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[1] We present a comparison between a simple but general model of solar wind-
magnetosphere-ionosphere coupling (the Hill model) and the output of a global
magnetospheric MHD code, the Integrated Space Weather Prediction Model (ISM). The
Hill model predicts transpolar potential and region 1 currents from environmental
conditions specified at both boundaries of the magnetosphere: at the solar wind boundary,
electric field strength, ram pressure, and interplanetary magnetic field direction; at the
ionospheric boundary, conductance and dipole strength. As its defining feature, the Hill
model predicts saturation of the transpolar potential for high electric field intensities
in the solar wind, which accords with observations. The model predicts how saturation
depends on boundary conditions. We compare the output from ISM runs against these
predictions. The agreement is quite good for non-storm conditions (differences less than
10%) and still good for storm conditions (differences up to 20%). The comparison
demonstrates that global MHD codes (like ISM) can also exhibit saturation of transpolar
potential for high electric field intensities in the solar wind. We use both models to explore
how the strength of solar wind-magnetosphere-ionosphere coupling depends on the
strength of Earth’s magnetic dipole, which varies on short geological timescales. As
measured by power into the ionosphere, these models suggest that magnetic storms might
be considerably more active for high dipole strengths. INDEX TERMS: 2736 Magnetospheric

Physics: Magnetosphere/ionosphere interactions; 2748 Magnetospheric Physics: Solar wind/magnetosphere

interactions; 2760 Magnetospheric Physics: Plasma convection; 2753 Magnetospheric Physics: Numerical

modeling; KEYWORDS: Transpolar Potential, Polar Cap Potential, Saturation

1. Solar Wind–Magnetosphere–Ionosphere
Coupling

[2] Total region 1 current, I1, and transpolar potential,
�pc, epitomize solar wind-magnetosphere-ionosphere (SW-
M-I) coupling. Progress in understanding this subject can
almost be measured by how well the field predicts these
quantities. (Region 2 currents, which this paper does not
treat, are also an important aspect of the story. In section 7
we discuss how they might affect results presented here.)
First models of SW-M-I coupling, reviewed by Reiff and
Luhmann [1986], assumed one-way coupling from the solar
wind to the ionosphere in which magnetic reconnection at
the magnetopause taps a fraction of the solar wind potential
across the magnetosphere, �sw, to yield an available mag-
netospheric convection potential �m. �m is then impressed

via equipotential magnetic field lines onto the ionosphere,
where it becomes the �pc that generates region 1 currents.
The envisioned process was therefore linear. Empirical
formulas based on this linear assumption work fairly well,
except they tend to overpredict �pc for big values of �sw.
This tendency has been called saturation of the transpolar
potential at high values [Reiff and Luhmann, 1986; Russell
et al., 2000].
[3] Hill et al. [1976] presented a model of SW-M-I

coupling that manifests saturation intrinsically and at about
the observed value. (Hill [1984] developed the implications
of the model further. We therefore refer to it as the Hill
model.) Saturation is a nonlinear process that, in the Hill
model, results from a feedback in which the magnetic field
generated by region 1 currents becomes comparable to and
opposes the Earth’s dipole field at the magnetopause where
reconnection occurs. By significantly weakening the field
that is reconnecting, I1 ultimately limits how fast reconnec-
tion occurs. The result is that at high potentials the iono-

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. A6, 1075, 10.1029/2001JA000109, 2002

Copyright 2002 by the American Geophysical Union.
0148-0227/02/2001JA000109$09.00

SMP 8 - 1



sphere controls the convection potential, whereas at low
potentials, global reconnection at the magnetopause domi-
nates. Hill’s model also predicts that for fixed solar wind
conditions, as ionospheric conductance varies, the resulting
variations in I1 and �pc exhibit a linear current-voltage
relation that is formally the same as the current-voltage
relation for a generator with an internal resistance driving an
external resistance.
[4] Fedder and Lyon [1987] showed that numerical

simulation of the SW-M-I system gives a linear current-
voltage relation, as the Hill model predicts. Their simulation
revealed changes in streamlines of magnetospheric convec-
tion that occur as region 1 current increases, leading to
saturation. They concur with Hill that at least at high values
the ionosphere plays a significant role in regulating con-
vection potential. The Fedder and Lyon work is the first to
discuss the role of the ionosphere in controlling magneto-
spheric convection.
[5] Here we use the Integrated Space Weather Prediction

Model (ISM) to further test the Hill model. Like the
Fedder and Lyon simulation the ISM simulation substan-
tiates the model’s basic conclusions (saturation and linear
current-voltage relation). We extend prior work by giving
explicit formulas based on the model and ISM simulations
that show how, for fixed interplanetary magnetic field
(IMF) clock angle, I1 and �pc scale with solar wind
electric field, solar wind ram pressure, and the strength
of Earth’s dipole.

