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Abstract 1. INTRODUCTION 

Hill-climbing, simulated annealing and genetic 
algorithms are search techniques that can be applied to most 
combinatorial optimization problems. In this paper, the 
three algorithms are used to solve the mapping problem: 
optimal static allocation of Communicating processes 
(tasks, objects, agents) on distributed memory architectures. 

Each algorithm is independently evaluated and optimized 
according to its parameters. The parallelization of the 
algorithms is also considered. As an example, a massively 
parallel genetic algorithm is proposed for the problem, and 
results of its implementation on a 128-processor Supemode 
(reconfigurable network of transputers) are given. 

A comparative study of the algorithms is then carried 
out. The criteria of performances considered are the quality 
of the solutions obtained and the amount of search time 

In this paper, we are interested to the mapping problem: 
optimal static placement of communicating processes on 
the processors of a distributed memory parallel machine. 
The problem is known to be NP-complete [Garey79]. 
Consequently, heuristic methods shall be used. They may 
find only approximations of the optimum, but they will do 
it in a "reasonable" amount of time. 

Heuristic algorithms may be divided in two main 
classes. First, the general purpose optimization algorithms 
independent of the given optimization problem and, on the 
other hand, the heuristic approaches especially designed for 
the mapping problem. As we want to avoid the intrinsic 
disadvantd,: of the algorithms of this second class (their 
limited applicability), this paper is only concerned with the 
first class of algorithms. 

used for several benchmarks. A hybrid approach consisting 
in a combination of genetic algorithms and hill-climbing is 
also proposed and evaluated. 
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Two widely used optimization techniques are the hill- 
climbing algorithm [Johnson851 and simulated annealing 
[Kirkpatrick83]. Hill-climbing finds the global minimum 
only in convex spaces. Otherwise, most often it is rather a 
local instead of a global minimum which is found. 
Simulated annealing offers a way to overcome this major 
drawback of hill-climbing but the price to pay is a huge 
computation time. worst, simulated annealing algorithm is 
rather of a sequential nature, its parallelization is quite a 
difficult task [GreeningW]. 
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parallel, may also be considered. Some of them are closely 
related to neural networks algorithms. Others, namely, 
genetic algorithms are considered in this paper. 

Genetic algorithms are stochastic search techniques, 
introduced by Holland twenty years ago [Holland75]. They 
are inspired by adaptation in evolving natural systems. 
They have recently been applied to combinatorial 
optimization problems in various fields 
[Neuhaus90][ Stanweather901, such as. for instance, the 
traveling salesman problem, the optimization of 
connections and connectivity of neurel networks, and 
classifier systems. In this paper we propose and compare a 
parallel genetic algorithm with the techniques above. 
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The remaining sections of the paper are as follows. In 
the next section, we define the mapping problem and 
classify heuristics that have been proposed. The sections 3, 
4 and 5 are devoted respectively to the description and 
evaluation of hill-climbing, simulated annealing and 
genetic algorithms. In the sixth section, a comparison of 
the three algorithms is camed out. Finally, in section 7 a 
hybrid algorithm which consists in a combination of hill- 
climbing and genetic algorithms is proposed and evaluated. 

11. The mapping problem 
A parallel program can be modeled by a graph 

Gp'(VpEp) where the vertices represent processes and the 
weights associated to the vertices represent known or 
estimated computation costs for these processes. The edges 
represent communication exchanges between processes and 
their weights estimate the communication costs. We 
assume here a static graph of processes ; no dynamic 
process creation is done. Otherwise, a dynamic allocation 
strategy must be used. 

A parallel architecture is also modeled by an undirected 
connected graph Gt=( Vt.Et), where vertices represent 
processors and edges represent communication links 
between processors. It is assumed that the architecture is 
static; the configuration of the physical network will not be 
changed dynamically during xun time. 

The following terminology is used 
M : the number of processes to be mapped, M=IVpl. 
N : the number of processors of the target architecture, 

ei : the computation cost of process pi. 
Cij : the communication cost between processes pi and 
P j. 
dkl : the distance between processors tk and ti. The 
dhtance is defined as the minimum number of links of 
a path between the processors. 

The mapping problem can be defined by a function 
n:Vp+Vt. assigning each process to a processor. A cost 
function F: n-+%, which associates a valueito each 
mapping must be defined to compare the different possible 
solutions. 

