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Abstract

This paper proposes a novel scheme for reduced-rank Gaussian process regression. The method is based on an approximate
series expansion of the covariance function in terms of an eigenfunction expansion of the Laplace operator in a compact
subset of R

d . On this approximate eigenbasis, the eigenvalues of the covariance function can be expressed as simple functions
of the spectral density of the Gaussian process, which allows the GP inference to be solved under a computational cost
scaling as O(nm2) (initial) and O(m3) (hyperparameter learning) with m basis functions and n data points. Furthermore,
the basis functions are independent of the parameters of the covariance function, which allows for very fast hyperparameter
learning. The approach also allows for rigorous error analysis with Hilbert space theory, and we show that the approximation
becomes exact when the size of the compact subset and the number of eigenfunctions go to infinity. We also show that the
convergence rate of the truncation error is independent of the input dimensionality provided that the differentiability order
of the covariance function increases appropriately, and for the squared exponential covariance function it is always bounded
by ∼1/m regardless of the input dimensionality. The expansion generalizes to Hilbert spaces with an inner product which is
defined as an integral over a specified input density. The method is compared to previously proposed methods theoretically
and through empirical tests with simulated and real data.

Keywords Gaussian process regression · Laplace operator · Eigenfunction expansion · Pseudo-differential operator ·
Reduced-rank approximation

1 Introduction

Gaussian processes (GPs, Rasmussen and Williams 2006)
are powerful tools for nonparametric Bayesian inference and
learning. In GP regression, the model functions f (x) are
assumed to be realizations from a Gaussian random process
prior with a given covariance function k(x, x′), and learning
amounts to solving the posterior process given a set of noisy
measurements y1, y2, . . . , yn at some given test inputs. This
model is often written in the form

f ∼ GP(0, k(x, x′)),

yi = f (xi ) + εi ,
(1)
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where εi ∼ N (0, σ 2
n ), for i = 1, 2, . . . , n. One of the main

limitations of GPs in machine learning is the computational
and memory requirements that scale as O(n3) and O(n2)

in a direct implementation. This limits the applicability of
GPs when the number of training samples n grows large.
The computational requirements arise because in solving the
GP regression problem we need to invert the n × n Gram
matrix K + σ 2

n I, where Ki j = k(xi , x j ), which is an O(n3)

operation in general.
To overcome this problem, over the years, several schemes

have been proposed. They typically reduce the storage
requirements to O(nm) and complexity to O(nm2), where
m < n. Some early methods have been reviewed in Ras-
mussen and Williams (2006), and Quiñonero-Candela and
Rasmussen (2005b) provide a unifying view on several meth-
ods. From a spectral point of view, several of these methods
(e.g., SOR, DTC, VAR, FIC) can be interpreted as modifi-
cations to the so-called Nyström method (see Baker 1977;
Williams and Seeger 2001), a scheme for approximating the
eigenspectrum.
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For stationary covariance functions, the spectral density
of the covariance function can be employed: In this con-
text, the spectral approach has mainly been considered in
regular grids, as this allows for the use of FFT-based meth-
ods for fast solutions (see Paciorek 2007; Fritz et al. 2009)
and more recently in terms of converting GPs to state space
models (Särkkä and Hartikainen 2012; Särkkä et al. 2013).
Recently, Lázaro-Gredilla et al. (2010) proposed a sparse
spectrum method where a randomly chosen set of spectral
points span a trigonometric basis for the problem.

The methods proposed in this article fall into the class
of methods called reduced-rank approximations (see, e.g.,
Rasmussen and Williams 2006, Ch. 8) which are based on
approximating the Gram matrix K with a matrix K̃ with
a smaller rank m < n. This allows for the use of matrix
inversion lemma (Woodbury formula) to speed up the com-
putations. It is well known that the optimal reduced-rank
approximation of the Gram (covariance) matrix K with
respect to the Frobenius norm is K̃ = ���

T, where
� is a diagonal matrix of the leading m eigenvalues of
K and � is the matrix of the corresponding orthonormal
eigenvectors (Golub and Van Loan 1996; Rasmussen and
Williams 2006, Ch. 8). Yet, as computing the eigendecom-
position is an O(n3) operation, this provides no remedy as
such.

In this work, we propose a novel method for obtaining
approximate eigendecompositions of covariance functions
in terms of an eigenfunction expansion of the Laplace oper-
ator in a compact subset of R

d . The method is based on
interpreting the covariance function as the kernel of a pseudo-
differential operator (Shubin 1987) and approximating it
using Hilbert space methods (Courant and Hilbert 2008;
Showalter 2010). This results in a reduced-rank approxima-
tion for the covariance function, where the basis functions
are independent of the covariance functions and its param-
eters. We also show that the approximation converges to
the exact solution in well-defined conditions, analyze its
convergence rate and provide theoretical and experimen-
tal comparisons to existing state-of-the-art methods. This
path has not been explored in GP regression context before,
although the approach is related to the Fourier feature meth-
ods (Hensman et al. 2018) and stochastic partial differential
equation-based methods recently introduced to spatial statis-
tics and GP regression (Lindgren et al. 2011; Särkkä and
Hartikainen 2012; Särkkä et al. 2013) as well as to classical
works in the spectral representations of stochastic processes
(Loève 1963; Van Trees 1968; Adler 1981; Cramér and Lead-
better 2013) and spline interpolation (Wahba 1978, 1990;
Kimeldorf and Wahba 1970). Recently, the scalable eigen-
decomposition approach has also been tackled by various
structure exploiting methods (building on the work by Wil-
son and Nickisch 2015) and extended to methods exploiting
GPU computations.

This paper is structured as follows: In Sect. 2, we derive the
approximative series expansion of the covariance functions.
Section 3 is dedicated to applying the approximation scheme
to GP regression and providing details of the computational
benefits. We provide a detailed analysis of the convergence of
the method in Sect. 4. Sections 5 and 6 provide comparisons
to existing methods, the former from a more theoretical point
of view, whereas the latter contains examples and compara-
tive evaluation on several datasets. Finally, the properties of
the method are summarized and discussed in Sect. 7.

2 Approximating the covariance function

In this section, we start by stating the assumptions and
properties of the class of covariance functions that we are
considering and show how a homogenous covariance func-
tion can be considered as a pseudo-differential operator
constructed as a series of Laplace operators. Then we show
how the pseudo-differential operators can be approximated
with Hilbert space methods on compact subsets of R

d or via
inner products with integrable weight functions and discuss
connections to Sturm–Liouville theory.

2.1 Spectral densities of homogeneous and
isotropic Gaussian processes

In this work, it is assumed that the covariance function is
homogeneous (stationary), which means that the covariance
function k(x, x′) is actually a function of r = x − x′ only.
This means that the covariance structure of the model func-
tion f (x) is the same regardless of the absolute position in
the input space (cf. Rasmussen and Williams 2006, Ch. 4). In
this case, the covariance function can be equivalently repre-
sented in terms of the spectral density. This results from the
Bochner’s theorem (see, e.g., Akhiezer and Glazman 1993;
Da Prato and Zabczyk 1992) which states that a bounded con-
tinuous positive definite function k(r) can be represented as

k(r) = 1

(2π)d

∫
exp

(
i ωTr

)
μ(dω), (2)

where μ is a positive measure.
If the measure μ(ω) has a density, it is called the spec-

tral density S(ω) corresponding to the covariance function
k(r). This gives rise to the Fourier duality of covariance and
spectral density, which is known as the Wiener–Khintchin

theorem (Rasmussen and Williams 2006, Ch. 4), giving the
identities

k(r) = 1

(2π)d

∫
S(ω) ei ωTr dω,

S(ω) =
∫

k(r) e−i ωTr dr.

(3)
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From these identities, it is easy to see that if the covariance
function is isotropic, that is, it only depends on the Euclidean
norm ‖r‖ such that k(r) � k(‖r‖), then the spectral density
will also only depend on the norm of ω such that we can
write S(ω) � S(‖ω‖). In the following, we assume that the
considered covariance functions are indeed isotropic, but the
approach can be generalized to more general homogenous
covariance functions.

2.2 The covariance operator as a pseudo-differential
operator

Associated to each covariance function k(x, x′), we can also
define a covariance operator K as follows:

K φ =
∫

k(·, x′) φ(x′) dx′. (4)

Note that because the covariance function is homogeneous,
this can also be written as a convolution. As we show in
the next section, this interpretation allows us to approxi-
mate the covariance operator using Hilbert space methods
which are typically used for approximating differential and
pseudo-differential operators in the context of partial dif-
ferential equations (Showalter 2010). When the covariance
function is homogenous, the corresponding operator will be
translation invariant thus allowing for Fourier representation
as a transfer function. This transfer function is just the spec-
tral density of the Gaussian process.

Consider an isotropic covariance function k(x, x′) �

k(‖r‖) (recall that ‖·‖ denotes the Euclidean norm). The
spectral density of the Gaussian process and thus the transfer
function corresponding to the covariance operator will now
have the form S(‖ω‖). We can formally write it as a function
of ‖ω‖2 such that

S(‖ω‖) = ψ(‖ω‖2). (5)

Assume that the spectral density S(·) and hence ψ(·) have
the following polynomial expansion:

ψ(‖ω‖2) = a0 + a1‖ω‖2 + a2(‖ω‖2)2 + a3(‖ω‖2)3 + · · · .

(6)

This can be ensured, for example, by requiring that ψ(·) is
an analytic function. Thus we also have

S(‖ω‖) = a0+a1‖ω‖2+a2(‖ω‖2)2+a3(‖ω‖2)3+· · · . (7)

Recall that the transfer function corresponding to the Laplace
operator ∇2 is −‖ω‖2 in the sense that for a regular enough
function f we have

F [∇2 f ](ω) = −‖ω‖2
F [ f ](ω), (8)

where F [·] denotes the Fourier transform of its argument. If
we take the inverse Fourier transform of (7), we get the fol-
lowing representation for the covariance operator K, which
defines a pseudo-differential operator (Shubin 1987) as a for-
mal series of Laplace operators:

K = a0 + a1(−∇2) + a2(−∇2)2 + a3(−∇2)3 + · · · . (9)

In the next section, we will use this representation to form a
series expansion approximation for the covariance function.

2.3 Hilbert space approximation of the covariance
operator

We will now form a Hilbert space approximation for the
pseudo-differential operator defined by (9). Let Ω ⊂ R

d be
a compact set and consider the eigenvalue problem for the
Laplace operators with Dirichlet boundary conditions (we
could use other boundary conditions as well):

{
−∇2φ j (x) = λ j φ j (x), x ∈ Ω,

φ j (x) = 0, x ∈ ∂Ω.
(10)

Let us now assume that we have selected ∂Ω to be suffi-
ciently smooth, for example, a hypercube or hypersphere,
so that the eigenfunctions and eigenvalues exist. Because
−∇2 is a positive definite Hermitian operator, the set of
eigenfunctions φ j (·) is orthonormal with respect to the inner
product

〈 f , g〉 =
∫

Ω

f (x) g(x) dx (11)

that is,

∫

Ω

φi (x) φ j (x) dx = δi j , (12)

and all the eigenvalues λ j are real and positive. The neg-
ative Laplace operator can then be assigned the formal
kernel

l(x, x′) =
∑

j

λ j φ j (x) φ j (x
′) (13)

in the sense that

−∇2 f (x) =
∫

l(x, x′) f (x′) dx′, (14)

for sufficiently (weakly) differentiable functions f in the
domain Ω assuming Dirichlet boundary conditions.
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Fig. 1 Approximations to covariance functions of the Matérn class of
various degrees of smoothness; ν = 1/2 corresponds to the exponential
Ornstein–Uhlenbeck covariance function and ν → ∞ to the squared

exponential (exponentiated quadratic) covariance function. Approxi-
mations are shown for 12, 32, 64, and 128 eigenfunctions

If we consider the formal powers of this representation,
due to orthonormality of the basis, we can write the arbitrary
operator power s = 1, 2, . . . of the kernel as

ls(x, x′) =
∑

j

λs
j φ j (x) φ j (x

′). (15)

This is again to be interpreted to mean that

(−∇2)s f (x) =
∫

ls(x, x′) f (x′) dx′, (16)

for regular enough functions f and in the current domain
with the assumed boundary conditions.

This implies that on the domain Ω , assuming the boundary
conditions, we also have

[
a0 + a1(−∇2) + a2(−∇2)2 + · · ·

]
f (x)

=
∫ [

a0 + a1 l1(x, x′) + a2 l2(x, x′) + · · ·
]

f (x′) dx′.

