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Abstract

The Hilbert transform is a widely used transform in signal processing. In this
thesis we explore its use for three different applications: electrocardiography, the
Hilbert-Huang transform and modulation. For electrocardiography, we examine
how and why the Hilbert transform can be used for QRS complex detection.
Also, what are the advantages and limitations of this method? The Hilbert-
Huang transform is a very popular method for spectral analysis for nonlinear
and/or nonstationary processes. We examine its connection with the Hilbert
transform and show limitations of the method. Lastly, the connection between
the Hilbert transform and single-sideband modulation is investigated.

URL for electronic version:
http://liu.diva-portal.org/smash/record.jsf?pid=diva2:872439
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Introduction

The Hilbert transform is one of the most important operators in the field of
signal theory. Given some function u(t), its Hilbert transform, denoted by
H(u(t)), is calculated through the integral

H(u(t)) = lim
ǫ→0

1

π

∫

|s−t|>ǫ

u(s)

t− s
ds.

The Hilbert transform is named after David Hilbert (1862-1943). Its first use
dates back to 1905 in Hilbert’s work concerning analytical functions in connec-
tion to the Riemann problem. In 1928 it was proved by Marcel Riesz (1886-1969)
that the Hilbert transform is a bounded linear operator on Lp(R) for 1 < p <∞.
This result was generalized for the Hilbert transform in several dimensions (and
singular integral operators in general) by Antoni Zygmund (1900-1992) and Al-
berto Calderón (1920-1998).

Mainly, the importance of the transform is due to its property to extend real
functions into analytic functions. This property certainly induces a vast number
of applications, especially in signal theory, and obviously the Hilbert transform
is not merely of interest for mathematicians.

This thesis revolves around an aim that is twofold:

(i) To acquire more knowledge about the Hilbert transform and some of its
applications to signal processing.

(ii) To better understand why some important applications related to the
Hilbert transform, to this day, lack mathematical theory.

The thesis consists of two major parts. In the first part mathematical theory
of the Hilbert transform is included. These results are well-known but included
to provide a steady ground. In the second part, we consider three different ap-
plications of the Hilbert transform. The applications that has been considered
are: a) Electrocardiography, b) Hilbert-Huang transform and c) modulation.
The first two applications nowadays lacks mathematical theory despite numer-
ous efforts. Thus, in this thesis, computer experiments have been carried out in
order to deduce limitations of these methods and also pave the way for future
resarch in these areas.

(a) Electrocardiography: The Hilbert transform is a widely used tool in inter-
preting electrocardiograms (ECGs). In Figure 1 we can see a part of an
ECG-signal, ECG(t). A common task when dealing with ECG-signals is to
extract the so called QRS complex which is the high peak seen in the graph
of ECG(t) (see Figure 1). In this thesis we thoroughly explore a method
of detecting the QRS complex in a ECG signal, as suggested by [2]. This
method is very attractive since we are only required to calculate the Hilbert
transform and no numerical derivation is involved.
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With the Hilbert transform it is possible to expand a real valued signal
into a so called analytic signal.

Figure 1: A plot of ECG(t), representing a part of an ECG-signal.

z(t) = ECG(t) + i · H(ECG(t))

A parametric plot of z(t), that is, a plot of ECG(t) against H(ECG(t))
reveals interesting things about the ECG(t). Looking at Figure 2, we see
that a main loop enclosing the origin is generated. In the thesis, we have
shown that if the QRS complex is high enough, it will always produce a
closed loop around the origin in the complex plane, distinguishable from
the rest of the graph. Also, we have justified this using the fact that the
QRS complex resembles a deformed sine wave. By looking at analytic sine
waves and deformed sine waves we have established that all type of sine
waves, if expanded to analytic signals, form loops enclosing the origin in
the complex plane. Thus, the QRS complex, which is a deformed sine wave,
also produces enclosed loops in the complex plane.

In our experiments, a limitation was encountered that should be adressed.
If the QRS complex to be detected is not high enough, the method does
not work. When the QRS complex is too low, the analytic expansion of the
QRS complex will not produce a single distinguishable main loop enclosing
the origin. It may either not be detected or other peaks in the ECG falsely
interpreted as an QRS complex we have found.

(b) The Hilbert-Huang transform: In time series analysis the Fourier transform
is the dominating tool. However, this method is not good enough for non-
stationary or nonlinear data. For this purpose, the Hilbert-Huang transform
(HHT) was proposed in 1996 [10]. This method has gained popularity and
is widely used in spectral analysis since it, in contrast to common ”Fourier
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Figure 2: A plot of ECG(t) against H(ECG(t)).

methods”, suppose that frequency and amplitude of the harmonics are de-
pendent on time. This is achieved by decomposing the time series into so
called intrinsic mode functions (IMFs). However, in spite of considerable
efforts, the HHT to this day lacks mathematical framework and the method
is entirely empirical. Thus, the investigation of this method is carried out
numerically in this thesis to try to understand how the method works and
what limitations are inherit.

In the thesis, we state and investigate the following conjecture

Conjecture. Suppose X(t) is a time series and its Hilbert-Huang
transform is a decomposition given by

X(t) =

n∑

i=1

ci(t) + rn(t).

Then the IMFs, ck(t), are decreasing in complexity as k increases. That
is, given ck(t) and ck+1(t), then ck(t) has more zero crossings compared
to ck+1(t) for 1 ≤ k ≤ n− 1.

Note that more zero crossing means that ck(t) has higher frequency content
compared to ck+1(t). To check the validity of this conjecture, consider for
example a process given by

X(t) =

{
sin (t), 0 ≤ t ≤ 10π

sin (t) + sin (10t), 10π ≤ t ≤ 100

which also can be seen in Figure 3). In this case we have some background
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process given by sin (t). While the ”new” process, given by sin (10t), is
dominating the background process is still active. Obviously, this is a non-
stationary situation and therefore the HHT could be very useful in acquiring
the harmonics.

Figure 3: Plot of X(t).

According to the conjecture, we should for X(t) expect the following IMFs.

c̃1(t) =

{
sin (t), 0 ≤ t ≤ 10π

sin (10t), 10π ≤ t ≤ 100

c̃2(t) =

{
0, 0 ≤ t ≤ 10π

sin (t), 10π ≤ t ≤ 100

where the component with the highest frequency in each interval. The
actual IMFs, acquired by calculation and denoted by c1(t) and c2(t) can be
seen in Figure 4.
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Figure 4: Plot of the two first IMFs, calculated numerically for X(t).

Furthermore, in Figure 45 are the differences of the calculated IMFs and
the expected IMFs. Obviously, c1(t) agrees well with c̃1(t) except for edge
effects and in the neighborhood of t = 10π. Of course, this is because the
harmonics shift instantaneously and it is hard for the algorithm to fit this
in with IMFs. Despite this, the result of c1(t) should be considered good
since it manages to pick up both harmonics in each interval. For c2(t),
we do not really get what we expected. While it picks up the background
harmonics of sin (t) in 10π ≤ t ≤ 100, it is a bit off in 0 ≤ t ≤ 10π. This
is because it is hard to fit an IMF to c̃2(t) which has a zero interval and
then instantaneous harmonics. To conclude, the HHT is a suitable method
of analyzing nonstationary time series. Also, our conjecture seem to hold
and may be useful in understanding the HHT.
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Figure 5: Plot of the difference between the calculated IMFs and the expected
IMFs for X(t). That is, c1(t)− c̃1(t) and c2(t)− c̃2(t)

.

As was seen through the numerical investigations, the method works well
as conjectured in analyzing nonstationary and nonlinear data. However,
one should be aware of these shortcomings in order to interpret the result
correctly. This is especially the case if in a time series there are frequency
components that are close to each other (adjacent frequencies). The result
is that the algorithm fails to distinguish between these distinct frequencies
and this we have investigated thoroughly; both by an example and a more
quantative approach. Also, since the method is carried out numerically,
finite signals are being considered. The result of this are so called end
effects in the IMFs.

(c) Modulation: Transmitting a bandlimited signal, m(t), is usually done in
a frequency band centered around some frequency fc. This is fairly easy
accomplished by using modulation

mAM (t) = m(t) · cos (2πfct).

Inherently, this method has a weakness, namely, the frequency content of
MAM (f) = F(mAM (t)) is symmetrically doubled around fc. One way of
refining the method is by using the Hilbert transform and properties of
analytic signals. This refined modulation is given by

mSSB(t) = m(t) · cos (2πfct) +H(m(t)) · sin (2πfct).

In this section, this refined modulation will be derived in a clear manner.

For the numerical experiments MATLAB R2015a has been used. This version of
MATLAB has an inbuilt algorithm hilbert that performs the Hilbert transform
numerically. An algorithm for the Hilbert-Huang transform, created by Tan, A.
in 2008, was downloaded from MATLAB Central [18].
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1 The Hilbert transform

1.1 Hilbert transform on the real line

Definition 1.1. (Hilbert transform on R). Let x(t) ∈ Lp(R) be a
function for 1 ≤ p < ∞. Then H(x(t)) is the Hilbert transform of x(t)
given by

H(x(t)) =
1

π
PV

∫ ∞

−∞

x(s)

t− s
ds

Where ”PV ” is the Cauchy Principal Value of the integral.

For the Hilbert transform the Cauchy Principal Value is necessary in order to
handle the singularity at s = t. The Cauchy Principal Value is, in this context,
utilized in the manner as follows [4].

1

π
PV

∫ ∞

−∞

x(s)

t− s
ds = lim

ǫ→0+

1

π

∫

|t−s|≥ǫ

x(s)

t− s
ds

It is not obvious that this integral converges and consequently the Hilbert trans-
form is well-defined. This issue will be revisited and adressed in a later section.

Example 1.2. The Hilbert transform for a constant function x(t) = c is easy
to calculate using the definition

H(c) =
1

π
PV

∫ ∞

−∞

c

t− s
ds =

c

π
PV

∫ ∞

−∞

1

t− s
ds = 0

The last equality is due to the integrand 1/(t− s) being an odd function over a
symmetric interval around s = t. Hence, H(c) = 0 for any constant c. �

Of course, it is not always this easy and straight forward to calculate the Hilbert
transform. For more advanced functions we need to resort to techniques from
complex analysis in order to handle the integral. These techniques include
contour integrals in the complex plane and the residue theorem. Obviously, it
is the singularity in x = t on the real line we need to take care of. For this and
other purposes, the following lemmas are very useful.

Lemma 1.3. Let f(z) be analytic in some neighborhood of z0 where it has
a simple pole and Cǫ is a circular arc defined by Cǫ : z = z0 + ǫ · eiϕ with
ϕ : ϕ1 → ϕ2, then

lim
ǫ→0+

∫

Cǫ

f(z)dz = i(ϕ2 − ϕ1) · Res
z=z0

f(z)
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Proof. Since f(z) has a simple pole at z = z0 we can express its Laurent
expansion in some punctured neighborhood around z0.

f(z) =
a−1

z − z0
+

∞∑

n=0

an(z − z0)
n

Let g(z) =
∑∞

n=0 an(z − z0)
n. Breaking up the integral into parts we get

∫

Cǫ

f(z)dz = a−1

∫

Cǫ

1

z − z0
dz +

∫

Cǫ

g(z)dz (1)

In said neighborhood around z0 the function g(z) is analytical and bounded so
|g(z)| ≤M for some constant M . Using estimations we get

∣∣∣∣
∫

Cǫ

g(z)dz

∣∣∣∣ ≤M · (ϕ2 − ϕ1)ǫ→ 0 as ǫ→ 0+

For the other integral we get, using the paremetrization stated in the theorem
∫

Cǫ

1

z − z0
dz =

∫ ϕ2

ϕ1

1

ǫeiϕ
ǫieiϕdϕ = i

∫ ϕ2

ϕ1

dϕ = i(ϕ2 − ϕ1)

From this and the fact that a−1 = Res
z=z0

f(z) we get in (1) by evaluating limits

lim
ǫ→0+

∫

Cǫ

f(z)dz = a−1 · i(ϕ2 − ϕ1) + 0 = i(ϕ2 − ϕ1) · Res
z=z0

f(z)

And the proof is thus complete. �

Remark 1.4. In the case of the Hilbert transform, this simple pole will always
be on the real line at the point z = t for a fixed t. To avoid this pole, a small
semi-circle in either half-plane with ϕ1 = π and ϕ2 = 0 will suffice.

Lemma 1.5. (Jordan’s lemma). If C+
R is the semicircle z = Reiϕ,

ϕ : 0 → π in the upper halfplane, a > 0 and R > 0, then

∫

C+

R

|eiaz||dz| ≤
π

a

Proof. With the parameterization z = Reiϕ = R cosϕ+iR sinϕ we get |eiaz| =
|eia(x+iy)| = |eiax−ay| = e−ay = e−aRsinϕ and |dz| = |iReiϕdϕ| = Rdϕ.

