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HILBERT SPACES RELATED TO HARMONIC FUNCTIONS
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(Received December 26, 1994, revised May 31, 1995)

Abstract. We construct a Hubert space with a reproducing kernel by using a
measure which is not positive. The space is unitarily isomorphic to a Hubert space on
the spherical sphere under the Fourier transformation. Then we study Poisson transform
of Sobolev space on the ^-dimensional unit sphere.

Introduction. In the study of harmonic functions on the Euclidean space Rn+1,

the complex light cone M={zeCn+1 \z2 = z\ + z\+ - - +zl+1=ϋ) plays an important

role. Let

M={z = x + iyeM; ||x|| = l/2}

be the spherical sphere, where ||x|| is the Euclidean norm.

We define the Fourier transformation $F on L2(M) by

J M

= f(z) exp(z x)dM(z),
M

where dM is the normalized O(n+ l)-invariant measure on M.

We denote by s/A(Rn + ί) the space of harmonic functions on Rn+ί. We define a

sesquilinear form ( , ) Λ n + i b y

jR

f(χ)g(χ)dμ(χ),

where the measure dμ is constructed by means of the function pn which is introduced

in Ii [2] and Wada [7]. Note that dμ is not a positive measure.

In this paper, we assume n > 2 and we shall show that the sesquilinear form ( , )Rn+1

is a non-degenerate inner product on

although the measure dμ is not positive and that (L2stfA(Rn + 1), ( , )Rn+ι) is a Hubert

space with a reproducing kernel. Then we construct the reproducing kernel concretely.

We denote by Θ{M[\~\) the space of holomorphic functions in a neighborhood of

Af [1] = {z = x + iyeM; \\x\\ < 1/2} and by L2Θ(M) the closure of 0(Af [1]) in L\M\ The

second aim of this paper is to show that L2Θ(M) is unitarily isomorphic to L2^A(Rn+1)
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under the Fourier transformation 3F. The outline of the above results was announced

in [1].

Let S=Sn be the π-dimensional unit sphere. We know that the Poisson

transformation 0>M maps L2(S) into L2Θ(M). In the last section, we shall determine the

image of L2(S) under 0>M as a "Hardy-Sobolev" space. This result describes a result of

Lebeau [3] more precisely.

The author would like to thank Professor Mitsuo Morimoto of Sophia University

for useful advice.

1. A Hubert space of harmonic functions. We denote by &%(Rn+1) the space of

λ>homogeneous harmonic polynomials on Rn + 1 and by N(k,ri) the dimension of
1). We know

The following lemma is known:

LEMMA 1.1. Let fke0>£(Rn +1)andgιe0>l(Rn+ x\lfkφl, then

fk(ω)gι(ω)dS(ω) = 0 .
s

We denote by s/A(Rn + 1) the space of harmonic functions on Rn+1 equipped with

the topology of uniform convergence on compact sets. Let Pkttt(t) be the Legendre

polynomial of degree k and of dimension n + 1. Define the ^-homogeneous harmonic

component fk of fejrfA{Rn+1) by

ί
Js

(1) Mx) = N(k, ή){^2f ί f{τ)PkI^= τ W ) , xeRn

where x*y = x1y1+x2y2+ ''' +χ

n + iyn+i a n c * dS is the normalized O(« + l)-invariant
measure on S. Then, the following lemma is also known:

LEMMA 1.2. Let fes/A(Rn + 1) andfk the k-homogeneous harmonic component off

defined by (1). Then the expansion ΣΓ=o A converges to f in the topology of <z/A(Rn + 1).

We denote the modified Bessel function by

exp( —r cosh/) cosh vtdt, veR, 0 < r < o o .Kv(r)= Γ
JoJo

Ii [2] and Wada [7] introduced the function

Σ anirl + 1Kι(r) 9 if Λ is odd ,

nil

Σ anlr
ι+1/2Kι_1/2(r), if n is even ,
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where the constants anh /=0, 1, 2 , . . . , [«/2], are defined uniquely by

(2)

(see [7, Lemma 2.2]). Note that pn(r) is not positive but there is Rn>0 such that ρn(r)>0

for r>Rn. The function pπ is estimated as follows:

( 3 ) Upn(r)\<«sfrP{n-i)/2(r)exp(-ή, if n is odd,

1 PKM = Λ/2W exp( - r), if « is even ,

where Pin-ίy2(r) and Pπ/2(r) are polynomials of degree 0/2] (see [7, p. 429]).

