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ABSTRACT.   Let (f, 7(f)) be a plane curve.  Set Hyf(x, y) =
p.v.//(x -t,y- i(t))dt/t for / e C0 (R ).  For a large class of curves, the
authors prove \\Hyf\\p < j4_||/|L, 5/3 < p < 5/2.  Various examples are
given to show that some condition on the curve (r, 7(f)) is necessary.

1. Introduction. In [NRW] it was shown that if o(t) is the curve in R"
given by

o(r) = (IrfísgníO,.... Iff" sgn(r)),
with at > 0, then the "Hubert transform along o" given by

W*) = P-v./_V(*-<>(0)f
is a bounded linear transformation on Lp(Rn) for 1 < p < ». In the same paper
it was shown that if 7(f) is an odd continuous function of t, convex and in-
creasing for r > 0, equal to ta for 0 < t < 1, and equal to at + b for t large,
with b =£ 0, then the Hilbert transform along the curve t —*■ (t, y(t))

(1) Tf(x, y) = P»f~J(x -t,y- 7(0) f
is unbounded, even on ¿2(R2).

Thus it is clear that the convexity of a function 7(r) is not sufficient to
insure the boundedness of the operator T, defined by (1), on some LP(R2). The
main purpose of the present paper is to study operators of the form (1), and to
find sufficient conditions for the boundedness of the operator T.

We begin by giving conditions which guarantee that T is bounded on
¿2(R2). Our first positive result is

Theorem 2.1. Suppose y(t) is a continuous odd function oft, twice con-
tinuously differentiable and convex for t > 0. Suppose in addition that there
exists a > 0 so that r-017*(r) and (ty'(t))' are monotone increasing. Then T is
bounded on L2(R2).
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236 ALEXANDER NAGEL AND STEPHEN WAINGER

Theorem 2.1 covers a large class of functions y(t) including

7(0 = l'|asgn/,      y(t) = sgn(t)[e^-l],   or   y(t) = ftf1/"1.

However the theorem does not apply to y(f) = flog [i|, and to deal with such
curves, we have

Theorem 2.2. Suppose y(t) is a continuous odd function oft, twice
continuously differentiable and convex for t>0. Suppose in addition there are
constants 0 0 and a so that (i) ty'(t) - y(t) < Ct2 y"(t), (ii) tay"(t) is mono-
tone, and (in) (ty'(t))' is monotone increasing.  Then T is bounded on 7,2(R2).

Both Theorems 2.1 and 2.2 are proved by showing that the associated
multiplier m(x, y), defined by (Tf) * (x, y) = m(x, y) f (x, y), is uniformly
bounded on R2. (Here, and throughout this paper, * denotes the Fourier trans-
form.) These estimates are proved in §2.

In §3, we give sufficient conditions on the function y(t) for the operator
rto be bounded on 7,P(R2) for some range of p about 2. Our main result is

Theorem 3.1. Suppose that y(t) is a continuous odd function, twice con-
tinuously differentiable, increasing and convex for t > 0. Suppose in addition
that y"(t) is monotone for t > 0 and that there exists C> 0 so that y'(f) <
Cty"(t) for t > 0. 77te« fAe operator Tis bounded on LP(R2) for 5/3 <p<
5/2.

The proof of Theorem 3.1 uses Stein's interpolation theorem, and is
similar to the proof of Theorem 1 in [NRW]. We show that certain "roughened"
operators remain bounded in 7,2(R2), while sufficiently "smoothed" operators
are bounded in LP(R2) for 1 < p < °°. In dealing with these improved operators,
we do not have kernels with appropriate homogeneity as in [NRW], so we must
use the Marcinkiewicz multiplier theorem rather than a Calderbn-Zygmund type
argument. In effect, this means that our kernels must be smoothed a definite
amount, rather than just e > 0, and this is why we obtain boundedness in
Z,P(R2) only for a proper subinterval of 1 < p < °°.

It is clear that the hypotheses of Theorem 3.1 are stronger than those of
Theorem 2.2. In particular the function y(t) = floglf | satisfies the hypotheses
of Theorem 2.2 but not those of Theorem 3.1. We show in fact that the method
of proof of Theorem 3.1 definitely fails for floglf | (Theorem 3.2). In some
sense, the difficulty is that flog |f 1 is very close to a straight line, and the esti-
mate y'(t) < Cty"(t) no longer holds. However, in Theorem 3.3 we show that
certain roughened operators do remain bounded in 7,2(R2) when y(t) is very
close to a straight line.
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HILBERT TRANSFORMS ASSOCIATED WITH PLANE CURVES 237

Given 0 < a < b < °°, we can always decompose the operator T defined
in (1) by writing:

Tf(x,y) « P.v./_/(* -t,y-y(t))f +/a< ,„</(* -t,y-y(t)) f
+ p-v-Jiii>/(*-'.>'-'K0)f

= TJ(x,y) + T2f(x,y) + T3f(x,y).