∫

C+

R

|eiaz||dz| =

∫ π

0

e−aR sinϕRdϕ
(1)
= 2

∫ π/2

0

e−aR sinϕRdϕ

(2)

≤

∫ π/2

0

e−aR·2ϕ/πRdϕ = −
π

a

[
e−aR·2ϕ/π

]ϕ=π/2

ϕ=0

=
π

a
(1− e−aR)

(3)

≤
π

a
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The equality (1) is because sinϕ is symmetric around ϕ = π/2. Furthermore,
since sinϕ is concave in the interval 0 ≤ ϕ ≤ π/2 its graph lies totally above
a straight line connecting its endpoints. Therefore, we have that sinϕ ≥ 2ϕ/π
when 0 ≤ ϕ ≤ π/2 and hence inequality (2) holds. Of course, in order for (3)
to hold we must have that a > 0 [9].

Example 1.6. Let x(t) = eiωt where ω is some real parameter. This is an com-
plex exponential function and we would like to calculate its Hilbert transform
which is defined by the integral

H(eiωt)(t) =
1

π
PV

∫ ∞

−∞

eiωs

t− s
ds (2)

Start by looking at the case ω > 0. In order to calculate the integral we will have
to use techniques from complex analysis with contour integrals in the complex
plane.

Define f(z) = 1/π · eiωz/(t − z) and the contour C = C+
R + L2

ǫ,R + Cǫ + L1
ǫ,R

which is closed and positively oriented. C+
R is a semicircle with radius R in

the upper half-plane with the parameterization z = Reiϕ, ϕ : 0 → π. L1
ǫ,R is a

straight line from z = −R to z = t− ǫ on the real line. Cǫ is a semicircle with
radius ǫ in the upper half-plane with the parameterization z = ǫ · eiϕ, ϕ : π → 0.
L2
ǫ,R is the straight line from z = t + ǫ to z = R on the real line. A sketch of

the contour C is provided in Figure 6.

Figure 6: Sketch of the contour C. The contour is positively oriented.

Since f(z) is analytical both on and inside the contour C we have
∫

C

f(z)dz = 0

because of Cauchy’s integral theorem. Breaking up the integral thus yields
∫

L1
ǫ,R

+L2
ǫ,R

f(z)dz = −

∫

C+

R

f(z)dz −

∫

Cǫ

f(z)dz (3)
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Because ω > 0 and C+
R is in the upper half-plane Jordan’s lemma gives us

∣∣∣∣∣

∫

C+

R

f(z)dz

∣∣∣∣∣ ≤
∫

C+

R

|f(z)||dz| =

∫

C+

R

|eiωz|

|π(t− z)|
|dz| ≤

1

π
·

1

|R− t|

∫

C+

R

|eiωz||dz|

≤
1

π
·

1

|R− t|
·
π

2
=

1

2
·

1

|R− t|

Furthermore, for the integral over the contour Cǫ we get by Lemma 1.3
∫

Cǫ

f(z)dz = i(0− π) · Res
z=t

f(z) = −iπ ·

(
eiωt

−π

)
= ieiωt

Of course, the integral over the contour L1
ǫ,R + L2

ǫ,R in (2) coincide with the

integral in (1) when R→ ∞ and ǫ→ 0+. For a fixed t, applying said limits and
for ω > 0 in (2) yield

1

π
PV

∫ ∞

−∞

eiωt

t− s
ds = −0− ieiωt = −ieiωt, ω > 0

For the case ω < 0 one may use the same technique as above with the exeception
that the contours C+

R and Cǫ are instead semicircles in the lower half-plane. This
would for ω < 0 simply give us

1

π
PV

∫ ∞

−∞

eiωt

t− s
ds = ieiωt, ω < 0

For ω = 0 the complex exponential function is simply a constant and thus its
Hilbert transform becomes 0 (as shown in Example 5.1) . Consequently, we may
conclude that for all ω ∈ R

H(eiωt) = −i sgn (ω)eiωt

This important result concludes this example. �

1.2 Basic properties of the Hilbert transform

Theorem 1.7. Let y(t) = H(x(t)), y1(t) = H(x1(t)), y2(t) = H(x2(t))
and let a, a1, a2 be some arbitrary constants. Then the Hilbert transform
satisifies the following basic properties:

(i) Linearity: H(a1x1(t) + a2x2(t)) = a1H(x1(t)) + a2H(x2(t))

(ii) Time shift: H(x(t− a)) = y(t− a)

(iii) Scaling: H(x(at)) = y(at), a > 0

(iv) Time reversal: H(x(−at)) = −y(−at), a > 0

(v) Derivative: H(x′(t)) = y′(t)
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Proof: Property (i) follows directly from the fact that the integral itself is an
linear operation. Properties (ii)-(iv) can all be shown by a trivial change of
variables. Property (v), which requires differentiability, will be shown later.

Example 1.8. With the properties above we may calculate the Hilbert trans-
forms of the basic trigonometric functions. Suppose ω > 0.

H(cos(ωt)) = H

(
eiωt + e−iωt

2

)
=

H(eiωt) +H(ei(−ω)t)

2

=
−i sgn (ω)eiωt − i sgn (−ω)ei(−ω)t

2

=
−ieiωt − ie−iωt

2
=
eiωt − e−iωt

2i
= sin (ωt)

H(sin(ωt)) = H
(
cos
(
ωt−

π

2

))
= sin

(
ωt−

π

2

)
= − cos(ωt)

In conclusion, if ω > 0 (which usually is the case) then H(cos(ωt)) = sin (ωt)
and H(sin(ωt)) = − cos(ωt). By the time reversal property, if ω < 0 then
H(cos(ωt)) = − sin (ωt) and H(sin(ωt)) = −(− cos(ωt)) = cos(ωt). Written in
a more compact form, for all ω ∈ R we have

H(cos(ωt)) = sgn (ω) sin (ωt)

H(sin(ωt)) = − sgn (ω) cos (ωt)

which are the Hilbert transforms for the basic cosine and sine-functions. �

What properties does the Hilbert transform exhibit for even and odd functions?
The following theorem gives us the answer.

Theorem 1.9. (Even and odd functions). Suppose f(t) has a well-
defined Hilbert transform and that f(t) is either even or odd. Then, the
following holds

(i) If f(t) is even, its Hilbert transform is an odd function

(ii) If f(t) is odd, its Hilbert transform is an even function

Proof. From the definition of the Hilbert transform it follows that

H(f(t)) =
1

π
PV

∫ ∞

−∞

f(s)

t− s
ds =

1

π
PV

∫ ∞

0

(
f(s)

t− s
+
f(−s)

t+ s

)
ds

14



If f(t) is an even function, that is, f(−t) = f(t) we get

H(f(t)) =
1

π
PV

∫ ∞

0

(
f(s)

t− s
+
f(s)

t+ s

)
ds

=
1

π
PV

∫ ∞

0

(
(t+ s)f(s) + (t− s)f(s)

t2 − s2

)
ds

=
2t

π
PV

∫ ∞

0

f(s)

t2 − s2
ds

and if f(t) is an odd function, that is, f(−t) = −f(t) we get

H(f(t)) =
1

π
PV

∫ ∞

0

(
f(s)

t− s
−
f(s)

t+ s

)
ds

=
1

π
PV

∫ ∞

0

(
(t+ s)f(s)− (t− s)f(s)

t2 − s2

)
ds

=
2

π
PV

∫ ∞

0

sf(s)

t2 − s2
ds.

From these two expressions the theorem follows and the proof is complete. �

1.3 Hilbert transform and the Fourier transform

It is easy to see that the Hilbert transform y(t) = H(x(t)) actually can be
interpreted as an convolution between x(t) and 1/(πt). This requires, however,
a rigorous proof. For this purpose, we need a couple of important theorems
from functional analysis [11].

Theorem 1.10. (Hölder’s inequality). Suppose f(t) ∈ Lp(R), g(t) ∈
Lq(R) where 1/p+ 1/q = 1 for 1 ≤ p, q ≤ ∞. Then,

||fg|| ≤ ||f ||p||g||q

Theorem 1.11. If f(t) ∈ Lp(R), 1 ≤ p ≤ ∞ and g(t) ∈ L1(R), then the
convolution (f ∗ g)(t) is in Lp(R) and

‖f ∗ g‖p ≤ ‖f‖p‖g‖1

Proof. For the proof we will consider three different cases, namely p = 1,
p = ∞ and 1 < p <∞.

15



(i) p = 1: This case is trivial since

‖f ∗ g‖1 =

∥∥∥∥
∫

R

f(s)g(t− s)ds

∥∥∥∥ =

∫

R

∣∣∣∣
∫

R

f(s)g(t− s)ds

∣∣∣∣dt

≤

∫

R

∫

R

|f(s)||g(t− s)|dsdt =

∫

R

|f(s)|

∫

R

|g(t− s)|dtds

=

∫

R

|f(s)| · ‖g‖1ds = ‖g‖1

∫

R

|f(s)|ds = ‖g‖1‖f‖1 = ‖f‖1‖g‖1

(ii) p = ∞: As a reminder, ‖f‖∞ = sup
t
|f(t)| <∞ if f(t) ∈ L∞(R).

||f ∗ g||∞ = sup
t

∣∣∣∣
∫

R

f(s)g(t− s)ds

∣∣∣∣ = sup
t

∣∣∣∣
∫

R

f(t− s)g(s)ds

∣∣∣∣

≤ sup
t

∫

R

|f(t− s)||g(s)|ds =

∫

R

sup
t
|f(t− s)||g(s)|ds

=

∫

R

‖f‖∞|g(s)|ds = ‖f‖∞

∫

R

|g(s)|ds = ‖f‖∞‖g‖1

(iii) 1 < p <∞: Let q satisfy 1
p + 1

q = 1.

|(f ∗ g)(t)| =

∣∣∣∣
∫

R

f(s)g(t− s)ds

∣∣∣∣ ≤
∫

R

|f(s)||g(t− s)|ds

=

∫

R

|f(s)||g(t− s)|1/p|g(t− s)|1/qds

(∗)

≤

(∫

R

|f(s)|p|g(t− s)|ds

)1/p(∫

R

|g(t− s)|ds

)1/q

= ‖g‖
1/q
1

(∫

R

|f(s)|p|g(t− s)|ds

)1/p

Where (∗) is because of Hölder’s inequality. Taking the Lp(R)-norm of
both sides yields

‖f ∗ g‖p ≤ ‖g‖
1/q
1

(∫

R

∫

R

|f(s)|p|g(t− s)|dsdt

)1/p

= ‖g‖
1/q
1

(∫

R

|f(s)|p
∫

R

|g(t− s)|dtds

)1/p

= ‖g‖
1/q
1

(∫

R

|f(s)|p‖g‖1ds

)1/p

= ‖g‖
1/q
1 ‖g‖

1/p
1

(∫

R

|f(s)|pds

)1/p

= ‖g‖
1/p+1/q
1 ‖f‖p = ‖f‖p‖g‖1

With cases (i), (ii) and (iii) proved the proof is thus complete.
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Theorem 1.12. Suppose x(t) ∈ Lp(R), 1 < p ≤ 2 and F(x(t)) is the
Fourier transform of x(t). Then the Fourier transform of H(x(t)) is given
by F(H(x(t))) = (−i sgn (f)) · F(x(t)).

Proof. Define the function

uǫ,R(t) =

{
1
πt , 0 < ǫ < |t| < R <∞

0 otherwise

and let Hǫ,R be a truncated Hilbert transform. Clearly

Hǫ,R(x(t)) =
1

π

∫

ǫ<|t|<R

x(s)

t− s
ds =

∫ ∞

−∞

x(s)uǫ,R(t− s)ds = (x ∗ uǫ,R)(t)

is a convolution that makes sense since uǫ,R ∈ L1(R) and x(t) ∈ Lp(R), 1 <
p ≤ 2. Then, according to Theorem 5.10, ‖x ∗ uǫ,R‖1 ≤ ‖x‖p‖uǫ,R‖1. This also
means that Hǫ,R(x(t)) ∈ Lp(R), 1 < p ≤ 2. The Fourier transform of Hǫ,R(x(t))
is given by

F(Hǫ,R(x(t))) = F ((x ∗ uǫ,R)(t)) = F(x(t)) · F(uǫ,R(t))

and we need to calculate F(uǫ,R(t)).

F(uǫ,R(t)) =

∫

ǫ<|t|<R

e−2πift

πt
dt =

∫ −ǫ

−R

e−2πift

πt
dt+

∫ R

ǫ

e−2πift

πt
dt

= −

∫ R

ǫ

e2πift

πt
dt+

∫ R

ǫ

e−2πift

πt
dt = −

1

π

∫ R

ǫ

e2πift − e−2πift

t
dt

= −
2i

π

∫ R

ǫ

sin 2πft

t
dt = −

2i sgn (2πf)

π

∫ 2π|f |R

2π|f |ǫ

sin t

t
dt

= −
2i sgn (f)

π

∫ 2π|f |R

2π|f |ǫ

sin t

t
d

The integral at the end has the limit π/2 as ǫ→ 0+, R→ ∞. This can be shown
quite easily just using earlier employed techniques with contour integrals in the
complex plane. Obviosuly, we have that F(uǫ,R(t)) → −i sgn (f) as ǫ → 0+,
R→ ∞ for every real value of f .