We define a measure dμ on /fn + 1 by

ί
J Rn+ι

and a sesquilinear form ( , ) r + i b y

f(x)dμ(x)= Γ ί f(rω)dS(ω)rn-ίpn(ήdr
O JS

f(x)g(x)dμ(x).

Although pn(r) is not positive, the sesquilinear form ( , )R n + i is an inner product on

by the following proposition:

PROPOSITION 1.3. Let f = Σfke^A(Rn + x). Then

00

(/> f)κn+1= Σ (Λ» fk)κn+ί

= Σ c{Kn)\

5/βfeΛ1 are infinite or both sides are finite and equal.

PROOF. For R>0 we put CR(k, ή)-=^r2k+n~ιpn(r)dr and

JB(R)

where J?(^) = { X G / ? Π + 1 ||x|| <Λ}. Since p n(r)>0 for r>i? n , /(i?) is monotone increasing

for R>RH.md (/,/)R»+i=limΛ_>00/(JR). By Lemmas 1.2 and 1.1,

Choose sufficiently large R>Rn so that CR(/c, n)>0, fc = O, 1, 2 , . . . , and take the limit.
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Then by Fatou's lemma we have

lim f CR(k, n)/C(k, n)(fk, fk)Rn^ = £ (fk, fk)Rn+, .
Λ->αofc = θ fc = O

q.e.d.

LEMMA 1

PROOF.

Since N(k, rc)f

1 /

1/

.4.

By

(x)

Let feL2jtfA(Rn+ί ). Then we have

I f(x) | <v/Γ((/i+ l)/2)exp(||x||/2)||/||RM+, .

Lemma 1.2, fesrfA(Rn + 1) can be expanded as follows:

f(x)~ Σ N(Kn)\\x\\k \ fk(c
k = 0 Js

kn(ω - x/\\x\\))2dS(ω)= 1, we

< f N(k,n)\\x\\k[
fc = o Js

fk(ω)P,

00 /

< Σ 11*11 kjN{k, n)/C(k, n)
fe = O \

0 0

fc = O

0 0

<VΓ((«+l)/2)||/||Rn+1^o

( x

° \ 11*11
lave

( X -co)
Λ M )

dSiω)

r \i/2

C(fc,n)J |Λ(ω)|2dS(ω)J

/C(k, ri)

\\x\\kl(k\2k)

q.e.d.

THEOREM 1.5. (L2jtfA(Rn + 1), ( , )Rn+ι) is a Hilbert space.

PROOF. We have only to prove the completeness of the pre-Hilbert space

L2stfA(Rn + 1). Let {fN} be a Cauchy sequence in L2s/A(Rn+1). Then by Lemma 1.4 and

the Poisson integral formula, {fN} converges uniformly on every compact set to a

function fe^A(Rn + 1). Choose sufficiently large R>Rn so that

(4) CR(hn)>0, fc = 0 , l , 2 , . . . .

Then divide the integral of \\fN— / | | i»+i into

h{N)=[ \Mx)-
JB(R)

f(x)\2dμ(x)
B(R)

and
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\fN(x)-f(x)\2dμ(x).
l"+ι\B(R)

Since the integral domain of I^N) is compact, | I^N) | < oo. Since pn(r) > 0 for r > R > Rn,

by Fatou's lemma and (4),

I2(N) = f lim inf I fN(x)-fM(x) \2dμ(x)
JRn+i\B(R) M^*>

< lim inf f \Mx)-fM(x)\2dμ(x)
M->CO JRn+l\B(R)

M->oo

Since {fN} is a Cauchy sequence, I2(N) tends to 0 as TV-xx). Therefore, | | / | | Λ n+i<

ll/-/NllR-i + II/NIIII»+I<OO and | |/-/w | |β»+ i = /1(iV) + /2(Λ0 tends to 0 as tf->αo.

q.e.d.