The operator T2 is convolution with a finite measure, and hence is bounded on
Z,P(R2) for 1 < p < °°.  In particular, this shows that only the behavior of 7(f)
near zero and near infinity can affect the boundedness of the operator T. While
we have stated Theorems 2.1, 2.2, and 3.1 so that they apply only to the full
operator T, an examination of the proofs will show that they apply as well to
the truncated operators Tx or T3. Thus in checking that a function 7(r) satisfies
the hypotheses of one of our theorems, it is only necessary to check that the
appropriate estimates hold near zero and near infinity.

In particular, it follows from Theorem 3.1 that if 7(r) is real analytic, the
truncated operator Tx is bounded on LP(R2) for 5/3 < p < 5/2. Thus it is
reasonable to ask if sufficient smoothness of the function 7(r) near 0 implies
the boundedness of the truncated operator Tx. However in §4 we show

Theorem 4.1. 77zere is an odd, C'-function y(t), defined for-Kt<
+ 1, increasing and convex for r > 0 such that

Txf(x, y) = p.v./^/i* -t,y- y(t)) f
is unbounded on L2(R2).

Again, it might be asked, especially in view of the counterexample in
[NRW], if sufficiently rapid growth of 7"(f) as t gets large insures the bounded-
ness of the operator T3. However, we show

Theorem 4.2. Let 0(r) be any increasing function of t.   Then there exists
an odd, C°°-function y(t), increasing and convex for r > 0, wz'rA 7"(r) > 0(r)
sucA rAar r3/(jc, y) - p.v./,r(> x f(x -1, y - y(t)) dt/t is unbounded on L2(R2).

The examples for Theorems 4.1 and 4.2 are constructed by using "partition
of unity" type arguments. However, it is not necessary to leave the class of ele-
mentary functions to find cases where T3 is unbounded. We show, for example,
that

Sf(x,y) = P-v./lfl>2/(* ~t,y- sgn(f)loglfl)—

is unbounded in 7>2(R2). (In contrast, note that the arguments of Theorem 3.1
show that
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238 ALEXANDER NAGEL AND STEPHEN WAINGER

Rf(x,y) = p.v.Jj,]>2f(x, t,y- sgn(f)elf')^-

is bounded on IP(R2) for 5/3 <p < 5/2.) We also show that the associated
maximal function

Mf(x, y) = sup ̂  ¡** \f(x -t,y- log \t\)\dt

does not define a bounded operator on any ¿P(R2), p < °°.

2. Boundedness in 7,2(R2). In this section, we obtain sufficient con-
ditions for the operator T defined in (1) to be bounded on ¿2(R2). Through-
out this section, y(t) will denote a continuous odd function of t, which is con-
vex, and twice continuously differentiable for / > 0. Our main results are:

Theorem 2.1. Suppose there exists a > 0 so that fVíf) and (ty'(t))'
are monotone increasing.  Then T is bounded on L2(R2).

Theorem2.2. Suppose that there are constants C> 0 and a so that
(0 ty'(t)-y(t)<Ct2y"(t),

(ii) tay"(t) is monotone increasing,
(iii) (ty'(t))' is monotone increasing.

Then the operator T is bounded on L2(R2).

Both of these results will be obtained as corollaries of the more general
result:

Theorem 2.3. Suppose there exists 0 0 so that for all £ > 0 and all
t > 0 with t $ [H£, 2%],

(*) ty'(t)-y(t)<Ct\y'(t)-y'(\-)\.

Suppose also that (ty'(t))' is monotone increasing.   Then T is bounded on
L2(R2).

Clearly, the boundedness of the operator T on ¿2(R2) is equivalent to the
uniform boundedness of the corresponding multiplier m(x,y), where (Tf)   (x,y)
= m(x, y)f (x, y). An easy calculation shows that

m(x,y) = p.v.j"o sin(xf +yy(t))-j-

We shall need the following elementary result:

Lemma2.1. Let A<B,lethEL°°((A,B)) n Cl((A, B)) and suppose
(h(t)/f)' = 0 has at most k roots in (A, B) - (- 1,1). 77ien

J^sin(f)A(f)^ <(2 + 4k)||A||co.
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HILBERT TRANSFORMS ASSOCIATED WITH PLANE CURVES 239

Proof. We certainly have IJ+j1 sin(r)A(r)<ir/r| < 2||A|L. Next, if t¡, t¡+x
are successive roots of (h(t)/f)' = 0, so that A(r)/r is monotone on (r;-, r/+,), the
second mean value theorem gives

^+*^WK.)f|.|j^+,^i(-c<^»|<2|lM.(Tir + ̂ L_).
The lemma follows by adding these estimates.

