
Hill-Climbing, Simulated Annealing and Genetic Algorithms:
A Comparative Study and Application to the Mapping Problem

E-G.TALBI & T.MUNTEAN
institut IMAG - Laboratoh de Genie Informatique (*)

University of Grenoble

Abstract 1. INTRODUCTION

Hill-climbing, simulated annealing and genetic
algorithms are search techniques that can be applied to most
combinatorial optimization problems. In this paper, the
three algorithms are used to solve the mapping problem:
optimal static allocation of Communicating processes
(tasks, objects, agents) on distributed memory architectures.

Each algorithm is independently evaluated and optimized
according to its parameters. The parallelization of the
algorithms is also considered. As an example, a massively
parallel genetic algorithm is proposed for the problem, and
results of its implementation on a 128-processor Supemode
(reconfigurable network of transputers) are given.

A comparative study of the algorithms is then carried
out. The criteria of performances considered are the quality
of the solutions obtained and the amount of search time

In this paper, we are interested to the mapping problem:
optimal static placement of communicating processes on
the processors of a distributed memory parallel machine.
The problem is known to be NP-complete [Garey79].
Consequently, heuristic methods shall be used. They may
find only approximations of the optimum, but they will do
it in a "reasonable" amount of time.

Heuristic algorithms may be divided in two main
classes. First, the general purpose optimization algorithms
independent of the given optimization problem and, on the
other hand, the heuristic approaches especially designed for
the mapping problem. As we want to avoid the intrinsic
disadvantd,: of the algorithms of this second class (their
limited applicability), this paper is only concerned with the
first class of algorithms.

used for several benchmarks. A hybrid approach consisting
in a combination of genetic algorithms and hill-climbing is
also proposed and evaluated.

Key Words
Mapping problem, Distributed memory parallel

architectures, Genetic algorithms, Hill-climbing, Simulatcd
annealin p .

Two widely used optimization techniques are the hill-
climbing algorithm [Johnson851 and simulated annealing
[Kirkpatrick83]. Hill-climbing finds the global minimum
only in convex spaces. Otherwise, most often it is rather a
local instead of a global minimum which is found.
Simulated annealing offers a way to overcome this major
drawback of hill-climbing but the price to pay is a huge
computation time. worst, simulated annealing algorithm is
rather of a sequential nature, its parallelization is quite a
difficult task [GreeningW].

More distributed optimization techniques, inherently (*) Authors adress: IMAGILGI Laborutory, BPS3X F-38041;
Grenoble, France.
Phone: (33)7651.18.64 ; Far: (33)76.44.66.75
Emuil: ghuzali@imug.fr d? rruian@imug.jr

0-8186-1060-3425/93 $03.00 0 1993 IEEE

-~ - - - - ----- __

parallel, may also be considered. Some of them are closely
related to neural networks algorithms. Others, namely,
genetic algorithms are considered in this paper.

Genetic algorithms are stochastic search techniques,
introduced by Holland twenty years ago [Holland75]. They
are inspired by adaptation in evolving natural systems.
They have recently been applied to combinatorial
optimization problems in various fields
[Neuhaus90][Stanweather901, such as. for instance, the
traveling salesman problem, the optimization of
connections and connectivity of neurel networks, and
classifier systems. In this paper we propose and compare a
parallel genetic algorithm with the techniques above.

565

mailto:ghuzali@imug.fr

The remaining sections of the paper are as follows. In
the next section, we define the mapping problem and
classify heuristics that have been proposed. The sections 3,
4 and 5 are devoted respectively to the description and
evaluation of hill-climbing, simulated annealing and
genetic algorithms. In the sixth section, a comparison of
the three algorithms is camed out. Finally, in section 7 a
hybrid algorithm which consists in a combination of hill-
climbing and genetic algorithms is proposed and evaluated.

11. The mapping problem
A parallel program can be modeled by a graph

Gp'(VpEp) where the vertices represent processes and the
weights associated to the vertices represent known or
estimated computation costs for these processes. The edges
represent communication exchanges between processes and
their weights estimate the communication costs. We
assume here a static graph of processes ; no dynamic
process creation is done. Otherwise, a dynamic allocation
strategy must be used.