Two contradictory mapping criteria have been 
considered: 

- minimize the sum of the total communication costs 
between processors. This cost may be measured by the 
product of the communication cost between all pairs of 
processes and the cost of exchanges between the processors 
where processes are assigned. 

N=IVtI. 

- minimize the load imbalance across the system. The 
quantitative measure used to deal with this criterion is the 
variance of the loads of the different processors. 

M 
4= c e, 

n& 
The cost function F chosed is a weighted sum of the 

two functions C and V. 
F = C + w.V 

w is the weight of the contribution of the 
communication cost relative to the computational load 
balance across the system. Choosing a suitable value for w 
depends on the knowledge about characteristics of the 
parallel architectwe. Very small values of w would suggest 
a uniprocessor solution, and very large values would reduce 
the problem to load balancing without communication 
costs. The parallel architecture used in our experiments was 
a Supemode of T800 transputers and w=2 has been 
estimated by empirical experiment. 

The different mapping strategies that have been 
proposed in the literature are based on one of the following 
approaches: mathematical programming [Ma82], graph 
theory [Shen85J, and queuing theory [Bryant811 (fig.1). 
They give optimal solutions but are time consuming. To 
speed up the search, approximate algorithms have been 
used; they are based on one of the above optimal 
approaches but are limited by the search time used 
[KasaharaM]. Another solution to the problem is the 
utilization of heuristics (process clustering [L~88], routing 
limitation [BoWlariSl]). They may be divided in two 
categories: greedy and iterative. The gmdy algorithms are 
initialized by a partial solution and search to extend this 
solution until a complete mapping is achieved. At each 
step, one process assignment is done and we can't change 
this decision in the remaining steps. Iterative algorithms 
are initialized by a complete mapping and search to 
improve it. 
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Figure 1 A taxonomy of mapping strategies. 

111. Hill-climbing 

The hill-climbing algorithm starts with a complete 
configuration, and tries to improve it by local 
transformations. A move between neighbouring processors 
is selected, the cost change of the move is evaluated, and if 
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the change is positive the move is accepted and a new 
configuration is generated. Otherwise, the old configuration 
is kept. This process is repeated until there are no changes 
to the configuration that will reduce the cost function 
further. When this occurs a local minimum has usually 
been found, rather [hm the required global minimum. Hill- 
climbing algorithm can be p i c m d  as follows. 

- Generate an initial configuration So (S:=So). 
- Repeat 

- compute a neighbouring configuration S' by 

- if cost(S') < cost(S) then S:=S' 
local transformation. 

Until there is no better move. 

In our comparative study, we have considered many 
versions of the algorithm. They differ by the strategies used 
in the generation of the initial configuration, in the local 
transformation, and in the replacement strategy. 

We have used two strategies for the generation of the 
initial configuration. The first one is spreading. It consists 
in mapping each process on a processor randomly chosen. 
The second one is cyclic. It consists in mapping each 
process pi on the processor t(j mod NI. Thus, the load 
balancing criterion is taken into account in the initial 
configuration. 

For local transformations, two strategies have been 
used. The first one moves a given process on another 
neighbour processor (movement strategy). The second one 
exchanges the mapping location of two processes (exchange 
strategy). The main caracteristic of this strategy is that it 
conserves the load balancing propriety of a given 
configuration. 

Two replacement strategies have been considered. The 
first consists in replacing the current configuration by the 
first neigbouring configuration with a smaller cost. The 
second one replace the current configuration by the best 
neighbouring configuration. 

We have evaluated the performances of the algorithm 
with each combination of these strategies. When the 
movement strategy is used in the local transformation, the 
initial configuration does not influence very much the 
solution; the final solutions obtained are very similar. 
However, when the exchange strategy is used, the process 
distribution (number of processes per processor) does not 
change during run time. The load balancing criterion must 
then be taken into account in the initial configuration with 
the use of a cyclic strategy. 

Therefore. we have used in our experiments four hill- 
climbing algorithms : 

AIRLl : 
- Generate a random initial configuration So 
(S:=So). 

Repeat 
- Generate a neighbouring configuration S' using 
the movement strategy. 

- If cost(S') c cost(S) Then S:=S'. 
Until there is no better neighbour. 

AIRL2 : 
- Generate. a random initial configuration So 
(S:=So). 
Repeat - Generate all neighbours of S using the 

movement strategy. 
- If cost(S) < cost(S) Then S:=S' (S is the best 
neighbour of S). 

Until there is no better neighbour. 