Since F(uǫ,R(t)) → −i sgn (f) as ǫ→ 0+, R→ ∞ we have that |F(uǫ,R(t))| ≤ C
for some C depending on the values of ǫ and R. We can now show that

H(x(t)) = lim
ǫ→0+

lim
R→∞

Hǫ,R(x(t)) = F−1 (−i sgn (f) · F(x(t)))
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by making use of Lebesgue’s theorem of dominated convergence. For 1 < p ≤ 2

lim
ǫ→0+

lim
R→∞

‖Hǫ,R(x(t))−F−1 (−i sgn (f) · F(x(t))) ‖p

(∗)
= lim

ǫ→0+
lim

R→∞
‖F(Hǫ,R(x(t)))− (−i sgn (f) · F(x(t)))‖p

= lim
ǫ→0+

lim
R→∞

‖F(x(t)) · F(uǫ,R(t))− (−i sgn (f) · F(x(t)))‖p

= lim
ǫ→0+

lim
R→∞

‖(F(uǫ,R(t))− (−i sgn (f))) · F(x(t))‖p = 0

where (∗) is because of Parseval’s identity. Thus we have established the limit
above (in the sense of the Lp norm). Now, by just taking the Fourier transform
of both sides we get because of the Fourier inversion theorem that

F(H(x(t))) = (−i sgn (f)) · F(x(t))

and the proof is complete. �

Remark 1.13. Why does the theorem not hold for the case p = 1? Because
x(t) ∈ L1(R) does not necessarily imply that H(x(t)) ∈ L1(R). For example,
let x(t) = χ[0,1](t) ∈ L1(R). Then its Hilbert transform is given by

H(x(t)) =
1

π
PV

∫ 1

0

1

t− s
ds =

1

π
ln

∣∣∣∣
t

t− 1

∣∣∣∣

and clearly H(x(t)) /∈ L1(R. Therefore, the Fourier transform of H(x(t)) does
not exist in the usual sense and the theorem does not hold. However, if both
x(t), H(x(t)) ∈ L1(R) then all steps in the proof are valid and the theorem
holds even for p = 1.

With this relationship between the Hilbert transform and the Fourier transform
we may show various different properties of the Hilbert transform. We begin
with the differentiation property.

Theorem 1.14. (Differentiation). If x(t) ∈ Lp(R), 1 < p ≤ 2 is differ-
entiable, then it holds that H(x′(t)) = d

dtH(x(t)).

Proof. By the differentation property of the Fourier transform and Theorem
1.11 we get by some simple algebra

F(H(x′(t))) = (−i sgn (f)) · F(x′(t)) = (−i sgn (f)) · (2πif · F(x(t))

= 2πif · (−i sgn (f)) · F(x(t)) = 2πif · F(H(x(t)))

= F

(
d

dt
H(x(t))

)

18



Through this, since they share the same Fourier transform, it is established that
H(x′(t)) = d

dtH(x(t)), thus the differentiation property of the Hilbert transform.

Another interesting property we can show is the inversion property.

Theorem 1.15. (Inversion). Suppose x(t) ∈ Lp(R), 1 < p ≤ 2. Then it
holds that H(H(x(t)) = −x(t).

Proof. By using Theorem 1.11 twice we get

F(H(H(x(t)))) = (−i sgn (f)) · F(H(x(t)))

= (−i sgn (f)) · (−i sgn (f)) · F(x(t))

= i2 · (sgn (f))2 · F(x(t)) = −F(x(t)) = F(−x(t))

SinceH(H(x(t))) and −x(t) have the same Fourier transform almost everywhere
we can conclude that H(H(x(t))) = −x(t) and the proof is complete.

In words, applying the Hilbert transform twice on a function x(t) it simply
yields −x(t) - the very same function except for a minus sign. Thus, if H is an
Hilbert operator the inverse is H−1 = −H.

Theorem 1.16. (Orthogonality). Suppose x(t) ∈ L2(R) is a purely
real function with the Fourier transform, X(f) = F(x(t)). Then x(t) and
H(x(t)) are orthogonal functions, that is

∫ ∞

−∞

x(t) · H(x(t))dt = 0

Proof. With Parseval’s identity and Theorem 1.11 we get

∫ ∞

−∞

x(t) · H(x(t))dt =

∫ ∞

−∞

X(f) · (−i sgn (f) ·X(f))df

=

∫ ∞

−∞

X(f) · i sgn (f) ·X(f)df

= i

∫ ∞

−∞

sgn (f)|X(f)|2df.

Since x(t) is real it means that |X(f)| = |X(−f)| (more about this in section
1.5). Therefore, sgn (f)|X(f)|2 is an odd function since sgn (f) is odd and
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|X(f)|2 even. With the symmetric interval of integration, the integral is zero
and we have the desired result,

∫ ∞

−∞

x(t) · H(x(t))dt = 0

which means that x(t) and H(x(t)) are orthogonal functions. Proof is complete.

Remark 1.17. The differentiation, inversion and orthogonality properties of
the Hilbert transform can be generalized for a broader class of functions.

For the general case, the Hilbert transform offer no shortcuts for calculating
the Hilbert transform of products of functions. There is however a special case
covered by the so called Bedrosian’s theorem [4].

Theorem 1.18. (Bedrosian’s theorem). Suppose f(t) and g(t) have
Fourier transforms F (f) and G(f), respectively, where F (f) = 0 for |f | > a
with a > 0 and G(f) = 0 for |f | < a. Then

H(f(t)g(t)) = f(t)H(g(t))

Proof. Using the fact that H(eist) = −i sgn (s)eist for s ∈ R we have

H(f(t)g(t)) =H

(∫ ∞

−∞

F (u)e2πiutdu

∫ ∞

−∞

G(v)e2πivtdv

)

=H

(∫ ∞

−∞

F (u)

∫ ∞

−∞

G(v)e2πi(u+v)tdvdu

)

=

∫ ∞

−∞

F (u)du

∫ ∞

−∞

G(v)H(e2πi(u+v)t)dv

=

∫ ∞

−∞

F (u)du

∫ ∞

−∞

G(v)(−i sgn (u+ v)e2πi(u+v)t)dv

=− i

∫ ∞

−∞

F (u)e2πiutdu

(∫ −a

−∞

G(v)e2πivt sgn (u+ v)dv

+

∫ ∞

a

G(v)e2πivt sgn (u+ v)dv

)
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Make a change of variables in the inner integral, w = u+ v

H(f(t)g(t)) =− i

∫ a

−a

F (u)e2πiutdu

(∫ −a+u

−∞

G(w − u)e2πi(w−u)t sgn (w)dw

+

∫ ∞

a+u

G(w − u)e2πi(w−u)t sgn (w)dw

)

=− i

∫ a

−a

F (u)du

(∫ −a+u

−∞

G(w − u)e2πiwt sgn (w)dw

+

∫ ∞

a+u

G(w − u)e2πiwt sgn (w)dw

)

For the first integral the integrand is non-zero when w − u < −a ⇐⇒ w <
−a + u and for the second integral the integrand is non-zero when w − u >
a ⇐⇒ w > a + u. Since −a < u < a the sign-function in each integral takes
only one value and we may simplify

H(f(t)g(t)) =− i

∫ a

−a

F (u)du

(
−

∫ −a+u

−∞

G(w − u)e2πiwtdw

+

∫ ∞

a+u

G(w − u)e2πiwtdw

)

Make another change of variables, let y = w − u which gives

H(f(t)g(t)) =− i

∫ a

−a

F (u)du

(
−

∫ −a

−∞

G(y)e2πi(y+u)tdy

+

∫ ∞

a

G(y)e2πi(y+u)tdy

)

=− i

∫ a

−a

F (u)e2πiutdu

(
−

∫ −a

−∞

G(y)e2πiytdy

+

∫ ∞

a

G(y)e2πiytdy

)

=

∫ a

−a

F (u)e2πiutdu

(∫ −a

−∞

(−i sgn (y))G(y)e2πiytdy

+

∫ ∞

a

G(y)(−i sgn (y))e2πiytdy

)

=f(t)

(∫ −a

−∞

G(y)H(e2πiyt)dy +

∫ ∞

a

G(y)H(e2πiyt)dy

)

=f(t)H

(∫ −a

−∞

G(y)H(e2πiyt)dy +

∫ ∞

a

G(y)H(e2πiyt)dy

)

=f(t)H(g(t))

And the proof is thus complete. �
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1.4 Hilbert transform of periodic functions

One can also define the Hilbert transform for periodic functions. Suppose u(t)
is a function with period 2T - then it can be expressed as a Fourier series

u(t) =

∞∑

n=−∞

cne
πint/T

where each coeffiecent cn for a fixed n is given by

cn =
1

2T

∫ T

−T

u(s)e−πins/T ds

With the facts that H(c) = 0 for any constant c and H(eist) = −i sgn (s)eist for
any real number s we get

H(u(t)) = H (c0) +H

(
∞∑

n=1

cne
πint/T

)
+H

(
1∑

n=−∞

cne
πint/T

)

= 0 +H

(
∞∑

n=1

cne
πint/T

)
+H

(
∞∑

n=1

cne
−πint/T

)

=

∞∑

n=1

cnH(eπint/T ) +

∞∑

n=1

cnH(e−πint/T )

= −i

∞∑

n=1

cn

(
eπint/T − e−πint/T

)

= −
i

2T

∞∑

n=1

(∫ T

0

u(s)e−πins/T ds

)(
eπint/T − e−2πint/T

)

=
−i

2T

∫ T

−T

u(s)

(
∞∑

n=1

eπin(t−s)/T − e−πin(t−s)/T

)
ds

=
1

2T

∫ T

−T

u(s)

∞∑

n=1

2 sin

(
πn(t− s)

T

)
ds

=
1

2T
PV

∫ T

−T

u(s) cot

(
π
t− s

2T

)
ds

The last equality is because of the identity

2

∞∑

k=1

sin kx = cot
(x
2

)

which is valid in the sense of distributions [7]. Now, the following definition of
a periodic Hilbert transform makes sense.
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Definition 1.19. (Hilbert Transform of a periodic function) Let u(t) be
a periodic function with periodicity 2T . Then HT (u(t)) is the periodic
Hilbert transform of u(t) given by

HT (u(t)) =
1

2T
PV

∫ T

−T

u(s) cot

(
π
t− s

2T

)
ds

Note: If T → ∞ then u(t) has infinite periodicity and is then, obviously, an
non-periodic function. What happens to HT when T → ∞? Evaluate the limit
of the integrand when T → ∞.

lim
T→∞

cot
(
π t−s

2T

)

2T
= lim

T→∞

cos
(
π t−s

2T

)

sin
(
π t−s

2T

) ·
1

2T
= lim

y→0+

cos y

sin y
·

y

π(t− s)

= lim
y→0+

cos y

π(t− s)
·

y

sin y
=

1

π(t− s)
· 1 =

1

π(t− s)

Above we made a change of variables, y = π t−s
2T and as T → ∞ we get y → 0+.

lim
T→∞

HT (u(t)) = lim
T→∞

1

2T
PV

∫ T

−T

u(s) cot

(
π
t− s

2T

)
ds

= PV

∫ ∞

−∞

1

π(t− s)
u(s)ds

=
1

π
PV

∫ ∞

−∞

u(s)

t− s
ds

We recognize this last expression as the Hilbert transform on the real line.
Obviously, HT → H as T → ∞ as should be expected [4].

1.5 Analytic representation of a signal

The Hilbert Transform is widely used in signal processing. The main reason for
that is that the Hilbert transform can help creating an analytic representation
of real signals [12].

Definition 1.20. (Analytic signal). Let f(z) be an analytic function in
the upper half-plane. If f(z) on the real line can be written as

f(t) = f(t+ 0i) = g(t) + ih(t)

where g(t) and h(t) are real-valued functions and a Hilbert transform pair,
then f(t) is said to be an analytic signal.
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Note that this is one of various ways to define an analytic signal. Not all analytic
functions are analytic signals on the real line. One sufficient condition is that
|f(z)| → 0 as |z| → ∞, Im z > 0 which is explored in the next theorem.

Theorem 1.21. Let f(z) be an analytic function for Im z ≥ 0 that vanishes
in the upper half-plane (|f(z)| → 0 as |z| → ∞). Then, on the real line
f(z) is an analytic signal and can be written as

f(t) = g(t) + iH(g(t))

where g(t) = Re f(t+ 0i) = u(t, 0) and H(g(t)) = Im f(t+ 0i) = v(t, 0) are
real valued functions.