(17)

The left hand side is just K f via (9), on the domain with
the boundary conditions, and thus, by comparing to (4) and
using (15), we can conclude that

k(x, x′) ≈ a0 + a1 l1(x, x′) + a2 l2(x, x′) + · · ·

=
∑

j

[
a0 + a1 λ1

j + a2 λ2
j + · · ·

]
φ j (x) φ j (x

′),

(18)

which is only an approximation to the covariance function
due to restriction of the domain to Ω and the boundary con-
ditions. By letting ‖ω‖2 = λ j in (7), we now obtain

S(
√

λ j ) = a0 + a1λ
1
j + a2λ

2
j + · · · (19)

and substituting this into (18) leads to the approximation

k(x, x′) ≈
∑

j

S(
√

λ j ) φ j (x) φ j (x
′), (20)

where S(·) is the spectral density of the covariance function,
λ j is the j th eigenvalue and φ j (·) the eigenfunction of the
Laplace operator in a given domain. These expressions tend
to be simple closed-form expressions.

The right-hand side of (20) is very easy to evaluate,
because it corresponds to evaluating the spectral density at
the square roots of the eigenvalues and multiplying them
with the eigenfunctions of the Laplace operator. Because
the eigenvalues of the Laplace operator are monotonically
increasing with j and for bounded covariance functions the
spectral density goes to zero fast with higher frequencies,
we can expect to obtain a good approximation of the right-
hand side by retaining only a finite number of terms in the
series. However, even with an infinite number of terms this
is only an approximation, because we assumed a compact
domain with boundary conditions. The approximation can
be, though, expected to be good at the input values which are
not near the boundary of Ω , where the Laplacian was taken
to be zero.

As an example, Fig. 1 shows Matérn covariance functions
of various degrees of smoothness ν (see, e.g., Rasmussen
and Williams 2006, Ch. 4) and approximations for differ-
ent numbers of basis functions in the approximation. The
basis consists of the eigenfunctions of the Laplacian in
(10) with Ω = [− L, L] which gives the eigenfunctions
φ j (x) = L−1/2 sin(π j(x + L)/(2L)) and the eigenvalues
λ j = (π j/(2L))2. In the figure, we have set L = 1 and
ℓ = 0.1. For the squared exponential, the approximation is
indistinguishable from the exact curve already at m = 12,
whereas the less smooth functions require more terms.
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2.4 Inner product point of view

Instead of considering a compact bounded set Ω , we can
consider the same approximation in terms of an inner product
defined by an input density (Williams and Seeger 2000). Let
the inner product be defined as

〈 f , g〉 =
∫

f (x) g(x) w(x) dx, (21)

where w(x) is some positive weight function such that∫
w(x) dx < ∞. In terms of this inner product, we define

the operator

K f =
∫

k(·, x) f (x) w(x) dx. (22)

This operator is self-adjoint with respect to the inner product,
〈K f , g〉 = 〈 f ,Kg〉, and according to the spectral theorem
there exists an orthonormal set of basis functions and pos-
itive constants, {ϕ j (x), γ j | j = 1, 2, . . .}, that satisfies the
eigenvalue equation

(Kϕ j )(x) = γ j ϕ j (x). (23)

Thus k(x, x′) has the series expansion

k(x, x′) =
∑

j

γ j ϕ j (x) ϕ j (x
′). (24)

Similarly, we also have the Karhunen–Loeve expansion for a
sample function f (x) with zero mean and the above covari-
ance function:

f (x) =
∑

j

f j ϕ j (x), (25)

where f j s are independent zero mean Gaussian random vari-
ables with variances γ j (see, e.g., Lenk 1991).

For the negative Laplacian, the corresponding definition
is

D f = −∇2[ f w], (26)

which implies

〈D f , g〉 = −
∫

f (x) w(x)∇2[g(x) w(x)] dx, (27)

and the operator defined by (26) can be seen to be self-
adjoint. Again, there exists an orthonormal basis {φ j (x)| j =
1, 2, . . .} and positive eigenvalues λ j which satisfy the eigen-
value equation

(D φ j )(x) = λ j φ j (x). (28)

Thus the kernel of D has a series expansion similar to Eq. (13)
and thus an approximation can be given in the same form as
in Equation (20). In this case, the approximation error comes
from approximating the Laplace operator with the smoother
operator,

∇2 f ≈ ∇2[ f w], (29)

which is closely related to assumption of an input density
w(x) for the Gaussian process. However, when the weight
function w(·) is close to constant in the area where the inputs
points are located, the approximation is accurate.

2.5 Connection to Sturm–Liouville theory

The presented methodology is also related to the Sturm–
Liouville theory arising in the theory of partial differential
equations (Courant and Hilbert 2008). When the input x is
scalar, the eigenvalue problem in Eq. (23) can be written in
Sturm–Liouville form as follows:

− d

dx

[
w2(x)

dφ j (x)

dx

]
− w(x)

d2w(x)

dx2 φ j (x)

= λ j w(x) φ j (x).

(30)

The above equation can be solved for φ j (x) and λ j using
numerical methods for Sturm–Liouville equations. Also note
that if we select w(x) = 1 in a finite set, we obtain the
equation − d2/ dx2 φ j (x) = λ j φ j (x) which is compatible
with the results in the previous section.

We consider the case where x ∈ R
d and w(x) is symmetric

around the origin and thus is only a function of the norm
r = ‖x‖ (i.e. has the form w(r)). The Laplacian in spherical
coordinates is

∇2 f = 1

rd−1

∂

∂r

(
rd−1 ∂ f

∂r

)
+ 1

r2 �Sd−1 f , (31)

where �Sd−1 is the Laplace–Beltrami operator on Sd−1. Let
us assume that φ j (r , ξ) = h j (r) g(ξ), where ξ denotes
the angular variables. After some algebra, writing the
equations into Sturm–Liouville form yields for the radial
part

− d

dr

(
w2(r) r

dh j (r)

dr

)

−
(

dw(r)

dr
w(r) + d2w(r)

dr2 w(r) r

)
h j (r)

= λ j w(r) r h j (r), (32)

and �Sd−1 g(ξ) = 0 for the angular part. The solutions to
the angular part are the Laplace’s spherical harmonics. Note
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Fig. 2 Approximate random draws of Gaussian processes with the Matérn covariance function on the hull of a unit sphere. The color scale and
radius follow the process

that if we assume that we have w(r) = 1 on some area
of finite radius, the first equation becomes (when d > 1):

r2 d2h j (r)

dr2 + r
dh j (r)

dr
+ r2 λ j h j (r) = 0. (33)

Figure 2 shows example Gaussian random field draws on
a unit sphere, where the basis functions are the Laplace
spherical harmonics and the covariance functions of the
Matérn class with different degrees of smoothness ν. Our
approximation is straight-forward to apply in any domain,
where the eigendecomposition of the Laplacian can be
formed.

3 Application of themethod to GP
regression

In this section, we show how the approximation (20) can be
used in Gaussian process regression. We also write down the
expressions needed for hyperparameter learning and discuss
the computational requirements of the methods.

3.1 Gaussian process regression

GP regression is usually formulated as predicting an unknown
scalar output f (x∗) associated with a known input x∗ ∈ R

d ,
given a training data set D = {(xi , yi )|i = 1, 2, . . . , n}. The
model functions f are assumed to be realizations of a Gaus-
sian random process prior and the observations corrupted by
Gaussian noise:

f ∼ GP(0, k(x, x′))

yi = f (xi ) + εi ,
(34)

where εi ∼ N (0, σ 2
n ). For notational simplicity, the func-

tions in the above model are a priori zero mean and the
measurement errors are independent Gaussian, but the results

of this paper can be easily generalized to arbitrary mean
functions and dependent Gaussian errors. The direct solu-
tion to the GP regression problem (34) gives the predictions
p( f (x∗)|D) = N ( f (x∗)|E[ f (x∗)], V[ f (x∗)]). The condi-
tional mean and variance can be computed in closed form as
(see, e.g., Rasmussen and Williams 2006, p. 17)

E[ f (x∗)] = kT

∗(K + σ 2
n I)−1y,

V[ f (x∗)] = k(x∗, x∗) − kT

∗(K + σ 2
n I)−1k∗,

(35)

where Ki j = k(xi , x j ), k∗ is an n-dimensional vector with
the i th entry being k(x∗, xi ), and y is a vector of the n obser-
vations.

In order to avoid the n×n matrix inversion in (35), we use
the approximation scheme presented in the previous section
and project the process to a truncated set of m basis functions
of the Laplacian as given in Eq. (20) such that

f (x) ≈
m∑

j=1

f j φ j (x), (36)

where f j ∼ N (0, S(
√

λ j )). We can then form an approxi-
mate eigendecomposition of the matrix K ≈ ���

T, where
� is a diagonal matrix of the leading m approximate eigen-
values such that � j j = S(

√
λ j ), j = 1, 2, . . . , m. Here S(·)

is the spectral density of the Gaussian process and λ j the j th
eigenvalue of the Laplace operator. The corresponding eigen-
vectors in the decomposition are given by the eigenvectors
φ j (x) of the Laplacian such that �i j = φ j (xi ).

Using the matrix inversion lemma, we rewrite (35) as fol-
lows:

E[ f∗] ≈ φT

∗(�T
� + σ 2

n �
−1)−1

�
Ty,

V[ f∗] ≈ σ 2
n φT

∗(�T
� + σ 2

n �
−1)−1φ∗,

(37)
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where φ∗ is an m-dimensional vector with the j th entry being
φ j (x∗). Thus, when the size of the training set is higher than
the number of required basis functions n > m, the use of this
approximation is advantageous.

3.2 Learning the hyperparameters

A common way to learn the hyperparameters θ of the covari-
ance function (suppressed earlier in the notation for brevity)
and the noise variance σ 2

n is by maximizing the marginal like-
lihood function (Rasmussen and Williams 2006; Quiñonero-
Candela and Rasmussen 2005a). Let Q = K + σ 2

n I for the
full model, then the negative log marginal likelihood and its
derivatives are

L = 1

2
log |Q| + 1

2
yTQ−1y + n

2
log(2π), (38)

∂L

∂θk

= 1

2
Tr

(
Q−1 ∂Q

∂θk

)
− 1

2
yTQ−1 ∂Q

∂θk

Q−1y, (39)

∂L

∂σ 2
n

= 1

2
Tr

(
Q−1

)
− 1

2
yTQ−1Q−1y, (40)

and they can be combined with a conjugate gradient opti-
mizer. The problem in this case is the inversion of Q, which is
an n×n matrix. And thus each step of running the optimizer is
O(n3). For our approximation scheme, let Q̃ = ���

T+σ 2
n I.

Now replacing Q with Q̃ in the above expressions gives us
the following:

L̃ = 1

2
log |Q̃| + 1

2
yTQ̃−1y + n

2
log(2π), (41)

∂L̃

∂θk

= 1

2

∂ log |Q̃|
∂θk

+ 1

2

∂yTQ̃−1y

∂θk

, (42)

∂L̃

∂σ 2
n

= 1

2

∂ log |Q̃|
∂σ 2

n

+ 1

2

∂yTQ̃−1y

∂σ 2
n

, (43)

where for the terms involving log |Q̃|:

log |Q̃| = (n − m) log σ 2
n + log |Z|

+
m∑

j=1

log S(
√

λ j ), (44)

∂ log |Q̃|
∂θk

=
m∑

j=1

S(
√

λ j )
−1 ∂S(

√
λ j )

∂θk

− σ 2
n Tr

(
Z−1

�
−2 ∂�

∂θk

)
, (45)

∂ log |Q̃|
∂σ 2

n

= n − m

σ 2
n

+ Tr
(

Z−1
�

−1
)

, (46)

and for the terms involving Q̃−1:

yTQ̃−1y = 1

σ 2
n

(
yTy − yT�Z−1

�
Ty

)
, (47)

∂yTQ̃−1y

∂θk

= − yT�Z−1
(

�
−2 ∂�

∂θk

)
Z−1

�
Ty, (48)

∂yTQ̃−1y

∂σ 2
n

= 1

σ 2
n

yT�Z−1
�

−1Z−1
�

Ty − 1

σ 4
n

yTy, (49)

where Z = σ 2
n �

−1 + �
T
�. For efficient implementation,

matrix-to-matrix multiplications can be avoided in many
cases, and the inversion of Z can be carried out through
Cholesky factorization for numerical stability. This factor-
ization (LLT = Z) can also be used for the term log |Z| =
2

∑
j log L j j , and Tr

(
Z−1

�
−1) =

∑
j 1/(Z j j� j j ) can be

evaluated by element-wise multiplication.
Once the marginal likelihood and its derivatives are avail-

able, it is also possible to use other methods for parameter
inference such as Markov chain Monte Carlo methods (Liu
2001; Brooks et al. 2011) including Hamiltonian Monte
Carlo (HMC, Duane et al. 1987; Neal 2011) as well as numer-
ous others.

