variables Y and Z conditioned on
a given value X = x. To handle these situations,
it will be convenient to first introduce a new oper-
ator, conditional cross-covariance operator2. In par-
ticular, just as the cross-covariance operator CXY en-
abled us to compute CovXY [f(X), g(Y )] using Equa-
tion (4), we would like to have an operator CY Z|x which
would enable us to compute CovY Z|x[g(Y ), r(Z)|x] :=
EY Z|x[g(Y )r(Z)|x]− EY |x[g(Y )|x]EZ|x[g(Z)|x] via:〈
g, CY Z|xr

〉
G or equivalently

〈
g ⊗ r, CY Z|x

〉
G⊗H . (8)

We show defining the conditional cross-covariance by

CY Z|x := µY Z|x − µY |x ⊗ µZ|x (9)

works: CovY Z|x[g(Y ), r(Z)|x] can be written as
an inner product, 〈g ⊗ r, EY Z|x[φ(Y ) ⊗ ψ(Z)|x] −
EY |x[φ(Y )|x] ⊗ EZ|x[ψ(Z)|x]〉G⊗H; Plugging in condi-
tional embeddings leads to the expression.

The conditional dependence between Y and Z given x
can be quantified by, e.g. the Hilbert-Schmidt norm of
CY Z|x. This new quantity measures the dependence
between Y and Z locally at x; it is different from
the dependence measure designed by Fukumizu et al.
(2008) where the whole space of X is integrated out.

5. Application: Dynamical Systems

Having now developed the necessary machinery for
manipulating conditional embeddings, we turn our at-
tention to learning and inference in a dynamical sys-
tem. In this section, we formulate a simple nonpara-
metric algorithm for learning models and performing
probabilistic inference in dynamical systems.

2A different operator with the same name also appeared
in Fukumizu et al. (2004). There X is integrated out.

Setting. We model uncertainty in a dynamic sys-
tem using a partially observable Markov model, which
is a joint distribution P (s1, . . . , sT , o1, . . . , oT ) where
st is the hidden state at timestep t and ot is the
corresponding observation. We assume Markovian
dynamics, so that the joint distribution factorizes
as P

(
o1|s1

)∏
t P (ot|st)P

(
st|st−1

)
. The conditional

distribution P (st|st−1) is called the transition model,
and describes the evolution of the system from one
timestep to the next; the distribution P (ot|st) is called
the observation model, and captures the uncertainty of
a noisy measurement process.

We focus on filtering, in which one queries the model
for the posterior at some timestep conditioned on
all past observations. Denote the history of the dy-
namic system as ht := (o1, . . . , ot). In filtering, one
recursively maintains a belief state, P (st+1|ht+1), in
two steps: a prediction step and a conditioning step.
The first updates the distribution by multiplying by
the transition model and marginalizing out the pre-
vious timestep: P (st+1|ht) = Est|ht [P (st+1|st)|ht].
The second conditions the distribution on a new ob-
servation ot+1 using Bayes rule: P (st+1|htot+1) ∝
P (ot+1|st+1)P (st+1|ht).

Prediction in Hilbert space. The prediction and
conditioning steps which we have discussed can be ex-
actly reformulated with respect to the Hilbert space
embeddings. We begin by discussing how the predic-
tion step of inference can be implemented with respect
to the estimated Hilbert space embedding of the dis-
tribution P (st+1|ht) = Est|ht [P (st+1|st)|ht]. Due to
the fact that we maintain the belief state recursively,
we can assume that µst|ht is known. Thus our goal
is to express the Hilbert space embedding, µst+1|ht , in
terms of µst|ht and the conditional embedding Ust+1|st ,
for the transition model P (st+1|st). We have the fol-
lowing (using the notation from section 2):
Theorem 7 Hilbert space prediction step is given by:
µst+1|h = Ust+1|stµst|h.
Proof Using Markov property st+1 ⊥ ht|st, we have
Est+1|h[φ(st+1)|h] = Est|h[Est+1|st [φ(st+1)|st]|h]. Fur-
thermore, Est|h[Est+1|st [φ(st+1)|st]|h] = Ust+1|stµst|h
using the sum rule in Section 4.