Proof. Define the contour C like in Example 1.6. Then, since f(z) is analytic
in the upper half-plane we have according to Cauchy’s integral theorem

∫

C

f(z)

t− z
dz = 0

since the integrand f(z)/(t − z) is analytical inside the contour. Breaking up
the integral in parts we get

∫

L1
ǫ,R

+L2
ǫ,R

f(z)

t− z
dz = −

∫

C+

R

f(z)

t− z
dz −

∫

Cǫ

f(z)

t− z
dz

For the integral over the contour C+
R we have that

∣∣∣∣∣

∫

C+

R

f(z)

t− z
dz

∣∣∣∣∣ ≤
max
z∈C+

R

|f(z)|

|t−R|
· πR =

π

|t/R− 1|
· max
0<ϕ<π

|f(Reiϕ)|

and since |f(z)| → 0 as |z| → ∞, Im z > 0 by assumption it therefore holds that
|f(Reiϕ)| → 0 as R→ ∞ for 0 < ϕ < π. Thus, as R→ ∞

∣∣∣∣∣

∫

C+

R

f(z)

t− z
dz

∣∣∣∣∣→ π · 0 = 0

Looking on the integral over the the contour Cǫ, from Lemma 1.3, we have that

∫

Cǫ

f(z)

t− z
dz = i(0− π) · Res

z=t

f(z)

t− z
= −iπ · (−f(t)) = iπf(t)

Letting ǫ→ 0+, R→ ∞, dividing by π and parameterizing we get

1

π
PV

∫ ∞

−∞

f(s)

t− s
ds = −0− if(t) = −if(t)
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We have that H(f(t)) = −if(t). Since f(z) is a complex and analytic function
we can write f(z) = f(x+ iy) = u(x, y) + iv(x, y) where u(x, y) and v(x, y) are
real valued functions. On the real line (x = t, y = 0) we therefore get

H(f(t)) = H(u(t, 0) + iv(t, 0)) = H(u(t, 0)) + iH(v(t, 0)) = −if(t)

= −i(u(t, 0) + iv(t, 0)) = v(t, 0)− iu(t, 0)

Identifying real and imaginary parts we have that H(u(t, 0)) = v(t, 0) and
H(v(t, 0)) = −u(t, 0). Thus, if we let g(t) = u(t, 0) we simply have f(t) =
g(t) + iH(g(t)) and f(t) is an analytic signal.

Example 1.22. Let f(z) = eiωz for ω > 0. Clearly f(z) is analytic for Im z ≥ 0
and since |f(z)| = |eiωz| = |eiω(x+iy)| = |e−ωy+iωx| = e−ωy → 0 as |z| → ∞,
Im z > 0 we have that f(z) vanishes in the upper half-plane. Hence, on the real
line f(z) is an analytic signal.

f(t) = f(t+ i0) = eiω(t+0i) = eiωt = cosωt+ i sinωt

In this case we have g(t) = cosωt and as should be expected H(g(t)) = sinωt.

Example 1.23. Let f(z) = 1
a−iz for a > 0. The function is singular in the

point z = −ia and analytic everywhere else. Thus, in the upper half-plane f(z)
is analytic and obviously decreases with the same rate as 1/|z|. Therefore, f(z)
represents an analytic signal on the real line and we have that

f(t) = f(t+ 0i) =
1

a− it
=

a+ it

a2 + t2
=

a

a2 + t2
+ i

t

a2 + t2

and we have shown that H
(

a
a2+t2

)
= t

a2+t2 and H
(

t
a2+t2

)
= − a

a2+t2 for a > 0.

The following theorem we have esentially shown already but because of its use-
fulness it is worthful to state in a clear manner.

Theorem 1.24. Suppose f(t) is an analytic signal. Then its Hilbert trans-
form is given by H(f(t)) = −if(t).

Proof. See the proof of Theorem 1.21.

Theorem 1.25. Suppose f1(t) and f2(t) are analytic signals. Then it holds
that H(f1(t)) · f2(t) = f1(t) · H(f2(t)).

Proof. The proof is just a matter of rearranging and using Theorem 1.13.

H(f1(t)) · f2(t) = −if1(t) · f2(t) = f1(t) · (−if2(t)) = f1(t) · H(f2(t))
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Theorem 1.26. Let f(t) = g(t) + iH(g(t)) be an analytic signal. Then its
Fourier transform, F (f), is given by

F (f) = (1 + sgn (f)) ·G(f) =





2G(f), f > 0

G(0), f = 0

0, f < 0

Proof. By using Theorem 1.8 we readily get

F (f) = F(f(t)) = F(g(t) + iH(g(t))) = F(g(t)) + i · F(H(g(t)))

= G(f) + i · (−i sgn (f)) ·G(f)) = (1 + sgn (f)) ·G(f)

and the proof is complete. Note that for the sign function we have sgn (0) = 0. �

This theorem is very interesting since the function g(t) is real. Because g(t)
is purely real and that conjugation is a linear operation we have that

G(f) =

∫ ∞

−∞

g(t)e−2πiftdt =

∫ ∞

−∞

g(t)e−2πiftdt =

∫ ∞

−∞

g(t)e−2πiftdt

=

∫ ∞

−∞

g(t)e2πiftdt =

∫ ∞

−∞

g(t)e−2πi(−f)tdt = G(−f)

and thus G(f) has Hermitian symmetry since G(−f) = G(f). In particular
it holds that |G(f)| = |G(−f)| since |G(f)| = |G(f)|. Consequently, when we
consider the amplitude spectrum |G(f)|, it is an even function with symmetry
around f = 0. Because of these symmetries, it is clearly sufficient to consider
G(f) for f ≥ 0. This is one of many advantages with analytic signals - they
carry only positive frequency components and discard the negative frequencies
since they are superfluous for real signals [12].

Example 1.27. Consider g(t) = cosωt for ω > 0. As has been seen already we
can expand g(t) into an analytic signal.

f(t) = cosωt+ iH(cosωt) = cosωt+ i sinωt = eiωt

As is known, G(f) = F(cos (ωt)) = 1
2

(
δ
(
f − ω

2π

)
+ δ

(
f + ω

2π

))
. As expected,

because g(t) is purely real G(f) has Hermitian symmetry. Also, because G(f)
is purely real as well, G(f) = G(f) and so G(−f) = G(f). For the analytic
signal we consequently get the Fourier transform

F (f) =





2G(f), f > 0

G(0), f = 0

0, f < 0

=





δ
(
f − ω

2π

)
+ δ

(
f + ω

2π

)
, f > 0

0, f = 0

0, f < 0
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Of course, δ
(
f − ω

2π

)
+ δ

(
f + ω

2π

)
= δ

(
f − ω

2π

)
for f > 0. To conclude, we

have that F (f) = δ
(
f − ω

2π

)
and as expected F (f) = 0 for f < 0. The term

δ
(
f + ω

2π

)
is discarded but no information is lost since the same information is

carried in the term δ
(
f − ω

2π

)
.

To transmit the signal g(t) completely one needs to consider the frequency
components in − ω

2π ≤ f ≤ ω
2π , resulting in ω

2π −
(
− ω

2π

)
= ω

π as the smallest
possible bandwidth. In contrast, for f(t) is is enough to consider frequency
components for 0 ≤ f ≤ ω

2π and because ω
2π − 0 = ω

2π = 1
2 · ω

π the bandwidth
required for complete transmission is halved.

1.6 Boundedness of the Hilbert transform

The Hilbert transform is a bounded linear operator on Lp(R), 1 < p <∞. The
following inequality was shown by Riesz (1928) and is known as the ”Riesz
inequality” [4].

Theorem 1.28. Suppose f ∈ Lp(R), 1 < p <∞. Then ‖Hf‖p ≤ Cp‖f‖p.

Proof. We will provide a proof of this inequality for p = 2. From the steps
acquired in the proof of Theorem 1.12 we have that

H(x(t)) = F−1 (−i sgn (f) · F(x(t)))

Taking the L2-norm and using Parseval’s identity twice yields

‖H(x(t))‖2 = ‖F−1 (−i sgn (f) · F(x(t))) ‖2 = ‖ − i sgn (f) · F(x(t))‖2

= ‖F(x(t))‖2 = ‖x(t)‖2

and therefore ‖Hf‖2 = ‖f‖2 and thus ‖Hf‖2 ≤ C2 · ‖f‖2 and C2 = 1.

Remark 1.29. The best constant Cp was found by Pichorides (1972) and is

Cp =

{
tan π

2p 1 < p ≤ 2

cot π
2p 2 ≤ p <∞.

This theorem does not hold for the case p = 1. A counterexample was given in

Remark 1.13 where x(t) = χ[0,1](t) ∈ L1(R) and H(x(t)) = 1
π ln

∣∣∣ t
t−1

∣∣∣ /∈ L1(R).

However, since it is possible to prove that, given f(t) ∈ L1(R), it holds that

|t ∈ R : |H(f)(t)| > λ| ≤
K‖f‖1
λ

=
K‖f‖1
λ1
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for some K > 0, the Hilbert operator H is said to be of weak type of (1, 1) This
space is sometimes written as L1,w(R) equipped with the following norm

‖f‖L1,w = sup
λ>0

λ · |t ∈ R : |f(t)| > λ|.

The following theorem summarizes the result [4].

Theorem 1.30. Suppose f(t) ∈ L1(R). Then H(f(t)) ∈ L1,w(R).

For completeness, let us take a look at the multidimensional Hilbert transform
and an inequality due to Alberto Calderón and Antoni Zygmund that implies
boundedness. However, first a definition of the n-dimensional Hilbert transform
is needed. It is very straightforward [5].

Definition 1.31. The n-dimensional Hilbert transform of f(t) =
f(t1, ..., tn) is given by

Hn(f(t)) = lim
ǫ1→0+

... lim
ǫn→0+

∫

D1

...

∫

Dn

f(s1, ..., sn)

n∏

j=1

1

(xj − sj)
ds1...dsn

where Dk is given by |xk − sk| > ǫk.

Remark 1.32. Note that the Cauchy Principal Value is applied on each and
everyone of the integrals. For the case n = 1, we acquire the ”normal”, one-
dimensional Hilbert transform.

For the n-dimensional Hilbert transform a result like Riesz inequality is valid.
This inequality is known as the Calderón-Zygmund inequality.

Theorem 1.33. (Calderón-Zygmund inequality). Let f(t) ∈ Lp(En)
with 1 < p <∞. Then

‖Hnf‖p ≤ Cp,n‖f‖p

where the constant Cp,n is only dependent on n and p.

By this theorem it follows that Hn is a bounded linear operator on Lp(Rn) for
1 < p <∞.
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1.7 Harmonic analysis

The Hilbert transform is a particular case of the so called singular integral
operators studied by Calderón and Zygmund. This is closely related to the
Dirichlet problem. This problem will be briefly discussed in this section.

Definition 1.34. (Dirichlet problem). Suppose we are looking for a
harmonic function φ that is continuous and harmonic on a domain Ω and φ
= f on ∂Ω where f is continuous. This problem is called Dirichlet problem.

Figure 7: A sketch of the Dirichlet problem for some region Ω.

If Ω is the upper half-plane and f(t) is the function on the real line, we have
seen that the Hilbert transform is a helpful tool to expand f(t) to an analytic
function F (t) given by

F (t) = f(t) + iH(f(t))

where F (t) is an analytic function on the real line, that is, F (z) is an analytic
function and F (t) = F (t+ 0i). Since F (z) is analytic, it can be written as

F (z) = F (t+ iy) = φ(t, y) + iψ(t, y)

where φ, ψ are harmonic functions. If f(t) ∈ L2(R) as y → 0, φ(t, y) → f(t)
almost everywhere. The question is now, how can an harmonic function φ(x, y)
be derived from f(t) if Ω is the upper half-plane?

Suppose Ω is the upper half-plane and f = φ + iψ is analytic in Ω. Also,
suppose C = C+

R + LR is a positively contour in the upper half-plane (given in
Figure 8). Then, if z is a point in the upper half-plane, we have according to
Cauchy’s integral formula

f(z) =
1

2πi

∫

C

f(ζ)

ζ − z
dζ.
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Furthermore, because z is outside the contour, it holds that

1

2πi

∫

C

f(ζ)

ζ − z
dζ = 0

thus yielding

f(z) =
1

2πi

∫

C

f(ζ)

ζ − z
dζ −

1

2πi

∫

C

f(ζ)

ζ − z
dζ =

1

2πi

∫

C

f(ζ)(z − z)

(ζ − z)(ζ − z)
dζ.

Note that z − z = 2i Im z. Now, suppose |f(z)| ≤M , then on C+
R we have

∣∣∣∣∣
1

2πi

∫

C+

R

f(ζ)(z − z)

(ζ − z)(ζ − z)
dζ

∣∣∣∣∣ =
Im z

π
·

∣∣∣∣∣

∫

C+

R

f(ζ)

(ζ − z)(ζ − z)
dζ

∣∣∣∣∣

≤
Im z

π

M

(R− |z|)2
· πR

Thus, letting R→ ∞ and z = x+ iy yields

f(z) = f(x+ iy) =
1

2πi

∫ ∞

−∞

f(t) · 2i Im z

(t− z)(t− z)
dt =

y

π

∫ ∞

−∞

f(t)

(t− x)2 + y2
dt

since the integral vanishes over C+
R . Furthermore

f(x+ iy) = φ(x, y) + iψ(x, y) =
y

π

∫ ∞

−∞

φ(t, 0) + iψ(t, 0)

(t− x)2 + y2
dt.

By taking real parts of both sides we have that

φ(x, y) =
y

π

∫ ∞

−∞

φ(t, 0)

(t− x)2 + y2
dt

and in the integral the so called Poisson kernel is present. This expression is
known as the Poisson integral formula and it may be further generalized. This
generalization is found in Theorem 1.35 and is the solution of the Dirichlet
problem in the upper half-plane.