We turn now to the proof of Theorem 2.3. Suppose that jc, y > 0, and
consider

osin(jcr-,7(0)T=Jo    +Sk+Ï2S
where % satisfies y'(%) = x/y. Note that l/2^ sin(xf -yy(t))dt/t\ < log(4), while
(xt -yy(t)) is monotone increasing on the interval (0, xh%), and monotone de-
creasing on the interval (2£, °°). Hence the function s(t) = xt -yy(t) has an
inverse on each of these intervals, and we write this inverse as t — u(s) in both
cases. We then have:

r*4*. / .       r.^dt     r*(Vit) .       fsp'(s)"| ds/o   ̂ ^-yy(t))T=jQ      sin(s)j^—Jy,

/28sin(xf-^(f))T =/i(2t)sm(s) ]—j -y.

Note that on (0, s(#|)) and on (- «>, s(2£)), (p'(s)/p(s))' = (logp(s))" = o has a
root if and only if (jcef -yy(et))" = 0 has a root, and this last equation has at
most one root for any value of jc and y by the hypothesis on (f 7'(r))'.  It thus
follows by Lemma 2.1 that to show that m(x,y) is bounded, it suffices to show
that (s p.'(s)/p(s)) is uniformly bounded for s & [sQAÇ), s(2£)]. This is the same
as showing that (jcr -yy(t))/t(x -yy'(t)) is uniformly bounded (independent of
jc and y) for r & ty%,2%\.  But

xt-yy(f)  =   (x/y)t-y(t)   _ y'(Ç)t-y(t)
t(x -y'y(t))     t[(x/y) - 7(0]     ty'(Ç) - ty'(t)

ty'(t)-y(t)= 1 +
f[7'ßW(f)]'

The hypothesis of Theorem 2.3 thus shows that «j(jc, v) is uniformly bounded
if jc > 0, v < 0. The quadrant where jc < 0, y > 0 is handled similarly, and the
two quadrants where jc and y have the same sign are even easier, since then jcf +
^7(0 is then monotone on (0, <*>). Thus Theorem 2.3 is proved.

We turn next to the proofs of Theorems 2.1 and 2.2. To prove Theorem
2.1, suppose r-a7'(r) is monotone increasing. If r < Vi%, we have r-0,7'(r) <
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240 ALEXANDER NAGEL AND STEPHEN WAINGER

r" V(8 and hence y'(!-) > (S/OV« > 2ay'(t). But then

ty'(t)-y(t)        ty'(t)-y(t) 1
tWVù-Jit)]     ty'(t)[2°-l]     2«-l'

A similar argument works if t > 2%, and thus f^yXt) monotone increasing
implies condition (*). Thus Theorem 2.1 is proved.

To prove Theorem 2.2, suppose that
(i) ty'(t)- 7(0 <Ct2y"(t), and
(ii) tay"(t) is monotone increasing.

Note that
m tj'it) - 7(0 = .     fr'(S) - 7(0    7(0A - y(m
() ty'(t)-ty'(ï) £7'tt)-*V(0       7(0-7'«)'
By the generalized mean value theorem, the last of these three terms is, in ab-
solute value, equal to |(t?7'(t?) - 7(tí))/t/27"(tj)| where tj is between t and £, and
this is uniformly bounded by (i). But the second term in (2) is the same as the
left-hand side of (2), with the roles of £ and t interchanged. Hence it suffices to
show that (ty'(t) - y(t))/(ty'(t) - ty'(a)) is bounded when t < Via.

Now assume that tay"(t) is monotone increasing. Without loss of gen-
erality, a > 1, we have

7'(a) - 7'(0 = J,V(»)& > fV'(0/,V<fc

=^^>['-(t),1>(!^)^
Then

f7'(0-7(0 I < / o-l  \ ty'(t)-y(t) ^c
ty'(f) - ty'(S) I       \i - 21-a)     r27"(0

by hypothesis (i), and this completes the proof of Theorem 2.2.

3. Boundedness in Z,P(R2). In this section, we show that there is a large
class of curves 7(0 such that the operator T defined in (1) is bounded on 7,P(R2)
for a range of p about 2. Throughout this section we shall make the following
hypotheses about the function 7(0:

(i) t(0 is a continuous, odd function, convex and increasing
for t > 0.