Conditioning in Hilbert space. We now discuss
how the conditioning step of inference can be imple-
mented with respect to the Hilbert space embeddings,
in which we obtain the embedding of the posterior dis-
tribution, µst+1|htot+1 , given the prior and likelihood.
Note that the prior term, µst+1|ht , is supplied by the
prediction step in the recursion. Here the goal is to
obtain µst+1|htot+1 by conditioning further on variable
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ot+1, and we accomplish this iterated conditioning by
using the conditional cross-covariance operator from
Section 4. We have the following:

Theorem 8 Hilbert space conditioning step is given
by: µst+1|htot+1 = Cst+1ot+1|htC−1

ot+1ot+1|htψ(ot+1).

Proof This is a straightforward application of the
conditional cross-covariance operator in section 4 and
conditional embedding from Theorem 4. As an in-
termediate step, the embeddings for µot+1ot+1|ht and
µot+1|ht are needed. They can be derived using the
sum rule and the Markov property.

While having the exact updates for prediction (Theo-
rem 7) and conditioning (Theorem 8) is theoretically
satisfying, it does not lead to practical estimation al-
gorithms due to the fact that the conditional cross-
covariance operators need to be estimated in each con-
ditioning step, which is both statistically difficult and
computationally costly. In the following, we will make
simplifying assumptions to the dynamical systems and
derive an efficient approximate algorithm.

Approximate inference. Our goal still re-
mains to recursively maintain the Hilbert space em-
bedding µst|ht . However, in our approximation,
we directly construct the operator Ust+1|stot+1 =
Cst+1(stot+1)C−1

(stot+1)(stot+1), which takes both the pre-
vious belief state and an observation as inputs, and
outputs the predictive embedding for P (st+1|stot+1).
That is µst+1|stot+1 = Ust+1|stot+1ω((st, ot+1)), where
ω(·) is the joint feature map for st and ot+1.

In the same spirit as the decomposition of sufficient
statistics in exponential families (Altun et al., 2004;
Zhang et al., 2009), we use the concatenation of
the feature map ϕ(st) and ψ(ot+1) as ω((st, ot+1));
that is ω((st, ot+1)) = (ϕ(st)>, ψ(ot+1)>)> whose
kernel decomposes into the sum of two kernels:
〈ω((s, o)), ω((s′, o′))〉 = k(s, s′) + u(o, o′). With this
feature map, the operator Ust+1|stot+1 can be equiva-
lently viewed as the concatenation of two operators,
Ust+1|stot+1 = (T1, T2). More specifically,

µst+1|stot+1 = T1ϕ(st) + T2ψ(ot+1) (10)

Next we want to marginalize out variable st and con-
dition on the history ht. We follow the same logic from
the sum rule in Section 4, and take the expectation of
µst+1|stot+1 with respect to P (st|htot+1):

µst+1|htot+1 = Est|htot+1

[
µst+1|stot+1

]
= T1Est|htot+1

[
ϕ(st)|htot+1

]
+ T2ψ(ot+1)

≈ T1Est|ht

[
ϕ(st)|ht

]
+ T2ψ(ot+1)

= T1µst|ht + T2ψ(ot+1), (11)

where we have approximated the distribution
P (st|ht, ot+1) by a less confident one P (st|ht).

Updating the belief state with respect to RKHS
embeddings thus conveniently decomposes into two
simple operations: first, propagate from time t to time
t + 1 via T1µst|h; and second, account for the most
current current observation via T2ψ(ot+1). The main
point which distinguishes our approximation from the
exact inference operations is that the approximate
approach carries out the prediction and conditioning
operations in parallel while the exact method performs
the operations sequentially.

