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Abstract. Montgomery’s pair correlation conjecture predicts the asymptotic behavior of the function

N(T, β) defined to be the number of pairs γ and γ′ of ordinates of nontrivial zeros of the Riemann zeta-

function satisfying 0 < γ, γ′ ≤ T and 0 < γ′ − γ ≤ 2πβ/ log T as T → ∞. In this paper, assuming the

Riemann hypothesis, we prove upper and lower bounds for N(T, β), for all β > 0, using Montgomery’s

formula and some extremal functions of exponential type. These functions are optimal in the sense that

they majorize and minorize the characteristic function of the interval [−β, β] in a way to minimize the

L1
(

R,
{

1−
(

sinπx

πx

)2}
dx

)

-error. We give a complete solution for this extremal problem using the framework

of reproducing kernel Hilbert spaces of entire functions. This extends previous work of P. X. Gallagher [18]

in 1985, where the case β ∈ 1
2
N was considered using non-extremal majorants and minorants.

1. Introduction

Let ζ(s) denote the Riemann zeta-function. Understanding the distribution of the zeros of ζ(s) is an

important problem in number theory. In this paper, assuming the Riemann hypothesis (RH), we study the

pair correlation function

N(T, β) :=
∑

0<γ,γ′≤T

0<γ′−γ≤ 2πβ
log T

1 ,

where the sum runs over two sets of nontrivial zeros ρ = 1
2 + iγ and ρ′ = 1

2 + iγ′ of ζ(s). Here and throughout

the text, all sums involving the zeros of ζ(s) are counted with multiplicity. The pair correlation conjecture

of H. L. Montgomery [32] asserts that

N(T, β) ∼ N(T )

∫ β

0

{
1 −

( sinπx

πx

)2}
dx (1.1)

for any fixed β > 0 as T → ∞, where N(T ) denotes the number of nontrivial zeros of ζ(s) with ordinates γ

satisfying 0 < γ ≤ T . It is known that

N(T ) :=
∑

0<γ≤T

1 ∼ T log T

2π
(1.2)

as T → ∞. Therefore, if we let 0 < γ1 ≤ γ2 ≤ . . . denote the sequence of ordinates of nontrivial zeros of

ζ(s) in the upper half-plane, it follows that average size of γn+1− γn is about 2π/ log γn. Thus, the quantity

N(T, β) essentially counts the number of pairs 0 < γ, γ′ ≤ T of (not necessarily consecutive) ordinates of

nontrivial zeros of ζ(s) whose difference is less than or equal to β times the average spacing. It is known

that the function N(T, β) is connected to the distribution of primes in short intervals, see [19, 21, 24].
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Montgomery’s pair correlation conjecture is a special case of the more general conjecture that the normal-

ized spacings between the ordinates of the nontrivial zeros of ζ(s) follow the GUE distribution from random

matrix theory. In his original paper [32], Montgomery gave some theoretical evidence for the pair correlation

conjecture and, later, Odlyzko [36] provided numerical evidence. Higher correlations of the zeros of ζ(s),

and of the zeros of more general L-functions, were studied by Hejhal [25] and by Rudnick and Sarnak [38].

If the asymptotic formula in (1.1) remains valid when β = β(T ) → ∞ (sufficiently slowly) as T → ∞, one

should expect

N(T, β) ∼ N(T )

{
β − 1

2
+

1

2π2β
+ O

(
1

β2

)}
(1.3)

as T → ∞, where the implied constant is independent of β. Using techniques of Selberg, Fujii [17] proved

the unconditional estimate

N(T, β) = N(T )
{
β + O(1)

}
(1.4)

for β = O(log T ). This improved upon an earlier result of Mueller (unpublished but announced in [18]).

1.1. Montgomery’s formula and bounds for the pair correlation. For our purposes we define a class

of admissible functions consisting of all R ∈ L1(R) whose Fourier transform

R̂(t) =

∫ ∞

−∞
e−2πixt R(x) dx

is supported in [−1, 1]. By the Paley-Wiener theorem, this class of admissible functions is exactly the class

of entire functions of exponential type at most 2π 1 whose restriction to the real axis is integrable. An

important tool in the study of the correlation of zeros of ζ(s) is Montgomery’s formula2, which asserts that,

for an admissible function R, under RH, we have

lim
T→∞

1

N(T )

∑

0<γ,γ′≤T

R
(

(γ′−γ) log T
2π

)
w(γ′−γ)

= R(0) +

∫ ∞

−∞
R(x)

{
1 −

(
sinπx

πx

)2
}

dx,

(1.5)

where w(x) = 4/(4 + x2) is a suitable weight function.

Following Gallagher’s [18] notation, for an admissible function R we define

M(R) :=

∫ ∞

−∞
R(x)

{
1 −

(
sinπx

πx

)2
}

dx, (1.6)

and, for β > 0, we write

U(β) := lim sup
T→∞

N(T, β)

N(T )
and L(β) := lim inf

T→∞

N(T, β)

N(T )
.

Let R±
β be a pair of admissible functions satisfying

R−
β (x) ≤ χ[−β,β](x) ≤ R+

β (x) (1.7)

for all x ∈ R. Then, if we let

N∗(T ) =
∑

0<γ≤T

mγ ,

1An entire function g : C → C has exponential type at most 2π∆ if, for all ǫ > 0, there exists a positive constant Cǫ such that

|g(z)| ≤ Cǫ e(2π∆+ǫ)z for all z ∈ C.
2This is not Montgomery’s original version of his formula. For a derivation of (1.5), see the appendix of [18] or §2.1 below.
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where mγ denotes the multiplicity of a zero of ζ(s) with ordinate γ, we observe that

1

N(T )

∑

0<γ,γ′≤T

R+
β

(
(γ′−γ) log T

2π

)
w(γ′−γ)

≥ R+
β (0)

N∗(T )

N(T )
+

2N(T, β)

N(T )
+ Oβ

(
1

(log T )2

) (1.8)

and, similarly, that

1

N(T )

∑

0<γ,γ′≤T

R−
β

(
(γ′−γ) log T

2π

)
w(γ′−γ)

≤ R−
β (0)

N∗(T )

N(T )
+

2N(T, β)

N(T )
+ Oβ

(
1

(log T )2

)
.

(1.9)

Observing that N(T ) ≤ N∗(T ) for all T > 0 and combining the estimates in (1.5), (1.6), (1.7), (1.8), and

(1.9), we arrive at the following result.

Theorem 1. Assume RH. For any β > 0 we have

1

2
M(R−

β ) ≤ L(β) ≤ U(β) ≤ 1

2
M(R+

β ), (1.10)

where the lower bound holds if we assume that almost all zeros of ζ(s) are simple in the sense that

lim
T→∞

N∗(T )

N(T )
= 1. (1.11)

This result is implicit in the work of Gallagher [18]. The difficult problem here is to construct admissible

majorants and minorants for χ[−β,β] that optimize the values of M(R±
β ) (and to actually compute these

values). In [18], Gallagher considered the case β ∈ 1
2N, for which a classical construction of Beurling and

Selberg [40] produces admissible majorants and minorants r±β that optimize the L1(R)-distance to χ[−β,β]

(but not necessarily the L1
(
R,
{

1 −
(
sinπx
πx

)2}
dx
)
-distance). When β ∈ 1

2N, the Fourier transforms r̂±β have

simple explicit representations as finite series, which allowed Gallagher to compute the values of M(r±β ) and

to show that
1

2
M(r±β ) = β − 1

2
± 1

2
+

1

2π2β
+ O

(
1

β2

)
. (1.12)

In a second part of his paper [18], still in the case β ∈ 1
2N, Gallagher solved the two-delta problem with

respect to the pair correlation measure (i.e. to minimize M(R) over the class of nonnegative admissible

functions R satisfying R(±β) ≥ 1) and was able to quantify the error between his bounds in Theorem 1 and

the theoretical optimal bounds achievable by this method.

In this paper we extend Gallagher’s work in [18] providing a complete solution to this problem. The three

main features are:

(i) We find an explicit representation for the reproducing kernel associated to the pair correlation measure,

which allows us to use Hilbert spaces techniques to solve the two-delta problem in the general case β > 0.

(ii) From the reproducing kernel, we find a suitable de Branges space of entire functions [2] associated to

the pair correlation measure. We solve the more general extremal problem of majorizing and minorizing

characteristic functions of intervals optimizing a given de Branges metric, which provides, in particular,

the optimal values of M(R±
β ). It turns out that asymptotics in terms of β as in (1.12) are not easily

obtainable for this family, since it involves nodes of interpolation that are roots of equations with algebraic

and transcendental terms. This brings us to point (iii).
3



(iii) In order to obtain (non-extremal) bounds that can be easily stated in terms of β, we compute M(r±β ), for

the family of Beurling-Selberg functions r±β in the general case β > 0, and prove that Gallagher’s asymptotic

formula in (1.12) continues to hold in this case.

We now describe in more detail each of these three parts of the paper. We start with the third part, which

is slightly simpler to state. Similar extremal problems in harmonic analysis have appeared in connection to

analytic number theory, in particular to the theory of the Riemann zeta-function. For some recent results

of this sort, see [4, 5, 9, 22].

1.2. Explicit bounds via Beurling-Selberg majorants. Let

H0(z) =

(
sinπz

π

)2
{ ∞∑

m=−∞

sgn(m)

(z −m)2
+

2

z

}
(1.13)

and

H1(z) =

(
sinπz

πz

)2

. (1.14)

For the functions H± defined by H±(z) = H0(z) ±H1(z), then Beurling [40] showed that

H−(x) ≤ sgn(x) ≤ H+(x)

for all x ∈ R, and that these are the unique extremal functions of exponential type 2π for sgn(x) (with

respect to L1(R)). Moreover, we have
∫ ∞

−∞

{
H+(x)−sgn(x)

}
dx =

∫ ∞

−∞

{
sgn(x)−H−(x)

}
dx = 1.

For β > 0, Selberg [40] (see also [39]) considered the functions

r+β (x) := 1
2

{
H+(x + β) + H+(−x + β)

}

≥ 1
2

{
sgn(x + β) + sgn(−x + β)

}
= χ[−β,β](x)

(1.15)

and

r−β (x) := 1
2

{
H−(x + β) + H−(−x + β)

}

≤ 1
2

{
sgn(x + β) + sgn(−x + β)

}
= χ[−β,β](x).

(1.16)

We remark that here and later, all the discontinuous functions we treat are normalized, i.e. at the disconti-

nuity, the value of the function is the midpoint between the left-hand and right-hand limits. The functions

r±β have exponential type 2π and are bounded and integrable on R. Therefore, they belong to L2(R) and the

Paley-Wiener theorem implies that they have continuous Fourier transforms supported in [−1, 1]. Through-

out the text we reserve the notation r±β for this particular family of functions. In Section 2 we prove the

following result.

Theorem 2. Let β > 0 and r±β be the pair of admissible functions defined by (1.15) and (1.16). Then

1

2
M(r±β ) =

(
β ± 1

2

)
− 1

2π2β
+

sin 2πβ

4π3β2
− 1

4π2

∑

n∈Z

sgn(n±)

(n−β)2

(
2 +

sin 2πβ

π(n−β)

)
(1.17)

= β − 1

2
± 1

2
+

1

2π2β
+ O

(
1

β2

)
,

where sgn(0±) = ±1.
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Figure 1. The above images illustrate the inequalities in Theorems 1 and 2. Montgomery’s
conjecture for limT→∞ N(T, β)/N(T ) is plotted in black, while the functions β 7→ 1

2M(r±β )
are plotted in gray.