3.3 Discussion on the computational complexity

As can be noted from Eq. (20), the basis functions in the
reduced-rank approximation do not depend on the hyperpa-
rameters of the covariance function. Thus it is enough to
calculate the product �

T
� only once, which means that the

method has a overall asymptotic computational complexity
of O(nm2). After this initial cost, evaluating the marginal
likelihood and the marginal likelihood gradient is an O(m3)

operation—which in practice comes from the Cholesky fac-
torization of Z on each step.

If the number of observations n is so large that storing the
n ×m matrix � is not feasible, the computations of �

T
� can

be carried out in blocks. Storing the evaluated eigenfunctions
in � is not necessary, because the φ j (x) are closed-form
expressions that can be evaluated when necessary. In practice,
it might be preferable to cache the result of �

T
� (causing

a memory requirement scaling as O(m2)), but this is not
required.

The computational complexity of conventional sparse GP
approximations typically scale as O(nm2) in time for each
step of evaluating the marginal likelihood. The scaling in
demand of storage is O(nm). This comes from the inevitable
cost of re-evaluating all results involving the basis functions
on each step and storing the matrices required for doing
this. This applies to all the methods that will be discussed
in Sect. 5, with the exception of SSGP, where the storage
demand can be relaxed by re-evaluating the basis functions
on demand.

We can also consider the rather restricting, but in certain
applications often encountered case, where the measure-
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ments are constrained to a regular grid. This causes the
product of the orthonormal eigenfunction matrices �

T
� to

be diagonal, avoiding the calculation of the matrix inverse
altogether. This relates to the FFT-based methods for GP
regression (Paciorek 2007; Fritz et al. 2009), and the projec-
tions to the basis functions can be evaluated by fast Fourier
transform in O(n log n) time complexity.

3.4 Inverse problems and latent force models

We can also use the methodology to models of the form

f (x) ∼ GP(0, k(x, x′)),

yi = (H f )(xi ) + εi ,
(50)

where H is a linear operator acting on functions depending
on the x variable. This kind of models appear both in inverse
problems literature and machine learning (see, e.g., Taran-
tola 2004; Kaipio and Somersalo 2005; Särkkä 2011). The
Gaussian process regression solution now becomes

E[ f (x∗)] = kT

∗h(Kh + σ 2
n I)−1y,

V[ f (x∗)] = k(x∗, x∗) − kT

∗h(Kh + σ 2
n I)−1k∗h,

(51)

where [Kh]i j = (H H′ k)(xi , x j ), the i th entry of vector k∗h

is (H′ k(x∗, ·))(xi ), and y is the vector of observations. Here
H′ denotes that the operator is applied to the second variable
x′ of the argument. With the series expansion (20), we can
easily approximate

(H H′ k)(x, x′) ≈
∑

j

S(
√

λ j ) (H φ j )(x) (H φ j )(x
′),

(H′ k(x∗, ·))(x′) ≈
∑

j

S(
√

λ j ) φ j (x∗) (H φ j )(x
′). (52)

After applying the matrix inversion lemma (51) becomes

E[ f∗] ≈ φT

∗(�̃
T
�̃ + σ 2

n �
−1)−1

�̃
T
y,

V[ f∗] ≈ σ 2
n φT

∗(�̃
T
�̃ + σ 2

n �
−1)−1φ∗,

(53)

where �̃i j = (Hφ j )(xi ) and φ∗ is as defined in (37). The
hyperparameter estimation methods discussed in Sect. 3.2
can also be easily extended to this case.

Another (related) type of model is the following model
arising in the context of latent force models (LFM, Álvarez
et al. 2013)

f (x) ∼ GP(0, k(x, x′)),

Lg = f ,

yi = g(xi ) + εi ,

(54)

where L is a linear operator. We can now write H = L−1,
where L−1 is the Green’s operator associated with the oper-
ator L, and hence, the model becomes a special case of (50).
The approximation to the operator L−1 on the given basis
can be easily formed by using, for example, by projecting
it onto the basis or by using point collocation. A particu-
larly simple cases arises when the operator itself contains
of Laplace operators, for example, when it has the form
L = ∇2. In that case, the projection of the operator becomes
diagonal.

4 Convergence analysis

In this section, we analyze the convergence of the proposed
approximation when the size of the domainΩ and the number
of terms in the series grows to infinity. We start by analyzing
a univariate problem in the domain Ω = [−L, L] and with
Dirichlet boundary conditions and then generalize the result
to d-dimensional cubes Ω = [−L1, L1] × · · · × [−Ld , Ld ].
Then we analyze the truncation error as function of the num-
ber of terms in the series. We also discuss how the analysis
could be extended to other types of basis functions.

4.1 Univariate Dirichlet case

In the univariate case, the m-term approximation has the
form

k̃m(x, x ′) =
m∑

j=1

S(
√

λ j ) φ j (x) φ j (x ′), (55)

where the eigenfunctions and eigenvalues for j = 1, 2, . . .

are:

φ j (x) = 1√
L

sin

(
π j (x + L)

2L

)
and λ j =

(
π j

2L

)2

.

(56)

The true covariance function k(x, x ′) is assumed to be
stationary and have a spectral density with the following
properties. It is uniformly bounded S(ω) = B < ∞ and has
at least one bounded derivative |S′(ω)| = D < ∞ on ω > 0.
The following integrals are also assumed to be bounded:∫ ∞

0 S(ω) dω = A < ∞ and
∫ ∞

0 |S′(ω)| dω = C < ∞. We
also assume that our training and test sets are constrained
in the area [− L̃, L̃], where L̃ < L , and thus we are only
interested in the case x, x ′ ∈ [− L̃, L̃]. For the purposes of
analysis, we also assume that L is bounded below by a con-
stant.

The univariate convergence result can be summarized as
the following theorem which is proved in “Appendix A.2.”
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Theorem 1 There exists a constant E (independent of m, x,

and x ′) such that

∣∣k(x, x ′) − k̃m(x, x ′)
∣∣ ≤ E

L
+ 2

π

∫ ∞

π m
2L

S(ω) dω, (57)

which in turn implies that uniformly

lim
L→∞

[
lim

m→∞
k̃m(x, x ′)

]
= k(x, x ′). (58)

Remark 2 Note that we cannot simply exchange the order
of the limits in the above theorem. However, the theorem
does ensure the convergence of the approximation in the joint
limit m, L → ∞ provided that we add terms to the series
fast enough such that m/L → ∞. That is, in this limit, the
approximation k̃m(x, x ′) converges uniformly to k(x, x ′).

As such, the results above only ensure the convergence of
the prior covariance functions. However, it turns out that this
also ensures the convergence of the posterior as is summa-
rized in the following corollary.

Corollary 3 Because the Gaussian process regression equa-

tions only involve point-wise evaluations of the kernels, it

also follows that the posterior mean and covariance func-

tions converge uniformly to the exact solutions in the limit

m, L → ∞.

Proof Analogous to proof of Theorem 2.2 in Särkkä and
Piché (2014). ⊓⊔

4.2 Multivariate Cartesian Dirichlet case

In order to generalize the results from the previous section,
we turn our attention to a d-dimensional inputs space with
rectangular domain Ω = [− L1, L1] × · · · × [− Ld , Ld ]
with Dirichlet boundary conditions. In this case, we consider
a truncated m = m̂d term approximation of the form

k̃m(x, x′)

=
m̂∑

j1,..., jd=1

S(
√

λ j1,..., jd ) φ j1,..., jd (x) φ j1,..., jd (x
′) (59)

with the eigenfunctions and eigenvalues

φ j1,..., jd (x) =
d∏

k=1

1√
Lk

sin

(
π jk (xk + Lk)

2Lk

)
(60)

and

λ j1,..., jd =
d∑

k=1

(
π jk

2Lk

)2

. (61)

The true covariance function k(x, x′) is assumed to be homo-
geneous (stationary) and have a spectral density S(ω) which
satisfies the one-dimensional assumptions listed in the pre-
vious section in each variable. Furthermore, we assume that
the training and test sets are contained in the d-dimensional
cube [−L̃, L̃]d and that Lks are bounded from below.

The following result for this d-dimensional case is proved
in “Appendix A.3.”

Theorem 4 There exists a constant E (independent of m, d,

x, and x′) such that

∣∣k(x, x′) − k̃m(x, x′)
∣∣ ≤ E d

L
+ 1

πd

∫

‖ω‖≥ π m̂
2L

S(ω) dω,

(62)

where L = mink Lk , which in turn implies that uniformly

lim
L1,...,Ld→∞

[
lim

m→∞
k̃m(x, x′)

]
= k(x, x′). (63)

Remark 5 Analogously as in the one-dimensional case, we
cannot simply exchange the order of the limits above. Fur-
thermore, we need to add terms fast enough so that m̂/Lk →
∞ when m, L1, . . . , Ld → ∞.

Corollary 6 As in the one-dimensional case, the uniform

convergence of the prior covariance function also implies

uniform convergence of the posterior mean and covariance

in the limit m, L1, . . . , Ld → ∞.

4.3 Scaling of error with increasing m̂

Using the Dirichlet eigenfunction basis, we can also investi-
gate the truncation error with an increasing number of series
expansion terms m = m̂d . If we take a look at the bound in
Theorem 4, we can see that it has the form

E d

L
+ 1

πd

∫

‖ω‖≥ π m̂
2L

S(ω) dω, (64)

where the first term is independent of m̂ and is a linear func-
tion of d. The latter term in turn depends on m̂ and in that
sense defines the scaling of error in the number of series
terms.

It is worth noting that due to Remarks 17 and 20, we could
actually tighten the bound by introducing m̂-dependence to
E , but it does not affect the order of scaling, because the
dependence on the dimensionality in that term is linear. Fur-
thermore, the latter term actually depends on the ratio m̂/L

and hence there is a coupling between the number of terms
and the size of the domain L . However, we can still get idea
of the convergence speed by fixing L .
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Let us start by considering the case when S(‖ω‖) is
bounded by a reciprocal of a polynomial which is the case,
for example, for the Matérn covariance function. We get the
following theorem.

Theorem 7 Assume that where exists a constant D such that

S(‖ω‖) ≤ D
‖ω‖d+a for some a > 0. Then we have

∫

‖ω‖≥ π m̂
2L

S(‖ω‖) dω ≤ D′

ma/d
, (65)

where m = m̂d for some constant D′ (which depends on L

and d).

Proof First recall that

∫

‖ω‖≥ π m̂
2L

S(‖ω‖) dω = 2πd/2

Γ (d/2)

∫ ∞

π m̂
2L

S(r) rd−1 dr ,

(66)

where Γ (·) is the gamma function, and hence, to analyze
the scaling as function of m, it is enough to investigate the
scaling of the term

∫ ∞
π m̂
2L

S(r) rd−1 dr . We now get

∫ ∞

π m̂
2L

S(r) rd−1 dr ≤
∫ ∞

π m̂
2L

D

ra+1 dr

=
(

1

a

) (
2L

π m̂

)a

=
(

(2L)a

πa a

)

︸ ︷︷ ︸
D′

(
1

ma/d

)
,

(67)

where we have recalled that m = m̂d . ⊓⊔

The result in the above theorem tells that by selecting an
appropriate differentiation order for the covariance function,
we can make the convergence speed arbitrarily large. In par-
ticular, if we select a = d/2, we get the Monte Carlo rate,
and with a = d, we get a convergence rate of ∼ 1/m.

In order to analyze the squared exponential covariance
function with spectral density

S(ω) =
d∏

i=1

[
s2

√
2π ℓ exp

(
−

ℓ2 ω2
i

2

)]
, (68)

we recall that the integral
∫
‖ω‖≥ π m̂

2L
S(‖ω‖) dω was actu-

ally used for bounding a more tight bound
∫ ∞

π m̂
2L1

· · ·
∫ ∞

π m̂
2Ld

S(ω1, . . . , ωd) dω1 · · · dωd appearing in Equation (135). In
terms of that (original) bound, we get the following theorem.

Theorem 8 Assume that the spectral density is of the squared

exponential form (68). Then we have

∫ ∞

π m̂
2L1

· · ·
∫ ∞

π m̂
2Ld

S(ω1, . . . , ωd) dω1 · · · dωd

≤ D′′ exp(−γ d m2/d)

m
≤ D′′

m
,

(69)

for some constants D′′, γ > 0 (which depend on d and L).