COROLLARY 1.6. Let feL2<srf±(Rn+1) and fk the k-homogeneous harmonic com-

ponent off defined by (1). Then the expansion X^°=0Λ converges to f in the topology of

zΛ/Δ(/r+1).
From this corollary, Proposition 1.3 and Lemma 1.1, we get the following theorem:

THEOREM 1.7. The Hilbert space L2s/A(Rn + 1) is the direct sum of the spaces

fc = O

2jThe mapping f\-+fk defined by (1) is the orthogonal projection of L2jrfA(Rn + 1) onto

0>έ(Rn+i).

By Lemma 1.4, there is a reproducing kernel on the Hilbert space L2stfA(Rn + 1).

Now, we construct the reproducing kernel on L2stfA(Rn + 1). Put

JAά

Then E^x, y) is real-valued, symmetric and satisfies

Put

z w
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LEMMA 1.8 ([7, Lemma 1.3]).

ί (ζ zf(w ζ)'dM(ζ)= Jkl /Uz,w), z,weC"+1,
JM 2kN{k,ή)yKn

where γk>n is the coefficient of the highest power of the Legendre polynomial Pk,n{t):

yKn = 2kΓ(k+(n+ WVWk, «)Π(n+ \)β)k\).

By this lemma, £Ί(x, y) is expanded as follows:

(5) Et(x, y)=Σ N(k, n)/C(k, ή)PKn(x, V)
k = 0

= Σ r((n+l)/2)/(k}Γ(k + (n+l)/2)22k)Pax, y) •
k = 0

Therefore, there is a constant C such that

for any A>0. Moreover, we have

l|£i( , y)\\in+ί <Γ({n+

where J0(t) is the Bessel function of degree 0.

In particular, E^x, •) and Ex( , y) belong to L2s/A(Rn+1).

THEOREM 1.9. Eγ is the reproducing kernel on the Hilbert space L2jrfA(Rn + 1); that

is, for feL2A?A(Rn + 1) we have

i= ί f(x)E1(y,x)dμ(x), yeRn+ί .
1

PROOF. Since E^y, -)eL2^A{Rn+1), Corollary 1.6, (5), Lemma 1.1 and (2) imply

ί
JR

f(x)E1(y,x)dμ(x)

= Π ί Σ fiirω) Σ N(Kn)/C(Kn)rkPaω,y)dS(ω)rn-1pn(r)dr
Jo Jsi=o *=o

= Γ ^ Σ fk{y)IC{k,n)r™+»-ιpn{r)dr
Jo k = O

= Σfk(y)=f(y).
k = 0

q.e.d.
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2. Complex harmonic functions. We denote by ^ ( C w + 1 ) the space of the

^-homogeneous complex harmonic polynomials; that is, if fe^(Cn + 1), Δ2/(z) =

By definition, 0>£(Cn + *)| „„ +1 = 0ζ(Rn + x). For fk e0$(Rn+ x), the harmonic extension

fk of/k is given by

(6) Λ(z) = N(k, n) fk(τ)PktΛ(z9 τ)dS{τ),
Is

The cross norm L(z) o n C n + 1 corresponding to the Euclidean norm ||x|| is the Lie

norm given by

and the dual Lie norm L*(z) is given by

L\M\\\y\\

The open and the closed Lie balls of radius R with center at 0 are defined by

B(R)={zeCn+1;L(z)<R} , 0<R<oo ,

and by

respectively. Put

M(R) = B(R) n M, M[K\ - B\K\ n M .

We denote by (9(B(R)) (resp. Θ{M(R))) the space of holomorphic functions on B(R) (resp.

M(/?)) equipped with the topology of uniform convergence on compact sets. We call

ΘA(B(R))={feΘ(B(R)); Δz/(z) = 0} , 0<R<oo

the space of complex harmonic functions on B(R).

The following lemmas are known:

LEMMA 2.1. The restriction mapping ocB establishes the following linear topological

isomorphism

where srfA(B(R)) is the space of harmonic functions on B(R) equipped with the topology

of uniform convergence on compact sets.