We note that the right-hand side of (1.17) is a continuous function of β. This result is proved in Section

2, where we also include a discussion on upper and lower bounds for N(T, β), where β is allowed to increase

as a function of T .

1.3. The reproducing kernel for the pair correlation measure. The following quantity gives a lower

bound for the difference of the values in Theorem 1. For β > 0 we define

∆(β) = inf
R∈Ωβ

M(R), (1.18)

where the infimum is taken over the subclass Ωβ of nonnegative admissible functions R such that R(±β) ≥ 1.

If R±
β is a pair of admissible functions satisfying (1.7) then R := (R+

β −R−
β ) ∈ Ωβ and

M(R+
β ) −M(R−

β ) = M(R) ≥ ∆(β).

Hence the gap between an upper for U(β) and a lower bound for L(β) in Theorem 1 cannot be smaller than
1
2∆(β).

In the case β ∈ 1
2N, Gallagher [18, Section 2] used a variational argument to solve this two-delta problem

and compute ∆(β). This argument was previously used by Montgomery and Taylor [33] to solve the simpler

one-delta problem in connection to bounds for the proportion of simple zeros of ζ(s). Gallagher’s variational

approach for the two-delta problem relies heavily on the fact that β ∈ 1
2N to establish orthogonality relations

in some passages, thus making its extension to the general case β > 0 a nontrivial task. Here we revisit this

problem and solve it in the general case using a different technique, namely the theory of reproducing kernel

Hilbert spaces. Proofs of the theorems in this section are given in Section 3.

Let us write

dµ(x) =

{
1 −

(
sinπx

πx

)2
}

dx.

We denote by B2(π, µ) the class of entire functions f of exponential type at most π for which
∫ ∞

−∞
|f(x)|2 dµ(x) < ∞,

and we write B2(π) if dµ is replaced by the Lebesgue measure (i.e. B2(π) is the classical Paley-Wiener space).

Using the uncertainty principle for the Fourier transform, we show that µ and the Lebesgue measure define

equivalent norms on the class of functions of exponential type at most π for which either and hence both
5



norms are finite. This implies, in particular, that H = B2(π, µ) is a Hilbert space with norm given by

‖f‖2H =

∫ ∞

−∞
|f(x)|2 dµ(x).

For each w ∈ C, the functional f 7→ f(w) is therefore continuous on H (since this holds for the Paley-Wiener

space B2(π)). Hence, there exists a function K(w, ·) ∈ H such that

f(w) = 〈f,K(w, ·)〉H =

∫ ∞

−∞
f(x)K(w, x) dµ(x)

for all f ∈ H. This is the so-called reproducing kernel for the Hilbert space H, and our first goal is to find

an explicit representation for this kernel. For w ∈ C (initially with w 6= ±1/π
√

2) define constants c(w) and

d(w) by

c(w) =
cos(πw) − πw sin(πw)

(1 − 2π2w2)
(

cos
(
2−

1
2

)
− 2−

1
2 sin

(
2−

1
2

)) ,

d(w) =
2πw cos(πw)

(1 − 2π2w2) 2
1
2 cos

(
2−

1
2

) ,
(1.19)

and functions f(w, ·), g, h ∈ H by

f(w, z) =
2π2w2

(2π2w2 − 1)

sinπ(z − w)

π(z − w)
,

g(z) =
2

1
2 sin

(
2−

1
2

)
cos(πz) − 2πz cos

(
2−

1
2

)
sin(πz)

1 − 2π2z2
,

h(z) =
2πz sin

(
2−

1
2

)
cos(πz) − 2

1
2 cos

(
2−

1
2

)
sin(πz)

1 − 2π2z2
.

Theorem 3. For each w ∈ C we have

K(w, z) = f(w, z) + c(w)g(z) + d(w)h(z). (1.20)

At the points w = ±1/π
√

2, this formula should be interpreted in terms of the appropriate limit.

We exploit the Hilbert space structure and the explicit formula for the reproducing kernel to give a

complete solution to the two-delta problem with respect to the pair correlation measure.

Theorem 4. Let β > 0, let ∆ be defined by (1.18), and let K be given by (1.20). Then

∆(β) =
2

K(β, β) + |K(β,−β)| = 2

{
1 −

∣∣∣∣
sin 2πβ

2πβ

∣∣∣∣
}

+ O

(
1

β2

)
. (1.21)

The extremal functions (i.e. functions that realize the infimum in (1.18)) are given by the following formulae.

(i) If K(β,−β) = 0, then

R(z) =
1

K(β, β)2
(
c1K(β, z) + c2K(−β, z)

)(
c1 K(β, z) + c2 K(−β, z)

)
,

where c1, c2 ∈ C with |c1| = |c2| = 1.

(ii) If K(β,−β) 6= 0, then

R(z) =

(
K(β,−β)
|K(β,−β)|K(β, z) + K(−β, z)

)2

(
K(β, β) + |K(β,−β)|

)2 .
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In particular, the bounds given in Theorem 2 are optimal up to order O(β−2) when β ∈ 1
2N. The

appearance of the term | sin 2πβ
2πβ | on the right-hand side of (1.21) is not a coincidence, for this term already

appears naturally in the work of Littmann [30] on the Beurling-Selberg extremal problem for χ[−β,β](x).

Using the same circle of ideas, one could explicitly compute the reproducing kernels associated to other

measures that arise naturally in the study of families of L-functions, see [27, 28].

1.4. An extremal problem in de Branges spaces.

1.4.1. De Branges spaces. Let us briefly review the basic facts and terminology of de Branges’ theory of

Hilbert spaces of entire functions [2, Chapters 1 and 2]. A function F analytic in the open upper half-plane

C
+ = {z ∈ C; Im (z) > 0} has bounded type if it can be written as the quotient of two functions that are

analytic and bounded in C
+. If F has bounded type in C

+, from its Nevanlinna factorization [2, Theorems

9 and 10] we have

v(F ) = lim sup
y→∞

y−1 log |F (iy)| < ∞.

The number v(F ) is called the mean type of F . If F : C → C is entire, we denote by τ(F ) its exponential

type, i.e.

τ(F ) = lim sup
|z|→∞

|z|−1 log |F (z)|,

and we define F ∗ : C → C by F ∗(z) = F (z). We say that F is real entire if F restricted to R is real valued.

Let E : C → C be a Hermite-Biehler function, i.e. an entire function satisfying the basic inequality

|E(z)| < |E(z)| (1.22)

for all z ∈ C
+ (open upper half-plane). The de Branges space H(E) is the space of entire functions F : C → C

such that

‖F‖2E :=

∫ ∞

−∞
|F (x)|2 |E(x)|−2 dx < ∞ , (1.23)

and such that F/E and F ∗/E have bounded type and nonpositive mean type in C
+. The remarkable

property about H(E) is that it is a reproducing kernel Hilbert space with inner product

〈F,G〉E =

∫ ∞

−∞
F (x)G(x) |E(x)|−2 dx.

The reproducing kernel (that we continue denoting by K(w, ·)) is given by (see [2, Theorem 19])

2πi(w − z)K(w, z) = E(z)E∗(w) − E∗(z)E(w). (1.24)

Associated to E, we consider a pair of real entire functions A and B such that E(z) = A(z) − iB(z). These

functions are given by

A(z) :=
1

2

{
E(z) + E∗(z)

}
and B(z) :=

i

2

{
E(z) − E∗(z)

}
,

and the reproducing kernel has the alternative representation

π(z − w)K(w, z) = B(z)A(w) −A(z)B(w).

When z = w we have

πK(z, z) = B′(z)A(z) −A′(z)B(z). (1.25)
7



For each w ∈ C, the reproducing kernel property implies that

0 ≤ ‖K(w, ·)‖2E = 〈K(w, ·),K(w, ·)〉E = K(w,w),

and it is not hard to show (see [26, Lemma 11]) that K(w,w) = 0 if and only if w ∈ R and E(w) = 0 (in

this case we have F (w) = 0 for all F ∈ H(E)).

For our purposes we consider the class of Hermite-Biehler functions E satisfying the following properties:

(P1) E has bounded type in C
+;

(P2) E has no real zeros;

(P3) z 7→ E(iz) is a real entire function;

(P4) A,B /∈ H(E).

By a result of M. G. Krein (see [29] or [26, Lemmas 9 and 12]) we see that if E satisfies (P1), then E

has exponential type and τ(E) = v(E). Moreover, the space H(E) consists of the entire functions F of

exponential type τ(F ) ≤ τ(E) that satisfy (1.23).

1.4.2. De Branges space for the pair correlation measure. We show that the Hilbert space H defined in

Section 1.3 can be identified with a suitable de Branges space H(E), where E is a Hermite-Biehler function

satisfying (P1) - (P4). Define

L(w, z) = 2πi(w − z)K(w, z)

where K is given by (1.20). It follows then that the entire function

E(z) =
L(i, z)

L(i, i)
1
2

(1.26)

is a Hermite-Biehler function such that

L(w, z) = E(z)E(w) − E(z)E(w). (1.27)

For convenience of the reader we include short proofs of these facts in Appendix A. This implies [2, Theorem

23] that the Hilbert space H is isometrically equal to the de Branges space H(E). In particular, the key

identity ∫ ∞

−∞
|f(x)|2 |E(x)|−2 dx =

∫ ∞

−∞
|f(x)|2 dµ(x) (1.28)

holds for any f ∈ H.

We verify next (P1) - (P4). It is clear that E(z) has exponential type π and is bounded on R. Therefore,

by the converse of Krein’s theorem (see [29] or [26, Lemma 9]), we have that E has bounded type in C
+,

which shows (P1). If E had a real zero w, we would have F (w) = 0 for all F ∈ H(E) = H. However, we

have seen that H is equal (as a set) to the Paley-Wiener space, which is a contradiction. This proves (P2).

A direct computation using (1.26) and Theorem 3 shows that E(ix) is real when x is real, which shows

(P3). For x ∈ R we have A(x) = Re (E(x)) and B(x) = −Im (E(x)). Since c(−i), id(−i), g(x) and h(x) are

all real, a direct computation gives us

A(x) =
Re (L(i, x))

L(i, i)
1
2

=
1

L(i, i)
1
2

4π2

(2π2 + 1)
cosπx

{
sinhπ +

tan
(
2−

1
2

)
coshπ

π
√

2

}
+ O(x−1)
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and

B(x) = − Im (L(i, x))

L(i, i)
1
2

=
1

L(i, i)
1
2

4π2

(2π2 + 1)
sinπx

{
coshπ +

(coshπ + π sinhπ) cos
(
2−

1
2

)

2π2
(
cos
(
2−

1
2

)
− 2−

1
2 sin

(
2−

1
2

))
}

+ O(x−1),

for large x. This shows that A,B /∈ L2(R) and thus, by (1.28) and Lemma 12 below, A,B /∈ H(E). This

proves (P4).

1.4.3. The extremal problem. We now return to the discussion of an arbitrary Hermite-Biehler function E

that satisfies properties (P1) - (P4) above. From now on we assume without loss of generality that E(0) > 0

(note that this holds for the particular E defined by (1.26)). Generalizing (1.6), let us write

ME(R) =

∫ ∞

−∞
R(x) |E(x)|−2 dx.

For β > 0 we define

Λ+
E(β) = inf ME(R+

β ), (1.29)

and

Λ−
E(β) = supME(R−

β ), (1.30)

where the infimum and the supremum are taken over the entire functions R±
β of exponential type at most

2τ(E) such that

R−
β (x) ≤ χ[−β,β](x) ≤ R+

β (x) (1.31)

for all x ∈ R.