Proof Due to separability of the spectral density, we have

∫ ∞

π m̂
2L1

· · ·
∫ ∞

π m̂
2Ld

S(ω1, . . . , ωd) dω1 · · · dωd

=
(

s2
√

2π ℓ
)d

d∏

i=1

∫ ∞

π m̂
2Li

exp

(
−

ℓ2 ω2
i

2

)
dωi

≤
(

s2
√

2π ℓ
)d

[∫ ∞

π m̂
2L

exp

(
−

ℓ2 ω2
i

2

)
dωi

]d

,

(70)

where L = mink Lk . By using the bound from Feller (1968),
Section VII.1, Lemma 2, we get that is this

≤
(

s2
√

2π ℓ2
)d

[
exp

(
−1

2

[
π m̂

2L ℓ

]2
)

2L ℓ

π m̂

]d

= D′′ exp(−γ d m2/d)

m
.

(71)

⊓⊔

The above theorem tells that the convergence in the
squared exponential case is faster than ∼ 1/m, independently
of the dimensionality d. It is worth noting though that the
bound is not independent of the dimensionality in the sense
that the constants do depend on it. Strictly speaking, the con-
vergence rate is h(d)/m, for some function h which depends
on d. However, as function of m, this rate is independent of
the dimensionality.

4.4 Other domains

It would also be possible carry out similar convergence anal-
ysis, for example, in a spherical domain. In that case the
technical details become slightly more complicated, because
instead of sinusoidals we will have Bessel functions and the
eigenvalues no longer form a uniform grid. This means that
instead of Riemann integrals we need to consider weighted
integrals where the distribution of the zeros of Bessel func-
tions is explicitly accounted for. It might also be possible to
use some more general theoretical results from mathematical
analysis to obtain the convergence results. However, due to
these technical challenges more general convergence proof
will be developed elsewhere.
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There is also a similar technical challenge in the analysis
when the basis functions are formed by assuming an input
density (see Sect. 2.4) instead of a bounded domain. Because
explicit expressions for eigenfunctions and eigenvalues can-
not be obtained in general, the elementary proof methods
which we used here cannot be applied. Therefore the con-
vergence analysis of this case is also left as a topic for future
research.

5 Relationship to other methods

In this section, we compare our method to existing sparse
GP methods from a theoretical point of view. We consider
two different classes of approaches: a class of inducing input
methods based on the Nyström approximation (following the
interpretation of Quiñonero-Candela and Rasmussen 2005b;
Bui et al. 2017) and direct spectral approximations.

5.1 Methods from the Nyström family

A crude but rather effective scheme for approximating the
eigendecomposition of the Gram matrix is the Nyström
method (see, e.g., Baker 1977, for the integral approxima-
tion scheme). This method is based on choosing a set of m

inducing inputs xu and scaling the corresponding eigende-
composition of their corresponding covariance matrix Ku,u

to match that of the actual covariance. The Nyström approx-
imations to the j th eigenvalue and eigenfunction are

λ̃ j = 1

m
λu, j , (72)

φ̃ j (x) =
√

m

λu, j

k(x, xu) φu, j , (73)

where λu, j and φu, j correspond to the j th eigenvalue and
eigenvector of Ku,u . This scheme was originally introduced
to the GP context by Williams and Seeger (2001). They pre-
sented a sparse scheme, where the resulting approximate
prior covariance over the latent variables is K f ,uK−1

u,uKu, f ,
which can be derived directly from Eqs. (72) to (73).

As discussed by Quiñonero-Candela and Rasmussen
(2005b), the Nyström method by Williams and Seeger (2001)
does not correspond to a well-formed probabilistic model.
However, several methods modifying the inducing point
approach are widely used. The Subset of Regressors (SOR,
Smola and Bartlett 2001) method uses the Nyström approx-
imation scheme for approximating the whole covariance
function,

kSOR(x, x′) =
m∑

j=1

λ̃ j φ̃ j (x) φ̃ j (x
′), (74)

whereas the sparse Nyström method (Williams and Seeger
2001) only replaces the training data covariance matrix. The
SOR method is in this sense a complete Nyström approxi-
mation to the full GP problem. A method in-between is the
deterministic training conditional (DTC, Csató and Opper
2002; Seeger et al. 2003) method which retains the true
covariance for the training data, but uses the approximate
cross-covariances between training and test data. For DTC,
tampering with the covariance matrix causes the result not to
actually be a Gaussian process. The Variational approxima-
tion (VAR, Titsias 2009) method modifies the DTC method
by an additional trace term in the likelihood that comes from
the variational bound.

The fully independent (training) conditional (FIC,
Quiñonero-Candela and Rasmussen 2005b) method (origi-
nally introduced as Sparse Pseudo-Input GP by Snelson and
Ghahramani 2006) is also based on the Nyström approxi-
mation but contains an additional diagonal term replacing
the diagonal of the approximate covariance matrix with the
values from the true covariance. The corresponding prior
covariance function for FIC is thus

kFIC(xi , x j )

= kSOR(xi , x j ) + δi, j (k(xi , x j ) − kSOR(xi , x j )),

(75)

where δi, j is the Kronecker delta.
Figure 3 illustrates the effect of the approximations com-

pared to the exact correlation structure in the GP. The dashed
contours show the exact correlation contours computed for
three locations with the squared exponential covariance func-
tion. Figure 3a shows the results for the FIC approximation
with 16 inducing points (locations shown in the figure). It is
clear that the number of inducing points or their locations is
not sufficient to capture the correlation structure. For similar
figures and discussion on the effects of the inducing points,
see Vanhatalo et al. (2010). This behavior is not unique to
SOR or FIC, but applies to all the methods from the Nyström
family.

5.2 Direct spectral methods

The spectral analysis and series expansions of Gaussian pro-
cesses have a long history. A classical result (see, e.g., Loève
1963; Van Trees 1968; Adler 1981; Cramér and Leadbet-
ter 2013, and references therein) is that in a compact set
x, x′ ∈ Ω ⊂ R

d defined continuous covariance function can
be expanded into a Mercer series

K (x, x′) =
∑

j

γ j ϕ j (x) ϕ j (x
′), (76)
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Fig. 3 Correlation contours computed for three locations (×) corre-
sponding to the squared exponential covariance function (exact contours
dashed). The rank of each approximation is m = 16, and the locations

of the inducing inputs are marked with blue stars ( ). The hyperparam-
eters are the same in each figure. The domain boundary is shown in thin
gray ( ) if extended outside the box. (Color figure online)

where γ j and ϕ j are the eigenvalues and the orthonor-
mal eigenfunctions of the covariance function, respectively,
defined as
∫

Ω

K (x, x′) ϕ j (x
′) dx′ = γ j ϕ j (x). (77)

Furthermore, the convergence happens absolutely and uni-
formly (Adler 1981). This also means that we can approxi-
mate the covariance function with a finite truncation of the
series and the approximation is guaranteed to converge to
the exact covariance function when the number of terms is
increased.

In the case of Gaussian processes, we get that a zero
mean Gaussian process with the covariance function K (x, x′)
has the following Karhunen–Loeve series expansion in the
domain Ω:

f (x) =
∑

j

f j ϕ j (x), (78)

where f j are independent zero-mean Gaussian random vari-
ables with variances γ j . The (also classical) generalization
of this classical result to more general inner products was
already discussed in Sect. 2.4.

In the case that Ω is not compact, but covers the whole
R

d , and when the covariance function is homogeneous, the
eigenvalues defined by (77) are no longer discrete, but they
can only be expressed as the spectral density S(ω) which
can be seen as a continuum of eigenvalues. The eigen-
functions become complex exponentials, that is, sines and
cosines—which in turn are a subset of eigenfunctions of
Laplace operator. In this background, what (20) essentially
says is that we can approximate the Mercer expansion (76)
by using the basis consisting of the Laplacian eigenfunctions
ϕ j (x) ≈ φ j (x) and point-wise evaluations of the spectral
density at the Laplacian eigenvalues γ j ≈ S(

√
−λ j ).

Another related classical connection is to the works in the
relationship of spline interpolation and Gaussian process pri-
ors (Wahba 1978; Kimeldorf and Wahba 1970; Wahba 1990).
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In particular, it is well known (see, e.g., Wahba 1990) that
spline smoothing can be seen as Gaussian process regression
with a specific choice of covariance function. The relation-
ship of the spline regularization with Laplace operators then
leads to series expansion representations that are closely
related to the approximations considered here.

In more recent machine learning context, the sparse spec-
trum GP (SSGP) method introduced by Lázaro-Gredilla et al.
(2010) uses the spectral representation of the covariance
function for drawing random samples from the spectrum.
These samples are used for representing the GP on a trigono-
metric basis

φ(x) =
(

cos(2π sT1x) sin(2π sT1x)

. . . cos(2π sThx) sin(2π sThx)
)
, (79)

where the spectral points sr , r = 1, 2, . . . , h (2h = m), are
sampled from the spectral density of the original stationary
covariance function (following the normalization convention
used in the original paper). The covariance function corre-
sponding to the SSGP scheme is now of the form

kSSGP(x, x′) = 2σ 2

m
φ(x) φT(x′)

= σ 2

h

h∑

r=1

cos
(

2π sTr (x − x′)
)

, (80)

where σ 2 is the magnitude scale hyperparameter. This rep-
resentation of the sparse spectrum method converges to the
full GP in the limit of the number of spectral points going to
infinity, and it is the preferred formulation of the method in
one or two dimensions (see Lázaro-Gredilla 2010, for discus-
sion). We can interpret the SSGP method in (80) as a Monte
Carlo approximation of the Wiener–Khintchin integral. In
order to have a representative sample of the spectrum, the
method typically requires the number of spectral points to be
large. For high-dimensional inputs, the number of required
spectral points becomes overwhelming and optimizing the
spectral locations along with the hyperparameters attractive.
However, as argued by Lázaro-Gredilla et al. (2010), this
option does not converge to the full GP and suffers from
overfitting to the training data (see Gal and Turner 2015, for
discussion on overfitting).

Contours for the sparse spectrum SSGP method are visu-
alized in Fig. 3c. Here the spectral points were chosen at
random following Lázaro-Gredilla (2010). Because the basis
functions are spanned using both sines and cosines, the num-
ber of spectral points was h = 8 in order to match the rank
m = 16. These results agree well with those presented in the
Lázaro-Gredilla et al. (2010) for a one-dimensional exam-
ple. For this particular set of spectral points, some directions
of the contours happen to match the true values very well,

while other directions are completely off. Increasing the rank
from 16 to 100 would give comparable results to the other
methods.

Recently Hensman et al. (2018) presented a variational
Fourier feature approximation for Gaussian processes that
was derived for the Matérn class of kernels, where the approx-
imation structure is set up by a low-rank plus diagonal
structure. The key differences here are the fully diagonal
(independent) structure in the Ku,u matrix (giving rise to
additional speedup) and the generality of only requiring the
spectral density function to be known.

While SSGP is based on a sparse spectrum, the reduced-
rank method proposed in this paper aims to make the
spectrum as “full” as possible at a given rank. While SSGP
can be interpreted as a Monte Carlo integral approxima-
tion, the corresponding interpretation to the proposed method
would be a numerical quadrature-based integral approx-
imation (cf. the convergence proof in “Appendix A.2”).
Figure 3d shows the same contours obtained by the pro-
posed reduced-rank method. Here the eigendecomposition
of the Laplace operator has been obtained for the square
Ω = [−L, L] × [−L, L] with Dirichlet boundary condi-
tions. The contours match well with the full solution toward
the middle of the domain. The boundary effects drive the
process to zero, which is seen as distortion near the edges.

Figure 3e shows how extending the boundaries just by
25% and keeping the number of basis functions fixed at 16,
gives good results. The last Fig. 3f corresponds to using a
disk-shaped domain instead of the rectangular. The eigen-
decomposition of the Laplace operator is done in polar
coordinates, and the Dirichlet boundary is visualized by a
circle in the figure.

5.3 Structure exploiting and decomposition
methods

Other methods for scalable Gaussian processes include many
structure exploiting techniques that, similarly to general
inducing input methods, aim to be agnostic to the choice
of covariance function. They rather exploit the structure
of the inputs (see Saatçi 2012, for discussion on Kro-
necker and Toeplitz algebra) and not the GP prior per se.
Most notably, scalable kernel interpolation (SKI, Wilson and
Nickisch 2015) is an inducing point method that achieves
O(n + m log m) time complexity and O(n + m) space com-
plexity. Through local cubic kernel interpolation, the SKI
framework is used in KISS-GP (see Wilson and Nickisch
2015, for details) which uses Kronecker and Toeplitz alge-
bra on grids of inducing inputs to speed up inference.