(*)        (h) 7 is twice continuously differentiable for t > 0,7"(0 >
0, and 7"(0 is monotone for t > 0.

(iii) There exists C> 0 so that 7'(0 < Cty"(t) for t > 0.
We note that condition (iii) follows from condition (ii) if 7"(0 is monotone
increasing, but does not follow in general if 7"(0 " decreasing (as for example
in the case 7(f) = flog I í I). We also note that since 7'(0 is monotone increasing,
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HILBERT TRANSFORMS ASSOCIATED WITH PLANE CURVES 241

we obtain the additional estimates:

(iv) y(t)<Cty'(t)   and   y(t) < Ct2y"(t)   for some C> 0.
The main result of this section is

Theorem 3.1. Under the hypotheses (i), (ii), and (iii), the operator T, de-
fined in (1), is bounded on Lp(R2)for 5/3 <p < 5/2.

In proving Theorem 3.1, we shall need the following lemmas:

Lemma 3.1 (Van der Corput). Let f(t) be a twice continuously differ-
entiable function ona<t <b.

(0 Iff'(t) is monotone, and \f'(t)\ >\fora<t<b, then

r
b
e\pif(t)dt

1 a

(ii) If |/"(0\>pfora<t<b, then
'b

<CK-l

I/: ^Cp-1'2.[aexpif(t)dt

Here C is a constant independent of a, A, and /. A proof of this lemma
can be found in [Z, Vol. 1, p. 197].

Lemma 3.2. Let g(t) be a function of t satisfying
(a) IrtOKilj.lfl/brlfKl.
(b) |*(/)l < A2 UH for \t\>land some r¡ > 0.

77ie7i fAere exists C> 0, independent ofx,y, a, b, so that

I«bat^i[xt+yy(t)]g(yy(f))dY <C[Al +A2]

Proof. For.y fixed, choose 10 > 0 (depending on^) so that \y\y(t0) =
1. Now

Itb dtexp i[xt + yy(t)] g(yy(t))— </j^7(0)l^,

~ J\t\<t0;tela,b]      J|fl>r0;fG[a,6l'
Now using (a),

J*o dt ffo      dt0 li(n(0)l7<^I^IJ07(07

<AlC\y\f°y'(t)dt   by(iv)
AXC.
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242 ALEXANDER NAGEL AND STEPHEN WAINGER

Using (b),

/* lííníO) I y < A2 \y nfat)-71 y

<A2C\y n f* 7(0_T,_17'(f)#   by (iv)
J «o

<A2C\y HJ7/V"-1 dM < ¿2C.

This completes the proof.

Lemma 3.3. Let g(t) be an even, differentiable function of t satisfying
(a)  \g(t)\<Ax,for\t\<\,
00 s'(t) — 0 Aas only a finite number of roots for \t | < 1,
(c) \g(t)\ <A2\t\vfor |f | > 1 a«c? some r\ E (- «-, + Î4),
(d) ^'(OK^Ifl^/orlfl^l.

77îe« rAere ejc/srs C> 0, independent ofx,y, and a, so that:

•+«       .c?rp.v.J_a exp i[xt + yy(t)] g(yy(t)) — <C[AX +A2 +A3].

Proof. Again for^ fixed, choose t0 > 0 so that I.yl7(f0) = 1- For any
e < f0, we have:

dt
{e<ul<t™pi[xt+yy(t)]g(yy(t))*   < \fe<m<t™Pi[xt]g(yy(t))%

The second integral is easily seen to be bounded by CA x, by using hypothesis
(a), and estimate (iv). On the other hand, for \t\ < t0 the function t —* g(yy(t))
is uniformly bounded, and piecewise monotone by hypothesis (b), so by the
second mean value theorem, the first integral is bounded by CAX.

We next deal with the part of the integral where \t\ > t0. If 7"(0 is
monotone increasing, put

/•oo

<p(t) = -)t expi[jcs + ^7(s)] ds,

while if 7"(r) is monotone decreasing, put

<i>(0 = f, exp/[jcs +yy(s)] ds.

Then d\p(t)/dt = exp i[xt + yy(t)], and Lemma 3.1 shows that in either case
\*(t)\<C(\y\y"(t))-Vl. Now

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HILBERT TRANSFORMS ASSOCIATED WITH PLANE CURVES 243

f ! d-rt (0^7(0)f - *(t)s(yy(t)) \ I "J fo at « ' |r0

_ ca y«) WinimùÊ _ iöaß» ] ¿f.

For the boundary terms we have

\<p(t)g(yy(t))rl I < ClyrVOf)-*^ I^tíO* • W
<C42|^r%7(0T'-%   by(iv).