In its simplest version, for the Paley-Wiener space (which corresponds to E(z) = e−iπz), this is a classical

problem in harmonic analysis with numerous applications to inequalities in number theory and signal pro-

cessing. Its sharp solution was discovered by Beurling and Selberg [40] when β ∈ 1
2N, by Donoho and Logan

[14] when β < 1
2 , and recently by Littmann [30] for the remaining cases3. Here we provide a complete solution

to a general version of this problem in the de Branges metric L1(R, |E(x)|−2 dx). As in the Paley-Wiener

case, there are three distinct qualitative regimes for the solution, and these depend on the roots of A and B

(observe that if E(z) = e−iπz, then A(z) = cosπz and B(z) = sinπz, which have roots exactly at β ∈ 1
2N).

Similar extremal problems in de Branges and Euclidean spaces were considered in [7, 26].

Property (P3) implies that A is even and B is odd, and by the Hermite-Biehler condition, A and B

have only real zeros. Morever, these zeros are all simple, since any double zero w of either would give

K(w,w) = 0 by (1.25), which would imply that E(w) = 0 in contradiction to (P2). It also follows from well-

known properties of Hermite-Biehler functions (see for instance the discussion related to the phase function

in [2, Problem 48] or [26, Section 3]) that the zeros of A and B interlace. In our case we have B(0) = 0 and

A(0) > 0. If we label the nonnegative zeros of B in order as 0 = b0 < b1 < b2 < ... and the positive zeros of

A as a1 < a2 < ..., then we have

0 = b0 < a1 < b1 < a2 < b2 < ...

For each β > 0 that is not a root of A or B, we define an auxiliary Hermite-Biehler function Eβ(z). The

corresponding companion functions Aβ(z) and Bβ(z) and the reproducing kernel Kβ(w, z) play an important

3B. F. Logan announced the solution for the general case in “Bandlimited functions bounded below over an interval”, Notices
Amer. Math. Soc., 24 (1977), pp. A331. His proof, however, has never been published.
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role in the solution of our extremal problem. We divide this construction in two cases, depending on the

sign of A(β)B(β). Since A(0) > 0 and B(0) = 0, from (1.25) we find that B′(0) > 0.

(i) If bk < β < ak+1, we set γβ := βB(β)/A(β) > 0.

(ii) If ak < β < bk, we set γβ := −βA(β)/B(β) > 0.

In either case we now define Eβ by

Eβ(z) = E(z)(γβ − iz). (1.32)

Theorem 5. Let E be a Hermite-Biehler function satisfying properties (P1) - (P4). Let β > 0 and Λ±
E(β)

be defined by (1.29) and (1.30).

(i) If β ∈ {ai}, then

Λ+
E(β) =

∑

A(ξ)=0

|ξ|≤β

1

K(ξ, ξ)
and Λ−

E(β) =
∑

A(ξ)=0

|ξ|<β

1

K(ξ, ξ)
.

(ii) If β ∈ {bi}, then

Λ+
E(β) =

∑

B(ξ)=0

|ξ|≤β

1

K(ξ, ξ)
and Λ−

E(β) =
∑

B(ξ)=0

|ξ|<β

1

K(ξ, ξ)
.

(iii) If bk < β < ak+1, then

Λ+
E(β) =

∑

Aβ(ξ)=0

|ξ|≤β

ξ2 + γ2
β

Kβ(ξ, ξ)
and Λ−

E(β) =
∑

Aβ(ξ)=0

|ξ|<β

ξ2 + γ2
β

Kβ(ξ, ξ)
.

(iv) If ak < β < bk, then

Λ+
E(β) =

∑

Bβ(ξ)=0

|ξ|≤β

ξ2 + γ2
β

Kβ(ξ, ξ)
and Λ−

E(β) =
∑

Bβ(ξ)=0

|ξ|<β

ξ2 + γ2
β

Kβ(ξ, ξ)
.

In each of the cases above, there exists a pair of extremal functions R±
β,E, i.e. functions for which (1.31)

holds and the identities ME(R±
β,E) = Λ±

E(β) are valid. In particular, the values ME(R±
β,E) are finite. These

extremal functions interpolate the characteristic function χ[−β,β] at points ξ given by (i) A(ξ) = 0; (ii)

B(ξ) = 0; (iii) Aβ(ξ) = 0; (iv) Bβ(ξ) = 0, respectively.

Remark. In the above theorem, interpolating χ[−β,β] at the endpoints ξ = ±β means taking the value 1 for

the majorant and the value 0 for the minorant.

We observe that Theorem 5 provides a complete solution to our original extremal problem related to the

pair correlation measure. In fact, recall that E defined by (1.26) has exponential type π. Let R±
β be a pair

of functions of exponential type at most 2π that verifies (1.7). Since R+
β is nonnegative on R, a classical

result of Krein [1, p. 154] (alternatively, see [7, Lemma 14]) gives us the representation R+
β (z) = U(z)U∗(z),

where U is entire of exponential type at most π. By the identity (1.28) we have

M(R+
β ) =

∫ ∞

−∞
|U(x)|2 dµ(x) =

∫ ∞

−∞
|U(x)|2 |E(x)|−2 dx = ME(R+

β )
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provided either, and hence both, of the values M(R+
β ) or ME(R+

β ) is finite. To prove the analogous statement

for R−
β , we write R−

β as a difference of nonnegative functions,

R−
β (z) = R+

β,E(z) −
(
R+

β,E(z) −R−
β (z)

)
,

and conclude that

M(R−
β ) = M(R+

β,E) −M(R+
β,E −R−

β ) = ME(R+
β,E) −ME(R+

β,E −R−
β ) = ME(R−

β )

provided either, and hence both, of the values M(R−
β ) or ME(R−

β ) is finite.

If R±
β is a pair of extremal functions given by Theorem 5, we show in Section 4 that their difference

R := R+
β −R−

β is an extremal function for the two-delta problem. From Theorem 1 and Theorem 4 we arrive

at the following result.

Corollary 6. Assume RH and (1.11), and let K(w, z) be defined by (1.20). Then

{
U(β) −  L(β)

}
≤ 1

K(β, β) + |K(β,−β)| = 1 −
∣∣∣∣
sin 2πβ

2πβ

∣∣∣∣+ O

(
1

β2

)
.

1.5. Related results. Our lower bounds for N(T, β) are only nontrivial if the left-hand side of the inequality

in (1.10) is positive. It is natural to ask for bounds on the smallest value of β for which N(T, β) is positive.

For instance, in the context of Theorem 2, a straightforward numerical calculation implies that 1
2M(r−β ) > 0

if β ≥ 0.8163 and hence, assuming RH and (1.11), we see that N(T, 0.8163) ≫ N(T ); this is illustrated in

Figure 1. In Section 5, using Montgomery’s formula in a different manner, we improve this estimate.

Theorem 7. Assume RH and (1.11). Then N(T, 0.606894) ≫ N(T ).

As stated, this result appears to be the best known result on small gaps coming from Montgomery’s

formula. Theorem 7 gives a modest improvement of the previous results of Montgomery [32] and Goldston,

Gonek, Özlük and Snyder [23] who, under the same assumptions, had shown that N(T, 0.6695...) ≫ N(T )

and N(T, 0.6072...) ≫ N(T ), respectively.4 Our proof differs somewhat from the proofs of these previous

results since we actually use Montgomery’s formula twice, choosing two different test functions.

Theorem 7 implies that infinitely often the gap between the imaginary parts of consecutive nontrivial

zeros of ζ(s) is less than the average spacing. Define the quantity

µ = lim inf
n→∞

(γn+1−γn) log γn
2π

.

Since the average size of γn+1 − γn is 2π/ log γn, we see that trivially µ ≤ 1. Assuming RH, Theorem 7

implies that µ ≤ 0.606894. To see why, note that if (1.11) holds then the claimed inequality for µ follows

from Theorem 7 since µ ≤ β if N(T, β) ≫ N(T ). On the other hand, if (1.11) does not hold, then there are

infinitely many multiple zeros of ζ(s) implying that µ = 0. Hence, in either case, we have µ ≤ 0.606894.

Due to the connection to the class number problem for imaginary quadratic fields [12, 35], it is an

interesting open problem to prove that µ < 1
2 . By a different method, also assuming RH, Feng and Wu [16]

have proved that µ ≤ 0.5154. This improves previous estimates of a number of other authors [3, 11, 34].

It does not appear, however, that any of these results can be applied to prove nontrivial estimates for the

function N(T, β).

4The result in [32] is stated with 0.68 in place of 0.6695... . As is pointed out in [23], it is not difficult to modify Montgomery’s
argument to derive this sharper estimate. Moreover, it is shown in [23] that a result stronger than Theorem 7 holds assuming
(1.11) and the generalized Riemann hypothesis for Dirichlet L-functions.
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In Section 6, we prove an analogue of Theorems 1 and 2 for the zeros of primitive Dirichlet L-functions

in q-aspect. This requires the version of Montgomery’s formula given in [8], which was proved using a

modification of the asymptotic large sieve of Conrey, Iwaniec and Soundararajan [13]. In this case, the

results in [8] allow to use Beurling-Selberg majorants and minorants of χ[−β,β](x) with Fourier transforms

supported in (−2, 2). This leads to stronger results which are stated in Theorem 18.

2. Bounds via Beurling-Selberg majorants

In this section we prove Theorem 2. Exploiting the fact that we have explicit expressions for the Beurling-

Selberg functions r±β and their Fourier transforms, we also prove a version of Theorem 1 that allows β to

vary with T .

Theorem 8. Assume RH. Then, for any β = β(T ) > 0 satisfying

β

(
log log T

log T

)1/2
→ 0 as T → ∞, (2.1)

we have

1

2
M(r−β ) +

1

2

(
1−N∗(T )

N(T )

)
+ o(1) ≤ N(T, β)

N(T )
≤ 1

2
M(r+β ) +

1

2

(
1−N∗(T )

N(T )

)
+ o(1) (2.2)

when T is sufficiently large.

The condition on β in (2.1) arises from the size of the error term in (2.7) below, and it may be possible to

weaken this condition slightly. Since it is generally believed that the zeros of ζ(s) are all simple, we expect

that N∗(T ) = N(T ) for all T > 0 and hence that (1.11) should hold. Assuming RH, Montgomery [32] has

shown that

N∗(T ) ≤
(

4

3
+ o(1)

)
N(T ) (2.3)

as T → ∞. Observing that N∗(T ) ≥ N(T ), and combining (2.2), (2.3), and Theorem 2, we deduce the

following corollary which does not rely on the additional assumption in (1.11).

Corollary 9. Assume RH. Then, for any β > 0 satisfying (2.1), we have

β − 7

6
+

1

2π2β
+ O

(
1

β2

)
+ o(1) ≤ N(T, β)

N(T )
≤ β +

1

2π2β
+ O

(
1

β2

)
+ o(1)

when T is sufficiently large.

Remark. The lower bound in Corollary 9 can be sharpened slightly using improved estimates for N∗(T )

obtained by Montgomery and Taylor [33] (see the remark after Corollary 14 below) or by Cheer and Gold-

ston [10] assuming RH, or by Goldston, Gonek, Özlük and Snyder [23] assuming the generalized Riemann

hypothesis for Dirichlet L-functions.

Our original proof of Corollary 9 was a bit different and did not rely directly on Montgomery’s formula.