The computational complexity of the SKI approach scales
cubically in the input dimenionality d. Other recent methods
(e.g., Gardner et al. 2018; Izmailov et al. 2018) have reduced
the time complexity to linear in d as well (e.g., O(dn +
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dm log m)). These methods typically leverage parallelization
(well suited for GPU calculations) or iterative methods.

Furthermore, general methods form numerical linear alge-
bra for approximately solving eigenvalue and singular value
problems allow for fast low-rank decompositions. These
methods ignore the kernel learning perspective, but can
provide useful tools in practice. For example, the pivoted
Cholesky decomposition (Harbrecht et al. 2012; Bach 2013)
allows constructing a low-rank approximation to an n×n pos-
itive definite matrix in O(nm2) time. There are also methods
for fast randomized singular value decompositions based on
subsampled Hadamard transformations (e.g., Boutsidis and
Gittens 2013), with some further details in Le et al. (2013).
These methods provide speedup to the general linear alge-
braic problem, but ignore the well-structured nature of the
specific application to Gaussian process regression with sta-
tionary prior covariance functions.

6 Experiments

In this section, we aim to test the convergence results of the
method in practice, provide examples of the practical use
of the proposed method and compare it against other meth-
ods that are typically used in a similar setting. We start with
small simulated one-dimensional datasets and then provide
more extensive comparisons by using real-world data. We
also consider an example of data, where the input domain
is the surface of a sphere, and conclude our comparison by
using a very large dataset to demonstrate what possibilities
the computational benefits open.

6.1 Variation of domain size

In addition to the theoretical analysis of approximation error,
we provide a study of the effect of choosing the domain size.
We set up an experiment where we simulate data (n = 100
and all results averaged over 10 independent draws) from GP
priors with a squared exponential covariance function with
unit hyperparameters and corrupting additive Gaussian noise
with variance σ 2

n = 0.12. The inputs are chosen uniformly
randomly in [−L̃, L̃] with L̃ = 1. We study the effect of
varying the boundary location L ∈ (1, 10].

Figure 4 shows the Kullback–Leibler (KL) divergence
(see, e.g., Rasmussen and Williams 2006, Appendix A for
the identities for the KL between two multivariate Gaus-
sians) between the approximative GP posterior and the exact
GP posterior evaluated over ten uniformly spaced points. The
same curve is recalculated for m = 5, 10, 15, and 20. The fig-
ure shows that the KL has a single minimum that describes the
trade-off of being far enough from the data but close enough
not to start losing representative power with the given num-
ber of basis functions m. Even though the KL suggests there
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Fig. 4 The Kullback–Leibler divergence between the approximative
and exact GP posterior by varying the boundary L and keeping all other
parameters fixed

would be a single best choice for L , the practical sensitivity
to the choice of L is low. Already for m = 5, the MSE in the
posterior mean is 10−5 (note that the data has unit magnitude
scale) when L is chosen one to two length-scales from the
data boundary L̃ .

6.2 Comparison study

For assessing the performance of different methods, we use
10-fold cross-validation and evaluate the following measures
based on the validation set: the standardized mean squared
error (SMSE) and the mean standardized log loss (MSLL),
respectively defined as:

SMSE =
n∗∑

i=1

(y∗i − μ∗i )
2

Var[y] , (81)

and

MSLL = 1

2n∗

n∗∑

i=1

(
(y∗i − μ∗i )

2

σ 2
∗i

+ log 2πσ 2
∗i

)
, (82)

where μ∗i = E[ f (x∗i )] and σ 2
∗i = V[ f (x∗i )] + σ 2

n are
the predictive mean and variance for test sample i =
1, 2, . . . , n∗, and y∗i is the actual test value. The training
data variance is denoted by Var[y]. For all experiments, the
values reported are averages over ten repetitions.

We compare our solution to SOR, DTC, VAR and FIC
using the implementations provided in the GPstuff soft-
ware package (version 4.3.1, see Vanhatalo et al. 2013)
for Mathworks Matlab. The sparse spectrum SSGP method
(Lázaro-Gredilla et al. 2010) was implemented into the
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Fig. 6 Standardized mean squared error (SMSE) and mean standardized log loss (MSLL) results for the toy data (d = 1, n = 256) from Fig. 5
and the precipitation data (d = 2, n = 5776) evaluated by 10-fold cross-validation and averaged over ten repetitions. The evaluation time includes
hyperparameter learning
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GPstuff toolbox for the comparisons.1 The reference imple-
mentation was modified such that also non-ARD covariances
could be accounted for.

The m inducing inputs for SOR, DTC, VAR, and FIC
were chosen at random as a subset from the training data and
kept fixed between the methods. For low-dimensional inputs,
this tends to lead to good results and avoid overfitting to the
training data, while optimizing the input locations along-
side hyperparameters becomes the preferred approach in
high input dimensions (Quiñonero-Candela and Rasmussen
2005b). The results are averaged over ten repetitions in
order to present the average performance of the methods. In
Sects. 6.2 and 6.3, we used a Cartesian domain with Dirich-
let boundary conditions for the new reduced-rank method.
To avoid boundary effects, the domain was extended by 10%
outside the inputs in each direction.

In the comparisons, we followed the guidelines given by
Chalupka et al. (2013) for making comparisons between the
actual performance of different methods. For hyperparame-
ter optimization, we used the fminunc routine in Matlab
with a Quasi-Newton optimizer. We also tested several other
algorithms, but the results were not sensitive to the choice of
optimizer. The optimizer was run with a termination toler-
ance of 10−5 on the target function value and on the optimizer
inputs. The number of required target function evaluations
stayed fairly constant for all the comparisons, making the
comparisons for the hyperparameter learning bespoke.

Figure 5 shows a simulated example, where 256 data
points are drawn from a Gaussian process prior with a
squared exponential covariance function. We use the same
parametrization as Rasmussen and Williams (2006) and
denote the signal variance σ 2, length scale ℓ, and noise
variance σ 2

n . Figure 5b shows the negative marginal log like-
lihood curves both for the full GP and the approximation
with m = 32 basis functions. The likelihood curve approx-
imations are almost exact and only differs from the full GP
likelihood for small length scales (roughly for values smaller
than 2L/m). Figure 5a shows the approximate GP solution.
The mean estimate follows the exact GP mean, and the shaded
region showing the 95% confidence area differs from the
exact solution (dashed) only near the boundaries.

Figure 6a, b shows the SMSE and MSLL values for
m = 8, 10, . . . , 32 inducing inputs and basis functions for
the toy dataset from Fig. 5. The convergence of the proposed
reduced rank method is fast and as soon as the number of
eigenfunctions is large enough (m = 20) to account for the
short length scales, the approximation converges to the exact
full GP solution (shown by the dashed line).

In this case, the SOR method that uses the Nyström
approximation to directly approximate the spectrum of the

1 The implementation is based on the code available from Miguel
Lázaro-Gredilla: http://www.tsc.uc3m.es/~miguel/downloads.php.

full GP (see Sect. 5) seems to give good results. However, as
the resulting approximation in SOR corresponds to a singular
Gaussian distribution, the predictive variance is underesti-
mated. This can be seen in Fig. 6b, where SOR seems to give
better results than the full GP. These results are however due
to the smaller predictive variance on the test set. DTC tries
to fix this shortcoming of SOR—they are identical in other
respects except predictive variance evaluation—and while
SOR and DTC give identical results in terms of SMSE, they
differ in MSLL. We also note that additional trace term in the
marginal likelihood in VAR makes the likelihood surface flat,
which explains the differences in the results in comparison
to DTC.

The sparse spectrum SSGP method did not perform well
on average. Still, it can be seen that it converges toward the
performance of the full GP. The dependence on the number
of spectral points differs from the rest of the methods, and
a rank of m = 32 is not enough to meet the other methods.
However, in terms of best case performance over the ten repe-
titions with different inducing inputs and spectral points, both
FIC and SSGP outperformed SOR, DTC, and VAR. Because
of its “dense spectrum” approach, the proposed reduced-rank
method is not sensitive to the choice of spectral points, and
thus, the performance remained the same between repeti-
tions. In terms of variance over the 10-fold cross-validation
folds, the methods in order of growing variance in the figure
legend (the variance approximately doubling between FULL
and SSGP).

6.3 Precipitation data

As a real-data example, we consider a precipitation data set
that contain US annual precipitation summaries for year 1995
(d = 2 and n = 5776, available online, see Vanhatalo et al.
2013). The observation locations are shown on a map in
Fig. 7a.

We limit the number of inducing inputs and spectral points
to m = 128, 192, . . . , 512. For the our Hilbert-GP method,
we additionally consider ranks m = 1024, 1536, . . . , 4096,
and show that this causes a computational burden of the same
order as the conventional sparse GP methods with smaller ms.
To avoid boundary effects, the domain was extended by 10%
outside the inputs in each direction.

In order to demonstrate the computational benefits of the
proposed model, we also present the running time of the
GP inference (including hyperparameter optimization). All
methods were implemented under a similar framework in the
GPstuff package, and they all employ similar reformulations
for numerical stability. The key difference in the evaluation
times comes from hyperparameter optimization, where SOR,
DTC, VAR, FIC, and SSGP scale as O(nm2) for each evalu-
ation of the marginal likelihood. The proposed reduced-rank
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(a) Observation locations

0 1500 3000 mm

(b) The full GP (c) The reduced-rank method

Fig. 7 Interpolation of the yearly precipitation levels using reduced-rank GP regression. a The n = 5776 weather station locations. b, c The results
for the full GP model and the new reduced-rank GP method

method scales as O(m3) for each evaluation (after an initial
cost of O(nm2)).

Figure 6c, d shows the SMSE and MSLL results for this
data against evaluation time. On this scale, we note that
the evaluation time and accuracy, both in terms of SMSE
and MSLL, are alike for SOR, DTC, VAR, and FIC. SSGP
is faster to evaluate in comparison with the Nyström fam-
ily of methods, which comes from the simpler structure
of the approximation. Still, the number of required spec-
tral points to meet a certain average error level is larger for
SSGP.

The results for the proposed reduced-rank method
(Hilbert-GP) show that with two input dimensions, the
required number of basis functions is larger. For the first
seven points, we notice that even though the evaluation is
two orders of magnitude faster, the method performs only
slightly worse in comparison with conventional sparse meth-
ods. By considering higher ranks (the next seven points), our
method converges to the performance of the full GP (both
in SMSE and MSLL), while retaining a computational time
comparable to the conventional methods. This type of spatial
medium-size GP regression problems can thus be solved in
seconds.

Figure 7b, c show interpolation of the precipitation lev-
els using a full GP model and the reduced-rank method
(m = 1728), respectively. The results are practically identi-
cal, as is easy to confirm from the color surfaces. Obtaining
the reduced-rank result (including initialization and hyper-
parameter learning) took slightly less than 30 s on a laptop
computer (MacBook Air, Late 2010 model, 2.13 GHz, 4 GB
RAM), while the full GP inference took approximately
18 minutes.

6.4 Temperature data on the surface of the globe

We also demonstrate the use of the method in non-Cartesian
coordinates. We consider modeling of the spatial mean tem-

perature over a number of n = 11,028 locations around the
globe.2

As earlier demonstrated in Fig. 2, we use the Laplace
operator in spherical coordinates as defined in (31). The
eigenfunctions for the angular part are the Laplace’s spher-
ical harmonics. The evaluation of the approximation does
not depend on the coordinate system, and thus, all the equa-
tions presented in the earlier sections remain valid. We use
the squared exponential covariance function and m = 1089
basis functions.

Figure 8 visualizes the modeling outcome. The results
are visualized using an interrupted projection (an adaption
of the Goode homolosine projection) in order to preserve
the length-scale structure across the map. Fig. 8a shows the
posterior mean temperature. The uncertainty is visualized
in Fig. 8b, which corresponds to the n = 11,028 obser-
vation locations that are mostly spread over the continents
and Western countries (the white areas in Fig. 8b contain no
observations). Obtaining the reduced-rank result (including
initialization and hyperparameter learning) took approxi-
mately 50 s on a laptop computer (MacBook Air, Late 2010
model, 2.13 GHz, 4 GB RAM), which scales with n in com-
parison to the evaluation time in the previous section.

6.5 Additive modeling of airline delays

In order to fully use the computational benefits and also
underline a way of applying the method to high-dimensional
inputs, we consider a large dataset for predicting airline
delays. The US flight delay prediction example (originally
considered by Hensman et al. 2013) is a standard test data set
in Gaussian process regression. This is due to the clearly non-
stationary behavior and its massive size, with nearly 6 million
records.