Moreover, the inverse mapping aB

 1 is given by the Poisson integral &:
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z, ω/p)dS(ω),

0<p<R and

(7) K^w) = -
2 2

( z 2 w z — 2z
w z7ze Poisson kernel.

LEMMA 2.2 (cf. [4]). 77ze restriction mapping aM establishes the following linear

topologίcal isomorphism:

Moreover, the inverse mapping α^ 1 is given by the Cauchy integral Ή:

<€: f^<$f{z)= ί f(pw)K0(z, wlp)dM{w),
JM

where 0<p<R and

1 + 2z - w
(8) K0(z9 w) = — , weM, L(z)L(w) = 2L(z)L*(w)<\

{\—2z w)n

is the Cauchy kernel.

LEMMA 2.3 (cf. [2, Lemma 1.7] and [7, Lemma 1.4]). Let fke0>£{Cn + 1) and

gιe0>l(Cn+ι). Then

I
k(ω)dS(ω),

s

fk(wMw)dM(w) = O,

3. A Hubert space on the spherical sphere. We denote by L2(M) the space of

square integrable functions on M with the inner product

JM

(f> G)M= f(w)g(w)dM(w),
JM

and by gP\M) the space of the ^-homogeneous polynomials on M. Define the

^-homogeneous component fk of feL2(M) by

(9) fk(z) = 2kN(k, ή) f(w)(z wfdM{w), zeM.
JM
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The harmonic extension of fk is given by

k, ή) ί fk(w)(z w)kdM(w), zeCn+1 .
JM

By Lemma 2.3, ^k(M) and g?\M) are mutually orthogonal for kφl.
Let L2Θ{M) be the closed subspace of L\M) generated by 0>\M), k = 0, 1, 2, ... .

Then by definition we have the following lemma:

LEMMA 3.1. Let fe L2Θ(M) and fk the k-homogeneous component off defined by
(9). Then the expansion ΣΓ=o/fc converges to f in the topology of L2Θ(M); that is, we
have the Hubert direct sum decomposition:

L2Θ(M)= 0 0>\M).
fc = O

For any function / on M(l), define the function fx on M by ft(z) = f(tz) for
. If/ε0(M(l)), then fteL2Θ(M).

LEMMA 3.2. IffeL2Θ(M), then there isfeΘ(M(l)) such that limίT x | | / - / Ί I M = 0.
Conversely, if feΘ{M(\)) satisfies s u p 0 < ί < 1 | | / ί | | M < 0 0

?

 tnen / = l i m ί t i / ί belongs
to L2Θ{M).

PROOF. Let f = Yjk = 0fkeL2Θ{M). Define

0(l w)dM(ζ), L(w)<\,)= I f(ζ)R{
JM

then/e Θ(M(\)). Put w = tz for ze Mand 0 < /< 1, then we have f(w) =f\z) = ££°= 0 /fc(/z).

Since ||/-7ΊlAf = Σk°=o(1"ίk)2ll/fcllAf5

 w e h a v e l i m r t I I I / - / Ί I M = 0
 bY Fatou's lemma.

Conversely, assume that / E 0 ( M ( 1 ) ) satisfies s u p 0 < ί < 1 \\ft\\M

<co Expand Jx by
XΓ=o/fe Then by Fatou's lemma, we have

00 00

oo > l i m II fxII w = lim Y \\7'ί\\lr> Y ϋ m II /*tllif= II fWh -
f T 1 i t 1 fe = O fc = O ί ί 1

q.e.d.

From this lemma, we have

L2Θ(M) = {fe(9(M(\)); sup | |/ ί | |M<oo}.
0<ί<l

COROLLARY 3.3. Let feL2Θ{M). Then we have

f(z) = lim<gf(tz) = lim f(w)K0(w, tz)dM(w), zeM,

where the limit is taken in L2(M).
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4. The Fourier transformation. We define the Fourier transform <Ff of fe L2(M)

by

) = f(w) exp(x w)dM(w), xeRn + 1 .
JM

Then by Lemmas 3.1 and 2.3 and (9), for f=YJk = 0fkeL2Θ{M) we have

(10) \/c = o N(k, ή)k\

We call the mapping <F: f\-^> J^/the Fourier transformation.