We briefly indicate the main ideas. Writing N(T, β) as a double sum and using a more precise formula for

N(T ), we can show that

N(T, β) = N(T )

{
β ∓ 1

2

N∗(T )

N(T )
+ o(1)

}
±

∑

0<γ≤T

S
(
γ± 2πβ

log T

)
(2.4)
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for β = o(log T ). Here, if t does not correspond to an ordinate of a zero of ζ(s), we define S(t) = 1
π arg ζ( 1

2+it)

and otherwise we let

S(t) =
1

2
lim
ε→0

{
S(t+ε) + S(t−ε)

}
.

Using ideas from [5], we can replace the sum involving S(t) on the right-hand side of (2.4) with a double

sum over zeros involving the odd function f(x) = arctan(1/x) − x/(1 + x2). In [5], we construct majorants

and minorants of exponential type 2π for f(x) using the framework for the solution of the Beurling-Selberg

extremal problem given in [6] for the truncated (and odd) Gaussian. This allows us to prove the upper

and lower bounds for N(T, β) in Corollary 9 by using these majorants and minorants in the sum on the

right-hand side of (2.4), twice applying the explicit formula, and then carefully estimating the resulting sums

and integrals. The fact that our original proof relied on two applications of the explicit formula suggests

using Montgomery’s formula instead, and we have chosen only to present this simpler proof here.

2.1. Montgomery’s function F (α). In order to study the distribution of the differences of pairs of zeros

of ζ(s), Montgomery [32] introduced the function

F (α) := F (α, T ) =
2π

T log T

∑

0<γ,γ′≤T

T iα(γ′−γ) w(γ′−γ) , (2.5)

where α is real, T ≥ 2, and w(u) = 4/(4 + u2). Note that F (α) is real and that F (α) = F (−α). Moreover,

since
∑

0<γ,γ′≤T

T iα(γ′−γ) w(γ′−γ) = 2π

∫ ∞

−∞
e−4π|u|

∣∣∣∣∣
∑

0<γ≤T

T iαγe2πiγu

∣∣∣∣∣

2

du ,

we see that F (α) ≥ 0 for α ∈ R. Multiplying F (α) by a function R̂ ∈ L1(R) and integrating, we derive the

convolution formula

∑

0<γ,γ′≤T

R

(
(γ′−γ)

log T

2π

)
w(γ′−γ) =

T log T

2π

∫ ∞

−∞
R̂(α)F (α) dα. (2.6)

Assuming RH, refining the original work of Montgomery [32], Goldston and Montgomery [24, Lemma 8]

proved that

F (α) =
(
T−2|α| log T + |α|

)(
1 + O

(√
log log T
log T

))
, as T → ∞, (2.7)

uniformly for 0 ≤ |α| ≤ 1. Using this asymptotic formula for F (α) in the integral on the right-hand side of

(2.6) allows for the evaluation of a large class of double sums over differences of zeros of ζ(s).

From (2.6), (2.7), and Parseval’s theorem, one can deduce Montgomery’s formula as stated in (1.5). Fur-

thermore, Montgomery [32] conjectured that F (α) = 1 + o(1) for |α| > 1, uniformly for α in bounded

intervals. Along with (2.7), this conjecture completely determines the behavior of F (α), and suggests that

Montgomery’s formula in (1.5) continues to hold for any function R(x) whose Fourier transform R̂(α) is com-

pactly supported. Choosing R(x) to approximate the characteristic function of an interval led Montgomery

to make the pair correlation conjecture for the zeros of ζ(s) in (1.1).

2.2. The Fourier transforms of r±β . Recall the entire functions H0(z) and H1(z) defined in (1.13) and

(1.14). The Fourier transform of H1 is given by

Ĥ1(t) = max
(
1−|t|, 0

)
(2.8)
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for t ∈ R, while the Fourier transform of the integrable function W (x) = H0(x) − sgn(x) is given by [40,

Theorems 6 and 7]

Ŵ (t) =





0, if t = 0,

(πit)−1
{

(1 − |t|)(πt cotπt− 1)
}
, if 0 < |t| < 1,

−(πit)−1, if |t| ≥ 1.

(2.9)

We can now compute the Fourier transforms of the functions r±β defined in (1.15) and (1.16), which, as we

already noted, are continuous functions supported in [−1, 1].

Lemma 10. For −1 ≤ t ≤ 1 we have

r̂±β (t) = i sin 2πβt Ŵ (t) +
sin 2πβt

πt
± (1 − |t|) cos 2πβt. (2.10)

Proof. Note that

r±β (x) =
1

2

{
(W (x + β) ±H1(x + β)) + (W (−x + β) ±H1(−x + β))

}
+ χ[−β,β](x).

The result now follows from (2.8) and (2.9). �

Observe from (2.10) that r̂±β are Lipschitz functions, each with Lipschitz constant C = O(1 + β).

2.3. Proof of Theorem 8. For any admissible function R, Plancherel’s theorem implies that

M(R) = R̂(0) −
∫ 1

−1

R̂(t)
(
1−|t|

)
dt. (2.11)

For simplicity, let rβ = r±β denote either of our Beurling-Selberg functions. Then, by (1.2), (2.6), (2.7),

(2.11), and another application of Plancherel’s theorem, we have

1

N(T )

∑

0<γ,γ′≤T

rβ

(
(γ′−γ) log T

2π

)
w(γ′−γ)

=

∫ 1

−1

r̂β(t)
(
T−2|t| log T + |t|

)
dt + O

(
(1+β)

√
log log T
log T

)

=

∫ ∞

−∞
r̂β

(
u

log T

)
e−2|u| du +

∫ 1

−1

r̂β(t) |t| dt + o(1)

= r̂β(0) +

∫ 1

−1

r̂β(t) dt−
∫ 1

−1

r̂β(t)
(
1−|t|

)
dt + o(1)

= rβ(0) + M(rβ) + o(1).

(2.12)

Here we have used the fact that r̂β has Lipschitz constant C = O(1 + β), together with the assumption that

β satisfies (2.1), to establish the error term of o(1) in (2.12). This error term relies, in part, on the bound
∣∣∣∣
∫ ∞

−∞

{
r̂β

(
u

log T

)
− r̂β(0)

}
e−2|u| du

∣∣∣∣ ≤
∫ ∞

−∞
C

|u|
log T

e−2|u| du = O

(
1+β

log T

)
= o(1).
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For the majorant r+β , noting that 1 − u2

4 ≤ w(u) ≤ 1, we have

∑

0<γ,γ′≤T

r+β

(
(γ′−γ) log T

2π

)
w(γ′−γ)

≥ r+β (0)N∗(T ) +
∑

0<γ,γ′≤T
γ 6=γ′

χ[−β,β]

(
(γ′−γ) log T

2π

)
w(γ′−γ)

= r+β (0)N∗(T ) +

{
2 + O

(
(1+β)2

log2 T

)}
N(T, β)

= r+β (0)N∗(T ) + 2N(T, β) + o(T log T ),

(2.13)

where we have used (1.4) and the assumption on β in (2.1) to estimate the error term. Using the inequalities

N∗(T ) ≥ N(T ) and r+β (0) ≥ 1, we conclude from (1.2), (2.12) and (2.13) that

N(T, β)

N(T )
≤ 1

2

{
M(r+β ) + r+β (0)

(
1−N∗(T )

N(T )

)}
+ o(1) ≤ 1

2

{
M(r+β ) +

(
1−N∗(T )

N(T )

)}
+ o(1). (2.14)

Similarly, for the minorant r−β , we obtain

∑

0<γ,γ′≤T

r−β

(
(γ′−γ) log T

2π

)
w(γ′−γ) ≤ r−β (0)N∗(T ) + 2N(T, β) + o(T log T ) , (2.15)

for β satisfying (2.1). In this case, since r−β (0) ≤ 1, we conclude from (1.2), (2.12) and (2.15) that

N(T, β)

N(T )
≥ 1

2

{
M(r−β ) + r−β (0)

(
1−N∗(T )

N(T )

)}
+ o(1) ≥ 1

2

{
M(r−β ) +

(
1−N∗(T )

N(T )

)}
+ o(1).

This concludes the proof of Theorem 8.

2.4. Proof of Theorem 2.

2.4.1. Evaluation of M(r±β ). We now calculate a slightly more general version of the quantity M(r±β ), and

specialize to the case of Theorem 2 at the end of this subsection. In particular, we assume the validity of

Montgomery’s formula in (1.5) for any integrable function R with Fourier transform supported in [−∆,∆]

with ∆ ≥ 1 (this stronger version is used later in the proof of Theorem 18). The functions

s±∆,β(x) = r±∆β(∆x)

are a majorant and a minorant of the characteristic function of the interval [−β, β] of exponential type 2π∆,

and hence with Fourier transform supported in [−∆,∆]. We evaluate the quantity

1

2
M
(
s±∆,β

)
=

1

2
ŝ±∆,β(0) − 1

2

∫ 1

−1

ŝ±∆,β(t)(1 − |t|) dt, (2.16)

and deduce Theorem 2 from the case ∆ = 1.

First observe that

ŝ±∆,β(t) =
1

∆
r̂±∆β

(
t

∆

)

=
i

∆
sin 2πβt Ŵ

(
t

∆

)
+

sin 2πβt

πt
± (∆ − |t|)

∆2
cos 2πβt

=
sin 2πβt

πt

(
1 − |t|

∆

)(
πt

∆
cot

πt

∆
− 1

)
+

sin 2πβt

πt
± (∆ − |t|)

∆2
cos 2πβt
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=
1

∆2

(
∆ − |t|

)
sin 2πβt cot

πt

∆
+

1

∆

|t| sin 2πβt

πt
± (∆ − |t|)

∆2
cos 2πβt,

and note that
1

2
ŝ±∆,β(0) = β ± 1

2∆
. (2.17)

Since ŝ±∆,β(t) is an even function, we have

1

2

∫ 1

−1

ŝ±∆,β(t)(1 − |t|) dt =
1

∆2

∫ 1

0

(∆ − t)(1 − t) sin 2πβt cot
πt

∆
dt

+
1

∆

∫ 1

0

sin 2πβt

π
(1 − t) dt± 1

∆2

∫ 1

0

(∆ − t) (1 − t) cos 2πβtdt

:= A + B ± C,

say. Integrating by parts, we find that

B =
1

∆

{
1

2π2β
− sin 2πβ

4π3β2

}
(2.18)

and

C =
1

∆2

{
− (∆ − 1) cos 2πβ

(2πβ)2
+

(∆ + 1)

(2πβ)2
− sin 2πβ

4π3β3

}
. (2.19)

In order to evaluate A, we make use of the identity

i

N∑

n=−N

sgn(n) e−2πint = cotπt−
(

cosπ(2N + 1)t

sinπt

)
,

which implies that

A =
1

∆2

∫ 1

0

(∆ − t)(1 − t) sin 2πβt

{
i

N∑

n=−N

sgn(n) e−2πin t
∆

}
dt

+
1

∆2

∫ 1

0

(∆ − t)(1 − t) sin 2πβt

(
cosπ(2N + 1) t

∆

sinπ t
∆

)
dt

:= AN + DN ,

say. Since the Riemann-Lebesgue lemma implies that lim
N→∞

DN = 0, it remains to evaluate AN . Interchang-

ing summation and integration, we derive that

AN =
1

∆2

N∑

n=−N

sgn(n)

∫ 1

0

(
e2πiβt − e−2πiβt

2

)
e−2πin t

∆ (∆ − t)(1 − t) dt

=
1

4π2

N∑

n=−N

sgn(n)

{
− (∆ − 1) cos 2π(β − n

∆ )

(∆β − n)2
+

(∆ + 1)

(∆β − n)2
− sin 2π(β − n

∆ )
π
∆ (∆β − n)3

}
.