Computationally, our approximate algorithm is also
quite efficient. The operators T1 and T2 only needs
to be estimated once (during the training stage), and
at each filtering iteration, we only need to perform a
matrix-vector multiplication. More specifically:

Theorem 9 Let GΦ
Υ := Υ>Φ, and uot+1 :=

Ψ>ψ(ot+1). The update rule for the belief state is given
by: µ̂st+1|hot+1 ← Φ(HK + HU + λmI)−1H(GΦ

Υβ +
uot+1). Learning can be accomplished in O(m3) time
and each filtering iteration requires O(m2) time.
Proof Applying Theorem 5, we have µ̂st+1|hot+1 as
Φ(HK+HU+λmI)−1H(Υ>µ̂st|h+Ψ>ψ(ot+1)), where
we have used the fact that 〈ω((s, o)), ω((s′, o′))〉 =
k(s, s′) + u(o, o′). Since the belief state µ̂st|h is main-
tained by Φ and a set of weights β, replacing µ̂st+1|h
by Φβ, we have the update rule in the theorem. Let
T̃2 := (HK + HU + λmI)−1H and T̃1 := T̃2G

Φ
Υ (note

that since st and st+1 are in the same space, GΦ
Υ

is a valid inner product matrix). Therefore, updat-
ing µ̂st+1|hot+1 is also equivalent to updating β via
β ← T̃1β+ T̃2uot+1 . Computing T̃1 and T̃2 in the learn-
ing stage is dominated by a matrix inversion which is
O(m3) in general. In the filtering stage, applying the
update rule for β involves O(m) kernel evaluations and
two O(m2) matrix-vector multiplications. Each filter-
ing iteration is O(m2) in term of the number of kernel
evaluations.

MAP inference. We have now shown how to
maintain a posterior distribution over the hidden
state conditioned on the current and all past ob-
servations. Sometimes, however, we would like to
determine the MAP (maximum a posteriori) as-
signments of hidden states. We accomplish MAP
inference by performing the optimization ŝt+1 =
argmins

∥∥φ(s)− µ̂st+1|hot+1

∥∥2

G . Since the belief state
µ̂st+1|hot+1 is maintained as the feature matrix Φ and
a set of weights β, the optimization can be expressed
using kernels as:

ŝt+1 = argmaxs 2β>ls − l(s, s), (12)
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Algorithm 1 Learning
Input: Υ = (ϕ(st)), Φ = (φ(st+1)) and Ψ = (ψ(ot+1))
where t = 1 . . .m.
1: Compute K = Υ>Υ, U = Ψ>Ψ, GΦ

Υ = Υ>Φ.
2: Compute T̃2 := (HK +HU + λmI)−1H,

3: Compute T̃1 := T̃2G
Φ
Υ.

Algorithm 2 Filtering
Input: Ψ, T̃1, T̃2 from learning, and let β = 1

m
1.

1: for each new observation ot+1 do
2: Compute uot+1 = Ψ>ψ(ot+1).

3: Belief update: β ← T̃1β + T̃2uot+1 .
4: Inference: ŝt+1 = argmaxs 2β>ls − l(s, s).
5: end for

where ls := Φ>φ(s). Note that this optimization may
be a hard problem in general, and is analogous to the
argmax operation in structured SVMs (Tsochantaridis
et al., 2005). In many cases, however, it is possible to
define the feature map φ(s) in such a way that an ef-
ficient algorithm for solving the optimization (Equa-
tion (12)) can be obtained. For instance, consider
the identity management problem arising in multiob-
ject tracking, where the hidden states are permuta-
tions (one-to-one matchings between tracks and iden-
tities). Using the kernel l(π, π′) := tr(π>π′) defined
over permutation matrices, we obtain a linear assign-
ment problem which can be solved efficiently using a
variety of algorithms.

Algorithm. Our method maintains a representation
of the state distribution as a weighted sum of feature
functions evaluated at the set of training examples.
To propagate the state distribution with respect to
Markovian dynamics and to condition, our algorithms
can simply be implemented using kernel evaluations
and matrix operations on the weight vector β.

We summarize our method using the pseudocode in
Algorithms 1 and 2. In the learning phase, we use the
training data to form the appropriate kernel matrices
and operator estimates. During the filtering phase, we
are presented with an online input sequence of test ob-
servations and we use the update rule to maintain state
distributions at each timestep. The user-specified pa-
rameters are kernel choices for the state and observa-
tion spaces, and the regularization parameter.