A parallel architecture is also modeled by an undirected
connected graph Gt=(Vt.Et), where vertices represent
processors and edges represent communication links
between processors. It is assumed that the architecture is
static; the configuration of the physical network will not be
changed dynamically during xun time.

The following terminology is used
M : the number of processes to be mapped, M=IVpl.
N : the number of processors of the target architecture,

ei : the computation cost of process pi.
Cij : the communication cost between processes pi and
P j.
dkl : the distance between processors tk and ti. The
dhtance is defined as the minimum number of links of
a path between the processors.

The mapping problem can be defined by a function
n:Vp+Vt. assigning each process to a processor. A cost
function F: n-+%, which associates a valueito each
mapping must be defined to compare the different possible
solutions.

Two contradictory mapping criteria have been
considered:

- minimize the sum of the total communication costs
between processors. This cost may be measured by the
product of the communication cost between all pairs of
processes and the cost of exchanges between the processors
where processes are assigned.

N=IVtI.

- minimize the load imbalance across the system. The
quantitative measure used to deal with this criterion is the
variance of the loads of the different processors.

M
4= c e,

n&
The cost function F chosed is a weighted sum of the

two functions C and V.
F = C + w.V

w is the weight of the contribution of the
communication cost relative to the computational load
balance across the system. Choosing a suitable value for w
depends on the knowledge about characteristics of the
parallel architectwe. Very small values of w would suggest
a uniprocessor solution, and very large values would reduce
the problem to load balancing without communication
costs. The parallel architecture used in our experiments was
a Supemode of T800 transputers and w=2 has been
estimated by empirical experiment.

The different mapping strategies that have been
proposed in the literature are based on one of the following
approaches: mathematical programming [Ma82], graph
theory [Shen85J, and queuing theory [Bryant811 (fig.1).
They give optimal solutions but are time consuming. To
speed up the search, approximate algorithms have been
used; they are based on one of the above optimal
approaches but are limited by the search time used
[KasaharaM]. Another solution to the problem is the
utilization of heuristics (process clustering [L~88], routing
limitation [BoWlariSl]). They may be divided in two
categories: greedy and iterative. The gmdy algorithms are
initialized by a partial solution and search to extend this
solution until a complete mapping is achieved. At each
step, one process assignment is done and we can't change
this decision in the remaining steps. Iterative algorithms
are initialized by a complete mapping and search to
improve it.

811 ubnabnll

-\
)btoPnw

I \
Y.8l"K.I aJ"Ll ask M o a *ppOmv
Ropn"pR*o*Tnory

/ \
- D F y m s w u y w (
nd-p-mmw-prdbarp

'1 / \ - -
/ \

OrmCp*por spa*

A
- I) yHlaF"am - cynollp c**mg LMIlDn

Figure 1 A taxonomy of mapping strategies.

111. Hill-climbing

The hill-climbing algorithm starts with a complete
configuration, and tries to improve it by local
transformations. A move between neighbouring processors
is selected, the cost change of the move is evaluated, and if

566

the change is positive the move is accepted and a new
configuration is generated. Otherwise, the old configuration
is kept. This process is repeated until there are no changes
to the configuration that will reduce the cost function
further. When this occurs a local minimum has usually
been found, rather [hm the required global minimum. Hill-
climbing algorithm can be p i c m d as follows.

- Generate an initial configuration So (S:=So).
- Repeat

- compute a neighbouring configuration S' by

- if cost(S') < cost(S) then S:=S'
local transformation.

Until there is no better move.

In our comparative study, we have considered many
versions of the algorithm. They differ by the strategies used
in the generation of the initial configuration, in the local
transformation, and in the replacement strategy.

We have used two strategies for the generation of the
initial configuration. The first one is spreading. It consists
in mapping each process on a processor randomly chosen.
The second one is cyclic. It consists in mapping each
process pi on the processor t(j mod NI. Thus, the load
balancing criterion is taken into account in the initial
configuration.

For local transformations, two strategies have been
used. The first one moves a given process on another
neighbour processor (movement strategy). The second one
exchanges the mapping location of two processes (exchange
strategy). The main caracteristic of this strategy is that it
conserves the load balancing propriety of a given
configuration.