2 The data are available for download from US National Cli-
matic Data Center: http://www7.ncdc.noaa.gov/CDO/cdoselect.cmd
(accessed January 3, 2014).
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Fig. 8 a Modeling of the yearly mean temperature on the spherical surface of the Earth (n = 11,028). b The standard deviation contours which
match well with the continents

We aim to replicate and extend to the results previously
presented in the work by Hensman et al. (2018) for the Vari-
ational Fourier Features (VFF) method. This example has
also been used by Deisenroth and Ng (2015), where it was
solved using distributed Gaussian processes, and by Samo
and Roberts (2016) who use this example for demonstrating
the computational efficiency of string Gaussian processes.
Adam et al. (2016) used this dataset as an example where the
model can be formed by the addition of multiple underlying
components.

The data consists of flight arrival and departure times
for every commercial flight in the USA for the year 2008.
We use the standard eight covariates x (see Hensman et al.
2013) which are the age of the aircraft (number of years since
deployment), route distance, airtime, departure time, arrival
time, day of the week, day of the month, and month. The
target is to predict the delay of the aircraft at landing (in
minutes), y.

This regression task is set up similarly as in Hensman et al.
(2018) and Adam et al. (2016), as a Gaussian process regres-
sion model with a prior covariance structure given as a sum
of covariance functions for each input dimension and assum-
ing the observations are corrupted by independent Gaussian
noise, εi ∼ N (0, σ 2

n ). The model is

f (x) ∼ GP

(
0,

8∑

d=1

kse(xd , x ′
d)

)
,

yi = f (xi ) + εi ,

(83)

for i = 1, 2, . . . , m. We used m = 40 basis functions per
input dimension. The boundary is set to a distance of two
times the range of the data for each dimension.

We consider several subset sizes of the data, each selected
uniformly at random: n = 10,000, 100,000, 1,000,000, and
5,929,413 (all data). In each case, two-thirds of the data is
used for training and one third for testing. For each subset

size, the training is repeated ten times. The random splits are
exactly the same as in Hensman et al. (2018).

Table 1 shows the (normalized) predictive mean squared
errors (MSEs) and the negative log predictive densities
(NLPDs) with one standard deviation on the airline arrival
delays experiment. The table shows that the Hilbert-GP
method is directly on par with the variational Fourier fea-
tures (VFF) method. For the smaller subsets, some variability
in the results is visible, even though the MSEs and NLPDs
are within one standard deviation of one another for VFF
and Hilbert-GP. For the datasets in the millions, VFF and
Hilbert-GP perform practically equally well. Further analy-
sis and interpretation of the data and model can be found in
Hensman et al. (2018). We have omitted reporting results
for the String GP method (Samo and Roberts 2016), the
Bayesian committee machine (BCM, Tresp 2000), and the
robust Bayesian committee machine (rBCM, Deisenroth and
Ng 2015). Each of these performed worse than any of the
included methods, and the resulting numbers can be found
listed in Hensman et al. (2018) and Samo and Roberts (2016).

Running the Hilbert-GP method in this experiment
(including hyperparameter training and prediction) with all
5.93 million data took 41 ± 2 s (120 ± 7 s CPU time) on a
MacBook Pro laptop (with all calculation done on the CPU).
This is clearly faster than the VFF method with 265 ± 6 s
(626±11 s CPU time), where our computational gain comes
from the fully diagonal structure of the covariance. For com-
parison, the SVIGP method (Hensman et al. 2013) required
5.1±0.1 h of computing (27.0±0.8 h CPU time) on a cluster.
Samo and Roberts (2016) report that running the String GP
took 91.0 h total CPU time (or 15 h of wall-clock time on
an 8-core machine). Izmailov et al. (2018) also report results
for the airline dataset, where one pass over the data taking
5200 s, when running on a Nvidia Tesla K80 GPU and not
assuming additive structure.
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Table 1 Predictive mean squared errors (MSEs) and negative log predictive densities (NLPDs) with one standard deviation on the airline arrival
delays experiment (input dimensionality d = 8) for a number of data points ranging up to almost 6 million

n 10,000 100,000 1,000,000 5,929,413

MSE NLPD MSE NLPD MSE NLPD MSE NLPD

Hilbert-GP 0.97 ± 0.14 1.404 ± 0.071 0.80 ± 0.06 1.311 ± 0.038 0.83 ± 0.02 1.329 ± 0.011 0.827 ± 0.005 1.324 ± 0.003

VFF 0.89 ± 0.15 1.362 ± 0.091 0.82 ± 0.05 1.319 ± 0.030 0.83 ± 0.01 1.326 ± 0.008 0.827 ± 0.004 1.324 ± 0.003

SVIGP 0.89 ± 0.16 1.354 ± 0.096 0.79 ± 0.05 1.299 ± 0.033 0.79 ± 0.01 1.301 ± 0.009 0.791 ± 0.005 1.300 ± 0.003

Full-RBF 0.89 ± 0.16 1.349 ± 0.098 N/A N/A N/A N/A N/A N/A

Full-additive 0.89 ± 0.16 1.362 ± 0.096 N/A N/A N/A N/A N/A N/A

The Hilbert-GP method is on par with the VFF method albeit being clearly faster due to the diagonalizable structure (solving the regression problem
including hyperparameter optimization in 41 s on a CPU-only laptop computer)

6.6 Gaussian process driven Poisson equation

As discussed in Sect. 3.4, our framework also directly extends
to inverse problems and latent force models. As this final
experiment, we demonstrate the use of the approximation in
the latent force model (LFM)

−∇2g(x) = f (x),

yi = g(xi ) + εi ,
(84)

where x ∈ R
2 and f (x) ∼ GP(0, k(x, x′)) is the input with a

squared exponential covariance function prior. This problem
can also be interpreted as a inverse problem where the mea-
surement operator is the Green’s operator H = (−∇2)−1:

yi = (H f )(xi ) + εi . (85)

If we assume that the boundary conditions of the problem are
the same as we used for forming the basis functions in (10),
then if we put g(x) ≈

∑m
j=1 g j φ j (x), we get

−∇2g(x) ≈ −
m∑

j=1

g j ∇2φ j (x) =
m∑

j=1

g j λ j φ j (x) (86)

and thus by further putting f (x) ≈
∑m

j=1 f j φ j (x), the

approximation to the equation −∇2g(x) = f (x) becomes

m∑

j=1

g j λ j φ j (x) =
m∑

j=1

f j φ j (x) (87)

which allows us to solve f j = g j/λ j . This implies that we
approximately have (−∇2)−1φ j = φ j/λ j which reduces
Eq. (52) to

(H H′ k)(x, x′) ≈
∑

j

λ−2
j S(

√
λ j ) φ j (x) φ j (x

′),

(H′k(x∗, ·))(x′) ≈
∑

j

λ−1
j S(

√
λ j ) φ j (x∗) φ j (x

′),
(88)

after which we can proceed with (51). Alternatively we can
directly use (53) with �̃i j = φ j (xi )/λ j .

Figure 9 shows the result of applying the proposed method
to this model with the input function shown in Fig. 9b. The
true solution and the simulated measurements (with standard
deviation of 1/10) are shown in Fig. 9a. The scale σ 2 and
length scale ℓ of the SE covariance function were estimated
by maximum likelihood method, and the number of basis
functions used for solving the GP regression problem was 100
(for simulation we used 255 basis functions). The estimates
of the input and the solution function are shown in Fig. 9a, b,
respectively. As can be seen in the figures, the estimate of the
solution is very good, as can be expected from the fact that
we obtain direct (although noisy) measurements from it. The
estimate of the input is less accurate, but still approximates
the true input well.

7 Conclusion and discussion

In this paper, we have proposed a novel approximation
scheme for forming approximate eigendecompositions of
covariance functions in terms of the Laplace operator eigen-
basis and the spectral density of the covariance function. The
eigenfunction decomposition of the Laplacian can easily be
formed in various domains, and the eigenfunctions are inde-
pendent of the choice of hyperparameters of the covariance.

An advantage of the method is that it has the ability to
approximate the eigendecomposition using only the eigen-
decomposition of the Laplacian and the spectral density
of the covariance function, both of which are closed-form
expressions. This together with having the eigenvectors in �

mutually orthogonal and independent of the hyperparame-
ters, is the key to efficiency. This allows an implementation
with a computational cost of O(nm2) (initial) and O(m3)

(marginal likelihood evaluation), with negligible memory
requirements.

Of the infinite number of possible basis functions, only an
extremely small subset are of any relevance to the GP being
approximated. In GP regression, the model functions are con-
ditioned on a covariance function (kernel), which imposes
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Fig. 9 Gaussian process inference on the Poisson equation

desired properties on the solutions. We choose the basis func-
tions such that they are as close as possible (w.r.t. the Frobe-
nius norm) to those of the particular covariance function. Our
method gives the exact eigendecomposition of a GP that has
been constrained to be zero at the boundary of the domain.

The method allows for theoretical analysis of the error
induced by the truncation of the series and the boundary
effects. This is something new in this context and extremely
important, for example, in medical imaging applications. The
approximative eigendecomposition also opens a range of
interesting possibilities for further analysis. In learning curve

estimation, the eigenvalues of the Gaussian process can now
be directly approximated. For example, we can approximate
the Opper–Vivarelli bound (Opper and Vivarelli 1999) as

ǫOV(n) ≈ σ 2
n

∑

j

S(
√

λ j )

σ 2
n + n S(

√
λ j )

. (89)

Sollich’s eigenvalue-based bounds (Sollich and Halees 2002)
can be approximated and analyzed in an analogous way.

However, some of these abilities come with a cost. As
demonstrated throughout the paper, restraining the domain
to boundary conditions introduces edge effects. These are,
however, known and can be accounted for. Extrapolating
with a stationary covariance function outside the training
inputs only causes the predictions to revert to the prior mean
and variance. Therefore, we consider the boundary effects a
minor problem for practical use.

Although at first sight the method appears to have a
bad (exponential) scaling with respect to the input dimen-
sionality, as shown by the analysis in Sect. 4.3, this is
not true. By increasing the differentiability order of the
covariance function appropriately we can keep the conver-
gence rate at the level ∼1/ma , for a given constant a > 0
and with total of m terms in the series, regardless of the
input dimensionality. Furthermore, Theorem 8 shows that
for squared exponential covariance function the conver-
gence rate is always better than ∼1/m, independently of the
input dimensionality. Further resources related to the pro-
posed method and implementation details in form of code
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are available at https://urldefense.proofpoint.com/v2/url?
u=https-3A__github.com_AaltoML_hilbert-2Dgp&d=DwI
F-g&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhS
qx8&r=tr37p-LMKuZcfSC3Gl2yDumEEj4eKb1_KBfWD9
0OLbA&m=THRRZB0_Y9lwmhCaOrOo0bdjMjd0OsCoU
zaXp0KoxtY&s=3V5psUm6EyKZqu53hd-Aij4hjaYtsPliY
E1xSoBxYlQ&e=.
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A Proofs of convergence theorems

A.1 Auxiliary lemmas

In this section, we present a few lemmas that will be needed in
the proofs in the next sections. The lemmas are quite classical
results on the convergence of Riemannian sums, but as it is
hard to find exactly the same results in other literature, for
completeness we prove the lemmas here.