Figure 8: The contour C = C+
R + LR.
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Theorem 1.35. The solution of a Dirichlet problem in the upper half-plane
where φ(x, y) attains the values f(x) on the real line is given by

φ(x, y) =
y

π

∫ ∞

−∞

f(s)

(t− s)2 + y2
ds
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2 Hilbert transform and electrocardiogram

In the field of medicine, one of the most important tool is a so called electro-
cardiaogram, abbreviated ECG (and sometimes EKG which is an abbreviation
of the German word Elektrokardiogramm, so ECG is a loanword). An ECG
is simply a recording over the electrical activity in a person’s heart over time.
Naturally, because the heart beats in a periodic manner, this recording will have
a clear waveform. The ECG is a very helpful tool in diagnosing of heart diseases
and irregularites like arrhythmia. While a skillful physician is able to single-
handedly interpret an ECG and find various possible heart defects, computers
are an invaluable resource in helping to interpret ECG:s [1]. This is especially
the case when the electrocardiography is carried out in real time and serious
defects and irregularities must be detected and dealt with swiftly. Of course,
algorithms are needed to process and interpret the ECG. For this purpose, the
Hilbert transform and its close relationship with analytic signals is a very useful
tool. In this section we will examine how the Hilbert transform may be used in
this very respect.

2.1 Basics of electrocardiography

This section will focus on providing a basic understanding of electrocardiogra-
phy. That is, what an ECG actually looks like and how it should be interpreted.
Note that this is merely an overview of the medical aspects.

The general ECG-signal, recorded from a heart with normal functionality, will
exhibit periodicity. Each cycle (representing a heartbeat) can be divided into
unique and distinguishable segments. In Figure 9 we can see a simplified sketch
of these segments that together represent a single heartbeat.

This part we will mainly focus on is the so called ”QRS complex”-part of the
wave. It is corresponding to the depolarization of the right and left ventricles
of the heart. Various different heart defects can be detected by looking at the
QRS complex. For example, if the QRS complex is too wide (duration is too
long) it can suggest problems with the heart’s conduction system. Also, too low
amplitude of the QRS complex may suggest pericardial effusion or infiltrative
myocardial disease while too high amplitude could mean left ventricular hyper-
trophy. Thus, locating and extractring all QRS complex-parts of an ECG-wave
is an essential problem in electrocardiography [2], [15], [13].

2.2 Hilbert transform of the QRS complex

Consider the main part of the QRS complex as clearly illustrated in Figure 9.
Looking at its two turning points points, it actually resembles a ”slightly” de-
formed sine wave [2]. This can be very well used in our analysis of the QRS
complex along with the Hilbert transform and analytic signals.
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Figure 9: Segments of a single heartbeat cycle from a sketch of an ECG-wave
recorded of a normally functioning heart. The QRS complex is the most distin-
guishable segment and will be our main focus in this section.

Start by making the definition x(t) = sin (t). As has been seen earlier we
know that H(sin (t)) = − cos (t). By this, we may construct an analytic signal.

z(t) = x(t) + iH(x(t)) = sin (t) + iH(sin (t)) = sin (t)− i cos (t) = −ieit

Clearly, z(t) is an analytic signal and it is also a parameterization of the unit
circle in the complex plane. As can be seen in Figure 10 and Figure 11 this is
also the case when we consider the situation numerically.

Now, to better imitate the QRS complex we can modify the sine wave slightly
by deforming it. Calculations are the same as before but now u(t) and H(u(t))
are as in Figure 12. Also, the analytical signal w(t) = u(t) + iH(u(t)) is con-
structed. Clearly, u(t) in this plot resembles the QRS complex given in Figure 9
more than a pure sine wave provided by x(t). From the the corresponding plot
of u(t) against H(u(t)) seeen in Figure 13 some conclusions can be drawn. As
one would expect, since u(t) is no longer a pure sine wave the corresponding
plot is not a circle, but rather a deformed circle. Note that the graph of this
plot is still closed and encloses the origin.

To conclude, if z(t) = x(t) + iH(x(t)) is an analytical expansion of x(t) where
x(t) is a QRS complex graph - then the plot of (x(t),H(x(t))) will be an en-
closed loop around the origin. Of course, this requires that x(t) is symmetric
around the x-axis and for an actual ECG to have mean 0 [V]. If this is not
the case, it may be fixed by removing the non-zero mean of the ECG-wave and
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Figure 10: Plot of x(t) = sin (t) and its Hilbert transform, H(x(t)) = − cos (t)
in the interval 0 ≤ t ≤ 2π. The Hilbert transform of x(t) = sin (t) has been
calculated numerically.

consequently achieving desired symmetry.

Before examining some datasets from real ECG:s it is interesting to examine
what orientation the closed loop of an QRS complex expanded into an analytic
signal has. Of course, we are working under the assumption that the QRS com-
plex wave is some deformed sine wave. Plainly deforming the wave will not
change the orientation of the graph. Thus, it is perfectly sufficient to examine
the simple sine wave that we looked at initially.

Figure 12: Plot of u(t) and H(u(t)). Here u(t) is a slightly deformed sine wave
generated numerically in the interval 0 ≤ t ≤ 12. Its Hilbert transform, H(u(t)),
was also calculated numerically.
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Figure 11: Plot of x(t) = sin (t) against H(x(t)) = − cos (t) with the parameter
interval 0 ≤ t ≤ 2π. As expected from theory, when x(t) = sin (t) is plotted
against H(x(t)) = − cos (t) the result is the unit circle. The Hilbert transform
of x(t) = sin (t) has been calculated numerically.

Figure 13: Plot of u(t) against H(u(t)) with the parameter interval 0 ≤ t ≤ 12.
They are both numerically produced and as can be seen in the plot they now
represent a somewhat deformed circle.

z(t) = sin (t)− i cos (t) = −ieit

As before, the parameter interval is 0 ≤ t ≤ 2π and by simple calculation we
get z(0) = −i, z(π/2) = 1, z(π) = i, z(3π/2) = −1 and z(2π) = −i. Clearly the
orentation of the closed curve is counter-clockwise which is also illustrated in
Figure 14 with juxtaposed plots.
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2.3 Analysis of real ECG-signals

Now, we are provided a real ECG-signal from PhysioNet [3]. It is a renowned
database which holds a large collection of recorded physiologic signals.

Make the definition ECG(t) as our real ECG-signal. In Figure 15 a plot of
ECG(t) is readily provided. We see that ECG(t) has total duration of 5 sec-
onds (0 ≤ t ≤ 5, t [s]). Comparing the sketch of a heartbeat cycle given in
Figure 9 with the graph of ECG(t), it is very easy to distinguish the QRS
complex-segments in ECG(t). Visibly, there are exactly 5 relatively high and
distinguishable peaks in ECG(t). Each one of said peaks represent a QRS com-
plex. Notably, after each QRS complex it is also easy to detect the T-waves
which are represented by fairly high peaks. The P-waves are a bit more difficult
to detect but still possible if one looks closely before each QRS complex.

Figure 14: Plot of x(t) = sin (t) and a plot of sin (t) against H(sin (t)) in the
parameter interval 0 ≤ t ≤ 2π. These two plots are juxtaposed in order to
confirm the orentation of the closed (circular) loop. This very figure confirms
that the orentation is indeed counter-clockwise which was analytically derived.
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Figure 15: Plot of ECG(t) in the interval 0 ≤ t ≤ 5 where t is in seconds.
There are 5 sets of QRS complex visible in the plot, represented by the highest
peaks. The second highest peak which appear after a QRS complex is a T-wave.
The third highest peak which appear before a QRS complex is a P-wave.

Numerically it is possible to calculate the Hilbert transform of ECG(t). In
Figure 16 the graph of H(ECG(t)) is plotted in the time domain together with
ECG(t). Interestingly, close to the large peaks of ECG(t), the Hilbert transform
H(ECG(t)) seems to behave like 1/t. This is because the large peaks in ECG(t)
do resemble the Dirac delta function. While these peaks are of course not true
Dirac delta functions (remember, the Dirac delta function is a distribution),

they can still be approximated by fn(t) =
1
2

√
n
π · e−nt2/4 which is a sequence of

functions. As n → ∞, fn(t) → δ(t) in the sense of distributions. Numerically,
as can be seen in Figure 17, as n is increasing fn(t) is starting to resemble a
true pulse. Furthermore, in Figure 18 there is a plot of H(fn(t)) for the same
values for n. Likewise, as n is increasing, H(fn(t)) gradually tends to something
in the likes of 1/t. This is no accident because in the sense of distributions we
according to [4]

H(δ(t)) =
1

π
PV

∫ ∞

−∞

δ(s)

t− s
ds =

1

π
·
1

t
=

1

πt

which explains the apperance of H(ECG(t)) around the high peaks.
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Figure 16: Plot of ECG(t) and H(ECG(t)) in the interval 0 ≤ t ≤ 5. Close to
the peaks, H(ECG(t)) to some degree resembles the function 1/t.

Figure 17: Plot of the sequence of functions defined by fn(t) =
1
2

√
n
π · e−nt2/4

in the interval −1 ≤ t ≤ 1 for n = 10, 100, 1000. As n is increasing, fn(t)
is starting to appear like a pulse. Analytically, fn(t) → δ(t) in the sense of
distributions as n→ ∞.
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Figure 18: Plot of H(fn(t)) = H
(

1
2

√
n
π · e−nt2/4

)
in the interval −1 ≤ t ≤ 1

for n = 10, 100, 1000. The Hilbert transform for each fn(t) has been calculated
numerically. As n increases, H(fn(t)) begins to resemble 1/t.

To continue, as we established in the preceding section, the QRS complex imi-
tates a deformed sine wave. Can this be used for the whole ECG(t) for dection
of peaks that are QRS complex? Given ECG(t) and H(ECG(t)) we can expand
the ECG signal into an analytic signal.

z(t) = ECG(t) + iH(ECG(t))

A plot of z(t) against H(ECG(t)) is provided in Figure 19. By close inspection
of this plot it is possible to detect 5 main loops enclosing the origin. By our
theory and because the Hilbert transform is a linear operator, each main loop
should correspond to exactly one QRS complex. If we can show that this is the
case, we have a valuable tool of detecting a QRS complex.

Let us look at a single QRS complex. To do this, focus on the first QRS com-
plex of the ECG, that is, ECG(t) for 0 ≤ t ≤ 1. This piece of the ECG can be
seen in Figure 20 and its corresponding plot with ECG(t) against H(ECG(t))
for the parameter interval 0 ≤ t ≤ 1 is provided in Figure 20. As can be seen
in this plot, we now only have one main loop, agreeing well with the fact that
inside said interval ECG(t) only carry one QRS complex. Still, we have some
”garbage” and a smaller loop close to the origin. We need to show that this
does not belong to the QRS complex.
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Figure 19: Plot of ECG(t) against H(ECG(t)) in the parameter interval 0 ≤
t ≤ 5. Looking very closely at the plot, one can detect 5 main loops.

Figure 20: Plot of ECG(t) in the interval 0 ≤ t ≤ 1. Exactly one peak repre-
senting a QRS complex is present inside this interval.

In order to show this, we define the following for 0 ≤ t ≤ 1

QRS(s) = ECG(t) · χ[0.18,0.38](t)

then we cut out the QRS complex from the graph in Figure 20 and the result
can be seen in Figure 22 which is the graph of QRS(t). We see clearly that
QRS(t) indeed resembles a deformed sine wave, here with some minor numerical
disturbances. Now, expand QRS(t) into an anlytic signal

zQRS(t) = QRS(t) + iH(QRS(t))
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and also make a definition of a residual signal r(t), that is, everything of ECG(t)
in the interval 0 ≤ t ≤ 1 that is not the QRS complex.

r(t) = ECG(t) · χ[0,1] −QRS(t)

Firstly, consider the analytic signal zQRS(t). A plot ofQRS(t) againstH(QRS(t)),
which can be seen in Figure 23 effectively shows that zQRS(t) by itself generates
a large main loop around the origin. However, we still need to show that the
numerical Hilbert transform we are using ”exhibits” linear behavior. If it is
linear, then we should have that

0 = |H(QRS(t))−H(QRS(t))| =
∣∣H(QRS(t))−H(ECG(t) · χ[0,1] − r(t))

∣∣

=
∣∣H (QRS(t)) +H (r(t))−H

(
ECG(t) · χ[0,1]

)∣∣

In Figure 24 we see that this error is very small and close to zero throughout the
whole interval. It is safe to say that our numerical Hilbert transform is linear
and therefore the theory holds.

Consequently, given an ECG-signal, ECG(t), and the objective to detect one
or several QRS complex-waves the following method is valid.

1. If necessary, filter the ECG-signal to remove noise and to get a smoother
curve. For some ECG-signals this method works better if the curve is a
bit smooth.

2. Remove any offset from ECG(t) to make sure that the ECG-wave has
mean zero. If this is not the case, this can be done numerically by sub-
tracting the non-zero mean from ECG(t) (sometimes known as ”detrend-
ing”).

3. Expand the detrended version of ECG(t) into an analytic signal using
the Hilbert transform. First calculate H(ECG(t)) and then make the
definition z(t) = ECG(t) + iH(ECG(t)).