Since t? < &, and 7(0 is increasing, this shows that the contribution from the
boundary terms is bounded by CA2. On the other hand, the integral term is
bounded by

r"       ,» »     ..jA^yFrtr-hïi)    A2\y\«y(ty]cftQ i,r" W" 1^--t-+ ——J
<C43l7|"-1/2fa 7(0T,~3/27'(0dr + C42|^r1/2fa y(t)n'3l2-i'(t)dt

<CA2 +CA3.

The integral /_fl°' (dip(t)/dt)g(yy(t))dt/t is handled similarly, and this completes
the proof of Lemma 3.3.

Lemma 3.4. Let g(t) be a function oft such that /"  \g(t)\dt < C. Then

dt

fa expifxf + rr(0] yi'(t)s(yy(t))dt

Proof

r.
<c.

|/: exp i[xt + ̂ 7(0] yy'(t)g(yy(t))dt \y\y'(t)\g(yy(t))\dt.

Now making the change of variables u = yy(t), we obtain the required estimate.
We now turn to the proof of Theorem 3.1. Our argument is similar to

that in the proof of Theorem 1 in [NRW]. We introduce an analytic family of
operators T2 determined by

(TJ) * (x, y) = mz(x, y) f(x, y)
where

mz(x,y) = P.v.J%xpi[xr + yy(t)] (1 +y27(t)2Y 7.

Thus m0 is the multiplier corresponding to our original operator T. We will
show:

(A) If e > 0 and if Re(z) = Va - e, the operator Tz is still bounded on
7v2(R2) with operator norm ||rj| 2 < Ce(l + |Im(z)|), where Ce depends only
on e.
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244 ALEXANDER NAGEL AND STEPHEN WAINGER

(B) If Re(z) < - 1, the operator Tz is bounded on Z,P(R2) for 1 < p <
°°, with operator norm \\TZ\\ p < C(l + |Im(z)|) where C depends only on
Re(z). L

The theorem follows from (A) and (B) by using Stein's complex inter-
polation theorem (see [SW, p. 205]). To prove (A), let g(t) = (1 + t2f. Then
#(0 satisfies Lemma 3.3 with n = 2Re(z), Ax and A2 constants depending only
on Re(z), and A3 < C(Re(z) + |Im(z)|). It then follows from Lemma 3.3 that
if Re(z) = Vt, - e, mz(x,y) is uniformly bounded on R2, with bound C(l + |Im(z)|)
where C depends only on e. This is equivalent to statement (A).

To prove statement (B), we will show that for Re(z) < - 1, the functions
bmz bmz b2mz

mz(x, y), jc-jj^r (jc, y), y -^- (x, y),  and   xy -^ (x, y)

are uniformly bounded on R2. It then follows from the Marcinkiewicz multiplier
theorem that Tz is bounded on Z,P(R2), 1 < p < ». (See [S, p. 96].)

Using the definition of «i2(jc,y), we see that we must show that each of
the following six integrals is uniformly bounded in jc and y if Re(z) < -1 :

(1) p.v.J^exp i[xt + yy(t)] (1 + y2 y(t)2Y f,
(2) p-v\L.exp i[xt + yy(t)]x(l + y2y(t)2f dt,

(3) p.v./^exp i[xt + yy(t)] (yy(tW + y2 7(f)2)1 *,

(4) p-v./^expitjcf + y7(0]z(l + y2 TiffY'1 • 2v27(02 *.

(5) P-v-/lexP i[xt + yy(t)]x(yy(t))(l + y2y(t)2Y dt,

(6) p.v./r..cxp i[jcf + yy(t)]xz(l + y2y(t)2)z-1 • 2y27(02 dt.

The boundedness of (1) follows from Lemma 3.3 with g(f) = (1 + t2y.
The boundedness of (3) and (4) follows from Lemma 3.2 with g(t) = r(l + t2Y
or ¿(r) = 2zr2(l + r2)z_1. To take care of (2), (5), and (6) we note that they
all can be written

p.v.r  ■y-(etxt)e¡y^t)h(yy(t))dt
J -•» dt

with A(r) respectively (1 + t2f, t(l + t2Y, and 2zr2(l + t2Y~l. Integrating
by parts, we obtain

expi[jcr+y7(r)]ACn(0)l"-

-p.v.j^exp/ljcr +yy(t)] [yy'(t)h(yy(f)) + yy'(t)h'(yy(t))] dt.