AIRL3 : 
- Generate a cyclic initial Configuration So (S:=So). 
Repeat - Generate a neighbouring configuration s' using 

the exchange strategy. - If cost(S') < cost(S) Then S:=S. 
Until there is no better neighbour. 

AlRL4 : 
- Generate a cyclic initial configuration So (S:=So). 
Repeat - Generate all neighbours of S using the exchange 

strategy. 
- If cost(S) < cost(S) Then S:=S (S is the best 
neighbour of S). 

Until there is no better neighbour. 

Figures 2 and 3 show respectively the quality of the 
solutions obtained and the search time function of the 
algorithm used. The search time is represented by the 
number of configurations generated. The benchmds used 
are the following: 

- benchmark 1 : pipeline of 32processes and a 
complete network of 8 processors, 

- benchmark 2 : grid of 32 processes and a complete 
network of 8 processors. 

- benchmark 3 : binary tree of 31 processes and a 
biprocessor. 

The communication cost and the execution cost of 
processes are set to one. 

Solution auolitv 
32 

24  

16 

8 

0 

0 AlRLl 

benchmark1 benchmark2 

I AIRL2 
0 AIRL4 

benchmark3 
Figure 2 Solution quality of the algorithms. 

( function F is used) 
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-4000 

3000 

2000 
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0 

. .  

benchmark1 benchmark2 benchmark3 

algorithms. 

For the benchmark 2, the AIRLl algorithm is better 
than AIRLA algorithm concerning the solution quality. For 
the benchmark 3, the AIRL4 algorithm gives better 
performances. The performances are quite dependant on the 
benchmark used, AIRLl algorithm give a good 
compromise between the solution quality obtained and the 
search time used. we chose therfore AIRLl for representing 
this class of algorithms. 

Figure 3 Execution cost for the different 

1V. Simulated annealing 

The principle of the simulated annealing algorithm is 
the following: the system is put in a high temperature 
environment. At this temperature is applied a sequence of 
random local transformations (markov chain) to reach the 
equilibrium at this temperature. Then, the temperature is 
slightly decreased and a new sequence of random moves is 
applied. At each temperature the permitted energy states are 
governed by the metropolis criterion, which allows the 
configuration to be accepted with a probability P(AE,T). 
The search terminates when the system stabilizes. 

The literature on @is topic, and the basic algorithm 
allows considerable variation and tuning of parameters. The 
number of available changes to the configuration, denoted 
hy L, when moving one process to another processor. is 
given by L.=M*(N-I). This value gives a measure of the 
size of the problem and is used as a parameter in the 
annealing schedule. Below the simulated annealing 
algorithm used in our experiments is pictured. 

1. (Initialization step) 
- start with a random initial configuration So 

- T := Tmax; /* Tmax: initial temperature */ 

- generate and compute a random neighbouring 
configuration S'; AE:=cost(S')-cost( S) 

- select the new configuration (S:=S') with 
probability P(AE,T)=min( 1 .exp(-AW)); 

- repeat this step X*M*(N-I) times; /* length 
of the markov chain spent at each T */ 

(S:=So); 

2. (Stochastic hill-climb) 

3. (AnneavConvergence test) 
- set T:=a.T; /* a: temperam decrease rate */ - if "2Tmin goto step2. /* Tmin: minimal 

temperawe */ 

Figures 4 and 5 show the effect of the temperature 
decreasing rate on the solution quality and the execution 
cost of the algorithm. A rapid decrease gives local optimum 
and a slow decrease gives better results but it is time 
consuming. 

Solution quality 
32 1 

0 benchmark 1 

I benchmark 2 
24 0 benchmark 3 

16 

8 

0 
0.5 0.9 0.05 

Temperature decrease rate 

Figure 4 Solution quality. 

Number of iteratons 
3.5000+04 

2.6250+04 

1.7500+04 

8750 

0 
0.5 0.9 0.05 

Temperature decrease rate 
Figure 5 Execution cost (Tm,=lO, Tmjn4.1, X=2). 

Figures 6 and 7 show the effect of the parameter X 
(length of the markov chain) on the solution quality and the 
execution cost of the algorithm. As expected, the solution 
quality is better when X increases, however, the execution 
cost increases linearly with X. 
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0 benchmark 1 
benchmark 2 

0 benchmark 3 

0 1  0 5  1 5 
Length of markov chain (unit M*(N-I)) 

Figure 6 Solution quality. 