4. Analyze z(t) along the parametric interval. As shown, a QRS complex
wave in the time domain creates a large loop enclosing the origin in a
plot of ECG(t) against H(ECG(t)) with counter-clockwise orentation as
t increases. It is also possible to use the zero crossings of the real- and
imaginary axis since zQRS(t) completely encloses the origin and does not
go through it.
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Figure 21: Plot of ECG(t) against H(ECG(t)) in the parameter interval 0 ≤
t ≤ 1. There is only one main loop in the plot, still enclosing the origin.

Figure 22: Plot of QRS(t) = ECG(t) · χ[0.18,0.38](t) in the interval 0 ≤ t ≤ 1
where the QPRS complex has been cut out and the rest of the ECG(t) is set
to zero. As can be seen in the plot, the QRS-function has the apperance of a
derfomed sine wave with some minor numerical disturbances.
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Figure 23: Plot of QRS(t) against H(QRS(t)) in the parameter interval 0 ≤
t ≤ 1. The only thing visible in the plot is a large main loop. This means that
the analytic expansion of QRS(t) itself corresponds to a main loop enclosing the
origin.

Figure 24: A plot over the error
∣∣H (QRS(t)) +H (r(t))−H

(
ECG(t) · χ[0,1]

)∣∣.
Since the error is very small, the numerical Hilbert transform exhibits linearity.

2.4 Limitation of the method

When does this method not work for detection of the QRS complex? Consider
some other ECG-signal, ECG(t), as in Figure 25. The difference here is that
the altitude of the QRS complex is considerably lower. As before,we expand
ECG(t) into an analyhtic signal

z(t) = ECG(t) + iH(ECG(t))
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and in Figure 26 there is a plot of ECG(t) against H(ECG(t)). In this plot
we see that there is not one distinguishable main loop anymore. Therefore, the
algorithm will possibly fail to detect the QRS complex or the T-wave will be
interpreted as an QRS complex.

To conclude, for the method to work the height QRS complex needs to be
distinguishably higher than the rest of the ECG-signal.

Figure 25: A slightly modified ECG-signal with a considerably lower QRS com-
plex.

Figure 26: A slightly modified ECG-signal with a considerably lower QRS com-
plex.
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3 The Hilbert-Huang transform

A time series is a collection of data points for a fluctuating variable that has
been sampled sequentially in time. We will denote a time series by X(t) which
simply denotes the value of the time series at a time t. The time series that
will be considered here will be continuous ones, meaning that they have been
sampled continuously in time [5] .

There are several types of tools available to analyze a time series, most fa-
mously is perhaps the Fourier transform. However, if the data in question comes
from a nonstationary or nonlinear process there are limitations and the Fourier
transform may not be a suitable tool. For these time series the Hilbert-Huang
transform (HHT) is useful. The method is developed entirely in an emperical
sense and is lacking an underlying mathematical framework.

Before presenting the method and an algorithm to carry out said method we
need, however, a definition and the introduction of some new concepts [5].

Definition 3.1. (IMF). An Intrinsic Mode Function (IMF) is a continous,
real-valued function that satisfies the following two conditions

(i) The number of local extrema and zero crossings must be equal or differ
by most one

(ii) The mean value of the two envelopes curves formed by the extremas
(local minima and maxima, respectively) should be zero at any time

Remark 3.2. Certainly, it begs the question, what is the ”envelope formed by
the extremas”? This is simply some smooth curve connecting the local maxima
or local minima respectively. An envelope curve for the maxima is called eu(t)
and for the minima el(t). Usually, cubic spline interpolation is used to construct
these two envelope curves.

The approach and idea of HHT is based on Emperical Mode Decomposition
(EMD) where the time series is decomposed into IMFs. The extraction of an
IMF from a time series is refered to as sifting. Each IMF will represent an
intrinsic oscillation that is present in said time series [5], [17], [16].

3.1 An algorithm for decomposition

Consider a continuous time series X(t). An algorithm to carry out an EMD for
the time series is as follows. Let h10 = X(t).

(i) Locate each local maximum of X(t) and construct an envelope curve con-
necting all maxima using cubic spline interpolation.
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(ii) Locate each local minimum of X(t) and construct an envelope curve con-
necting all minimas using cubic spline interpolation.

(iii) Construct a mean curve of these two envelope curves and call it m11(t).
The first index refers to the particular IMF under construction and the
second index tells us which iteration (extracting one IMF may require
several iterations) we are in for said IMF.

(iv) Calculate h11(t) = h10(t)−m11(t) = X(t)−m11(t). This should be close
to an IMF but it may need some refinement.

(v) Treat h11(t) as input data and repeat steps (i), (ii) and (iii) with h12(t) =
h11(t)−m12(t).

(vi) Repeat k times with an appropriate stopping criterion finally ending up
with h1k(t) = h1(k−1)(t)−m1k(t).

(vii) Finally h1k(t) is subtracted from X(t) to give h20(t). Process then restarts
with the dataset h20(t).

(viii) Set ci(t) = hik(t).

For step (vi) we need a stopping criterion. The most commonly used criterion
is by looking at the sum of the difference, SD, derived from two consecutive
iterations. That is, hn(k−1)(t) and hnk(t) [10]. Also, since the algorithm is
carried out numerically, suppose the time series is in a finite time interval,
0 ≤ t ≤ T .

SDn =

T∑

t=0

(
|hn(k−1)(t)− hnk(t)|

2

h2n(k−1)(t)

)

Empirically derived, an appropriate stopping criterion is then given by SDn < ǫ
where ǫ is some number between 0.2 and 0.3. But when should the overall sifting
process stop? We may calculate

rn(t) = X(t)−

n∑

i=1

ci(t)

where rn(t) is a residual term. Naturally, when rn(t) has become monotonic
or constant, no more IMFs may be extracted from X(t) and the sifting should
be stopped. Therefore, when rn(t) is either monotonic or constant the sifting
process is complete. The final decomposition of X(t) has thus been obtained
and is obviously given by the expression

X(t) =

n∑

i=1

ci(t) + rn(t)

where rn(t) is, again, a residual term. Since rn(t) is either monotonic or constant
[10] one of the useful properties of the HHT is that it seperates trends or means
from the harmonics of a time series. Thus, when examining a time series there
is no inherent requirement of removing linear trends or unwanted offsets.
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Example 3.3. We will consider one step of this algorithm where the first IMF,
c1(t), is extracted from a function X(t) which can be seen in Figure 27. Put
h10(t) = X(t). In Figure 28 we see that m11(t), which is is the mean curve of
the two envelope curves is not zero. Therefore, h10(t) is not an IMF itself and
h11(t) = h10(t)−m11(t) is calculated.

Figure 27: Plot of function X(t) from which we will extract c1(t).

Figure 28: Plot of h10(t) with its envelope curves and mean curve.

Visibly, in Figure 29 we can see that h11(t) is much closer to an IMF compared
to h10(t) . In Figure 30 - 31 the above steps are repated in order to refine h11(t)
and make it look like a true IMF.
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Figure 29: Plot of h11(t) with its envelope curves and mean curve.

Figure 30: Plot of h12(t) with its envelope curves and mean curve.

In Figure 31 we se that m14(t) is very close to zero and for these reasons we
may put c1(t) = h13(t) (of course, further refinement is possible). Lastly, in
Figure 32 we have the result, c1(t), juxtaposed with X(t). Also in this figure,
there is X(t)− c1(t). From X(t)− c1(t) the next IMF, c2(t) is to be extracted.
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Figure 31: Plot of h13(t) with its envelope curves and mean curve.

Figure 32: Plot of X(t), c1(t) and X(t) − c1(t). Extraction of the next IMF,
c2(t), will continue from X(t)− c1(t) as the new ”input”.

3.2 Interpretation of the decomposition

Let x(t) be a real-valued, continuous signal. If it is fairly well-behaved, we may
expand x(t) into an analytic signal.

z(t) = x(t) + iH(x(t))

Since z(t) is a complex number it may be written in, instead of rectangular
form, polar form z(t) = a(t)eiϕ(t) where a(t) = |z(t)| and ϕ(t) = arg (z(t)).
Now, assume X(t) is a continuous time series that has been decomposed using
the HHT. Expand X(t) into an analytical signal using the Hilbert transform.

Z(t) = X(t) + iH(X(t)).
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Using the decomposition, we disregard the residual term, rn(t). Either rn(t) is a
constant and thenH(rn(t)) = H(r) = 0, or it is monotonic. If rn(t) is monotonic
then it can potentially overpower the harmonics and should therefore be left out.

Define ω(t) = d
dtϕ(t) where ω(t) is angular frequency. From this definition it

also follows that ω(t) = 2πf(t) where f(t) is called frequency. Now, from the
analytical expansion ofX(t) along with the decomposition ofX(t) through HHT
we get

Z(t) =

n∑

j=1

cj(t) + iH




n∑

j=1

cj(t)


 =

n∑

j=1

(cj(t) + iHcj(t))

=

n∑

j=1

aj(t)e
iϕj(t) =

n∑

j=1

aj(t)e
i(ϕ(0)+

∫
t

0
ωj(s)ds)

=
n∑

j=1

aj(t)e
iϕ(0)+2πi

∫
t

0
fj(s)ds.

Thus, another way of representing the time series X(t) is given by

X(t) = Re (Z(t)) = Re




n∑

j=1

aj(t)e
iϕ(0)+2πi

∫
t

0
fj(s)ds


. (1)

Now, suppose that X(t) were to be expanded into a Fourier representation.
Given in complex form, its Fourier representation would be

X(t) =

∞∑

j=−∞

aje
2πifjt. (2)

Obviously, these expressions are very similar but they differ in an very impor-
tant aspect. In (2), the amplitudes, aj , and frequencies, fj , are constant while
the corresponding terms are time dependent in (1). Thus, the HHT with its
decomposition can be viewed as a generalized Fourier series expansion. The
time varying amplitudes and frequencies allows for a better representation of a
nonstationary time series [5].

This new expression of a time series allows us to represent the amplitude and
frequncy as functions of time in a 3-D plot. Having a plane with a f - and t-axis
the amplitude may be contoured. This f -t-distibution of the amplitude is called
the Hilbert spectrum and usually denoted as H(f, t). Also, with H(f, t) defined
it makes sense to also define the marginal spectrum, h(f), which is given by

h(f) =

∫ T

0

H(f, t)dt.
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The marginal spectrum can, in some sense, be compared with the amplitude
spectrum of a Fourier representation of X(t) given by |X(f)| in the frequency
domain. However, there is one important distinction that one has to keep in
mind. For the Fourier representation, if |X(f)| 6= 0 for a certain f , this means
that a harmonic with the same frequency persisted throughout the whole time
series. If h(f) 6= 0 for the very same frequency f , it merely means that there
is a higher likelihood for such a harmonic to have existed locally somehwere in
the distribution. The exact time of occurence of this harmonic is provided by
the complete Hilbert spectrum [10], [15].

Example 3.4. Consider the function

X(t) =

{
sin (t2) + t, 0 ≤ t ≤ 25

sin (20πt) + t, 25 ≤ t ≤ 100
.

In this function there is a chirp where the frequency increases linearly in time.
That is, f(t) = f0 + kt and the chirp signal is sin (f(t) · t) (in our case, f0 = 0
and k = 1). Also, there is also a linear trend present in the function. Clearly,
the process represented by the given function is non-linear and nonstationary.
Using methods from Fourier analysis to analyze this function is therefore not
a good idea since the linear trend will dominate. Using detrend in MATLAB
removes the linear trend and in Figure Figure 33 we have the amplitude spec-
trum, |X(f)|, of X(t). While the frequency components we expect are present,
the Fourier transform does not tell us when the two different harmonics occur.
We may, however, use the HHT to demcompose X(t) into IMFs using the HHT.
With the decomposition, a Hilbert spectrum may be plotted. In Figure 34 a
Hilbert spectrum for X(t) can be seen.

From this spectrum it is easy to see that in the interval 0 ≤ t ≤ 25 the fre-
quency of the harmonics are given by 1

2π ·f(t) =
t
2π . Furthermore, in the interval

25 ≤ t ≤ 100 the frequency of the harmonics are given by f = 20π/(2π) = 10
and this also clearly reflected by the Hilbert spectrum.
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Figure 33: Amplitude spectrum of a ”detrended” version of X(t). This spectrum
conceived by Fourier methods does not reflect that we have a chirp signal and
that X(t) is nonstationary.

Figure 34: Hilbert spectrum of X(t).

In this section some various numerical investigations of the HHT will be carried
out. This is an attempt to try to deduce some properties of the transform in an
empirical manner. Also, what weaknesses are inherit in the method?

By looking at the HHT algorithm (or empirical investigation) it is clear that
the IMFs given by ck(t), 1 ≤ k ≤ n decreases in complexity as k increases. The
higher complexity of an IMF (more zero crossings and extremas) the higher is
its frequency content. Therefore, the following conjecture makes sense.
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Conjecture 3.5. SupposeX(t) is a time series and its Hilbert-Huang trans-
form is a decomposition given by

X(t) =

n∑

i=1

ci(t) + rn(t).