Lemma 9 Let � > 0 and α ∈ [0, 1) be given constants,

m = 0, 1, 2, . . . some nonnegative integer and assume

that the f (ω) is a bounded integrable function defined on

ω ≥ m � with bounded derivative on ω > m � such that∫ ∞
m �

| f ′(ω)| dω = C (m) < ∞. Then we have
∣∣∣∣∣∣

∫ ∞

m �

f (ω) dω −
∞∑

j=m+1

f ( j � − α �)�

∣∣∣∣∣∣
≤ C (m) �. (90)

Furthermore, provided that
∫ ∞

0 | f ′(ω)| dω = C (0) < ∞,

this bound can be made independent of m:
∣∣∣∣∣∣

∫ ∞

m �

f (ω) dω −
∞∑

j=m+1

f ( j � − α �)�

∣∣∣∣∣∣
≤ C (0) �. (91)

Proof We can write
∫ ∞

m �

f (ω) dω =
∞∑

j=m+1

∫ j �

( j−1) �

f (ω) dω. (92)

By the fundamental theorem of calculus, we get

f (ω) = f ( j � − α �) +
∫ ω

j �−α �

f ′(ω) dω, (93)

which gives for ω ∈ (( j − 1)�, j �]

| f (ω) − f ( j � − α �)| ≤
∣∣∣∣
∫ ω

j �−α �

f ′(ω) dω

∣∣∣∣

≤
∣∣∣∣
∫ ω

j �−α �

∣∣ f ′(ω)
∣∣ dω

∣∣∣∣

≤
∫ j �

( j−1) �

∣∣ f ′(ω)
∣∣ dω

(94)

We now get

∣∣∣∣∣∣

∫ ∞

m �

f (ω) dω −
∞∑

j=m+1

f ( j � − α �)�

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∞∑

j=m+1

∫ j �

( j−1) �

[ f (ω) − f ( j � − α �)] dω

∣∣∣∣∣∣

≤
∞∑

j=m+1

∫ j �

( j−1) �

| f (ω) − f ( j � − α �)| dω

≤
∞∑

j=m+1

∫ j �

( j−1) �

[∫ j �

( j−1) �

∣∣ f ′(ω)
∣∣ dω

]
dω

=
∞∑

j=m+1

∫ j �

( j−1) �

∣∣ f ′(ω)
∣∣ dω �

=
∫ ∞

m �

∣∣ f ′(ω)
∣∣ dω

︸ ︷︷ ︸
C(m)

� ≤
∫ ∞

0

∣∣ f ′(ω)
∣∣ dω

︸ ︷︷ ︸
C(0)

�,

(95)

which concludes the proof. ⊓⊔

Lemma 10 Assume that f (ω) is a bounded integrable func-

tion defined on ω ≥ 0 with bounded derivative on ω > 0
and g(ω) is a bounded function defined on ω ≥ 0 such that

|g(w)| ≤ D. Further assume that
∫ ∞

0 | f ′(ω)| dω = C < ∞.

Then for any α, β ∈ [0, 1) and � > 0 we have

∣∣∣∣∣∣

∞∑

j=1

[ f ( j �) − f ( j � − α �)] g( j � − β �)

∣∣∣∣∣∣
≤ C D.

(96)

Proof By using (94) with ω = j � − α �, we get

| f ( j �) − f ( j � − α �)| ≤
∫ j �

( j−1) �

∣∣ f ′(ω)
∣∣ dω, (97)
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and further

∣∣∣∣∣∣

∞∑

j=1

[ f ( j �) − f ( j � − α �)] g( j � − β �)

∣∣∣∣∣∣

≤
∞∑

j=1

| f ( j �) − f ( j � − α �)| |g( j � − β �)|

≤
∞∑

j=1

∫ j �

( j−1) �

∣∣ f ′(ω)
∣∣ dω D

=
∫ ∞

0

∣∣ f ′(ω)
∣∣ dω D

= C D.

(98)

⊓⊔

Lemma 11 Assume that f (ω) ≥ 0 is a positive bounded

integrable function defined on ω ≥ 0 with bounded deriva-

tive on ω > 0 such that
∫ ∞

0 f (ω) dω = C0 < ∞ and∫ ∞
0 | f ′(ω)| dω = C1 ≤ ∞, and g(ω) is a bounded inte-

grable function defined on ω ≥ 0 with bounded derivative

on ω > 0 such that |g′(ω)| ≤ D. Then for any α, β ∈ [0, 1)

and � > 0 we have for C = C1 + C0:

∣∣∣∣∣∣

∞∑

j=1

f ( j � − α �) [g( j �) − g( j � − β �)]

∣∣∣∣∣∣
≤ C D.

(99)

Proof By applying the mean value theorem to (97), we get
that for some ω∗

j ∈ [ j � − α �, j �] we have

|g( j �) − g( j � − β �)|
≤ |g′(ω∗

j )| β � ≤ |g′(ω∗
j )| � ≤ D �.

(100)

By using Lemma 9, we get

∞∑

j=1

f ( j � − α �)�

=

∣∣∣∣∣∣

∞∑

j=1

f ( j � − α �)� −
∫ ∞

0
f (ω) dω

+
∫ ∞

0
f (ω) dω

∣∣∣∣

≤

∣∣∣∣∣∣

∞∑

j=1

f ( j � − α �)� −
∫ ∞

0
f (ω) dω

∣∣∣∣∣∣

+
∣∣∣∣
∫ ∞

0
f (ω) dω

∣∣∣∣
≤ C1 + C0 = C .

(101)

Hence,

∣∣∣∣∣∣

∞∑

j=1

f ( j � − α �) [g( j �) − g( j � − β �)]

∣∣∣∣∣∣

≤
∞∑

j=1

f ( j � − α �) |g( j �) − g( j � − β �)|

≤
∞∑

j=1

f ( j � − α �)� D

≤ C D.

(102)

⊓⊔

A.2 Proof of Theorem 1

The Wiener–Khintchin identity and the symmetry of the
spectral density allows us to write

k(x, x ′) = 1

2π

∫ ∞

−∞
S(ω) exp(−i ω (x − x ′)) dω

= 1

π

∫ ∞

0
S(ω) cos(ω (x − x ′)) dω. (103)

In a one-dimensional domain Ω = [−L, L] with Dirichlet
boundary conditions, we have an m-term approximation of
the form

k̃m(x, x ′) =
m∑

j=1

S

(
π j

2L

)
1

L
sin

(
π j (x + L)

2L

)

× sin

(
π j (x ′ + L)

2L

)
.

(104)

We start by showing the convergence by growing the domain
and therefore first consider an approximation with an infinite
number of terms m = ∞:

k̃∞(x, x ′) =
∞∑

j=1

S

(
π j

2L

)
1

L
sin

(
π j (x + L)

2L

)

× sin

(
π j (x ′ + L)

2L

)
.

(105)

For that purpose, we rewrite the summation above in (105)
as

∞∑

j=1

S

(
π j

2L

)
1

L
sin

(
π j (x + L)

2L

)
sin

(
π j (x ′ + L)

2L

)

=
∞∑

j=1

S

(
π j

2L

)
cos

(
π j (x − x ′)

2L

)
1

2L

− 1

2L

∞∑

j=1

[
S

(
π 2 j

2L

)
− S

(
π (2 j − 1)

2L

)]
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× cos

(
π 2 j (x + x ′)

2L

)

− 1

2L

∞∑

j=1

S

(
π (2 j − 1)

2L

) [
cos

(
π 2 j (x + x ′)

2L

)

− cos

(
π (2 j − 1) (x + x ′)

2L

) ]
. (106)

and consider the three summations above separately. The
analysis of them is done in the next three lemmas.

Lemma 12 Assume that on ω ≥ 0 we have S(ω) ≤ B < ∞
and

∫ ∞
0 S(w) dω = A < ∞, and on ω > 0 S(ω)

has a bounded derivative |S′(ω)| ≤ D < ∞ and that∫ ∞
0 |S′(ω)| dω = C < ∞. Then there exists a constant

D2 such that for all x, x ′ ∈ [−L̃, L̃] we have

∣∣∣∣∣∣

∞∑

j=1

S

(
π j

2L

)
cos

(
π j (x − x ′)

2L

)
1

2L

− 1

π

∫ ∞

0
S(ω) cos(ω (x − x ′)) dω

∣∣∣∣ ≤ D2

L
. (107)

Proof By using Lemma 9 with � = π
2L

, f (ω) = 1
π

S(ω)

cos(ω (x − x ′)) dω, m = 0, and α = 0 as well as the assump-
tions on S(ω) and boundedness of sine and cosine we get that

∣∣∣∣∣∣

∞∑

j=1

S

(
π j

2L

)
cos

(
π j (x − x ′)

2L

)
1

2L

− 1

π

∫ ∞

0
S(ω) cos(ω (x − x ′)) dω

∣∣∣∣

≤ 1

π

∫ ∣∣S′(w) cos(ω (x − x ′)) dω

− S(w) (x − x ′) sin(ω (x − x ′))
∣∣ dω

π

2L

≤ 1

2L

∫ ∣∣S′(w) cos(ω (x − x ′))
∣∣ dω (108)

+ 1

2L

∫ ∣∣S(w) (x − x ′) sin(ω (x − x ′))
∣∣ dω

≤ 1

2L

∫ ∣∣S′(w)
∣∣ dω + |x − x ′|

2L

∫ ∣∣S(w)
∣∣ dω

≤ 1

2L

∫ ∣∣S′(w)
∣∣ dω + L̃

L

∫ ∣∣S(w)
∣∣ dω

≤ 1

2L
C + L̃

L
A,

which gives the result with D2 = C
2 + L̃ A. ⊓⊔

Lemma 13 Assume that for ω ≥ 0, S(ω) is a bounded inte-

grable function with a bounded derivative on ω > 0 such

that
∫ ∞

0 |S′(ω)| dω = C < ∞, then there exists a constant

D3 such that

∣∣∣∣∣∣
1

2L

∞∑

j=1

[
S

(
π 2 j

2L

)
− S

(
π (2 j − 1)

2L

)]

× cos

(
π 2 j (x + x ′)

2L

)∣∣∣∣

≤ D3

L
.

(109)

Proof The result follows by using Lemma 10 with � = π
L

,
α = 1/2, β = 0, f (ω) = S(ω), and g(ω) = cos(ω (x + x ′))
and by recalling that | cos(ω (x + x ′))| ≤ 1, which gives the
constant D3 = C

2 . ⊓⊔

Lemma 14 Assume that for ω ≥ 0, S(ω) is a bounded pos-

itive integrable function with bounded derivative on ω > 0
such that

∫ ∞
0 S(ω) dω = A < ∞ and

∫ ∞
0 |S′(ω)| dω =

C < ∞. Then there exists a constant D4 such that
∣∣∣∣∣∣

1

2L

∞∑

j=1

S

(
π (2 j − 1)

2L

) [
cos

(
π 2 j (x + x ′)

2L

)

− cos

(
π (2 j − 1) (x + x ′)

2L

)∣∣∣∣ ≤ D4

L
.

Proof By using Lemma 11 with � = π
L

, α = 1/2, β = 1/2,
f (ω) = S(ω), and g(ω) = cos(ω (x + x ′)) we get

∣∣∣∣∣∣
1

2L

∞∑

j=1

S

(
π (2 j − 1)

2L

) [
cos

(
π 2 j (x + x ′)

2L

)

− cos

(
π (2 j − 1) (x + x ′)

2L

)∣∣∣∣

≤ (A + C) D′

2L
,

where D′ is an upper bound for |(x + x ′) sin(ω (x + x ′))|.
We can now select D′ = 2L̃ , which gives D4 = (A + C)

L̃ . ⊓⊔

Next, we combine the above lemmas to get the following
result.

Lemma 15 Let the assumptions of Lemmas 12, 13, and 14
be satisfied. Then there exists a constant D1 such that for all

x, x ′ ∈ [− L̃, L̃] we have

∣∣∣∣∣∣

∞∑

j=1

S

(
π j

2L

)
1

L
sin

(
π j (x + L)

2L

)
× sin

(
π j (x ′ + L)

2L

)

− 1

π

∫ ∞

0
S(ω) cos(ω (x − x ′)) dω

∣∣∣∣ ≤ D1

L
. (110)

That is,

∣∣̃k∞(x, x ′) − k(x, x ′)
∣∣ ≤ D1

L
, for x, x ′ ∈ [−L̃, L̃]. (111)
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Furthermore, the explicit expression for the constant is given

as

D1 = C + (2A + C) L̃. (112)

Proof Using triangle inequality to the difference of (106) and
1
π

∫ ∞
0 S(ω) cos(ω (x − x ′)) dω along with Lemmas 12, 13,

and 14 gives

∣∣∣∣∣∣

∞∑

j=1

S

(
π j

2L

)
cos

(
π j (x − x ′)

2L

)
1

2L

− 1

2L

∞∑

j=1

[
S

(
π 2 j

2L

)
− S

(
π (2 j − 1)

2L

)]

× cos

(
π 2 j (x + x ′)

2L

)

− 1

2L

∞∑

j=1

S

(
π (2 j − 1)

2L

) [
cos

(
π 2 j (x + x ′)

2L

)

− cos

(
π (2 j − 1) (x + x ′)

2L

)]

− 1

π

∫ ∞

0
S(ω) cos(ω (x − x ′)) dω

∣∣∣∣

≤

∣∣∣∣∣∣

∞∑

j=1

S

(
π j

2L

)
cos

(
π j (x − x ′)

2L

)
1

2L

− 1

π

∫ ∞

0
S(ω) cos(ω (x − x ′)) dω

∣∣∣∣

+
∣∣∣∣

1

2L

∞∑

j=1

[
S

(
π 2 j

2L

)
− S

(
π (2 j − 1)

2L

)]

× cos

(
π 2 j (x + x ′)

2L

)∣∣∣∣

+

∣∣∣∣∣∣
1

2L

∞∑

j=1

S

(
π (2 j − 1)

2L

) [
cos

(
π 2 j (x + x ′)

2L

)

− cos

(
π (2 j − 1) (x + x ′)

2L

) ]∣∣∣∣

≤ D2

L
+ D3

L
+ D4

L
= D1

L
, (113)

where the explicit values for the constants can be found in
the proofs of the lemmas. ⊓⊔

Let us now consider what happens when we replace the
infinite sum approximation with a finite m number of terms.
We are now interested in

k̃∞(x, x ′) − k̃m(x, x ′)

=
∞∑

j=m+1

S

(
π j

2L

)
1

L
sin

(
π j (x + L)

2L

)

× sin

(
π j (x ′ + L)

2L

)
.