As long as A(f) is uniformly bounded, the contribution from the boundary terms
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HILBERT TRANSFORMS ASSOCIATED WITH PLANE CURVES 245

is bounded. The boundedness of the integrated terms follows from Lemma 3.4,
with ¿(0 = A(0 or £(0 = A'(f). Note that g(t) is integrable provided 1 + 2Re(z)
< -1 or Re(z) < -1. This then completes the proof of the theorem.

It is clear from our proof that the same theorem holds for the truncated
operators Tt or T3 defined in the introduction. In particular, we obtain

Corollary. Let y(t) be a real analytic function on [0, 1], with 7(0) =
0. 77ie«

Tf(x, y) = p.v.J*^1 fix -t,y- sgn(07(|/|)) y

is bounded on LP(R2) for 5/3 < p < 5/2.

Proof. After making a change of variables in x and y, we can assume
7f(0) = 0. We can write 7(f) = ^^(f) where N>2, <p(t) is real analytic, and
<p(0) ̂  0. Without loss of generality, we can assume ip(0) > 0. Then since tp is
real analytic, we can find an interval (0, a) on which we have <p'(t) > 0, <p"(f) >
0, v'(0 < Ct<p"(t). The Corollary then follows from Theorem 3.1.

It was pointed out in the introduction that the curve 7(f) = flog If I sat-
isfies the hypotheses of Theorem 2.2 but not those of Theorem 3.1. We now
show that the method of proof of Theorem 3.1 is sharp in the sense that for
7(0 = flogjf |, the worsened operators fail to be bounded in I2(R2). More pre-
cisely, we show

Theorem 3.2. Let 6 > 0. Then

ms(x,y) = p.v.£.exp/[xf +jtflog|f|](l + 72f2log2|f|)8 y

is unbounded on R2.

Proof. If we make the change of variables t = se~x'y, and if we let r =
ye~*ly', R = - x/y, we obtain

m6(x, v) = J7sin(rslogs)(l + r2s2(log(s) + R)2)* f.

We shall show that for each fixed r,

ms(x,y) = c(r)R26r26 + o(R2S)

as 7? tends to infinity, where

c(r) = J   sin(rslogs)s25_l ds.

We shall then complete the proof by showing that c(r) tends to infinity as r
approaches zero, and hence c(r) is not identically zero.

Write
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Äl/4 ,
m6(x, y) = j0     sin^logOd + r2s2(log(0 + R)2)6 f

+ J~/4sin(rslogO(l + rV(log(s) + R)2f f

= A(r,R) + B(r,R).
Then

^(^/fUwj^.^+i)2}
6S26*

5

H     .!./..i..a.2S ds= (rR)26 f        sin(rslogs)s26 y + °(r2S)      as R ~* °°-

By Van der Corput's lemma (Lemma 3.1), we have

f~tàn(rslogs)ds<-££.
Hence an integration by parts shows that

JÄl/4sin(«logS)s2-^S ^l^-j

as 7* —■► o». Hence

A(r, R) = (r7*)2 5 c(r) + o (R2 6 )   as R —► °°.

It remains to show that 7i(r, 7?) = o(7?26). This is proved similarly, by using
Van der Corput's lemma, and integrating by parts. Hence to complete the proof
of the theorem, it only remains to show that c(0 tends to infinity as r tends to
zero.

Clearly, as r tends to zero,

c(r) = 0(1) + J^sin [rslogs] s28"1 ds

= 0(1) + - P°(l - cos(rslogs))

Now for any positive e, this last integral is larger than
vl-e

£ r(1'r>     s26-2-eds>S-    for some t?>0.
r J 1 rn

This shows that c(r) tends to infinity, and completes the proof of Theorem 3.2.
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Thus we see that when y is very close to a straight line, and in particular,
when the estimate 7'(f) < Cty"(t) fails, the worsened operators in Theorem 3.1
can fail to be bounded in 7,2(R2). It is possible, however, to prove 7,2(R2)
boundedness for certain modified worsened operators for curves close to a straight
line. For simplicity, we shall only deal with the case of Im(z) = 0.

Theorem 3.3. Let y(t) be a continuous odd function of t, twice contin-
uously differentiable and convex for t > 0. Suppose there exists C> 0 and
a < 2 so that

(0 7"(0 & monotone decreasing for t > 0,
(ii) tay"(t) is monotone increasing for t > 0,
(iii) rV(0 - 7(0 < CrV(0 for t > 0,
(iv) (ty'(t))' is monotone increasing for t>0.
Let e > 0, and define

m(x,y) = p.v.J%xpi[xf +77(01 (1 + 7WOT"' 7.
77ie« m(x,y) is uniformly bounded on 7,2(R2).