Then the IMFs, ck(t), are decreasing in complexity as k increases. That
is, given ck(t) and ck+1(t), then ck(t) has more zero crossings compared to
ck+1(t) for 1 ≤ k ≤ n− 1.

The validity of this conjecture will be investigated throughout the thesis. Note
that more zero crossing means that ck(t) has higher frequency content compared
to ck+1(t).

3.3 Trigonometric polynomials and the HHT

Definition 3.6. A function f(t) is said to be a trigonometric polynomial
of degree N if it can be written in the form

X(t) = a0 +

N∑

n=1

an cos (nt) +

N∑

n=1

bn sin (nt)

where an, bk for 1 ≤ n ≤ N are any complex numbers.

It is easy to see that an cos (nt) and bn sin (nt) for any fix n will satisfy both
conditions (i) and (ii) from Definition 3.1. Therefore, an interesting observation
is that a trigonometric polynomial is in fact a sum of several functions that each
one is an IMF, plus some constant a0. If given a function X(t) known to be a
trigonometric polynomial, is it possible to decompose it using the HHT?

Example 3.7. Consider the function

X1(t) = 4 cos (10t) + 2 cos (t)

which is a very simple trigonometric polynomial consisting of only two com-
ponents. As can be seen in a plot of the function in Figure 35 it is, despite
X1(t) being a fairly simple function, hard to determine what components X1(t)
actually contains. To extract the different components from X1(t), the Hilbert-
Huang Transform should prove useful.

When performing HHT on X1(t) we should, according to Conjecture 3.5,

53



Figure 35: Plot of X1(t) = 4 cos (10t) + 2 cos (t).

for the first IMF receive c1(t) = 4 cos (10t) since this is the component with the
highest frequency content in X1(t). Naturally, for the second IMF we expect
to recieve c2(t) = 2 cos (t) which of course is the component in X2(t) with the
second highest frequency content.

The results of performing the HHT numerically onX(t) can be seen in Figure 36.
The results seem to be in line with our predictions and it looks very much like
c1(t) = 4 cos (10t) and c2(t) = 2 cos (t) as expected. This can be seen more
clearly in Figure 37 where the differences c1(t)− 4 cos (10t) and c2(t)− 2 cos (t)
are plotted. Except for some edge effects (which will be adressed later) it is clear
that the differences are virtually zero throughout the interval. To summarize,

Figure 36: Plot of c1(t) and c2(t) calculated numerically through the HHT algo-
rithm for X1(t) for 0 ≤ t ≤ 25.
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Figure 37: Plot of the difference between expected IMFs and the actual IMFs
calculated through the HHT for 0 ≤ t ≤ 25.

the HHT worked as exepected on X1(t), both with regards to Conjecture 3.5
and as a suitable tool for extracting the compononents of a trigonometric poly-
nomial. Note that here is the residual term, r2(t), equal to zero because X1(t)
consists completely of IMFs.

Remark 3.8. The interval 0 ≤ t ≤ 25 is arbitrary. One should note that
the HHT performs better if the interval is larger. This is of course due to
the numerical algorithm having more data points to consider. The interval in
question gives good result and thus will be used.

Example 3.9. Consider the function

X2(t) = cos (5t) + cos (t) + 3

which can be seen in Figure 38. What happens when a0 6= 0 for a trigonometric
polynomial in regards to the HHT? Obviously the constant a0 is not an IMF
function since it does not satisfy condition (ii) in Definition 5.1. Therefore,
the constant will end up in the residual term. In this case, we should get
c1(t) = cos (5t), c2(t) = cos (t) and r2(t) = 3. Like in the first example, this
is empirically proven by calculating the HHT for X2(t) and the results can be
seen in Figure 39 and Figure 40.
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Figure 38: Plot of X2(t) = cos (5t) + cos (t) + 3.

Figure 39: Plot of c1(t), c2(t) and r2(t) calculated numerically through the HHT
algorithm for X2(t) .
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Figure 40: Plot of the difference between expected IMF:s and the actual IMF:s
calculated through the HHT.

3.4 Nonstationary processes and the HHT

One of the benefits of the HHT is that it can handle non-stationary time series.

Example 3.10. Consider the function

X3(t) =

{
sin (t), 0 ≤ t ≤ 4π

sin (3t), 4π ≤ t ≤ 20

which can be seen in Figure 41. Clearly, X3(t) is continuous everywhere and
both of the two seperate functions in each interval is an IMF and thus X3(t)
itself is an IMF. Ideally, the Hilbert-Huang transform of X3(t) should simply
return X3(t) itself. This is also the case as can be seen in Figure 42 where c1(t)
appears to be identical to X3(t). This is confirmed to be the case in the very
same figure. We see that the difference of c1(t) and X(t) is zero everywhere.
Also, r1(t) is zero everywhere as should be expected.
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Figure 41: Plot of X3(t).

Figure 42: Plot of c1(t) and the difference of c1(t) and X3(t).

Example 3.11. Consider the function

X4(t) =

{
sin (t), 0 ≤ t ≤ 10π

sin (t) + sin (10t), 10π ≤ t ≤ 100

which can be seen in Figure 43. Calculating the HHT for a function like this
and succesfully extracting and separating the harmonics could be very useful.
Imagine we have some background process that is suddenly interrupted by an-
other process (like an earthquake). While the ”new” process is dominating the
background process is still active. Obviously, this is a nonstationary situation
and therefore the HHT could be very useful in acquiring the harmonics.
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Figure 43: Plot of X4(t).

According to Conjecture 3.5, the IMFs we should expect are

c̃1(t) =

{
sin (t), 0 ≤ t ≤ 10π

sin (10t), 10π ≤ t ≤ 100

c̃2(t) =

{
0, 0 ≤ t ≤ 10π

sin (t), 10π ≤ t ≤ 100

where the component with the highest frequency in each interval. The actual
IMFs, acquired by calculation and denoted by c1(t) and c2(t) can be seen in
Figure 44. Furthermore, in Figure 45 are the differences of the calculated IMFs
and the expected IMFs.

What conclusions can be drawn? Obviously, c1(t) agrees well with c̃1(t) ex-
cept for edge effects and in the neighborhood of t = 10π. Of course, this is
because the harmonics shift instantaneously and it is hard for the algorithm to
fit this in with IMFs. Despite this, the result of c1(t) should be considered good
since it manages to pick up both harmonics in each interval. For c2(t), we do
not really get what we expected. While it picks up the background harmonics
of sin (t) in 10π ≤ t ≤ 100, it is a bit off in 0 ≤ t ≤ 10π. This is because it
is hard to fit an IMF to c̃2(t) which has a zero interval and then instantaneous
harmonics.
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Figure 44: Plot of the two first IMFs, calculated numerically for X4(t).

Figure 45: Plot of the difference between the calculated IMFs and the expected
IMFs for X4(t). That is, c1(t)− c̃1(t) and c2(t)− c̃2(t)

.

3.5 Limitations of HHT

As have been seen in the examples, there are some limitations inherent in the
HHT. These limitations are due to the algorithm being carried out numerically
and because the data sets are indeed finite in the number of elements.

3.5.1 End effects

Comparing the difference between the expected IMF and the IMF calculated
numerically it has been clear that the difference can relatively large at the end
points. This effect may be seen very clearly in Figure 37 for example. Expected
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IMF and the IMF yielded by the algorithm correspond very well everywhere in
the interval except at the end point.

This unwanted effect is due to the datasets being of finite numbers of elements.
Therefore, both end points of the data set only have one (instead of two) neigh-
boring point to be considered. Unfortunately, these end effects will become
amplified as for every IMF being calculated these effects will spread down to
the next and less complex IMF to be considered.

3.5.2 Adjacent frequencies

To discuss this limitation of the HHT, we will look at a concrete example.

Example 3.12. Consider the functions

X(t) = cos (10t) + cos (t)

Y (t) = cos (2t) + cos (t)

which can be seen in Figure 46. Both functions are simple trigonometric poly-
nomials. Using the HHT to extract the components from each function should
therefore be fairly straightforward. In Figure 47 the two first IMFs for X(t)
and Y (t) can be seen. For X(t) we have cX1 (t), cX2 (t) and for Y (t), in the same
manner, cY1 (t), c

Y
2 (t) as the numerically calculated IMFs through the HHT.

Apart from the edge effects it is clear that the HHT algorithm provides good
results for decomposing X(t). For X(t), the numerically calculated IMFs are
close to the expected IMFs. That is, cX1 (t)−cos (10t) and cX1 (t)−cos (t) are zero
or close to zero throughout the whole interval which can be seen in Figure 49.
To conclude, the HHT works very well for X(t) and it manages to decompose
the harmonic components of this function.

Now, despite X(t) and Y (t) being very similar functions, the performance of the
HHT is very different for Y (t). In Figure 50 it is clear that that the numerically
calculated IMFs are not close to the expected IMFs. That is, cY1 (t)− cos (2t) as
well as cY2 (t) − cos (t) are not close to zero throughout the interval. Quite the
contrary, both differences osciallate between fairly large numbers. To conclude,
the HHT actually seems to perform quite badly for Y (t).

Question is, why is there such a difference in the performance of the HHT be-
tween X(t) and Y (t)? The answer is obtained by looking at and comparing the
frequency components of X(t) and Y (t), respectively. Considering the Fourier
transform of X(t) we see that it contains fX = 10

2π ,
1
2π (note that these are

separated by a factor 10). The same reasoning for Y (t) provides the frequency
components fY = 2

2π ,
1
2π . Note that for Y (t) the different frequency components

are closer to each other, almost ajdacent. This becomes even clearer by looking
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at the actual Fourier transforms of X(t) and Y (t) [6].

X(f) =
1

2

(
δ

(
f −

10

2π

)
+ δ

(
f +

10

2π

))
+

1

2

(
δ

(
f −

1

2π

)
+ δ

(
f +

1

2π

))

Y (f) =
1

2

(
δ

(
f −

2

2π

)
+ δ

(
f +

2

2π

))
+

1

2

(
δ

(
f −

1

2π

)
+ δ

(
f +

1

2π

))

Analytically, the frequency components are well-separeted by the distinct Dirac
delta functions. However, in a numerical representation these Dirac deltas func-
tions will look like ”hills” in the frequency domain. This can be seen in Figure 50
where |X(f)| = |F(X(t))| and |Y (f)| = |F(Y (t))| have been calculated numer-
ically and plotted in the frequency domain. If these hills are too close to each
other, the algorithm will have trouble to differ between the two different fre-
quency components. As a result, we will not receieve as neat and clear-cut IMFs
for Y (t) compared to X(t) and the numerical errors will increase if frequencies
are adjacent and too alike.

Figure 46: Plots of X(t) = cos (10t) + cos (t) and Y (t) = cos (2t) + cos (t).
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Figure 47: Plots of the IMFs for X(t) and Y (t). The first plots shows the IMFs
for X(t) which are cX1 (t) and cX2 (t). The second plot shows the IMFs for Y (t)
which are cY1 (t) and c

Y
2 (t).

Figure 48: Plot of cX1 (t) − cos (10t) and cX2 (t) − cos (t). As can be seen in the
plot, the expected IMFs are close to the calculated IMFs.
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Figure 49: Plot of cY1 (t)−cos (2t) and cY2 (t)−cos (t). Visibly, the expected IMFs
are not close to the calculated IMFs.

Figure 50: Plot of the power spectrums, |X(f)| and |Y (f)| for f ≥ 0 (note that
the power spectrums are symmetric, since the signals in the time domain are
real). For |X(f)| we expect peaks at f = 1

2π ≈ 0.16 and f = 10
2π ≈ 1.60. For

Y (f) we expect peaks at f = 1
2π ≈ 0.16 and f = 2

2π ≈ 0.32. Looking at the
power spectrums, this is also the case.

Example 3.13. For a more quantative approach to the limitation of ajdacent
frequencies, consider the function

X(t, ǫ) = cos ((1 + ǫ)t) + cos (t)

for some ǫ > 0. How well does the HHT perform for different values of ǫ? Ideally,
when X(t) is subject to HHT, the IMFs we expect are c̃1(t, ǫ) = cos ((1 + ǫ)t)
and c̃2(t) = cos (t). To determine how well HHT performs for different values
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of ǫ, let us calculate ‖c1(t, ǫ) − c̃1(t, ǫ)‖2 and ‖c2(t, ǫ) − c̃2(t)‖2 where c1(t, ǫ)
and c2(t, ǫ) are the numerically calcuated IMFs for X(t, ǫ). The result can be
seen in Figure 51 where 0.1 ≤ ǫ ≤ 30 with a step length of ∆ǫ = 0.1. The
frequency components of X(t) are f = 1+ǫ

2π = 1
2π + ǫ

2π and f = 1
2π . Obviously,

as ǫ increases, the frequencies moves farther away from one another. Thus, the
HHT experiences less problems of differentiating the two frequencies and the
results are better. In contrast, when ǫ is small, the frequencies are adjacaent
and the results are bad as can be seen in said figure.

Figure 51: Plot of ‖c1(t, ǫ)− c̃1(t, ǫ)‖2 and ‖c2(t, ǫ)− c̃2(t)‖2 for 0.1 ≤ ǫ ≤ 30.