(114)

Lemma 16 Assume that on ω ≥ 0, S(ω) is bounded and

integrable, on ω > 0 it has a bounded derivative, and that∫ ∞
0 |S′(ω)| dω = C < ∞. Then there exists a constant D5

such that for all x, x ′ ∈ [−L̃, L̃] we have

∣∣̃k∞(x, x ′) − k̃m(x, x ′)
∣∣ ≤ D5

L
+ 2

π

∫ ∞

π m
2L

S(ω) dω. (115)

Proof Because the sinusoidals are bounded by unity, we get
∣∣∣∣∣∣

∞∑

j=m+1

S

(
π j

2L

)
1

L
sin

(
π j (x + L)

2L

)

× sin

(
π j (x ′ + L)

2L

)∣∣∣∣

≤

∣∣∣∣∣∣

∞∑

j=m+1

S

(
π j

2L

)
1

L

∣∣∣∣∣∣
. (116)

For the right-hand side, we can now use Lemma 9 with
f (ω) = 2

π
S(ω) and � = π

2L
, which gives

∣∣∣∣∣∣

∞∑

j=m+1

S

(
π j

2L

)
1

L
− 2

π

∫ ∞

π m
2L

S(ω) dω

∣∣∣∣∣∣
≤ C

π

2L
= D5

L
.

(117)

Hence by the triangle inequality we get
∣∣∣∣∣∣

∞∑

j=m+1

S

(
π j

2L

)
1

L

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∞∑

j=m+1

S

(
π j

2L

)
1

L
− 2

π

∫ ∞

π m
2L

S(ω) dω

+ 2

π

∫ ∞

π m
2L

S(ω) dω

∣∣∣∣∣

≤

∣∣∣∣∣∣

∞∑

j=m+1

S

(
π j

2L

)
1

L
− 2

π

∫ ∞

π m
2L

S(ω) dω

∣∣∣∣∣∣

+ 2

π

∫ ∞

π m
2L

S(ω) dω

≤ D5

L
+ 2

π

∫ ∞

π m
2L

S(ω) dω (118)

and thus the result follows. ⊓⊔
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Remark 17 We can also obtain a bit more defined bound by
not using an m-independent bound for forming D5, which
under the assumptions of Lemma 16 gives

∣∣̃k∞(x, x ′) − k̃m(x, x ′)
∣∣

≤ π

2L

∫ ∞

π m
2L

|S′(ω)| dω + 2

π

∫ ∞

π m
2L

S(ω) dω.
(119)

The lemmas presented in this section can now be com-
bined to a proof of the one-dimensional convergence theorem
as follows:

Proof of Theorem 1 The first result follows by combining
Lemmas 15 and 16 via the triangle inequality. Because our
assumptions imply that

lim
x→∞

∫ ∞

x

S(ω) dω = 0, (120)

for any fixed L we have

lim
m→∞

[
E

L
+ 2

π

∫ ∞

π m
2L

S(ω) dω

]
→ E

L
. (121)

If we now take the limit L → ∞, the second result in the
theorem follows. ⊓⊔

A.3 Proof of Theorem 4

When x ∈ R
d , the Wiener–Khintchin identity and symmetry

of the spectral density imply that

k(x, x′) = 1

(2π)d

∫

Rd

S(ω) exp(−i ωT(x − x′)) dω

= 1

πd

∫ ∞

0
· · ·

∫ ∞

0
S(ω)

d∏

k=1

cos(ωk (xk − x ′
k)) dω1 · · · dωd .

(122)

The m = m̂d term approximation now has the form

k̃m(x, x′) =
m̂∑

j1,..., jd=1

S

(
π j1

2L1
, . . . ,

π jd

2Ld

)

×
d∏

k=1

1

Lk

sin

(
π jk (xk + Lk)

2Lk

)

× sin

(
π jk (x ′

k + Lk)

2Lk

)
. (123)

As in the one-dimensional problem, we start by consider-
ing the case where m̂ = ∞.

Lemma 18 Let the assumptions of Lemma 15 be satisfied for

each ω j �→ S(ω1, . . . , ωd) separately. Then there exists a

constant D1 such that for all x, x′ ∈ [−L̃, L̃]d we have

∣∣∣∣∣∣

∞∑

j1,..., jd =1

S

(
π j1

2L1
, . . . ,

π jd

2Ld

)
×

d∏

k=1

1

Lk

sin

(
π jk (xk + Lk)

2Lk

)

× sin

(
π jk (x ′

k + Lk)

2Lk

)

− 1

πd

∫ ∞

0
· · ·

∫ ∞

0
S(ω)

d∏

k=1

cos(ωk (x − x ′)) dω1 · · · dωd

∣∣∣∣∣

≤ D1

d∑

k=1

1

Lk

≤ D1 d

L
, (124)

where L = mink Lk . That is, for all x, x′ ∈ [−L̃, L̃]d

∣∣̃k∞(x, x′) − k(x, x′)
∣∣ ≤ D1

d∑

k=1

1

Lk

≤ D1 d

L
. (125)

Proof We can separate the summation over j1 as follows:

∞∑

j2,..., jd=1

⎡
⎣

∞∑

j1=1

S

(
π j1

2L1
, . . . ,

π jd

2Ld

)
1

L1

× sin

(
π j1 (x1 + L1)

2L1

)
sin

(
π j1 (x ′

1 + L1)

2L1

)]

×
d∏

k=2

1

Lk

sin

(
π jk (xk + Lk)

2Lk

)

× sin

(
π jk (x ′

k + Lk)

2Lk

)
. (126)

By Lemma 15, there now exists a constant D1,1 such that
∣∣∣∣∣∣

∞∑

j1=1

S

(
π j1

2L1
, . . . ,

π jd

2Ld

)
1

L1

× sin

(
π j1 (x1 + L1)

2L1

)
sin

(
π j1 (x ′

1 + L1)

2L1

)

− 1

π

∫ ∞

0
S

(
ω1,

π j2

2L2
, . . . ,

π jd

2Ld

)

× cos(ω1 (x1 − x ′
1)) dω1

∣∣

≤ D1,1

L1
. (127)

The triangle inequality then gives

∣∣∣∣∣∣

∞∑

j1,..., jd =1

S

(
π j1

2L1
, . . . ,

π jd

2Ld

)
×

d∏

k=1

1

Lk

sin

(
π jk (xk + Lk)

2Lk

)

× sin

(
π jk (x ′

k + Lk)

2Lk

)
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− 1

πd

∫ ∞

0
· · ·

∫ ∞

0
S(ω)

d∏

k=1

cos(ω j (xk − x ′
k)) dω1 · · · dωd

∣∣∣∣∣

≤ D1,1

L1
+

∣∣∣∣∣∣
1

π

∞∑

j2,..., jd =1

∫ ∞

0
S

(
ω1,

π j2

2L2
, . . . ,

π jd

2Ld

)

× cos(ω1 (x1 − x ′
1)) dω1

×
d∏

k=2

1

Lk

sin

(
π jk (xk + Lk)

2Lk

)
sin

(
π jk (x ′

k + Lk)

2Lk

)

− 1

πd

∫ ∞

0
· · ·

∫ ∞

0
S(ω)

d∏

k=1

cos(ωk (xk − x ′
k)) dω1 · · · dωd

∣∣∣∣∣ .

(128)

We can now similarly bound with respect to the summations
over j2, . . . , jd which leads to a bound of the form D1,1

L1
+

· · · + D1,d

Ld
. Taking D1 = maxk D1,k leads to the desired

result. ⊓⊔

Now we can consider what happens in the finite truncation
of the series. That is, we analyze the following residual sum

k̃∞(x, x′) − k̃m(x, x′)

=
∞∑

j1,..., jd=m̂+1

S

(
π j1

2L1
, . . . ,

π jd

2Ld

)

×
d∏

k=1

1

Lk

sin

(
π jk (xk + Lk)

2Lk

)

× sin

(
π jk (x ′

k + Lk)

2Lk

)
. (129)

Lemma 19 Let assumptions of Lemma 16 be satisfied for

each ω j �→ S(ω1, . . . , ωd). There exists a constant D2 such

that for all x, x′ ∈ [−L̃, L̃]d we have

∣∣̃k∞(x, x′) − k̃m(x, x′)
∣∣ ≤ D2 d

L
+ 1

πd

∫

‖ω‖≥ π m̂
2L

S(ω) dω,

(130)

where L = mink Lk .

Proof We can write the following bound

∣∣∣∣
∞∑

j1,..., jd=m̂+1

S

(
π j1

2L1
, . . . ,

π jd

2Ld

)

×
d∏

k=1

1

Lk

sin

(
π jk (xk + Lk)

2Lk

)

× sin

(
π jk (x ′

k + Lk)

2Lk

) ∣∣∣∣

≤
∣∣∣∣

∞∑

j1,..., jd=m̂+1

S

(
π j1

2L1
, . . . ,

π jd

2Ld

) d∏

k=1

1

Lk

∣∣∣∣. (131)

We can now use Lemma 9 with f (ω1) = 2
π

S
(
ω1,

π j2
2L2

, . . . ,

π jd
2Ld

)
and � = π

2L1
, which gives

∣∣∣∣∣∣

∞∑

j1,..., jd=m̂+1

S

(
π j1

2L1
, . . . ,

π jd

2Ld

) d∏

k=1

1

Lk

− 2

π

∞∑

j2,..., jd=m̂+1

×
∫ ∞

π m̂
2L1

S

(
ω1,

π j2

2L2
, . . . ,

π jd

2Ld

)
dω1

d∏

k=2

1

Lk

∣∣∣∣∣

≤ D2,1

L1
. (132)

Using a similar argument again, we get

∣∣∣∣∣∣
2

π

∞∑

j2,..., jd=m̂+1

∫ ∞

π m̂
2L1

S

(
ω1,

π j2

2L2
, . . . ,

π jd

2Ld

)
dω1

d∏

k=2

1

Lk

− 22

π2

∞∑

j3,..., jd=m̂+1

∫ ∞

π m̂
2L1

×
∫ ∞

π m̂
2L2

S

(
ω1, ω2,

π j3

2L3
, . . . ,

π jd

2Ld

)
dω1 dω2

×
d∏

k=3

1

Lk

∣∣∣∣∣ ≤ D2,2

L2
. (133)

After repeating this for all the indexes, by forming a telescop-
ing sum of the terms and applying the triangle inequality then
gives

∣∣∣∣∣∣

∞∑

j1,..., jd=m̂+1

S

(
π j1

2L1
, . . . ,

π jd

2Ld

) d∏

k=1

1

Lk

−
(

2

π

)d ∫ ∞

π m̂
2L1

· · ·
∫ ∞

π m̂
2Ld

S(ω1, . . . , ωd) dω1 · · · dωd

∣∣∣∣∣

≤
d∑

k=1

D2,k

Lk

. (134)
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Applying the triangle inequality again gives

∣∣∣∣∣∣

∞∑

j1,..., jd=m̂+1

S

(
π j1

2L1
, . . . ,

π jd

2Ld

) d∏

k=1

1

Lk

∣∣∣∣∣∣

≤
d∑

k=1

D2,k

Lk

+
(

2

π

)d ∫ ∞

π m̂
2L1

· · ·
∫ ∞

π m̂
2Ld

S(ω1, . . . , ωd) dω1 · · · dωd . (135)

By interpreting the latter integral as being over the positive
exterior of a rectangular hypercuboid and bounding it by a
integral over exterior of a hypersphere which fits inside the
cuboid, we can bound the expression by

d∑

k=1

D2,k

Lk

+ 1

πd

∫

‖ω‖≥ π m̂
2L

S(ω) dω. (136)

The first term can be further bounded by replacing Lks with
their minimum L and by defining D2 = max D2,k which is
d times the maximum of D2,k . This leads to the final form of
the result. ⊓⊔
Remark 20 Note that analogous to Remark 17 we could
tighten the bound for D2 by letting it depend on m̂.

Proof of Theorem 4 Analogous to the one-dimensional case,
we combine the results of the above lemmas using the triangle
inequality. ⊓⊔
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