Two replacement strategies have been considered. The
first consists in replacing the current configuration by the
first neigbouring configuration with a smaller cost. The
second one replace the current configuration by the best
neighbouring configuration.

We have evaluated the performances of the algorithm
with each combination of these strategies. When the
movement strategy is used in the local transformation, the
initial configuration does not influence very much the
solution; the final solutions obtained are very similar.
However, when the exchange strategy is used, the process
distribution (number of processes per processor) does not
change during run time. The load balancing criterion must
then be taken into account in the initial configuration with
the use of a cyclic strategy.

Therefore. we have used in our experiments four hill-
climbing algorithms :

AIRLl :
- Generate a random initial configuration So
(S:=So).

Repeat
- Generate a neighbouring configuration S' using
the movement strategy.

- If cost(S') c cost(S) Then S:=S'.
Until there is no better neighbour.

AIRL2 :
- Generate. a random initial configuration So
(S:=So).
Repeat - Generate all neighbours of S using the

movement strategy.
- If cost(S) < cost(S) Then S:=S' (S is the best
neighbour of S).

Until there is no better neighbour.

AIRL3 :
- Generate a cyclic initial Configuration So (S:=So).
Repeat - Generate a neighbouring configuration s' using

the exchange strategy. - If cost(S') < cost(S) Then S:=S.
Until there is no better neighbour.

AlRL4 :
- Generate a cyclic initial configuration So (S:=So).
Repeat - Generate all neighbours of S using the exchange

strategy.
- If cost(S) < cost(S) Then S:=S (S is the best
neighbour of S).

Until there is no better neighbour.

Figures 2 and 3 show respectively the quality of the
solutions obtained and the search time function of the
algorithm used. The search time is represented by the
number of configurations generated. The benchmds used
are the following:

- benchmark 1 : pipeline of 32processes and a
complete network of 8 processors,

- benchmark 2 : grid of 32 processes and a complete
network of 8 processors.

- benchmark 3 : binary tree of 31 processes and a
biprocessor.

The communication cost and the execution cost of
processes are set to one.

Solution auolitv
32

24

16

8

0

0 AlRLl

benchmark1 benchmark2

I AIRL2
0 AIRL4

benchmark3
Figure 2 Solution quality of the algorithms.

(function F is used)

567

0 AlRLl I AIRL2
cl AIRL4 Number of i teral ions 0

-4000

3000

2000

1000

0

. .

benchmark1 benchmark2 benchmark3

algorithms.

For the benchmark 2, the AIRLl algorithm is better
than AIRLA algorithm concerning the solution quality. For
the benchmark 3, the AIRL4 algorithm gives better
performances. The performances are quite dependant on the
benchmark used, AIRLl algorithm give a good
compromise between the solution quality obtained and the
search time used. we chose therfore AIRLl for representing
this class of algorithms.

Figure 3 Execution cost for the different

1V. Simulated annealing

The principle of the simulated annealing algorithm is
the following: the system is put in a high temperature
environment. At this temperature is applied a sequence of
random local transformations (markov chain) to reach the
equilibrium at this temperature. Then, the temperature is
slightly decreased and a new sequence of random moves is
applied. At each temperature the permitted energy states are
governed by the metropolis criterion, which allows the
configuration to be accepted with a probability P(AE,T).
The search terminates when the system stabilizes.

The literature on @is topic, and the basic algorithm
allows considerable variation and tuning of parameters. The
number of available changes to the configuration, denoted
hy L, when moving one process to another processor. is
given by L.=M*(N-I). This value gives a measure of the
size of the problem and is used as a parameter in the
annealing schedule. Below the simulated annealing
algorithm used in our experiments is pictured.

1. (Initialization step)
- start with a random initial configuration So

- T := Tmax; /* Tmax: initial temperature */

- generate and compute a random neighbouring
configuration S'; AE:=cost(S')-cost(S)

- select the new configuration (S:=S') with
probability P(AE,T)=min(1 .exp(-AW));

- repeat this step X*M*(N-I) times; /* length
of the markov chain spent at each T */

(S:=So);

2. (Stochastic hill-climb)

3. (AnneavConvergence test)
- set T:=a.T; /* a: temperam decrease rate */ - if "2Tmin goto step2. /* Tmin: minimal

temperawe */

Figures 4 and 5 show the effect of the temperature
decreasing rate on the solution quality and the execution
cost of the algorithm. A rapid decrease gives local optimum
and a slow decrease gives better results but it is time
consuming.