For reasonable results with the HHT, frequencies should be seperated by a factor
5 to avoid problems with adjacency. For good results, a factor 10 is desirable.
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4 Hilbert transform and modulation

4.1 Introduction to Amplitude modulation

Consider a purely real and continous signal m(t) that we want to transmit.
Suppose its Fourier transform, M(f), is bandlimited (M(f) = 0 if |f | > W for
some W ) and also M(0) = 0. Usually when transmitting signals it is desired
that they are within a given frequency band to avoid interference from other
transmissions. To achieve this property amplitude modulation may be used. A
standard amplitude modulated signal is given by

mAM (t) = m(t) cos (2πfct)

where fc is called the carrier frequency. The carrier frequency is much larger
than the bandwidth of m(t), that is, fc ≫ W [8]. Given the Fourier transform

Figure 52: Plot of |M(f)|, the amplitude spectrum of M(f). The symmetry is
because m(t) is a real signal.

M(f) of m(t), the Fourier transform of mAM (t) is then given by

MAM (f) = F (mAM (t)) = F (m(t) cos (2πfct)) = F(m(t)) ∗ F(cos (2πfct)

=M(f) ∗
1

2
(δ(f − fc) + δ(f + fc)) =

1

2
(M(f − fc) +M(f + fc))

As can be seen in the expression above, the effect cos (2πfct) has on the message
signal m(t) is that it moves the frequency content ofM(f) to fc and −fc. Thus,
MAM (f) has ended up within a more desirable frequency which is around the
carrier frequency. One should note that M(f) is symetrically doubled around
the origin and each copy of M(f) is centered around fc and −fc rescpectively
in MAM (f). Thus, the bandwidth used in MAM (f) is doubled compared to
the original message. One way to refine this method and to avoid the doubling
in bandwidth is to use the method of Single-Sideband modulation (SSB). This
method makes use of the Hilbert transform and analytic signals and will be
investigated further later.

Suppose that mAM (t) has been transmitted and received. How is the orignal
message signal, m(t), extracted by the receiver? By simply multiplying with
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Figure 53: Plot of |MAM (f)|, the amplitude spectrum of MAM (f).

cos (2πfct) once again we receive

mAM (f) cos (2πfct) = m(t) cos2 (2πfct) = m(t) ·
1

2
(cos (4πfct) + 1)

=
1

2
·m(t) +

1

2
·m(t) cos (4πfct)

and extracting m(t) is just a matter of applying a suitable low-pass filter and
multiplying with a factor 2. The term 1

2 ·m(t) cos (4πfct) is clearly high-frequent
compared to 1

2 ·m(t) and will therefore disappear when said low-pass filter is
applied onto the signal mAM (f) cos (2πfct). The act of extracting the original
signal from a modulated version of said signal is called demodulation.

4.2 Single-sideband modulation

Obviously, when using standard techniques of amplitude modulation the fre-
quency content is doubled and more bandwidth is required for transmission.
This is avoidable and modulation can be performed more efficiently using Single-
sideband modulation (SSB) [8]. This technique employs the connection between
the Hilbert transform and analytic signals.

Suppose as m(t) is as in the previous section. Begin by expanding m(t) into an
analytic signal using the Hilbert transform.

z(t) = m(t) + iH(m(t))

Here z(t) is an analytic signal and because m(t) is purely real, Theorem 1.26
readily gives us the Fourier transform of z(t).

Z(f) =





2M(f), f > 0

M(0), f = 0

0, f < 0

=

{
2M(f), f > 0

0, f ≤ 0

Of course, since m(t) is purely real, no information is lost in Z(f) due to M(f)
exhibiting Hermitian symmetry. That is, M(−f) = M(f) and consequently
|M(−f)| = |M(f)| as discussed in Example 1.27. Like before, it is desirable to
use amplitude modulation on z(t) to move the frequency content into a given
frequency band. Construct a new signal by multiplying z(t) with e2πifct.

za(t) = z(t) · e2πifct
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The Fourier transform of za(t) is easily calculated using convolution.

Za(f) = F(za(t)) = F
(
z(t) · e2πifct

)
= F(z(t)) ∗ F

(
e2πifct

)

= Z(f) ∗ δ(f − fc) = Z(f − fc)

Using the derived expression for Z(f) from above we get the expression

Za(f) = Z(f − fc) =

{
2M(f − fc), f > fc

0, f ≤ fc

and accordingly it has both only positive frequency components and due to am-
plitude modulation, said components lie about f = fc. Since all analytic signals
have only positive frequency components, za(t) is an analytic represenation of
an SSB-signal that we define as mSSB(t).

za(t) = mSSB(t) + iH(mSSB(t))

But we also have that

za(t) =z(t) · e
2πifct = (m(t) + iH(m(t))) · (cos (2πfct) + i sin (2πfct))

=m(t) · cos (2πfct)−H(m(t)) · sin (2πfct) + i · [m(t) · sin (2πfct)+

+H(m(t)) · cos (2πfct)]

Since mSSB(t) = Re za(t) we get by simply identifying real parts

mSSB(t) = m(t) · cos (2πfct)−H(m(t)) · sin (2πfct)

By using Theorem 1.12 we can acquire the Fourier transform of mSSB(t).

MSSB(f) = F(mSSB(t)) = F(m(t) · cos (2πfct)−H(m(t)) · sin (2πfct))

= F(m(t)) ∗ F(cos (2πfct))−F(H(m(t))) ∗ F(sin (2πfct))

=M(f) ∗
1

2
(δ(f − fc) + δ(f + fc))−

− (−i sgn (f))M(f) ∗
1

2i
(δ(f − fc)− δ(f + fc))

=
1

2
(1 + sgn (f − fc))M(f − fc) +

1

2
(1− sgn (f + fc))M(f + fc)

=





M(f − fc), f > fc

0, −fc ≤ f ≤ fc

M(f + fc), f < −fc

From this we can draw the conclusion that the frequency content for the SSB
has been halved compared to the amplitude modulated signal. Demodulation,
recovering m(t) from mSSB(t) that is, works in a similar fashion as before -
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Figure 54: Plot of |MSSB(f)|, the amplitude spectrum of MSSB(f).

begin by multiplying the signal with cos (2πfct).

mSSB(t) cos (2πfct) = (m(t) · cos (2πfct)−H(m(t)) · sin (2πfct)) · cos (2πfct)

= m(t) · cos2 (2πfct)−H(m(t)) · cos (2πfct) sin (2πfct))

= m(t) ·
1

2
(cos (4πfct) + 1)−H(m(t)) ·

1

2
sin (4πfct)

=
1

2
·m(t) +

1

2
·m(t) cos (4πfct)−

1

2
·m(t) sin (4πfct)

In exact manner as before, a low-pass filter and multiplication with a factor 2
help us to recover m(t). A suitable low-pass filter will accordingly remove the
terms 1

2 ·m(t) cos (4πfct) and − 1
2 ·m(t) sin (4πfct) which are high-frequent.

In this application of the SSB we get the upper sidebands. An alternative
approach is to instead get the lower sidebands [8]. Start by considering

w(t) = z(t) = m(t)− iH(m(t))

The Fourier transform of this conjugated function is given by

W (f) = F(w(t)) = F
(
z(t)

)
= F(m(t)− iH(m(t)))

= F(m(t))− i · F(H(m(t)) =M(f)− i · (−i sgn (f) ·M(f))

=M(f)− sgn (f) ·M(f) = (1− sgn (f)) ·M(f)

This expression may be simplified by looking at subcases.

W (f) =





0, f > 0

M(0), f = 0

2M(f), f < 0

=

{
0, f ≥ 0

2M(f), f < 0

Obviously, w(t) is not an analytic signal since its Fourier transform W (f) is
non-zero for f < 0 and zero for f > 0. However, we multiply by the factor
e2πifct and thus modulate w(t).

wa(t) = w(t) · e2πifct

By earlier examples, its Fourier transform is given by

Wa(f) =W (f − fc) =

{
0, f ≥ fc

2M(f − fc), f < fc

69



and if fc is large enough it is possible that Wa(f) = 0 for all f ≤ 0. How large
does fc have to be? For f = 0 we have that Wa(0) = 2M(−fc) and because
it is necessary that Wa(f) = 0 for all f ≤ 0 we must have that −fc < −W
which means that fc > W. If this is the case, wa(t) is an analytic signal since
Wa(f) = 0 for all f ≤ 0. Also, note that it is the lower sideband of M(f) in the
expression belonging to Wa(f). Consequently, it makes sense to put

wa(t) = mLSB(t) + iH(mLSB(t))

but as before we also have that

wa(t) =w(t) · e
2πifct = (m(t)− iH(m(t))) · (cos (2πfct) + i sin (2πfct))

=m(t) · cos (2πfct) +H(m(t)) · sin (2πfct) + i · [m(t) · sin (2πfct)+

−H(m(t)) · cos (2πfct)]

Since mLSB(t) = Rewa(t) we get, once again, by simply identifying real parts

mLSB(t) = m(t) · cos (2πfct) +H(m(t)) · sin (2πfct)

and the Fourier transform of mLSB(t) is given by

MLSB(f) = F(mLSB(t)) = F(m(t) · cos (2πfct) +H(m(t)) · sin (2πfct))

= F(m(t)) ∗ F(cos (2πfct)) + F(H(m(t))) ∗ F(sin (2πfct))

=M(f) ∗
1

2
(δ(f − fc) + δ(f + fc))+

+ (−i sgn (f))M(f) ∗
1

2i
(δ(f − fc)− δ(f + fc))

=
1

2
(1− sgn (f − fc))M(f − fc) +

1

2
(1 + sgn (f + fc))M(f + fc)

=





M(f + fc), f > fc

M(f − fc) +M(f + fc), −fc ≤ f ≤ fc

M(f − fc), f < −fc

however, since M(f + fc) = 0 for f > fc and M(f − fc) = 0 for f < −fc the
expression above may be further simplified.

MLSB(f) =





0, f > fc

M(f − fc) +M(f + fc), −fc ≤ f ≤ fc

0, f < −fc

Clearly, in MLSB(f) only the lower sidebands are present as opposed to the
expression of MSSB(f) where we had the upper sidebands. Both methods have
the advantage of halving the required bandwidth for transmission and receiving
their respective signals in the time domain.
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Figure 55: Plot of |MLSB(f)|, the amplitude spectrum of MLSB(f).
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5 Discussion

From the results presented in this thesis some conclusions may be drawn. Of
course, the discussion is focused around the Electrocardiagram and the Hilbert-
Huang transform for which original research has been carried out.

5.1 Electrocardiogram

Provided an ECG-signal, ECG(t), and expanding this real valued signal into
an analytic signal given by

z(t) = ECG(t) + iH(ECG(t))

has proven to be an effective way of detecting the QRS complex. Since the
QRS resembles a deformed sine wave, the parametric plot of z(t) will produce a
distinguishable main loop in the complex plan if there is a QRS complex within
the parametric interval. This main loop encloses the origin and therefore crosses
all the axes.

The main reason that the method suggested to extract QRS complex in an
ECG signal lacks mathematical theory is because it does not work for all possi-
ble ECG-signals. As was seen in the example in section 2.4, if the QRS complex
is not high enough, the method does not work. This is because the lower QRS
complex does not produce any distinguishably large main loop in the paramet-
ric plot of z(t). Depending on how the algorithm is constructed, either it will
fail to detect the QRS complex or a T-wave may be misinterpreted as in the
parametric plot and thus the detection of the QRS complex fails or a T-wave is
incorrectly interpreted as a QRS complex.

The possibilities to expand this research is to prove the method mathemati-
cally as opposed to numerical justifications (given one consider the limitations
mentioned above). Also, find ways for QRS complex detection to work beyond
the mentioned limitation.

5.2 Hilbert-Huang transform

The Hilbert-Huang transform (HHT) is a tool for analyzing time series that has
proven very effective. However, even though the method is gaining popularity
it is still questionable why ”Fourier methods” still dominate spectral analysis.
The HHT is a more versatile tool and has the ability to treat frequencies and
amplitude as dependent on time. Thus, the HHT is very appropriate in ana-
lyzing nonstationary and nonlinear time series in contrast to, for example, the
Fast Fourier Transform (FFT). One could easily argue that the HHT should be
the standard method for analyzing time series since stationarity and linearity is
quite rare in real examples [10].

The HHT lacks mathematical theory because the empirical conceived method
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does not work for all cases either. As seen in example 3.11, the algorithm fails
when frequencies are too cloose to each other (ajdacent frequencies).

The limitations of the HHT discovered during the experiments must be con-
sidered. One possibility of further research in this area is how to further reduce
these limitations - especially in the case of ”adjacent frequencies”. Possibly the
algorithm of decomposing could be refined to better deal with adjacent frequen-
cies. Also, reducing, or even removing, the apparent end effects would of course
be desirable.

The biggest advantage of the HHT is that it handles nonstationary processes so
well. For example, considering a scenario where we are measuring seismic waves
in connection with earthquake activity. Because of the nonstationary nature
of these situations, as the frequency of the seismic waves fluctuate with time,
the HHT is a very appropriate tool in analyzing these waves. In these types of
situations, a Fourier spectral analysis oftentimes not suitable.
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