6. Related Work

Gaussian process regression uses k>x (K+λI)−1y as the
predictive mean (Rasmussen & Williams, 2006). As it
turns out, this is equivalent to the conditional embed-
ding of the distribution P (Y |x) restricted to a linear
feature map on Y . Cortes et al. (2005) studied ker-
nel dependency estimation for transduction. There,

a function Wϕ(x) is learned for mapping from x to
φ(y). By solving an optimization, they derive the
form, Φ(K + λI)−1Υ, for W. This is exactly the
conditional embedding operator UY |X we discussed
in this paper. Therefore, our work immediately pro-
vides theoretical and statistical support for their ap-
proach. Finally, Vishwanathan et al. (2007) considered
linear dynamical systems in an RKHS, where a tran-
sition operator A and an observation operator B are
used to describe the dynamics: ϕ(st+1) = Aϕ(st) and
ψ(ot+1) = Bϕ(st+1). Under our Hilbert space embed-
ding view of dynamical systems, the operators A and
B correspond to Ust+1|st and Uot+1|st+1 respectively,
which enables the entire distribution for the hidden
state st to propagate through the dynamics.

7. Experiments
We evaluate our algorithm on two dynamical systems:
a linear dynamical systems with known model param-
eters, and a challenging camera tracking problem.

Synthetic data. We simulate a particle rotating
around the origin in R2 according to the following

dynamics: st+1 =
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
st + ξ, ot+1 =

st+1 + η where θ = 0.02 radians, ξ and η are pro-
cess noise and observation noise respectively. To eval-
uate our algorithm, we compare the performance of our
method to the performance of a Kalman filter in esti-
mating the position of the particle. The Kalman filter
requires the exact knowledge of the dynamics in order
to perform filtering, while our method only requires a
sequence of training pairs of hidden states and obser-
vations. We study how the different methods respond
to various noise models. In particular, we use 4 noise
configurations arranged in increasing nonlinearity (Let
Q1 := N (−0.2, 10−2I) and Q2 := N (0.2, 10−2I)):

Process noise ξ Observation noise η
(i) N (0, 10−2I) N (0, 10−1I)
(ii) N (0, 10−1I) N (0, 10−2I)
(iii) Gamma Γ(1, 1

3
) N (0, 10−1I)

(iv) Gaussian Mixture 1
2
Q1 + 1

2
Q2 N (0, 10−2I)

We also study how our method scales in terms of filter-
ing performance as more training data are available.
We generate training data by observing the particle
rotate for 2n steps where n = 1 . . . 6. The test data
always contains observations from a single cycle. For
each training set size, we randomly instantiate the ex-
periment 50 times to obtain the standard errors. We
use an RBF kernel for both the hidden state and the
observations, and we set the regularization parameter
to λ = 10−3. We perform MAP inference by searching
over a predefined grid over [−3 : 0.03 : 3]2 (alterna-
tively, one can also use a gradient descent for MAP).
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(a) case (i) (b) case (ii)

(c) case (iii) (d) case (iv)

Figure 1. Averge RMS and standard error over 50 runs of
the experiment for noise configurations i,ii,iii and iv. KF:
Kalman filter; RKHS: our method.

The average RMS (root mean square error) over 50
runs and the standard errors are shown in Figure 1.

The general trend is that, as more training data are
available, both the average RMS and the standard er-
ror of our method decrease monotonically. In cases
when the Kalman filter is optimal (case i, ii), the
performance of our method approaches that of the
Kalman filter as more training data become avail-
able. In nonlinear dynamical systems (case iii, iv), our
method outperforms the Kalman filter when training
datasets are sufficiently large. This is expected since
the Kalman update is specifically designed for Gaus-
sian noise while our nonparametric method is more
versatile in handling general noise distributions.

Camera rotation. Here we apply our dynamical sys-
tem tools to a computer vision problem. We try to
determine the camera orientation based on the images
it observes. In our setting, the camera focal point is
fixed at a position and traces out a smooth path of
rotations while making observations. To evaluate our
algorithm, we use POVRAY (www.povray.org) to ren-
der images observed by the camera. The virtual scene
is a rectangular-shaped room with a ceiling light and
two pieces of furniture. The images exhibit complex
lighting effects such as shadows, interreflections, and
global illumination, all of which make determining the
camera rotation difficult especially for noisy cases. As
an illustration, we display sample images in Figure 2.
The sizes of the color images are 100 × 100 × 3. We
downsample them to 20× 20× 3 in order for our com-
petitor, the Kalman filter, to learn its model efficiently.