Proof. For each fixed 7, let 10 > 0 satisfy l7lfo7"(f0) = 1> and write

/n(x,7) = p.v.Jm<io + p.v./lf|>fo = I + II.

Now (1 +72/47"(02)1'4_e is monotone increasing in t and is uniformly bound-
ed for |f I < t0. Hence by the second mean value theorem, and Theorem 2.2,
the integral I is uniformly bounded in x and 7.

Next, set 77(f) = // expifxs + 77(s)] ds. Since 7" is monotone decreas-
ing, Van der Corput's lemma (Lemma 3.1) gives |77(f)l < C(l7l7"(f))~1/2. Hence
integrating by parts in II we obtain

|II(x,7)l < C Jjf|>fo(l7l7"(0r%(l^lf27"(0)V4-2e 7

+ c j;fl>,o(i7i7"(or* [MfVior*-2* |(yf27"(0) *

Now

= R+S.

R<cT l dt
J'° [lj|f27"(0]2£   '

<- C-Jî—   by(ii)
[l7lfS7"(f0)]2eJi°^ + (2-a)2e

<-S--a
[l^lf27"(fo)]2e
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Also
s<crWät)(\y\t2y"(t))dtr:Ju_=c

Jt° [lylf27"(011+2e «1+e
This completes the proof.

4. Examples. In this section, we construct the examples, mentioned in
the introduction, of curves 7(f) for which the truncated operators Tx or T3 fail
to be bounded, even on ¿2(R2).

Theorem 4.1. TTiere exists an odd, C'-function y(t), defined for -1 <
f < +1, with y"(t) >0fort>0 such that

Txf(x, y) « p.v./^1 /(jc - f, y - y(t)) y

is not bounded on L2(R2).

Proof. Choose a sequence of positive numbers {an} such that ax < 1
and a„+1 <a„/4(« + 1). Let <p(f) be an odd C°°-function on [-1, +1] such
that

(i) ip(r) = 0 for a„ < r < nan all « > 1,
(ü) </>(0 > 0 for (n + l)an+1 < t < an all « > 1.

Put 7(r) = J* /J >p(r)drds so that 7"(r) = <¿>(r) on [-1, +1]. Note that 7 is odd
and C°° on [-1, +1].  Clearly 7, along with all its derivatives, vanishes at t = 0,
so we obtain

(a) 7(r) < Ct2 for f > 0.
Also, since 7"(r) = 0 on [a„, «an], there are real numbers X„, n„ so that

(b) 7(0 = V + ̂ n on fai» "O •
To prove the theorem, it suffices to show that

mi(x,y) = p.v.J^exp/fxf + yy(t)] y = (2/) J^sin(xi + j'TiO)y1

is unbounded on R2. To do this, we will show that there exists C> 0 so that,
for each « there exists (x„,yn) so that

.na*f   " • / i xx dt     .   , xJ a    sm(jc„r + y„7(0) y = log(")

while

<C.Jfe[o,i]:*K.,,aj™(V+^7«)y

First note that if we let x = -X^y, then

sin(jcr + y7(r)) — = J      sinO^) — = sin(yi7„) login)
"n » °n *
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and we can find arbitrarily large y so that %xn(yr\n) = +1. Thus we are reduced
to showing that for y sufficiently large

dt

and

Note that

J"o"sin(-X„ 7f +77(0)7

f1 sin (-A„7f+ yy(t)) 7
Jna„ '

<c

<c.

ClHy .  , ^ ,.\\dt\ ^\ (}Ny ...     *dt I . .   . rVVJ' „ dtJ0      sm(-X„7f+^7(0)7   <J0      sm(-X„70y   +l7lj0      7(07•i/s/y ,A dt

<C   by (a).

Also note that |/,""   | and \fM " | are each bounded by log 2. Hence we are
reduced to studying

/i/V/xp /[_X"yt + y7®] ~í   md   iïna„exV /["X" yt + 77(/)1 if '

Now -a„7 +77'(f) is monotone increasing and negative on the interval [lA/y,
%an]. Hence if we put

*(,) = /i/V>exp ,f"*» yt + ̂ '^ dt'

Van der Corput's lemma (Lemma 3.1) shows that |<p(s)| < C/l77'(s) -y\\.
Thus, by the second mean value theorem we obtain

.ViaI^wil-Kyt+yyimf
l^lH(l7'(K)-X„|)

Since 7" is strictly positive on ((« + l)an+ j, an), \y'()ian) - X„| > 0, and hence
this integral is uniformly bounded for all sufficiently large 7.   The term
l/I-      exp i[-X„7f+77(f)] cff/f I is handled similarly. This completes the proof.

n

Theorem  4.2. Let ip(t) be any given positive increasing function oft.
There exists an odd C°°-function y(t) defined for \t \ > 1 sucA fAaf 7"(f) > \p(t)
fort>Q and such that

T3f(x,y) = P.v.j^f|>1/(x -t,y- 7(0)7

is unbounded on L2(R2).