Number of iterations 
4.5000+04 ; I 

3.375e+04 

2.250e+04 

1.125e+04 

0 
0.1 0.5 1 5 

Length of markov chain 
Figure 7 Execution cost (Tmax=lO, Tmi,=O.l, 

a=0.9). 

Results obtained by simulated annealing are good, but 
the execution time is quite huge. Such onerous run times 
have driven researchers to implement the algorithm on 
multiprocessors. To improve performances several 
techniques have been proposed (Greening901. Serial-like 
a lgor i thms  maintain the properties of sequential 
algorithms. Altered generation algorithms modify state 
generation to reduce communication, but retain accurate 
cost calculations. Asynchronous algorithms reduce 
communication further by calculating cost with outdated 
information to get a ktter speedup. 

V. Genetic algorithms 

5.1. Ba\ic principle 

Genetic algorithms compose a very interesting family 
of optimization algorithms. Their basic principle is quite 
simple. 

Given a search space X of size NM and N symbols: any 
point of this space may be represented by a string 
(individual) of M of these N symbols. 

Given a fitness function f from Z into R associating a 
real value to any point of X. 

Given an initial set of strings, called the initial 
population. 

Some genetic operators are used to generate new points 
of I: given some old ones in a phase of the process called 
"reproduction". The fundamental principle of GAS is: "the 
fitter a string, the most probable its reproduction". 

Given that the size of the population is constant, we 
will inevitably have a competition for survival of the 
individuals in the next generation. We have a Darwinian 
"survival of the fittest" situation. A "replacement" phase is 
then performed; it consists in replacing the worse 
individuals of the population by the best individuals 
produced. The genetic process is iterated on the new 
population until a given number of generations. 

The standard genetic algorithm is: 
Generate a population of random individuals. 
Evaluation - assign a fitness value to each 

individual. 
While number-ofseneration 5 max Do 

Selection - make a list of pairs of individuals 
likely to mate, with fitter individuals 
listed more frequently. 

Reproduction - apply genetic operators to the 
selected pair,,. 

Evaluation - assign a fitness value to each 
offspring. 

Replacement - form a new population by 
replacing worst individuals by best 
ones. 

The genetic operators used during reproduction are 
crossover and mutation. Crossover, is defined by given two 
strings, cut them both at the same random point and 
exchange the two portions (fig.8a). Crossover is 
synonymous with sexual reproduction. Mutation is simply 
flitting a bit (fig.8b). In biological systems, mutation is 
vital for species survival when the environment is 
changing. Two parameters need to be &fined: Pc and Pm. 
They represent respectively the probability of application of 
the crossover and mutations operators. 

Parents offsping 
01 1000 1 101 0 1 1 m 0 0 1  

1101010001 l101011101 
(a) Crossover 

+ 

Individual 0110001101 + 0100001100 
(b) Mutation 

Figure 8 Genetic operators. 

Considering virtual massively parallel architectures, we 
chose a parallel fine-grained model, where the population is 
mapped on a connected processor graph, one individual per 
processor [Muntean91]. We have a bijection between the 
individual set and the processor set. The neighbourhoods of 
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different individuals overlap. The selection is done locally 
in a neighbourhood of each individual. Selection depends 
only on local information. 

The choice of the neighbourhood is the adjustable 
parameter. To avoid overhead and complexity of routing 
algorithms in parallel distributed machines, a good choice 
may be to resmct neighbourhood to only directly COMeCted 
individuals. Another motivation behind local selection is 
biological. In nature there is no global selection. Instead. 
niitural selection is a local phenomenon, taking place in an 
individual's local environment. 

The Following is a pseudo-Occam description of the 
parallel genetic algorithm (PGA) used in our experiments. 
The PAR and SEQ constructors in Occam stand 
respectively for simultaneous and sequential execution of 
processes at the same level of indentation. 

PAR j=O FOR number-ofjrocessors 
-- process executed in parallel by each processor 
SEQ 

Generate (local) 
Evaluate (local) 
While number-ofjeneration I max Do 

SEQ 
-- communication phase (selection) 
PAR i=O FOR nber-of-neighbors 

neighbo-in[i] ? neighbor[i] 
neighbor-out[i] ! local 

PAR 

-- computation phase 
PAR i=O FOR nber-of-neighbors 

SEQ -- crossover and mutation 
Reproduction(l0cal ,neighbor[il) 
Evaluate(offspring[i]) 

Replacement 

Each reproduction produces two offsprings. Our strategy 
is to choose randomly one of the offsprings. The 
replacement phase is deterministic. It consists in replacing 
the current local individual with the best local offspring 
produced in the reproduction phaw. 