Therefore, letting N → ∞, the above estimates imply that

A =
1

4π2

∞∑

n=−∞
sgn(n)

{
− (∆ − 1) cos 2π(β − n

∆ )

(∆β − n)2
+

(∆ + 1)

(∆β − n)2
− sin 2π(β − n

∆ )
π
∆ (∆β − n)3

}
. (2.20)

Combining the contributions from A and C, we define the continuous functions V ± : (0,∞) → R by

V ±
∆ (β) =

1

4π2

∞∑

n=−∞

sgn(n±)

(∆β − n)2

{
−(∆ − 1) cos 2π(β − n

∆ ) + (∆ + 1) − sin 2π(β − n
∆ )

π
∆ (∆β − n)

}
, (2.21)
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where sgn(0±) = ±1. Then (2.16), (2.17), (2.18), (2.19), (2.20) and (2.21) imply that

1

2
M
(
s±∆,β

)
=

(
β ± 1

2∆

)
− 1

∆

{
1

2π2β
− sin 2πβ

4π3β2

}
− V ±

∆ (β). (2.22)

Specializing to the case ∆ = 1, we obtain

1

2
M
(
r±β
)

=

(
β ± 1

2

)
−
{

1

2π2β
− sin 2πβ

4π3β2

}
− V ±

1 (β),

which is the explicit expression in Theorem 2.

2.4.2. Asymptotic evaluation. By (2.21) we have

V ±
∆ (β) =

1

4π2

∞∑

n=−∞

1

(∆β − n)2

{
−(∆ − 1) cos 2π(β − n

∆ ) + (∆ + 1) − sin 2π(β − n
∆ )

π
∆ (∆β − n)

}

− 2

4π2

∑

n<0(or≤0)

1

(∆β − n)2

{
−(∆ − 1) cos 2π(β − n

∆ ) + (∆ + 1) − sin 2π(β − n
∆ )

π
∆ (∆β − n)

}

=
1

4π2

∞∑

n=−∞

1

(∆β − n)2

{
−(∆ − 1) cos 2π(β − n

∆ ) + (∆ + 1) − sin 2π(β − n
∆ )

π
∆ (∆β − n)

}

− ∆ + 1

2π2β∆
+ O

(
β−2

)

:= G∆(β) − ∆ + 1

2π2β∆
+ O

(
β−2

)
,

(2.23)

say. Here we have used the estimate

∑

n≥0

(∆−1) cos 2π(β+ n
∆ )

(∆β + n)2
= O

(
β−2

)

which follows summation by parts and the fact that

N∑

n=0

(∆−1) cos 2π(β+ n
∆ ) = O(∆2)

uniformly in N . Notice that

G∆(β) = lim
N→∞

1

2∆2

N∑

n=−N

∫ 1

0

(
e2πi

(
β− n

∆

)
t + e−2πi

(
β− n

∆

)
t

)
(∆ − t)(1 − t) dt.

Since the series defining G∆(β) in (2.23) converges uniformly for β in a compact set, Morera’s theorem can

be used to show that G∆(β) is an analytic function of β. Thus, we can differentiate G∆(β) with respect to

β term by term, and it follows from the Riemann-Lebesgue lemma that

G′
∆(β) = lim

N→∞

1

2∆2

N∑

n=−N

∫ 1

0

2πit

(
e2πi

(
β− n

∆

)
t − e−2πi

(
β− n

∆

)
t

)
(∆ − t)(1 − t) dt

= lim
N→∞

− 1

∆2

∫ 1

0

2πt (∆ − t)(1 − t) sin(2πβt)
sin(2π

(
N + 1

2

)
t
∆ )

sin πt
∆

dt

= 0.
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Therefore G∆(β) is a constant function in β and, in order to determine its value, it suffices to evaluate

G∆(0). Using the identities [31, pp. 927–930]

∞∑

n=1

cosnx

n2
=

1

12

(
3x2 − 6πx + 2π2

)
, 0 ≤ x ≤ 2π,

and ∞∑

n=1

sinnx

n3
=

1

12

(
x3 − 3πx2 + 2π2x

)
, 0 ≤ x ≤ 2π,

it follows that

G∆(0) =
1

2∆
− 1

6∆2
+

1

2π2

∞∑

n=1

(
− (∆ − 1) cos 2πn

∆

n2
+

(∆ + 1)

n2
− ∆ sin 2πn

∆

πn3

)
=

1

2
.

Inserting this estimate into (2.23), we derive that

V ±
∆ (β) =

1

2
− ∆ + 1

2π2β∆
+ O

(
β−2

)
,

and therefore, from (2.22),

1

2
M
(
s±∆,β

)
=

(
β − 1

2
± 1

2∆

)
+

1

2π2β
+ O(β−2). (2.24)

In particular, choosing ∆ = 1, we deduce that

1

2
M
(
r±β
)

=

(
β − 1

2
± 1

2

)
+

1

2π2β
+ O(β−2),

and this concludes the proof of Theorem 2.

3. Reproducing kernel Hilbert spaces

Our objective in this section is to prove Theorems 3 and 4.

3.1. Equivalence of norms via uncertainty. In order to establish the equivalence of the norms of B2(π, µ)

and B2(π) we shall make use of the classical uncertainty principle for the Fourier transform. The version we

present here is due to Donoho and Stark [15].

Lemma 11. (cf. [15, Theorem 2]) Let T,W ⊂ R be measurable sets and let f ∈ L2(R) with ‖f‖2 = 1. Then

|W | . |T | ≥
(

1 −
(
‖fχR\T ‖2 + ‖f̂χR\W ‖2

))2
,

where |W | denotes the Lebesgue measure of the set W .

Lemma 12. Let f be entire. Then f ∈ B2(π) if and only if f ∈ B2(π, µ). Moreover, there exists c > 0

independent of f such that

c‖f‖2 ≤ ‖f‖L2(dµ) ≤ ‖f‖2
for all f ∈ B2(π).

Proof. Since µ is absolutely continuous with respect to the Lebesgue measure, it is clear that

‖f‖L2(dµ) ≤ ‖f‖2

for all f ∈ B2(π), so in particular B2(π) ⊆ B2(π, µ).
18



Now let f ∈ B2(π, µ). Since f is entire, it is in particular continuous at the origin, hence ‖f‖2 < ∞
and f ∈ B2(π). It remains to show that there exists c, independent of f , with c‖f‖2 ≤ ‖f‖L2(dµ). We let

T = [− 1
8 ,

1
8 ], W = [− 1

2 ,
1
2 ] and use Lemma 11 to get

‖fχR\T ‖2 ≥ 1

2
‖f‖2.

Let 0 < η < 1 be such that

η2 χR\T (x) ≤
{

1 −
(

sinπx

πx

)2
}
.

Then
η

2
‖f‖2 ≤ η ‖fχR\T ‖2 ≤ ‖f‖L2(dµ).

This completes the proof of the lemma. �

3.2. Proof of Theorem 3. We start by recording the expansions:

f(w, x) =
2π2w2

(2π2w2 − 1)

∫ 1
2

− 1
2

e2πixt e−2πiwt dt,

g(x) =

∫ 1
2

− 1
2

e2πixt cos
(
2

1
2 t
)

dt,

h(x) = −i

∫ 1
2

− 1
2

e2πixt sin
(
2

1
2 t
)

dt.

(3.1)

Define

κw(x) := f(w, x) + c(w)g(x) + d(w)h(x),

ℓw(x) :=

{
1 −

(
sinπx

πx

)2
}
κw(x),

and

jw(t) := χ[− 1
2 ,

1
2 ]

(t)

{
2π2w2

(2π2w2 − 1)
e−2πiwt + c(w) cos

(
2

1
2 t
)
− i d(w) sin

(
2

1
2 t
)}

.

It follows from (3.1) that

ℓw(x) =

{
1 −

(
sinπx

πx

)2
}∫ ∞

−∞
e2πixt jw(t) dt

=

∫ ∞

−∞
e2πixt

{
jw(t) −

∫ 1

−1

(1 − |u|) jw(t− u) du

}
dt.

(3.2)

Let − 1
2 < t < 1

2 . The following identities hold for a ∈ R

∫ t+ 1
2

t− 1
2

cos(a(t− u)) du =
2

a
sin(a/2),

∫ t+ 1
2

t− 1
2

|u| cos(a(t− u)) du =
2

a2
cos(a/2) − 2

a2
cos(at) +

1

a
sin(a/2),
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and therefore

cos(at)−
∫ 1

−1

(1 − |u|)χ[− 1
2 ,

1
2 ]

(t− u) cos(a(t− u)) du

= −1

a
sin(a/2) +

2

a2
cos(a/2) +

(
1 − 2

a2

)
cos(at).

(3.3)

Similarly, we have

sin(at)−
∫ 1

−1

(1 − |u|)χ[− 1
2 ,

1
2 ]

(t− u) sin(a(t− u)) du

=
2t

a
cos(a/2) +

(
1 − 2

a2

)
sin(at).

(3.4)

Letting a = 2
1
2 in (3.3) and (3.4) gives, for |t| < 1

2 , the identities

cos
(
2

1
2 t
)
−
∫ 1

−1

(1 − |u|)χ[− 1
2 ,

1
2 ]

(t− u) cos
(
2

1
2 (t− u)

)
du = cos

(
2−

1
2

)
− 2−

1
2 sin

(
2−

1
2

)
,

sin
(
2

1
2 t
)
−
∫ 1

−1

(1 − |u|)χ[− 1
2 ,

1
2 ]

(t− u) sin
(
2

1
2 (t− u)

)
du = 2

1
2 t cos

(
2−

1
2

)
,

(3.5)

while the choice a = −2πw, for |t| < 1
2 , gives

2π2w2

(2π2w2 − 1)

(
e−2πiwt −

∫ 1

−1

(1 − |u|)χ[− 1
2 ,

1
2 ]

(t− u) e−2πi(t−u)w du

)

= e−2πiwt − (1 − 2πiwt) cos(πw) − πw sin(πw)

1 − 2π2w2
.

(3.6)

We note that ℓw has exponential type at most 3π. When inserting (1.19), (3.5) and (3.6) into (3.2), the

linear functions (of the variable t) from (3.5) multiplied by c(w) and d(w) eliminate, for |t| < 1
2 , the linear

function in (3.6). Hence we obtain

ℓw(x) =

∫ 3/2

−3/2

e2πixt
(
e−2πiwt + qw(t)

)
dt ,

where qw(t) = 0 for − 1
2 < t < 1

2 . Therefore

ℓw(x) =
sinπ(x− w)

π(x− w)
+ Qw(x),

where ∫ ∞

−∞
f(x)Qw(x) dx = 0

for all f ∈ B2(π, µ). This implies that

∫ ∞

−∞
f(x)κw(x)

{
1 −

(
sinπx

πx

)2
}

dx = f(w)

for all f ∈ B2(π, µ). Thus κw is a reproducing kernel, and since such a kernel is unique, it follows that

K(w, x) = κw(x) as desired. This concludes the proof.

Remark. The initial guess for the reproducing kernel was found in the following way. The starting point is

the function ℓw introduced in the proof. A Fourier transform leads to the identity

e−2πitw = κ̂w(t) −
∫ 1

−1

(1 − |u|) κ̂w(t− u) du (3.7)
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for |t| < 1
2 , and two (formal) differentiations (using the fact that the second derivative of (1 − |u|)χ[−1,1](u)

is a linear combination of three Dirac deltas) lead to the equation

−4π2w2e−2πitw = κ̂′′
w(t) −

(
κ̂w(t + 1) + κ̂w(t− 1) − 2κ̂w(t)

)
.