2. Hill SW-M-I Coupling Model

[6] Let �S be the potential across the polar cap that
generates region 1 currents whose magnetic field signifi-
cantly weakens the magnetic field at the magnetopause
where reconnection occurs. (The amount of weakening is
defined later.) The Hill model postulates that when the
available magnetospheric convection potential �m is less
than the saturation potential�S, the transpolar potential
�pc is approximately �m. However, in the opposite
situation, when the available magnetospheric convection
potential �m is greater than the saturation potential, the
transpolar potential is approximately �S. The Hill model
combines these limits in the following expression appli-
cable to all �m:

�pc¼�m�S=ð�m þ�SÞ: ð1Þ

Saturation at the value �S automatically results when �m �
�S. In the other extreme, �S drops out of the relation, and
�pc varies linearly with �m. At the transitional value �m =
�S the transpolar potential is half the available magneto-
spheric convection potential.
[7] To derive from (1) the linear current-voltage relation

applicable to a generator with internal resistance driving an
external resistance, introduce the ionospheric Ohm’s law in
the form

I1 ¼ x � �pc; ð2Þ

where � is ionospheric (Pedersen) conductance (assumed,
for simplicity, to be uniform) and x is a coefficient that
depends on the geometry of the currents flowing in the

ionosphere. (We will see that it has a value between 3 and 4.
It varies systematically with �.) In particular,

IS ¼ x � �S ð3Þ

gives the value of I1 that significantly weakens the magnetic
field at the magnetopause where reconnection occurs. From
(2) and (3) we have �S = �pcIS/I1, which when substituted
into (1) and rearranged gives the desired relation

�pc ¼ �m � ð�m=ISÞI1: ð4Þ

The value �m/IS is the effective internal resistance of the
generator. Note that this is just a formal equivalence. It does
not mean that �m/IS corresponds to a real resistance.
Instead, it means that �m/IS, as the coefficient of I1,
quantifies the internal resistance-like effect that the region 1
circuit mimics by regulating the amount of �m that is
imposed across the ionosphere as �pc.
[8] The task now is to obtain expressions for �m and IS to

reveal explicitly the �pc dependence on solar wind ram
pressure, IMF strength and direction, and dipole strength.
This will allow us to compare the Hill model quantitatively
with the output of ISM runs. It also provides a useful
general formula for predicting �pc over a wide range of
values for these quantities.

3. Expressions for ��m, IS, and ��pc

[9] We represent the reconnection potential at the mag-
netopause by

�m ffi c Lr0 RE Esw p�1=6
sw D1=3 F qð Þ; ð5Þ

where Lr0 is the effective length of the reconnection line in
units of Earth radii, RE (6370 km). Esw is intensity of the
motional electric field in the solar wind (Vsw Bsw, where sw
indicates solar wind quantities, V is velocity, and B is
magnetic field strength ignoring the component parallel to
the wind). Variable psw is solar wind ram pressure (rsw Vsw

2 ,
where rsw is solar wind mass density). D is dipole strength
normalized to the present value. F(q) represents the IMF
clock angle dependence of magnetopause reconnection
(F(0) = 0, F(p) = 1). In between q = 0 and q = p there are
several expressions for F(q) that have been proposed [Reiff
and Luhmann, 1986]. The coefficient c quantifies the
effects of magnetosheath compression and reconnection
efficiency:

c ¼ 4 frð2 k rsw=rshÞ
1=2; ð6Þ

where fr is the reconnection efficiency factor (ratio of
reconnection velocity to Alfvén velocity) and rsh is the mass
density in the magnetosheath. The coefficient k is the ratio
of the stagnation pressure to solar wind ram pressure, which
depends on solar wind Mach number according to a well-
known expression in aerodynamics [Spreiter et al., 1966]. It
is of order unity, and for high Mach numbers it is close to
0.88. The relation rsw /rsh is found for the Mach number-
dependent shock jump relations. (We evaluate the ratio
using the aerodynamic shock jump relations and the
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magnetosonic Mach number [Spreiter et al., 1966].) To
derive the expression for c we use the Crooker et al. [1982]
empirical relation for magnetic field strength in the
magnetosheath at the magnetopause:

Bsh ffi 2 Bsw Bstð Þ1=2; ð7Þ

where Bst is the magnetic field strength that balances solar
wind stagnation pressure.
[10] Except for this last, purely empirical expression, the

terms in (5) and (6) are based on explicit and accepted
physics of magnetopause reconnection. The psw

�1/6D1/3 fac-
tor in (5) comes from Chapman-Ferraro scaling [e.g.,
Siscoe, 1979; Vasyliunas et al., 1982]. The reconnection
process is represented by the factor fr Lr0 F(q). Values
commonly taken for fr and Lr0 are 0.1 and 30, respectively
(the characteristic width of the magnetosphere at the termi-
nator plane). One therefore expects a priori that the value of
the product fr Lr0 would be �3.0. We find (see below) that
the value 3.3 fits ISM output almost exactly. We therefore
adopt this particular (but unexceptional) value for fr Lr0.
[11] Combining now these various pieces, we evaluate

(5) using the magnetosonic Mach number corresponding to
the ISM runs discussed below (Mms = 3.74) (results are
insensitive to Mms over its most commonly observed range
of values):

�m kVð Þ ¼ 57:6 Esw mV m�1
� �

psw nPað Þ�1=6
D1=3 F qð Þ: ð8Þ

[12] To obtain an expression for IS, we use an idealized
geometrical model for the region 1 current system: two
circular current loops (for the north and south current
systems) that form a figure eight in the terminator plane.
(We acknowledge that there are two schools of thought
regarding where region 1 currents close in the magneto-
sphere: through the tail current sheet or across the magneto-
pause leeward of the dayside cusp. In MHD simulations,
however, region 1 currents close over the magnetopause
leeward of the cusps [Tanaka, 1995, 2000; Janhunen et al.,
1996; Siscoe et al., 2000]. We idealize the result by putting
the north and south region 1 current systems in the termi-
nator plane.) This current pair generates a southward field at
the stagnation point, the strength of which can be written as

B1s ¼ G xs0; r10
� �

m0 I1=RE p
1=6
sw D�1=3; ð9Þ

where xs0 is a characteristic distance (normalized to units of
RE) from the center of the Earth to the stagnation point. (We
take xs0 = 10.) Variable r10 is the corresponding radius of
the region 1 current loops. (We take r10/xs0 = 3/4, which is
consistent with standard magnetospheric shape.) G(xs0, r10)
is the expression one gets by integrating the Biot-Savart law
around a figure eight current loop [Smythe, 1950, p. 271]. It
scales as inverse distance; hence it has inverse Chapman-
Ferraro scaling with respect to (normalized) psw and D, as
the expression shows. Numerically, G(xs0, r10) = 0.014.
Evaluating terms in (9) gives

B1s nTð Þ ¼ 2:8 I1 MAð Þ p1=6sw D�1=3: ð10Þ

The Hill Ansatz is that IS = I1 when B1s is a significant
fraction, a, of the dipole field at the reconnection site.
‘‘Significant fraction,’’ in an unbiased, information-free
derivation would be about 1/2. We find (see below) that the
value a = 0.41 fits ISM output almost exactly. Accordingly,
we adopt this particular (but unsurprising) value. Hill’s
Ansatz gives the following expression for IS:

IS ¼ a=Gð Þ B0 REð Þ= m0 x
3
s0

� �
p1=3sw D1=3; ð11Þ

where B0 is the equatorial, surface strength of the dipole
field (3.1 	 10�5 T). The change from (10) to (11) in the
pressure-scaling term results from the field strength at the
stagnation point scaling as psw

1/2. Evaluating terms in (11)
gives

Is MAð Þ ¼ 4:6 p1=3sw D1=3: ð12Þ

[13] To obtain an expression for �pc, we combine (1), (3),
(8), and (12):

�pc kVð Þ ¼ 57:6 Esw p
1=3
sw D4=3 F qð Þ= p1=2sw D

�

þ0:0125 x �0 Esw F qð ÞÞ; ð13Þ

where Esw is in mV m�1 and we have introduced the dipole
scaling relation for Pedersen conductance [Rassbach et al.,
1974]:

� ¼ �0 D
�1: ð14Þ

From (13) we see that the saturation value that sets in for
high values of Esw is