Algorithm complexity 

In this section we give the complexity of the PGA. The 
following notations are used: 

n : population size, 
s : neighbourhood size, 
t : individual length. 

We begin by calculating the complexity of the standard 
GA. This requires the complexities of the different steps of 
the algorithm (selection. crossover, mutation, replacement). 
The evaluation step is not considered because it depends on 
the optimization problem treated. 

The complexity of the selection step is o(n2). The 
crossover operator needs ~ ( t ) ,  which give a complexity of 
o(n.t) for the whole population. We have the same 
complexity for the mutation operator o(n.t). The 
complexity of the replacement step is o(n.log(n)). For the 
complete GA we have then a complexity of o(n2+n.t). 

For the PGA the complexity of the selection step is 
o(s). The reproduction step has a complexity of o(s.t) as 
well as for the crossover and the mutation. The complexity 
of the replacement step is o(s). Table 1 summarizes the GA 
and the PGA complexities. 

SuperNode Implementation 

The Supemode is a loosely coupled, highly parallel 
machine based on transputers. One of its most important 
characteristics is its ability to dynamically reconfigure the 
network topology by using a programmable V U 1  switch 
device. This architecture offers a range of 16 to 1024 
processors, delivering from 24 to 1500 Mflops 
performance. To achieve these performance, a hierarchical 
smcture has been adopted. The basic component is a T800 
transputer. it is a 32-bit microprocessor, with on-chip 
memory and F.P.U. (Floating Point Unit), delivering 
1 OMips and 1 .SMflops peak performance. Communication 
between transputers is supported by 4 bidirectional. serial, 
asynchronous, point-to-point connection links. An Unix 
workstation is used as a host to provide the connection 
between the root processor and the extemal world. 

The programming environment used in our experiments 
is on a Parallel C language. A configurator of the physical 
network has been used to obtain the desired topology of the 
architecture. 

The population is placed on a torus. Given the four 
links of the transputer, each individual has four neighbours. 
No routing is needed in the processor network because only 
directly connected processors have to exchange information. 

We do not consider the best solution found globally 
since the communication involved to find out this solution 
would considerably increase. We only pick up the best 
solution routing through a "spy process" placed on the 
"root processor" (fig.9). 
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To use genetic algorithms for the mapping problem, the 
following formalism is used: let us suppose that we have 
M communicating processes to map on a parallel 
architecture of N processors. Each of these processors is 
labelled by a symbol (for instance an integer between 0 and 
N-1). A given mapping is represented by a M vector of 
those. symbols; where symbol p in position q means that 
process q has been placed on processor p. 

~ Symbol Value Description 
Pops im Population size 

I'm 0.04 probability of mutatioq 
R: 0.3 ProbabPty of crossover 

5.2 Performance evaluation of the PGA 

The purpose of the first evaluation is to measure the 
speed-up when running the parallel genetic algorithm (for a 
given population size) on different sizes of a torus . 

We use the speed-up ratio as a metric for the 
performance of the parallel genetic algorithm. The speed-up 
ratio S is defined as S=Ts/Tp where Ts is the execution 
time on a single processor and Tp corresponds to execution 
time for a p procesms implementation. Figure 10 shows 
the results obtained. 

The algorithm has a near-linear speed-up. This is due to 
the fact that the communication cost between processes is 
relatively small compared with the computation cost, and is 
independant of the size of the architecture. 

- 

The pwpose of the second evaluation is to measure the 
evolution of solution's quality when running the parallel 
genetic algorithm with different sizes of population. 

Figure 11 shows the obtained results. Notice that given 
the benchmark used (a pipeline of 32 processes to be 
mapped on a complete network of 8 processors). the best 
possible solution scores 7. As expected, for a given number 
of generations, the solution quality improves with an 
increase of population's size. It may even happen that for a 
too small population a premature convergence occurs and 
that the optimal solution will not be ever reached. 

JY /'. 

/' 

VI. Algorithms' comparison 

In this section, the performances of the three algoriduns 
are compared. Each algorithm was run 10 times to obtain 
an average performance estimate. The annealing schedule 
and the genetic algorithm parameter's that have been used 
during our experiments are given in table 2. The genetic 
algorithm was run until no significant improvement was 
obtained. A significant number of experiments were 
performed which are not described he& 
limitations. 

due to space 

112 

9 6  

8 0  

6 4  

4 8  

3 2  

18 

0 

Figure 10 Speed-up of the PGA 

Solution Quality 

-- . 0 25 50 75 100 
Number of oanarations 

The tables below show the minimum, maximum, 
average value and the variance of the obtained solutions for 
different benchmarks. The results for the hill-climbing and 
the simulated annealing algorithms are based on an 
implementation on a single T800 transputer. 