If κw has exponential type π, then for |t| < 1
2 this equation simplifies to

−4π2w2e−2πitw = κ̂′′
w(t) + 2κ̂w(t),

which can be solved explicitly. The original integral equation (3.7) determines the two free parameters c(w)

and d(w).

3.3. A geometric lemma. Before we proceed to the proof of Theorem 4 we present a basic lemma5 on the

geometry of Hilbert spaces.

Lemma 13. Let H be a Hilbert space (over C) with norm ‖ · ‖ and inner product 〈·, ·〉. Let v1, v2 ∈ H be

two nonzero vectors (not necessarily distinct) such that ‖v1‖ = ‖v2‖ and define

J =
{
x ∈ H; |〈x, v1〉| ≥ 1 and |〈x, v2〉| ≥ 1

}
.

Then

min
x∈J

‖x‖ =

(
2(

‖v1‖2 + |〈v1, v2〉|
)
)1/2

. (3.8)

The extremal vectors y ∈ J are given by:

(i) If 〈v1, v2〉 = 0, then

y =

(
2(

‖v1‖2 + |〈v1, v2〉|
)
)1/2

(c1v1 + c2v2)

‖v1 + v2‖
, (3.9)

where c1, c2 ∈ C with |c1| = |c2| = 1.

(ii) If 〈v1, v2〉 6= 0, and we write 〈v1, v2〉 = e−iα |〈v1, v2〉|, then

y =

(
2(

‖v1‖2 + |〈v1, v2〉|
)
)1/2

c (eiαv1 + v2)

‖eiαv1 + v2‖
, (3.10)

where c ∈ C with |c| = 1.

Proof. If v1 and v2 are linearly dependent the result is easy to verify, so we focus on the general case. The

verification that each y given by (3.10) belongs to J and has norm given by the right-hand side of (3.8) is

straightforward. Now let

κ := inf
x∈J

‖x‖ ,

and let y ∈ J be such that ‖y‖ = κ (observe that the infimum above is in fact attained, since, by the

reflexivity of H, any minimizing sequence admits a weakly convergent subsequence). We consider v′1 = eiϑ1v1

and v′2 = eiϑ2v2 for appropriate choices of ϑ1 and ϑ2 such that

〈y, v′1〉 ≥ 1 and 〈y, v′2〉 ≥ 1. (3.11)

It is clear that y ∈ span{v′1, v′2} (since any outside component would increase the norm of y) and we write

y = a v′1 + b v′2 ,

5A similar version of this result was independently obtained by M. Kelly and J. D. Vaaler (personal communication).
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where a, b ∈ C. The fact that y satisfies (3.11) implies that

y′ = b v′1 + a v′2

also satisfies (3.11) and thus belongs to J . Therefore z = (y + y′)/2 also satisfies (3.11) and belongs to J .

If y 6= y′, from the parallelogram law we have

‖z‖2 <

∥∥∥∥
y + y′

2

∥∥∥∥
2

+

∥∥∥∥
y − y′

2

∥∥∥∥
2

=
1

2
(‖y‖2 + ‖y′‖2) = ‖y‖2 = κ2,

a contradiction. Therefore b = a and we have

y = a v′1 + a v′2. (3.12)

Having reduced our considerations to a vector y of the form (3.12), we see that the two conditions in (3.11)

are complex conjugates, and we may work only with one of them, say 〈y, v′1〉 ≥ 1. Since ‖y‖ = κ is minimal,

we must have the equality 〈y, v′1〉 = 1. This translates to

a‖v′1‖2 + a 〈v′2, v′1〉 = 1, (3.13)

and we find

‖y‖2 =
(
|a|2‖v′1‖2 + a2〈v′2, v′1〉

)
+
(
|a|2‖v′2‖2 + a2〈v′1, v′2〉

)
= a + a = 2 Re (a).

By solving the system of equations (3.13) in the variables Re (a) and Im (a) we arrive at

κ2 = ‖y‖2 = 2 Re (a) = 2
‖v′1‖2 − Re (〈v′1, v′2〉)
‖v′1‖4 − |〈v′1, v′2〉|2

≥ 2
‖v1‖2 − |〈v1, v2〉|
‖v1‖4 − |〈v1, v2〉|2

=
2

‖v′1‖2 + |〈v′1, v′2〉|
, (3.14)

and

Im (a) =
Im (〈v′1, v′2〉)

‖v′1‖4 − |〈v′1, v′2〉|2
. (3.15)

We have equality in (3.14) if and only if 〈v′1, v′2〉 ≥ 0. If 〈v′1, v′2〉 = 0, then ϑ1 and ϑ2 are arbitrary and a ≥ 0.

This leads to the family in (3.9). If 〈v′1, v′2〉 6= 0, then we must have ϑ1 ≡ ϑ2 + α (mod 2π) and a ≥ 0, which

leads to the family in (3.10). �

3.4. Proof of Theorem 4. Let R be a nonnegative admissible function such that R(±β) ≥ 1. Since R has

exponential type at most 2π, by Krein’s decomposition [1, p. 154] we have

R(z) = S(z)S(z),

where S is an entire function of exponential type at most π. On the real line we have R(x) = |S(x)|2 and

thus S ∈ L2(R). Therefore, the function S belongs to the reproducing kernel Hilbert space H = B2(π, µ).

The hypotheses imply that

1 ≤ |S(β)| =
∣∣〈S,K(β, ·)〉H

∣∣

and

1 ≤ |S(−β)| =
∣∣〈S,K(−β, ·)〉H

∣∣.
We want to minimize the quantity

‖S‖2H =

∫ ∞

−∞
|S(x)|2

{
1 −

(
sinπx

πx

)2
}

dx.
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By the reproducing kernel property and the symmetry of the pair correlation measure (alternatively, one

can check directly by Theorem 3), we have

‖K(β, ·)‖2H = K(β, β) = K(−β,−β) = ‖K(−β, ·)‖2H.

We are thus in position to use Lemma 13 to get

‖S‖2H ≥ 2

K(β, β) + |〈K(β, ·),K(−β, ·)〉H| =
2

K(β, β) + |K(β,−β)| . (3.16)

The cases of equality in (3.16) follow from (3.9) and (3.10).

It remains to verify the asymptotic behavior on the right-hand side of (1.21) as β → ∞. From Theorem

3 we get

K(β, β) =
2π2β2

(2π2β2 − 1)
+ c(β)g(β) + d(β)h(β)

and

K(β,−β) =
2π2β2

(2π2β2 − 1)

sin 2πβ

2πβ
+ c(β)g(−β) + d(β)h(−β)

=
2π2β2

(2π2β2 − 1)

sin 2πβ

2πβ
+ c(β)g(β) − d(β)h(β).

Therefore, if K(β,−β) ≥ 0 we have

K(β, β) + |K(β,−β)| =
2π2β2

(2π2β2 − 1)

(
1 +

sin 2πβ

2πβ

)
+ 2c(β)g(β), (3.17)

and if K(β,−β) ≤ 0 we have

K(β, β) + |K(β,−β)| =
2π2β2

(2π2β2 − 1)

(
1 − sin 2πβ

2πβ

)
+ 2d(β)h(β). (3.18)

Observe that c(β)g(±β) = O(β−2) and that d(β)h(±β) = O(β−2). We then have two cases to consider.

First, if for large β we have
sin 2πβ

2πβ
= O(β−2) ,

then the asymptotic on the right-hand side of (1.21) is trivially true. Otherwise,

sin 2πβ

2πβ
= O

(
(β + 1)−1

)
.

Hence K(β,−β) will have the sign of sin 2πβ
2πβ , and we use (3.17) and (3.18) to get the desired asymptotic.

This concludes the proof.

3.5. The one-delta problem. Our methods can also be used to recover the original result of Montgomery

and Taylor [33] concerning the optimal majorant for the delta function with respect to the pair correlation

measure. This problem was also solved, in a more general context, by Iwaniec, Luo and Sarnak [27, Appendix

A].

Corollary 14 (cf. [33]). Let R be a nonnegative admissible function such that R(0) ≥ 1. Then

M(R) ≥ 1

K(0, 0)
= 2−

1
2 cot

(
2−

1
2

)
− 1

2
. (3.19)
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Equality in (3.19) is attained if and only if

R(z) =
1

(1 − 2π2z2)2

(
cos(πz) − 2

1
2πz cot

(
2−

1
2

)
sin(πz)

)2
.

Proof. As in the proof of Theorem 4 we may write R(z) = S(z)S(z), where S ∈ H = B2(π, µ). Using the

Cauchy-Schwartz inequality we get

1 ≤ |S(0)|2 =
∣∣〈S,K(0, ·)〉H

∣∣2 ≤ ‖S‖2H‖K(0, ·)‖2H = ‖S‖2HK(0, 0).

Therefore, it follows that

∫ ∞

−∞
R(x)

{
1 −

(
sinπx

πx

)2
}

dx =

∫ ∞

−∞
|S(x)|2

{
1 −

(
sinπx

πx

)2
}

dx = ‖S‖2H ≥ 1

K(0, 0)
,

and equality holds if and only if S(z) = cK(0, z), where c is a complex constant of absolute value K(0, 0)−1.

Using the explicit representation for K given by Theorem 3 we get

R(z) = S(z)S(z) =
1

K(0, 0)2
K(0, z)2

=
1

K(0, 0)2

(
1(

cos
(
2−

1
2

)
− 2−

1
2 sin

(
2−

1
2

)) 2
1
2 sin

(
2−

1
2

)
cos(πz) − 2πz cos

(
2−

1
2

)
sin(πz)

1 − 2π2z2

)2

=

(
1

2
1
2 sin

(
2−

1
2

) 2
1
2 sin

(
2−

1
2

)
cos(πz) − 2πz cos

(
2−

1
2

)
sin(πz)

1 − 2π2z2

)2

=
1

(1 − 2π2z2)2

(
cos(πz) − 2

1
2πz cot

(
2−

1
2

)
sin(πz)

)2
.

�

Remark: It follows from (1.5), (1.6), and (3.19) that

N∗(T ) ≤
(

2−
1
2 cot

(
2−

1
2

)
+

1

2
+ o(1)

)
N(T ).

This inequality was previously proved by Montgomery and Taylor [33], and can be used in the place of (2.3)

to give a slightly sharper version of our Corollary 9.

4. Interpolation and orthogonality in de Branges spaces

In this section we prove Theorem 5. Recall that E is a Hermite-Biehler function that satisfies (P1) - (P4).

4.1. Preliminary lemmas. We start by proving the following result.

Lemma 15. Let β /∈ {ak} ∪ {bk} and consider the Hermite-Biehler function Eβ defined in (1.32).

(i) The function Eβ satisfies properties (P1) - (P4).

(ii) If ak < β < bk, for k ≥ 1, then Bβ(0) = Bβ(β) = 0.

(iii) If bk < β < ak+1, for k ≥ 0, then Aβ(β) = 0. If k ≥ 1, then there exists ξ ∈ (0, β) such that

Aβ(ξ) = 0.