Solution quality
32 1

0 benchmark 1

I benchmark 2
24 0 benchmark 3

16

8

0
0.5 0.9 0.05

Temperature decrease rate

Figure 4 Solution quality.

Number of iteratons
3.5000+04

2.6250+04

1.7500+04

8750

0
0.5 0.9 0.05

Temperature decrease rate
Figure 5 Execution cost (Tm,=lO, Tmjn4.1, X=2).

Figures 6 and 7 show the effect of the parameter X
(length of the markov chain) on the solution quality and the
execution cost of the algorithm. As expected, the solution
quality is better when X increases, however, the execution
cost increases linearly with X.

568

"_ _I.__.I__. ~

0 benchmark 1
benchmark 2

0 benchmark 3

0 1 0 5 1 5
Length of markov chain (unit M*(N-I))

Figure 6 Solution quality.

Number of iterations
4.5000+04 ; I

3.375e+04

2.250e+04

1.125e+04

0
0.1 0.5 1 5

Length of markov chain
Figure 7 Execution cost (Tmax=lO, Tmi,=O.l,

a=0.9).

Results obtained by simulated annealing are good, but
the execution time is quite huge. Such onerous run times
have driven researchers to implement the algorithm on
multiprocessors. To improve performances several
techniques have been proposed (Greening901. Serial-like
a lgor i thms maintain the properties of sequential
algorithms. Altered generation algorithms modify state
generation to reduce communication, but retain accurate
cost calculations. Asynchronous algorithms reduce
communication further by calculating cost with outdated
information to get a ktter speedup.

V. Genetic algorithms

5.1. Ba\ic principle

Genetic algorithms compose a very interesting family
of optimization algorithms. Their basic principle is quite
simple.

Given a search space X of size NM and N symbols: any
point of this space may be represented by a string
(individual) of M of these N symbols.

Given a fitness function f from Z into R associating a
real value to any point of X.

Given an initial set of strings, called the initial
population.

Some genetic operators are used to generate new points
of I: given some old ones in a phase of the process called
"reproduction". The fundamental principle of GAS is: "the
fitter a string, the most probable its reproduction".

Given that the size of the population is constant, we
will inevitably have a competition for survival of the
individuals in the next generation. We have a Darwinian
"survival of the fittest" situation. A "replacement" phase is
then performed; it consists in replacing the worse
individuals of the population by the best individuals
produced. The genetic process is iterated on the new
population until a given number of generations.

The standard genetic algorithm is:
Generate a population of random individuals.
Evaluation - assign a fitness value to each

individual.
While number-ofseneration 5 max Do

Selection - make a list of pairs of individuals
likely to mate, with fitter individuals
listed more frequently.

Reproduction - apply genetic operators to the
selected pair,,.

Evaluation - assign a fitness value to each
offspring.

Replacement - form a new population by
replacing worst individuals by best
ones.

The genetic operators used during reproduction are
crossover and mutation. Crossover, is defined by given two
strings, cut them both at the same random point and
exchange the two portions (fig.8a). Crossover is
synonymous with sexual reproduction. Mutation is simply
flitting a bit (fig.8b). In biological systems, mutation is
vital for species survival when the environment is
changing. Two parameters need to be &fined: Pc and Pm.
They represent respectively the probability of application of
the crossover and mutations operators.

Parents offsping
01 1000 1 101 0 1 1 m 0 0 1

1101010001 l101011101
(a) Crossover

+

Individual 0110001101 + 0100001100
(b) Mutation

Figure 8 Genetic operators.

Considering virtual massively parallel architectures, we
chose a parallel fine-grained model, where the population is
mapped on a connected processor graph, one individual per
processor [Muntean91]. We have a bijection between the
individual set and the processor set. The neighbourhoods of

569

. _____I_ ~.

different individuals overlap. The selection is done locally
in a neighbourhood of each individual. Selection depends
only on local information.