S. annealin 
Genetic 10 

processes and a ring of 8 proksors. 

Figure zz Solution quality function of population 
size. 
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VII. A hybrid genetic algorithm 

The initial configuration has a great effect on the search 
time used and the solution quality obtained. In the present 
version of the genetic algorithm. the initial population is 
generated randomly. An interesting experiment is to 
generate the population by using heuristics. We have 
evaluated the genetic algorithm where the initial population 
is generated by a hill-climbing algorithm. 

Figure 13 and table 6 show that the solution quality 
obtained by the hybrid algorithm are better but the price to 
pay is a more important execution cost. 

Solution quality 

Y ~ ~~ 

Lbenchmark 1 [ 2 4 
benchmark 2 ] 63 172 
benchmark 3 I 1 3w w7 

Solution b u t i m e  I 

processes and a &d of 4 proc&sors. 

1Algorithm I Solution ICPUtime I 

Tubh 5 Benchmarking with a grid of 64 processes 
and a complete network of 4 processors. 

It can be observed from tables 3,4 and 5 that the results 
obtained by simulated annealing are better than those of 
hill-climbing. but they are slower. The tables also indicate 
that a mapping comparable in quality can be obtained by 
simulated annealing and genetic algorithm, but genetic 
algorithm is less time consuming than simulated 
annealing, which illustrates the efficiency of the genetic 
search process. 

Figure 12 gives the evolution in time of the solution 
obtained by simulated annealing and genetic algorithms. 
They are both executed on a uniprocessor (T800 transputer). 
We show that for genetic algorithms the greatest reduction 
in the cost of the mapping occurs at the beginning. Thus a 
moderate quality mapping can be obtained very quickly. 

Solution quality 

I 

6 0  

50 

4 0  

30 

2 0  

~ ~ ~~~~~ .I 

0 20 4 0  60 80 100 120 1 4 0  
execution cost (unit=l.5sec) 

Figure 12 Evolution in time of the quality of the 
solution . 

(benchmark : grid of 32 processes and a ring of 4 
processors, >.=12) 

(Pops=64, Pc=0.3, Pm=0.04, Tmax=lO, Tmin=0.05, 
X=10, a=0.9) 

GA: Genetic Algorithm 

benchmark1 benchmark2 benchmark3 
Figure 13 Solution quality function of the 

algorithm used. 
(benchmark : a binary tree of 31,63 and 127 

processes and a grid of 4 processors). 

I Algorithm I Genetic algorithm I Hvbrid aleorithm 1 

--_ - I --. I - _ _  - _ _  _ _ _  _I_ - - - 
Table 6 Execution time of the algorithms (in 

I 

seconds). 

VIII. Summary and Conclusions 

Three general purpose optimization algorithms have 
been used to solve the mapping problem: hill-climbing, 
simulated annealing, and genetic algorithms. Each 
algorithm has been independently evaluated and optimized 
according to its parameters. A massively parallel genetic 
algorithm has been proposed as an example for solving 
such a problem, and results of its implementation on a 
processor reconfigurable network are given. It will be 
interesting to emphasize that this parallel algorithm 
achieves near-linear speed-up. 

A comparative study of the algorithms has been carried 
out. The criteria of performances considered are the quality 
of the solutions obtained and the amount of search time 
used for several benchmarks. The results obtained show that 
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hill-climbing gives worse quality solutions compared to 
simulated annealing but they are faster. Genetic algorithms 
give comparable solutions as simulated annealing, but with 
a search time which is of the same order of magnitude than 
hill-climbing. The main advantage of genetic algorithms is 
that they are intrinsically parallel. 

A hybrid approach which consists in a combination of 
genetic algorithms and hill-climbing has been evaluated. 
The quality of the solutions obtained is better but the price 
to pay is a greater search time. In order to avoid hill- 
climbing local minima we are currently investigating a 
tabu search algorithm [Glover86], another general purpose 
optimization method. 

We are using this parallel genetic algorithm to solve 
other optimization problems in the field of robotics, 
medicine and neural networks. Encouraging results have 
been obtained. 
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