Proof of (i). Properties (P1), (P2) and (P3) are clear. A direct computation shows that

Aβ(z) = γβA(z) − zB(z) (4.1)
24



and

Bβ(z) = zA(z) + γβB(z). (4.2)

Suppose Aβ ∈ H(Eβ). Then Aβ(x) |Eβ(x)|−1 ∈ L2(R). Observe that

Aβ(x)

Eβ(x)
= γβ

A(x)

(γβ − ix)E(x)
− x

(γβ − ix)

B(x)

E(x)
= −i

B(x)

E(x)
+ O(x−1),

for large x. This would imply that B ∈ H(E), a contradiction. In an analogous manner, we show that

Bβ /∈ H(Eβ). This establishes (P4). �

Proof of (ii). Since Eβ satisfies (P3), the function Bβ is odd and thus Bβ(0) = 0. The fact that Bβ(β) = 0

follows from (4.2) and the definition of γβ . �

Proof of (iii). The fact that Aβ(β) = 0 follows from (4.1) and the definition of γβ . Also, from (4.1), a

number ξ is a zero of Aβ if and only if

ξ = γβ
A(ξ)

B(ξ)
(4.3)

Since B(x) > 0 in (0, a1] with B(0) = 0, and A(x) > 0 in [0, a1) with A(a1) = 0, the function x 7→ A(x)/B(x)

assumes every positive real value in the interval (0, a1). In particular, there exists ξ ∈ (0, a1) satisfying

(4.3). �

The importance of condition (P4) lies in the fact that the sets {K(ξ, ·); A(ξ) = 0} and {K(ξ, ·); B(ξ) = 0}
are orthogonal bases for H(E) (see [2, Theorem 22]). Using this fact, we establish four suitable quadrature

formulas below. These are the key elements to prove the optimality of our approximations.

Lemma 16. Let F be an entire function of exponential type at most 2τ(E) such that F (x) ≥ 0 for all x ∈ R

and

ME(F ) =

∫ ∞

−∞
F (x) |E(x)|−2 dx < ∞. (4.4)

(i) We have

ME(F ) =
∑

A(ξ)=0

F (ξ)

K(ξ, ξ)
=

∑

B(ξ)=0

F (ξ)

K(ξ, ξ)
. (4.5)

(ii) If β /∈ {ak} ∪ {bk}, then we have

ME(F ) =
∑

Aβ(ξ)=0

F (ξ)
ξ2 + γ2

β

Kβ(ξ, ξ)
=

∑

Bβ(ξ)=0

F (ξ)
ξ2 + γ2

β

Kβ(ξ, ξ)
. (4.6)

Proof of (i). By [7, Lemma 14] (this is the corresponding version of Krein’s decomposition [1, p. 154] for

the de Branges space H(E)) we can write F (z) = U(z)U∗(z) where U ∈ H(E). Part (i) then follows from

the orthogonal basis given by [2, Theorem 22]

ME(F ) =

∫ ∞

−∞
|U(x)|2 |E(x)|−2 dx =

∑

A(ξ)=0

|U(ξ)|2
K(ξ, ξ)

=
∑

A(ξ)=0

F (ξ)

K(ξ, ξ)
.

A similar representation holds at the zeros of B. �

Proof of (ii). We now consider Fβ(z) := F (z)(z2 +γ2
β). This is also an entire function of exponential type at

most 2τ(E) which is nonnegative on the real axis. Since |Eβ(x)|2 = |E(x)|2(x2 + γ2
β) we see from (4.4) that

ME(F ) = MEβ
(Fβ) < ∞. We then write Fβ(z) = Uβ(z)U∗

β(z) with Uβ ∈ H(Eβ) and thus, by [2, Theorem
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22], we have

ME(F ) = MEβ
(Fβ) =

∫ ∞

−∞
|Uβ(x)|2 |Eβ(x)|−2 dx =

∑

Aβ(ξ)=0

|Uβ(ξ)|2
Kβ(ξ, ξ)

=
∑

Aβ(ξ)=0

F (ξ)
ξ2 + γ2

β

Kβ(ξ, ξ)
.

A similar representation holds at the zeros of Bβ . This completes the proof of the lemma. �

4.2. Proof of Theorem 5. This proof is divided in three distinct qualitative regimes.

4.2.1. Case 1: Assume β /∈ {ak} ∪ {bk} ∪ (0, a1). Since Eβ is a Hermite-Biehler function of bounded type

(property (P1)), the functions Aβ and Bβ belong to the Laguerre-Pólya class (this follows from [2, Problem

34] or [7, Lemma 13]), i.e. they are uniform limits (in compacts) of polynomials with only real zeros.

Moreover, from property (P3) we have that A2
β and B2

β are even functions.

We consider now the case bk < β < ak+1 (k ≥ 1), in which the nodes of interpolation are the zeros of Aβ

(the proof in the case ak < β < bk proceeds along similar lines, using the zeros of Bβ as interpolation nodes).

Since A2
β is an even Laguerre-Pólya function with A2

β(β) = 0 and at least two other zeros, counted with

multiplicity, lie in the interval [0, β) (by Lemma 15 (iii)), the hypotheses of [30, Theorem 3.14] are fulfilled.

Hence there exists a pair of real entire functions G±
β such that

G−
β (x) ≤ χ[−β,β](x) ≤ G+

β (x)

for all x ∈ R, with

G±
β (ξ) = χ[−β,β](ξ) (4.7)

for all ξ 6= ±β such that Aβ(ξ) = 0, and

G+
β (±β) = 1 and G−

β (±β) = 0. (4.8)

Moreover, the functions G±
β satisfy the estimate

∣∣G±
β (z)

∣∣≪
|A2

β(z)|
1 + |Re (z)|4

for all z ∈ C. This shows, in particular, that the functions G±
β have exponential type at most 2τ(E) and

that ME(G±
β ) < ∞.

We show next that these functions are extremal. First we consider the case of the majorant. Let R+
β be

an entire function of exponential type at most 2τ(E) such that

R+
β (x) ≥ χ[−β,β](x)

for all x ∈ R. From (4.6) we obtain

ME(R+
β ) =

∑

Aβ(ξ)=0

R+
β (ξ)

ξ2 + γ2
β

Kβ(ξ, ξ)
≥

∑

Aβ(ξ)=0

|ξ|≤β

ξ2 + γ2
β

Kβ(ξ, ξ)
,

and, by (4.7) and (4.8), we have equality if R+
β = G+

β . The minorant case follows analogously by writing R−
β

as a difference of two nonnegative functions, e.g. writing R−
β = G+

β − (G+
β − R−

β ), and apply (4.6) to each

nonnegative function separately.

4.2.2. Case 2: Assume β ∈ {ak} ∪ {bk}. This case follows from the work of Holt and Vaaler [26, Theorem

15]. In this paper they construct extremal majorants and minorants for sgn(x − β) that interpolate this
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function at the zeros of A (if β ∈ {ak}) or of B (if β ∈ {bk}). If we use that

1
2

{
sgn(x + β) + sgn(−x + β)

}
= χ[−β,β](x),

the Holt-Vaaler construction gives us majorants and minorants for χ[−β,β] that interpolate this function at

the right nodes (the zeros of A or B). The optimality now follows from (4.5) as in the previous case. We

note that this is the analogous of the Beurling-Selberg construction for the Paley-Wiener case.

4.2.3. Case 3: Assume β ∈ (0, a1). A special case of this result was shown in [14, Lemma 10] using an

explicit Fourier expansion and the Cauchy-Schwarz inequality. We prove first that the zero function is an

optimal minorant. We start by noticing, from (4.2), that the smallest positive zero of Bβ is greater than

a1, since both A and B are positive in (0, a1). Since the zeros of Aβ and Bβ are simple and interlace, and

since Aβ(β) = 0, we conclude that β is the only zero of Aβ in the interval (0, a1). Since the zero function

interpolates χ[−β,β] at all the zeros of A (or Aβ), it must be an extremal function from the quadrature

formula (4.5) (or (4.6)).

To find an extremal majorant, define the entire function Qβ by

Qβ(z) = Cβ
Aβ(z)

(β2 − z2)
, (4.9)

where Cβ is a constant chosen so that Qβ(±β) = 1. Note that Qβ is an even Laguerre-Pólya function, with

no zeros in [−β, β]. We claim that Qβ is monotone in the intervals [−β, 0] and [0, β]. To see this, let ±xβ

be the smallest zeros (in absolute value) of Qβ (recall that these zeros are simple). We can then regard Qβ

as a uniform limit in [−xβ , xβ ] of even polynomials Pk with only real and simple zeros. We can choose the

smallest zeros (in absolute value) of Pk to be ±xβ . Therefore, P ′
k has only one simple zero in [−xβ , xβ ],

which must be at the origin since Pk is even. Since P ′
k(x) → Q′

β(x) uniformly in [−xβ , xβ ], we see that Q′
β

has only one zero in the interval [−xβ , xβ ], which must be at the origin. This implies that |Qβ | is monotone

increasing in [−xβ , 0] and monotone decreasing in [0, xβ ]. In particular, we have

Q2
β(x) ≥ χ[−β,β](x)

for all x ∈ R, and this is our desired majorant of exponential type at most 2τ(E). The optimality now

follows from (4.6) since Q2
β interpolates χ[−β,β] at the zeros of Aβ . This concludes the proof.

4.3. Proof of Corollary 6. In the proof of Theorem 5 we constructed extremal functions R±
β that interpo-

late χ[−β,β] at the nodes of a certain quadrature (either A, B, Aβ or Bβ). The quadrature is chosen in a way

to have ±β as nodes of interpolation. At these points we have R+
β (±β) = 1 and R−

β (±β) = 0. Therefore,

the difference R := R+
β − R−

β is a majorant of the two-delta function χ{±β} that interpolates χ{±β} at the

nodes of the same quadrature. Optimality then follows from Lemma 16.

5. Small gaps between the zeros of ζ(s)

The goal of this section is to prove Theorem 7. Our proof relies on the following estimate for Montgomery’s

function F (α) = F (α, T ) defined in (2.5).

Lemma 17. Assume RH and let A > 1 be fixed. Then, as T → ∞, we have
∫ ξ

1

(
ξ − α

)
F (α) dα ≥ ξ2

2
− ξ +

1

3
+ o(1)

uniformly for 1 ≤ ξ ≤ A.
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Proof. This inequality is implicit in the work of Goldston [20, Section 7], but we sketch a proof for com-

pleteness. We use (2.6), (2.7), and the Fourier transform pair

Rξ(x) =

(
sinπξx

πξx

)2
and R̂ξ(α) =

1

ξ2
max

(
ξ−|α|, 0

)
.

Observe that

1 + o(1) ≤ 2π

T log T
N∗(T )

≤ 2π

T log T

∑

0<γ,γ′≤T

Rξ

(
(γ′−γ)

log T

2π

)
w(γ′−γ)

=

∫ ξ

−ξ

R̂ξ(α)F (α) dα,

(5.1)

where the last step follows from the convolution formula in (2.6). Using the fact the the integrand is even

and applying (2.7), it follows that
∫ ξ

−ξ

R̂ξ(α)F (α) dα =
1

ξ
+

2

ξ2

∫ 1

0

(
ξ−α

)
α dα +

2

ξ2

∫ ξ

1

(
ξ−α

)
F (α) dα + o(1)

=
2

ξ
− 2

3ξ2
+

2

ξ2

∫ ξ

1

(
ξ−α

)
F (α) dα + o(1)

uniformly for 1 ≤ ξ ≤ A. Inserting this estimate into (5.1) and rearranging terms, the lemma follows. �

5.1. Proof of Theorem 7. We modify an argument of Goldston, Gonek, Özlük and Snyder in [23] which

relied on the Fourier transform pair

G(x) =

(
sinπx

πx

)2(
1

1−x2

)

and

Ĝ(α) =

{
1 − |α| + sin 2π|α|

2π , if |α| ≤ 1,

0, if |α| > 1.