The choice of the neighbourhood is the adjustable
parameter. To avoid overhead and complexity of routing
algorithms in parallel distributed machines, a good choice
may be to resmct neighbourhood to only directly COMeCted
individuals. Another motivation behind local selection is
biological. In nature there is no global selection. Instead.
niitural selection is a local phenomenon, taking place in an
individual's local environment.

The Following is a pseudo-Occam description of the
parallel genetic algorithm (PGA) used in our experiments.
The PAR and SEQ constructors in Occam stand
respectively for simultaneous and sequential execution of
processes at the same level of indentation.

PAR j=O FOR number-ofjrocessors
-- process executed in parallel by each processor
SEQ

Generate (local)
Evaluate (local)
While number-ofjeneration I max Do

SEQ
-- communication phase (selection)
PAR i=O FOR nber-of-neighbors

neighbo-in[i] ? neighbor[i]
neighbor-out[i] ! local

PAR

-- computation phase
PAR i=O FOR nber-of-neighbors

SEQ -- crossover and mutation
Reproduction(l0cal ,neighbor[il)
Evaluate(offspring[i])

Replacement

Each reproduction produces two offsprings. Our strategy
is to choose randomly one of the offsprings. The
replacement phase is deterministic. It consists in replacing
the current local individual with the best local offspring
produced in the reproduction phaw.

Algorithm complexity

In this section we give the complexity of the PGA. The
following notations are used:

n : population size,
s : neighbourhood size,
t : individual length.

We begin by calculating the complexity of the standard
GA. This requires the complexities of the different steps of
the algorithm (selection. crossover, mutation, replacement).
The evaluation step is not considered because it depends on
the optimization problem treated.

The complexity of the selection step is o(n2). The
crossover operator needs ~ (t) , which give a complexity of
o(n.t) for the whole population. We have the same
complexity for the mutation operator o(n.t). The
complexity of the replacement step is o(n.log(n)). For the
complete GA we have then a complexity of o(n2+n.t).

For the PGA the complexity of the selection step is
o(s). The reproduction step has a complexity of o(s.t) as
well as for the crossover and the mutation. The complexity
of the replacement step is o(s). Table 1 summarizes the GA
and the PGA complexities.

SuperNode Implementation

The Supemode is a loosely coupled, highly parallel
machine based on transputers. One of its most important
characteristics is its ability to dynamically reconfigure the
network topology by using a programmable V U 1 switch
device. This architecture offers a range of 16 to 1024
processors, delivering from 24 to 1500 Mflops
performance. To achieve these performance, a hierarchical
smcture has been adopted. The basic component is a T800
transputer. it is a 32-bit microprocessor, with on-chip
memory and F.P.U. (Floating Point Unit), delivering
1 OMips and 1 .SMflops peak performance. Communication
between transputers is supported by 4 bidirectional. serial,
asynchronous, point-to-point connection links. An Unix
workstation is used as a host to provide the connection
between the root processor and the extemal world.

The programming environment used in our experiments
is on a Parallel C language. A configurator of the physical
network has been used to obtain the desired topology of the
architecture.

The population is placed on a torus. Given the four
links of the transputer, each individual has four neighbours.
No routing is needed in the processor network because only
directly connected processors have to exchange information.

We do not consider the best solution found globally
since the communication involved to find out this solution
would considerably increase. We only pick up the best
solution routing through a "spy process" placed on the
"root processor" (fig.9).

570

To use genetic algorithms for the mapping problem, the
following formalism is used: let us suppose that we have
M communicating processes to map on a parallel
architecture of N processors. Each of these processors is
labelled by a symbol (for instance an integer between 0 and
N-1). A given mapping is represented by a M vector of
those. symbols; where symbol p in position q means that
process q has been placed on processor p.

~ Symbol Value Description
Pops im Population size

I'm 0.04 probability of mutatioq
R: 0.3 ProbabPty of crossover

5.2 Performance evaluation of the PGA

The purpose of the first evaluation is to measure the
speed-up when running the parallel genetic algorithm (for a
given population size) on different sizes of a torus .

We use the speed-up ratio as a metric for the
performance of the parallel genetic algorithm. The speed-up
ratio S is defined as S=Ts/Tp where Ts is the execution
time on a single processor and Tp corresponds to execution
time for a p procesms implementation. Figure 10 shows
the results obtained.