THEOREM 4.1. The Fourier transformation 3* is a unitary isomorphism of L2Θ(M)

onto ZA<(/r + 1 ) .

PROOF. Let FeL2Θ{M). By Lemmas 3.1 and 2.3 and (10),

Fk(w)Fk(w)dM(w)

N{Kή)k\2k N(k,n)k\2k

Thus & is an isometric mapping of L2Θ(M) into L2^A(Rn+1).

Now, we prove that SF is surjective. Let / = ̂ * = 0 / f c eL 2 ^ A (/? w + 1). Then Pro-

position 1.3 and Lemmas 1.1 and 2.3 imply

oo > ί f(x)J(x)dμ(x)= £ C(k, n) ί fk(ω)Mω)dS(ω)

= f N(k,n)2k\222k ί fk(wWw)dM(w)

= ί ( Σ M/c,n)fc!2fc/fc(

Therefore, /7(w) = ΣΓ=oΛΓ(fc, n)k\2kfk{w) belongs to L2^(M). By (10), ^F(z) = f(z).

q.e.d.

Especially for / E 0 ( M [ 1 ] ) | M C = L 2 0 ( M ) , we have

where

(11) ExpΔ(/T+1; [ l/2])={/ e ^(/f» + 1 ); 35<l/2, 3 O 0 s.t.
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(Cf. [4]).

THEOREM 4.2. 7//eExpΔ(/?n + 1; [1/2]), then

JRΠ+1
(12) j τ - i / ( z ) = Qχp(χ.z)f(x)dμ(x), zeM.

JRΠ+I

PROOF. Because of |exρ(x z)|<exp(||x||/2) for zeM, the integral on the right-
hand side in (12) converges absolutely by (3) and (11), which we denote by F[z). Then
by the Fubini theorem and Theorem 1.9, &rF(x) = f(x). q.e.d.

For /(x)eZAs/Δ(/r + 1) and 0 < ί < l , f\x) = f{tx) e ExpΔ(/T + 1, [1/2]) and
lim f t 11|/—J%\\Rn+1 = 0. Therefore, we have the following corollary:

COROLLARY 4.3. Let feL2^(Rn + 1). Then

&~γf(z) = lim exp(x z)f(tx)dμ(x), zeM,

tuJRn+ι

where the limit is taken in L2(M).

THEOREM 4.4. Let / e L V Δ ( i ? " + 1 ) . Then
exp(x z)f(x)dμ(x), zeM ,f

where the limit is taken in L2(M).

PROOF. Let feL2<o/A(Rn + 1) and fk the ^-homogeneous harmonic component of
/Put

fR(z) = exp(x z)f(x)dμ{x), zeM,

- J .fR{z) = exp(x z)fk(x)dμ(x), zeM .

Then by using the Fubini theorem and Lemmas 1.8 and 2.3, we have

Γ Γ
R(w) = exp(x z)fk{x)dμ(x) exp(w z)dM(z), x = rω ,

J M J β(R)

= CΛ(/c, n) ±—^- fk(ω)dS(ω) exp(w z)dM(z)
JMJS k\

_ CR(k,ή)

C(k,n)

By the uniform convergence of X™=0/t on β[/?] = {xe/?"+1; ||x|| </?}, we have
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» = Σ CR(k, n)/C(k, n)fk{w).
k = O

By Proposition 1.3,

lim \\f-&f*\\l..i=]im Σ (l-CR(k,n)/C(k,n))2\\fk\\2

Rn+ί = 0 .
R-*co R-*co fc = 0

Since 3F is a unitary isomorphism, &r~1f=\imR^aof
R in L2(M). q.e.d.