Note that G(x) is a minorant for χ[−1,1] with (nonnegative) Fourier transform supported in [−1, 1]. Therefore,

G(x/β) is a minorant for χ[−β,β], and it follows from (2.6) that

N∗(T ) + 2N(T, β) ≥
∑

0<γ,γ′≤T

G

(
(γ′−γ)

log T

2πβ

)
w(γ′−γ)

=

(
T

2π
log T

)∫ 1/β

−1/β

βĜ(βα)F (α) dα.

Using (2.7), the assumption in (1.11), and the fact that the integrand is even we have

N(T, β) ≥
(

1

2
+ o(1)

)
T

2π
log T

(
β − 1 + 2β

∫ 1

0

Ĝ(βα)α dα + 2β

∫ 1/β

1

Ĝ(βα)F (α) dα

)
. (5.2)

Since Ĝ(α) ≥ 0 for all α, Goldston, Gonek, Özlük and Snyder observed that

N(T, β) ≥
(

1

2
+ o(1)

)
T

2π
log T

(
β − 1 + 2β

∫ 1

0

Ĝ(βα)α dα

)
,

28



and then used a numerical calculation to show that N(T, 0.607286) ≫ N(T ) under the assumptions of

Theorem 7. In order to improve their result, we use Lemma 17 to derive a lower bound for the second

integral on the right-hand side of (5.2).

Following Goldston [20], we define the function

I(ξ) =

∫ ξ

1

(ξ−α)F (α) dα

and we observe that

I ′(ξ) =

∫ ξ

1

F (α) dα and I ′′(ξ) = F (ξ).

Note that Lemma 17 provides a nontrivial lower bound for I(ξ) so long as ξ ≥ 1 + 1/
√

3. Integrating by

parts twice, it follows that
∫ 1/β

1

Ĝ(βα)F (α) dα =

∫ 1/β

1

Ĝ(βα)I ′′(α) dα = β2

∫ 1/β

1

Ĝ′′(βα)I(α) dα. (5.3)

By definition, for α ≥ 0, we have Ĝ′′(βα) = −2πβ2 sin(2πβα) which is non-negative for 1 ≤ α ≤ 1/β if

1/2 ≤ β ≤ 1. Therefore (5.3) and Lemma 17 imply that

∫ 1/β

1

Ĝ(βα)F (α) dα ≥ −2πβ2

∫ 1/β

1+1/
√
3

sin(2πβα)

(
α2

2
−α+

1

3
+o(1)

)
dα

for 1/2 ≤ β ≤ 1. Inserting this estimate into (5.2), it follows that

N(T, β) ≥
(

1

2
+o(1)

)
T

2π
log T

(
β−1+2β

∫ 1

0

Ĝ(βα)α dα− 4πβ3

∫ 1/β

1+1/
√
3

sin(2πβα)

(
α2

2
−α+

1

3

)
dα

)
.

A straightforward numerical calculation shows that the right-hand side is positive if β ≥ 0.606894.

6. q-analogues of Theorem 1 and Theorem 2

As was suggested in Montgomery’s original paper [32], it is interesting to study the pair correlation of

zeros of the family of Dirichlet L-functions in q-aspect. Montgomery had in mind improving the analogue

of (2.7) for this family of L-functions (see [8, 37]), and so it is not surprising that the analogue of Theorems

1 and 2 can also be improved. In this section, we indicate such an improvement. In order to state this

result, we need to introduce some notation. All sums over the zeros of Dirichlet L-functions are counted

with multiplicity and ε denotes an arbitrarily small positive constant that may vary from line to line.

Let W be a smooth function, compactly supported in (1, 2). Let Φ be a function which is real and

compactly supported in (a, b) with 0 < a < b. As usual, define its Mellin transform Φ̃ by

Φ̃(s) =

∫ ∞

0

Φ(x)xs−1 dx.

Suppose that Φ(x) = Φ(x−1) for all x ∈ R \ {0} , Φ̃(it) ≥ 0 for all t ∈ R, and that Φ̃(it) ≪ |t|−2. For

example, we may choose

Φ̃(s) =

(
es−e−s

2s

)2
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so that Φ̃(it) = (sin t/t)2 ≥ 0 and the function

Φ(x) =





1
2 − 1

4 log x, for 1 ≤ x ≤ e2,

1
2 + 1

4 log x, for e−2 ≤ x ≤ 1,

0, otherwise,

is real and compactly supported in (a, b) for some a, b > 0. We define the q-analogue of N(T, β) as

NΦ(Q, β) :=
∑

q

W (q/Q)

ϕ(q)

∑⋆

χ (mod q)





∑

γχ,γ
′

χ

0<γχ−γ′

χ≤ 2πβ
log Q

Φ̃(iγχ)Φ̃(iγ′
χ)





.

Here the superscript ⋆ indicates the sum is restricted to primitive characters χ (mod q), and the inner sum

on the right-hand side runs over two sets of nontrivial zeros of the Dirichlet L-function L(s, χ) with ordinates

γχ and γ′
χ, respectively. Similarly, we define the q-analogues of N(T ) and N∗(T ) by

NΦ(Q) :=
∑

q

W (q/Q)

ϕ(q)

∑⋆

χ (mod q)

∑

γχ

|Φ̃(iγχ)|2

and

N∗
Φ(Q) :=

∑

q

W (q/Q)

ϕ(q)

∑⋆

χ (mod q)

∑

γχ

|Φ̃(iγχ)|2 mγχ
,

respectively. Here the superscript ⋆ is as above, and mγχ
denotes the multiplicity of a zero of L(s, χ) with

ordinate γχ. Since it is generally believed that the zeros of primitive Dirichlet L-functions are all simple, we

expect that N∗
Φ(Q) = NΦ(Q) for all Q > 0. Moreover, analogous to (1.3), we expect that

NΦ(Q, β) ∼ NΦ(Q)

{
β − 1

2
+

1

2π2β
+ O

( 1

β2

)}

as β → ∞ sufficiently slowly (when Q is large). In support of this, we prove the following stronger version

of Theorems 1 and 2 for the zeros of primitive Dirichlet L-functions.

Theorem 18. Assume the generalized Riemann hypothesis for Dirichlet L-functions, and let ε > 0 be

arbitrary. Then, for any β > 0, we have

lim sup
Q→∞

NΦ(Q, β)

NΦ(Q)
≤ β − 1

4
+ ε +

1

2π2β
+ O

(
1

β2

)
.

If, in addition, N∗
Φ(Q) ∼ NΦ(Q) as Q → ∞, then we also have

lim inf
Q→∞

NΦ(Q, β)

NΦ(Q)
≥ β − 3

4
− ε +

1

2π2β
+ O

(
1

β2

)
.

Define the q-analogue of Montgomery’s function F (α) by

FΦ(α) := FΦ(α,Q) =
1

NΦ(Q)

∑

q

W (q/Q)

ϕ(q)

∑⋆

χ (mod q)

∣∣∣∣∣∣
∑

γχ

Φ̃ (iγχ)Qiαγχ

∣∣∣∣∣∣

2

.

Modifying the asymptotic large sieve technique in [13], Chandee, Lee, Liu and Radziwi l l have evaluated

FΦ(α) when |α| < 2.
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Lemma 19. (cf. [8, Theorem 2]) Assume the generalized Riemann hypothesis for Dirichlet L-functions.

Then, for any ε > 0, the estimate

FΦ(α) =
(
1 + o(1)

)
(
f(α) + Φ

(
Q−|α|)2 logQ

(
1

2π

∫ ∞

−∞

∣∣∣Φ̃(it)
∣∣∣
2

dt

)−1
)

+ O
(

Φ
(
Q−|α|)√f(α) logQ

)

holds uniformly for |α| ≤ 2 − ε as Q → ∞, where f(α) :=




|α|, for |α| ≤ 1,

1, for |α| > 1.

6.1. Proof of Theorem 18. The key ingredients are Lemma 19 and the convolution identity

1

NΦ(Q)

∑

q

W (q/Q)

ϕ(q)

∑⋆

χ (mod q)

∑

γχ,γ′

χ

R

(
(γχ−γ′

χ) logQ

2π

)
Φ̃(iγχ)Φ̃(iγ′

χ) =

∫ ∞

−∞
FΦ(α) R̂(α) dα ,

which holds for any admissible function R. To obtain the bounds for NΦ(Q, β) in Theorem 18, we again use

the functions

s±∆,β(x) = r±∆β(∆x).

As stated in §2.4, these functions are a majorant and a minorant of χ[−β,β] of exponential type 2π∆, and

thus with Fourier transform supported in [−∆,∆]. Using arguments similar to those in §2.3, for any fixed

β > 0, we deduce that

lim sup
Q→∞

NΦ(Q, β)

NΦ(Q)
≤ 1

2
M(s+∆,β)

and, if N∗
Φ(Q) ∼ NΦ(Q) as Q → ∞, that

lim inf
Q→∞

NΦ(Q, β)

NΦ(Q)
≥ 1

2
M(s−∆,β).

Theorem 18 follows from these estimates by using (2.24) with ∆ = 2 − ε.

Appendix A

Here we prove the following result that was left open in the introduction.

Proposition 20. The entire function E(z) defined in (1.26) satisfies properties (1.22) and (1.27).

Proof. We start by observing that K(w, z) defined by Theorem 3 verifies the following properties:

(i) K(w,w) > 0 for all w ∈ C. In fact, if we had K(w,w) = 0 for some w ∈ C, this would imply that

f(w) = 0 for every f ∈ H. This is a contradiction.

(ii) K(w, z) = K(w, z) for all w, z,∈ C. This is a direct verification.

(iii) K(w, z) = K(z, w). This follows from the reproducing kernel property:

K(w, z) = 〈K(w, ·),K(z, ·)〉H = 〈K(z, ·),K(w, ·)〉H = K(z, w).

Whenever f ∈ H has a nonreal zero w, the function z 7→ f(z)(z−w)/(z−w) belongs to H and has the same

norm as f . From the first part of the proof of [2, Theorem 23] we have that L(w, z) = 2πi(w − z)K(w, z)

satisfies the identity

L(w, z) =
L(α, z)L(w,α)

L(α, α)
+

L(α, z)L(w,α)

L(α, α)
(6.1)
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for all nonreal α and w, z ∈ C. From property (ii) above and the fact that K(α, α) is real, we get that

L(α, α) = −L(α, α). (6.2)

Taking w = z in (6.1), and using (6.2) and properties (ii) and (iii) above, we get

L(z, z) =
|L(α, z)|2
L(α, α)

− |L(α, z)|2
L(α, α)

. (6.3)

If we consider any α ∈ C
+, we have L(α, α) > 0, and we can define the entire function (of the variable z)

E(α, z) :=
L(α, z)

L(α, α)
1
2

.

From (6.3) and property (i) we find

|E(α, z)|2 − |E(α, z)|2 = L(z, z) = 2π Im (z)K(z, z) > 0

for all z ∈ C
+. This is the Hermite-Biehler property. The identity

L(w, z) = E(α, z)E(α,w) − E(α, z)E(α,w)

is equivalent to (6.1). In our particular case, we simply choose α = i. �
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[37] A. E. Özük, On the q-analogue of the pair correlation conjecture, J. Number Theory 59 (1996), no. 2, 319–351.

[38] Z. Rudnick and P. Sarnak, Principal L-functions and Random Matrix Theory, Duke Math. J. 81, 2 (1996), 269–322.

[39] A. Selberg, with a foreword by K. Chandrasekharan, Lectures of sieves, Collected papers, Vol. II (Springer, Berlin, 1991).

[40] J. D. Vaaler, Some extremal functions in Fourier analysis, Bull. Amer. Math. Soc. 12 (1985), 183–215.
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