�S kVð Þ ¼ 4610 p1=3sw D4=3= x �0ð Þ: ð15Þ

Equation (15) reveals important information on how �S

depends on environmental conditions. It has no explicit
dependence on the IMF clock angle function, F(q). F(q) is
nonetheless present implicitly, for it takes a bigger Esw to
reach saturation when F(q) is small, that is, for northward
IMF. �pc(saturation) increases significantly as psw increases,
which might account for its being an elusive quantity to tie
down with measurements. The relatively strong dependence
on D in (15) arises from the dependence of Pedersen
conductance on inverse field strength. For D = 1.5 (which
might have been its value 2500 years ago [McElhinny and
Senanyake, 1982]) the saturation potential increases a factor
of 1.7, from a representative storm time value of 250 kV to
a never-before-measured 430 kV. �pc (saturation) varies
inversely with the conductance product x�, which means
that in saturation mode the magnetosphere acts like a
constant current generator with the ionosphere as a resistive
load. (One expects this since at saturation, I1equals IS,
which is a constant.) In the ISM run (discussed below) that
represents the actual typical magnetosphere, the x� product
is 21.7, which (for D = 1) gives �S ffi 212 psw

2/3 kV. Since
psw is typically between 1 and 1.5 nPa, �pc(saturation) is
typically between 200 and 300 kV, which is a range that has
been noted in data.
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[14] By setting �pc given by (13) equal to one half of �S

as given by (15), we find the following expression for the
value of Esw that divides unsaturated from saturated depend-
ence of �pc on �m:

Esw thresholdð Þ ¼ 80 p1=2 D=x �0 F qð Þ: ð16Þ

Note that it takes a bigger Esw to reach saturation when F(q)
is small, as previously mentioned. Substituting representa-
tive values into (16) and setting F(q) = 1, we find as a
typical value for Esw (threshold) �4 mV m�1.
[15] The current-voltage relation (4) becomes

�pc kVð Þ ¼ 57:6 Esw p
�1=6
sw D1=3

�
�12:5 Esw p

�1=2
sw I1

�
F qð Þ: ð17Þ

For later comparison with ISM output we evaluate (17) with
Esw = 1.75 mV m�1, psw = 1 nPa, D = 1, and q = p:

�pc kVð Þ ffi 101� 21:8 I1 MAð Þ: ð18Þ

[16] The constant, 101 kV, is the open-circuit potential of
the pseudocircuit. One might have expected it to equal the
full solar wind potential across the magnetosphere, which is
�350 kV. The difference between these numbers arises
through the coefficient c in (5) that quantifies the effects
of magnetosheath compression and reconnection efficiency.
c is the ratio of the open-circuit potential to the full solar
wind potential. Its value, as given by (6) for the canonical
parameters used here for illustration, is 0.29.

4. Parametric Exploration of the Hill Model

[17] Equation (13) for �pc could be of great utility in
magnetospheric physics since it combines in one formula,
information describing how the transpolar potential depends
on pertinent boundary conditions at both ‘‘ends’’ of the
magnetosphere. At the solar wind end it specifies the
dependence on motional electric field and ram pressure,

and at the ionospheric end it specifies the dependence on
ionospheric conductance and dipole strength. The iono-
spheric conductance term is, however, not completely
specified since it enters as the product x� in which x
depends on the geometry of the ionospheric closure of the
currents. For example, in an ideal geometry in which
transpolar potential is distributed sinusoidally around a
circle in a planar ionosphere with uniform conductance,
x = 2 [Crooker and Siscoe, 1981]. Observed region 1
currents, however, are not distributed sinusoidally around
the polar cap boundary with peaks in the terminator meri-
dian. Instead, the currents concentrate in the forenoon and
afternoon local time quadrants [Iijima and Potemra, 1976].
This tendency is seen in Figure 1, which shows parallel
currents in the northern polar regions as determined by an
ISM simulation for the case � = 6 S. One can readily show
that one consequence of shifting the centers of I1 concen-
tration from the terminator meridian toward noon, as seen in
Figure 1, is to increase x. As mentioned in section 1, in ISM
runs x tends to lie between 3 and 4, but it varies system-
atically with �. To render the general formula for �pc (13)
more useful, therefore, we use ISM outputs to find a
numerical relation between x and �.
[18] Parameters for the ISM runs used in this investigation