The algorithm has a near-linear speed-up. This is due to
the fact that the communication cost between processes is
relatively small compared with the computation cost, and is
independant of the size of the architecture.

-

The pwpose of the second evaluation is to measure the
evolution of solution's quality when running the parallel
genetic algorithm with different sizes of population.

Figure 11 shows the obtained results. Notice that given
the benchmark used (a pipeline of 32 processes to be
mapped on a complete network of 8 processors). the best
possible solution scores 7. As expected, for a given number
of generations, the solution quality improves with an
increase of population's size. It may even happen that for a
too small population a premature convergence occurs and
that the optimal solution will not be ever reached.

JY /'.

/'

VI. Algorithms' comparison

In this section, the performances of the three algoriduns
are compared. Each algorithm was run 10 times to obtain
an average performance estimate. The annealing schedule
and the genetic algorithm parameter's that have been used
during our experiments are given in table 2. The genetic
algorithm was run until no significant improvement was
obtained. A significant number of experiments were
performed which are not described he&
limitations.

due to space

112

9 6

8 0

6 4

4 8

3 2

18

0

Figure 10 Speed-up of the PGA

Solution Quality

-- . 0 25 50 75 100
Number of oanarations

The tables below show the minimum, maximum,
average value and the variance of the obtained solutions for
different benchmarks. The results for the hill-climbing and
the simulated annealing algorithms are based on an
implementation on a single T800 transputer.

S. annealin
Genetic 10

processes and a ring of 8 proksors.

Figure zz Solution quality function of population
size.

57 1

VII. A hybrid genetic algorithm

The initial configuration has a great effect on the search
time used and the solution quality obtained. In the present
version of the genetic algorithm. the initial population is
generated randomly. An interesting experiment is to
generate the population by using heuristics. We have
evaluated the genetic algorithm where the initial population
is generated by a hill-climbing algorithm.

Figure 13 and table 6 show that the solution quality
obtained by the hybrid algorithm are better but the price to
pay is a more important execution cost.

Solution quality

Y ~ ~~

Lbenchmark 1 [2 4
benchmark 2] 63 172
benchmark 3 I 1 3w w7

Solution b u t i m e I

processes and a &d of 4 proc&sors.

1Algorithm I Solution ICPUtime I

Tubh 5 Benchmarking with a grid of 64 processes
and a complete network of 4 processors.

It can be observed from tables 3,4 and 5 that the results
obtained by simulated annealing are better than those of
hill-climbing. but they are slower. The tables also indicate
that a mapping comparable in quality can be obtained by
simulated annealing and genetic algorithm, but genetic
algorithm is less time consuming than simulated
annealing, which illustrates the efficiency of the genetic
search process.

Figure 12 gives the evolution in time of the solution
obtained by simulated annealing and genetic algorithms.
They are both executed on a uniprocessor (T800 transputer).
We show that for genetic algorithms the greatest reduction
in the cost of the mapping occurs at the beginning. Thus a
moderate quality mapping can be obtained very quickly.

Solution quality

I

6 0

50

4 0

30

2 0

~ ~ ~~~~~ .I

0 20 4 0 60 80 100 120 1 4 0
execution cost (unit=l.5sec)

Figure 12 Evolution in time of the quality of the
solution .

(benchmark : grid of 32 processes and a ring of 4
processors, >.=12)

(Pops=64, Pc=0.3, Pm=0.04, Tmax=lO, Tmin=0.05,
X=10, a=0.9)

GA: Genetic Algorithm

benchmark1 benchmark2 benchmark3
Figure 13 Solution quality function of the

algorithm used.
(benchmark : a binary tree of 31,63 and 127

processes and a grid of 4 processors).

I Algorithm I Genetic algorithm I Hvbrid aleorithm 1

--_ - I --. I - _ _ - _ _ _ _ _ _I_ - - -
Table 6 Execution time of the algorithms (in

I

seconds).

VIII. Summary and Conclusions

Three general purpose optimization algorithms have
been used to solve the mapping problem: hill-climbing,
simulated annealing, and genetic algorithms. Each
algorithm has been independently evaluated and optimized
according to its parameters. A massively parallel genetic
algorithm has been proposed as an example for solving
such a problem, and results of its implementation on a
processor reconfigurable network are given. It will be
interesting to emphasize that this parallel algorithm
achieves near-linear speed-up.