5. The Poisson transformation. Let L2(S) be the space of square integrable

functions on S with respect to the inner product

f>9)s= .(f,g)s=\ f(ω)g(ω)dS(ω).
Js

We call Jtrk(S) = {P\s; Pe^(Cn + 1)} the space of fc-spherical harmonics. For feL2(S),

the A -spherical harmonic component fk of / is defined by

(13) fk(ω) = N(k, n) ί f{τ)PKn{ω τ)dS(τ).
Js

Note that (13) is the restriction of (1) on S and the harmonic extension of fke34?k(S)

is given by (6). The following lemmas are known:

LEMMA 5.1. Let fe L2(S) and fk be the k-spherical harmonic component of f defined

by (13). Then the expansion Σk = ofk converges to f in the topology of L2(S); that is, we

have the Hilbert direct sum decomposition:

00

LEMMA 5.2. Let feL2(S). Then we have

f(ω) = lim ^f(tω) = lim f(η)Kx(η, tω)dS(η), ω e S ,

where the limit is taken in L2(S).

Put | | / | | | = (/,/) s. By Lemma 2.3, for fke&k(Cn+1) we have

Thus for / = Σ / k , fkeJ^\S) we have

where fk is the harmonic extension of fk.
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Since

(15) 2k/γktΛ-

^f(tz) converges in L2Θ(M) as t] 1. Therefore, we can define the Poisson transform

9Mf of feL\S) by

M f T i J 5

where the limit is taken in L2(M). We call the mapping 0>M: / \-+ £PMf the Poisson

transformation.

To determine the image of 0>M more exactly, we introduce the following spaces.

Let />0 and let Δ s be the Laplace-Beltrami operator on S. Considering

Aι

sfk= {-k(k + n- \)}% for fkeJtr\S)9 we define the Sobolev space on S by

Hι(S) = ίfeL2(S);

where fk is the λ:-spherical harmonic component of/ defined by (13). We denote the

norm on H\S) by || | |H, (S).

Similarly, we define the "Hardy-Sobolev" space on M by

HιG(M) = \feL2Θ(M)\ Σ (1+^2)ΊIΛIIM<OO i ,

where fk is the ̂ -homogeneous component of / defined by (9). We denote the norm

on HιO(M) by || \\Hιem. Note that H°(S) = L2(S) and H°Θ(M) = L2Θ{M).

Because of (14) and (15), for feL\S) we have

00
/ 1 f^\ II (JΆ •f('7\ II 2 1iτn > / 2kf i _ι_ 7^. 2\{n l)/4 [| -p \\ 2
V / II M.J V / II H^n ~ ^^^O(Aί) — m i l / Λ i 11 ι~ /v i II y fc IIM

ί ί 1 k = 0

00

= lim Σ t2kyk

Thus

^ M : L2(S)^Hin-r

Since | |Λl l i = llαβo(^ΛIIs m (16), we can define the Cauchy transform ^sg of

) = lim ίVsg(ω) = lim ί φ)K0(tω, z)dM(z), ω e S,

where the limit is taken in L2(S). We call the mapping %: g \-> ̂ sg the Cauchy

transformation.



162 K. FUJITA

PROPOSITION 5.3. Let />0. Then the Poisson transformation 0>M establishes the

following linear topological isomorphism:

0>M: H\S)-^ Hι + i"-ί)/4Θ(M).

Moreover, the inverse mapping of &M is given by %>s; that is, 0*^ = <&s-

PROOF. Let feH\S). By the same argument as above, &Mf belongs to

Hι + {"-1)/4Θ{M)czH(n-1)/4Θ(M). Thus we can consider ^ S ° ^ M / By (7), (8), Lemma 5.2

and the Fubini theorem, we have

feH\S).

Therefore ^ s o ^ M = ίd and @>M is injective.

Let geHι + {n~1)/4Θ(M). By the same argument as above, <gsg belongs to

Hι(S)^L2(S). Thus we can consider ^Mo^sg. By (7), (8), Corollary 3.3 and the Fubini

theorem, we have

Therefore 0>M is surjective.

The continuities of £PM and 0>ΰx are clear. q.e.d.

" + 1), we have

) 0, x = rω, ωeS.
rz r or r1

Thus Δ£Λ = Σ k % { - * ( * + *-1)}'Λ for fke^(Rn+1). Put

Hι^A(Rn+1) = {fe^A(R»+1) ((1 + As)
ιf, (1 + As)

ιf)Rn+ι < cx>} ,

then we have the following linear topological isomorphism:

&: HιΘ(M) ^ > HιjtfA(Rn+1).
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