Proof. Pick a sequence of positive numbers an so that at > 1 and an+l
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> 4«a„.  For each «, choose cn so that ii(f) < c„ for an<t <na„. Let <p(t)
be an odd C°°-function defined for all t, which satisfies:

(a) i(f)>!ff(f)forr>l.
(b) <¿>(r) = cn for a„ < t < «a„.
(c) f^mds > cnan + (n2 - l)cna2n, « = 1,2,... .

(d) S^"n^(s)ds>(n2-l)cna2n.

(e) /ô"^(0<is>îr«2c„a2.

Let 7(0 = ¡l¡sQip(r)drds, so that 7"(r) = <p(f). To prove the theorem it suffices
to show that

m3(x, y) = J*" sin(xr + yT(r)) y

is unbounded on R2.
For each «, we can write

ÇVian       f"n Çnan       C2nan       r<~
m3(x,y) = )x       +Jvia||+J-B    +Jnan    +hnan

= I + II + III + IV + V.

Clearly |II| and |IV| are bounded by log (2). We will show that there exists
y„ E (U(n2 - l)a2ncn, 2/(n2 - l)a2„cn) so that if xH = -yn[faQn<p(s)ds-cnan],
then |III(jc„,y„)| > Clog(«), while |I(xn) v„)| < Cand \V(x„,y„)\ < C, where
C is independent of «.

For I and V, we consider /expi[jc„r + yny(t)] dt/t where the integral is
taken over the appropriate interval. The derivative of f(t) = jcnr + y„7(f) is
x„ +y„y'(t) which is negative and monotone increasing in [1, Vtan]. Hence
using the second mean value theorem, and Van der Corput's lemma (Lemma 3.1)
we have

C_C_
\llXn,  yn)\<,        . >(i,     x, -        | can .an/2 I

\xn+y„j(Han)\    yn\Cnan-fo <p(s)ds+jQ"   <p(s)ds\

by(c)
yn\)Kan*(s)ds-Wn

<c
since yn E (l\(n2 - l)a2„c„, 2/(«2 - l)a2c„).

Similarly, |V(jcn,yn)| is bounded by

y„((«2 - l)a2c„)
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(by (d))¿Ina

<c
tiyn > U(n2 - l)a2c„.

Finally, for f E [an, nan], we have

Íínun r  1       «\        1
%(S)ds y¿n -Uwl

Hence

where

7(f) = \cnt2 + [f0\(s)ds - c„a„J t + [| cna2n - J¿%(«)&].

Jr*lfl„ ^. /*""« /7#
an  sin(x„f+7„7(0)7 = J(lB  sin(p„(0)f

^(0=J'„[|c„f2 + (^„a2-J¡Vs)cfc)].

The change in pn(t) over [an, na„] is \iyncn(n2 - l)a2 < 1 for any yn E
(ll(n2 - l)a2c„, 2/(«2 - l)a2c„). On the other hand,

pi«»)=yn [v« -Jo" W(»)&J < ̂ n^"2 - 0c^.

Hence we can find y„ E (l/(n2 - l)a2c„, 2/(«2 - l)a2c„) so that |sin(p„(0)l >
5 >0 on the whole interval an <t<nan. This shows that |III(x„,7„)| >
5 log (n) and this completes the proof of the theorem.

Finally, we consider the operator T3 associated to the curve t —*■ (t, log|f |).
For t > 1, we shall show, in fact, that the associated maximal function

Mf(x,y) = sup \ Çj(x,- t,y- logf) A
h>l  z Jl

is unbounded on ¿p(R2) for p < °°. To see this, let f(x, y) be the characteristic
function of the rectangle 7^ = {(x,7)|0 <x<N,0<y<l}. Then for every
point (x, y) such that y < 0 and 0 < x + e~y < N and 0 < x + el~y < N, we
have Af/(x, y) > 1 - e_1. If M were bounded on Ip(R2) we would have

m{(x,y)\Mf(x,y) > 1 -e"1} < C||/||p < CN.

But an easy calculation shows that the measure of the set of points when y <
0, 0 <x + e~y <N and 0 <x + el~y <N is bigger than OVlog(N). Hence
M is unbounded on 7,P(R2). One can show that the operator
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T3f(x,y) = P.v./„,>,/(* - f,y - loglf I) y

is unbounded on ¿P(R2) in a similar way.
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