A comparative study of the algorithms has been carried
out. The criteria of performances considered are the quality
of the solutions obtained and the amount of search time
used for several benchmarks. The results obtained show that

572

hill-climbing gives worse quality solutions compared to
simulated annealing but they are faster. Genetic algorithms
give comparable solutions as simulated annealing, but with
a search time which is of the same order of magnitude than
hill-climbing. The main advantage of genetic algorithms is
that they are intrinsically parallel.

A hybrid approach which consists in a combination of
genetic algorithms and hill-climbing has been evaluated.
The quality of the solutions obtained is better but the price
to pay is a greater search time. In order to avoid hill-
climbing local minima we are currently investigating a
tabu search algorithm [Glover86], another general purpose
optimization method.

We are using this parallel genetic algorithm to solve
other optimization problems in the field of robotics,
medicine and neural networks. Encouraging results have
been obtained.

BIBLIOGRAPHY

[Bokhari 811

[Bryant 81]

IGarey 791

I Glover 861

[Greening 901

[Holland 75 I

[Johnson 85)

MI1

[Kirkpatrick 831

S.H.Bokhari. "On the mapping
problem", IEEE Trans. on Comp.,

R.M.Bryant, J.R.Agre, "A queueing
network approach to the module
allocation problem in distributed
systems", Performance Evaluation
Review, Vol.10, No.3, pp.191-204,
1981.
M.R.Garey, D.S.Johnson, "Computers
and intractability: A guide to the theory
of NP-completeness", Freeman, San
Francisco, 1979.
F.Glover, "Future paths for integer
programming and links to artificial
intelligence", Comput. & Ops. Res.,

D.R.Greening, "Parallel simulated
annealing techniques", Physica D:
Nonlinear phenomena, Vo1.42. pp.293-
306, 1990.
J.H.Holland, "Adaptation in natural and
artificial systems", AM Arbor: Univ. of
Michigan Press, 1975.
D.S .Johnson, C. H .Papadimitriou,
M.Yannakakis, "How easy is local
search ?", Proc. Annual Symp. of
Foundation of Computer Science, pp.39-
41, 1Y85.
H. Kasahara, S .Nari ta, "Practical
multiprocessor scheduling algorithms for
efficient parallel processing", IEEE
Trans. on Comp.. V0l.C-37, No.1 I ,

S.Kirkpatrick, C.D.Gelatt. M.P. Vecchi,
"Optimization by simulated annealing".
Science, V01.220, No.4598, pp.671-
680, Mai 1903.

V0l.C-30. h'0.3, ~p.207-214, Mar 1981.

V01.13, No.5, pp.533-549, 1986.

~p.1023-1029, NOV 1984.

[Lo 881

[Ma 821

[Muntean 911

[Neuhaus 901

[Shen 851

V.M.Lo, "Algorithms for static task
assignment and symetric contraction in
distributed systems", Roc. of the 11th
Int. Conf. on Parallel Processing, the
Penn. State Univ. Press, pp.239-244,
Aou 1988.
P.R.Ma, E.Y.Lee, M.Tsuchiya, "A task
allocation model for distributed
computing systems". IEEE Trans. on
Comp., V0l.C-31, No.1, pp.41-47, Jan
1982.
T.Muntean, E-G.Talbi, "A parallel
genetic algorithm for process-processors
mapping", Int. Conf. on High Speed
Computing 11, Montpellier, M.Durand
and F.EI Dabaghi (Editors), Elsevier
Science Pub., North-Holland, pp.7 1-82,
Oct 1991.
P.Neuhaus, "Solving the mapping
problem - Experience with a genetic
algorithm", in PPSN I, LNCS No.496,
Oct 1990.
C-C.Shen, W-H.Tsai, "A graph
matching approach to optimal task
assignment in distributed computing
systems using a minmax criterion",
IEEE Trans. on Comp., Vo1.C-34,
No.3. m.197-203, Mm 1985.

[Starkwearhe6Q] TStarkweather & al., "Optimization
using distributed genetic algorithms", in
PPSN 1, LNCS No.496, Oct 1990.

573