We generate a sequence of image observations as
follows: first we uniformly sample 180 random
rotation matrices. Then we interpolate between
these anchor positions using 20 midpoints. For each
generated rotation matrix, we render an image using
the rotation matrix as camera parameters. In total
we obtain 3600 frames, and we use the first 1800
frames for training and the remaining 1800 frames for
testing. The dynamics governing the camera rotation
is a piece-wise smooth random walk. This is an
unconventional dynamical system in that the hidden
state is a rotation matrix R from SO(3); and the
observations are images which are high dimensional
spaces with correlation between pixel values.

We flatten each image to a vector of R1200, and apply
a Gaussian RBF kernel. The bandwidth parameter
of the kernel is fixed using the median distance
between image vectors, and λ = 10−6. We use an
inner product kernel between two rotations R and R̃,
i.e. k(R, R̃) := tr(R>R̃). Using this kernel, we can per-
form efficient MAP inference for the rotation matrix.
The optimization problem then becomes a linear pro-
gram over SO(3): argmaxR tr(A>R) s.t. R ∈ SO(3),
where A is obtained from Φβ and can be efficiently
solved using a steepest descent algorithm over Stiefel
manifold (Abrudan et al., 2008).

We compare our method to a Kalman filter and
random guessing. For the Kalman filter, we used the
quaternion corresponding to a rotation matix R as
the hidden state and the image vectors as the obser-
vations. We learn the model parameters of the linear
dynamical system using linear regression. We consider
two error metrics. The first is tr(R>R̂) which is the
equal to 1 + 2 cos(θ) where θ is the angle between the
true rotation matrix R and its estimate R̂. This met-
ric ranges between [−1, 3]. As a second metric, we use
the Frobenius norm ‖R− R̂‖Fro. Note that these two
measures are related, i.e. ‖R−R̂‖2Fro = 6−2 tr(R>R̂).
The results on the test image sequence are shown
in Table 7. We can see that in terms of both error
metrics, our method performs significantly better
than the Kalman filter and random guessing.

To investigate whether incorporating dynamics really
helps to better estimate the camera rotations, we com-
pare our RKHS filter to a prediction using condi-
tional embedding3 that completely ignores the dynam-
ics (camera orientations are close for adjacent time-
points). We add zero mean Gaussian white noise to
the images and study the performance scaling of the
two methods as we increase the noise variance. We ob-

3We use R̂ := argmaxR

˙
R,UY |Xϕ(x)

¸
where UY |X is

the conditional embedding from images X to rotations Y .
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(a)
(b)

Figure 2. (a) Example rendered image of the well known
Cornell box with a rotating camera. (b) RKHS filter com-
pared to a simple prediction that ignores dynamics in esti-
mating camera rotation.

Table 2. Errors in estimating the camera rotation matrices
by three methods. Note that for the trace measure, the
larger the number the better the performance; but for the
Frobenius norm, the smaller the number the better.

Error Metric RKHS Kalman Random
Trace 2.91± 0.005 2.18± 0.016 0.01± 0.023

Frobenius 0.17± 0.005 1.18± 0.012 2.40± 0.023

serve that the performance of the RKHS filter which
does take into account the dynamics degrades more
gracefully for increasing noise levels (Figure 2(b)).

8. Conclusion
We have presented a general framework for embedding
conditional distributions into a reproducing kernel
Hilbert space. The resulting embedding method
greatly improves our ability to manipulate distribu-
tions in RKHS, and in particular, we showed how
conditional embeddings are useful for modeling and
performing nonparametric inference on dynamical
systems. The advantage using the Hilbert space
embedding lies in its generality and ease of implemen-
tation. Our method suffers from several limitations at
the moment. For example, we require training data
for the hidden states. We believe that extending our
embedding approach along these directions will be
both fruitful and interesting for future research, and
we expect that conditional embedding will be a useful
tool for learning problems beyond dynamical systems.
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