are the following: solar wind speed is 350 km s�1, solar wind
density is 5 protons cm�3, solar wind temperature is 20 eV
(protons and electrons), interplanetary magnetic field is 5 nT,
the IMF clock angle is p (precisely south), and D = 1. (The
ISM code is described in detail by White et al. [2001].)
(Since these are D = 1 runs, the conductances correspond to
�0 in the notation of (13) and (14). For notational economy
we suppress the subscripted zeroes in this section.) In these
runs, ionospheric conductance is uniform (except for a small
latitudinal variation due to the dependence of conductance
on field strength). Runs were made with � = 2, 6, 18, and
44 S. Solar wind and ionospheric boundary conditions are
steady in each run. Table 1 gives information from these runs
that is pertinent to this investigation.
[19] Below we compare the computed potential and

current given in Table 1 with the Hill model. Here we are
interested in analytically parameterizing the dependence of
x on �. The expression

x ¼ 4:45� 1:08 log � ð19Þ

fits the values in Table 1 with a correlation coefficient
0.993. This formula substituted into (13) gives an expres-
sion for �pc in terms only of explicit boundary parameters.
Of course, x might depend on boundary parameters in
addition to �; thus (19) is ‘‘certified’’ only for parameters
approximately like those chosen as inputs for the ISM runs
behind Table 1. We use (19) to explore how accordingFigure 1. Contours of parallel current (in units of mAm�2).

Table 1. Transpolar Potentials and Region 1 Currents Obtained

From Computer Runs With the ISM MHD Codea

�, S �pc, kV I1, MA x

2 87.7 0.74 4.2
6 70.5 1.5 3.6
18 45.7 2.5 3.1
44 28.6 3.5 2.8
a ISM, Integrated Space Weather Prediction Model.
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to (13), �pc varies with each of its parameters separately,
holding the other parameters fixed. An alternative approach
would be to carry out the exploration with a fixed value for
x (3.4, say, which is the average of the values in Table 1).
By using (19), however, we capture what is probably a
general tendency of x to decrease with �, and so it is
probably better than using a fixed x.
[20] Figure 2 shows how �pc varies with Esw. The thick

curve labeled ‘‘baseline’’ illustrates the variation for base-
line values for the other parameters: � = 6 S, psw = 1 nPa,
q = p (rather F(p) = 1), and D = 1. The plot reveals that
saturation sets in somewhat gradually. By Esw = 50 mV
m�1, �pc reaches 198 kV compared to the saturation value
of 212 kV. One reaches 90% of saturation (or 191 kV) at
Esw = 33 mV m�1, which corresponds to an IMF of 33 nT
moving at 1000 km s�1. Nonetheless, the effect of the
ionosphere to reduce �pc relative to �m sets in relatively
quickly. For example, �pc is less than one-half �m already
for Esw = 4 mV m�1. As Figure 3 shows, the curve
quantitatively resembles a plot of transpolar potential versus
interplanetary electric field derived for the storm of 24–25
September 1998 [Russell et al., 2000, p. 1373].
[21] The curve labeled psw = 10 (nPa) illustrates the effect

that a factor of 10 increase in solar wind ram pressure has on
elevating the saturation value of �pc. It also illustrates that
the saturation value is probably never reached for very high
ram pressures. Value �pc is nonetheless significantly sup-
pressed relative to �m.
[22] The curve labeled � = 12 (S) illustrates that increas-

ing ionospheric conductance (in this case from 6 to 12 S)
decreases �pc at all values of Esw. Here a factor of 2 increase
in � reduces the saturation value to 55% of the baseline
value. Since � and psw tend to increase together during
disturbed conditions, the increase in one tends to counter the
increase in the other, thereby preserving a baseline-like
dependence of �pc on Esw. Indeed, the two values chosen
here for illustration in Figure 2 ( psw = 10 and � = 12)
implemented together produce a curve almost identical to
the baseline curve.
[23] The curve labeled q = p/2 typifies more usual IMF

conditions and so should perhaps be labeled ‘‘baseline.’’ To

make this curve we have used F(q) = sin2(q/2), which is the
simplest of proposed IMF clock angle functions [Kan and
Lee, 1979]. It illustrates the expected decreases of �pc when
the IMF clock angle swings northward from the chosen
baseline q = p. Relative to the baseline curve, �pc is less at
all values of Esw, but it approaches the same saturation
value, just more slowly. Interestingly, the change from q = p
to q = p/2 has a smaller effect on reducing �pc than has the
ionospheric feedback effect as quantified by the difference
between �pc and �m.

5. Comparison With ISM Runs

[24] We examine next how well ISM outputs as presented
in Table 1 support or otherwise the Hill model. Figure 4
gives a plot of the computed current-voltage relation

Figure 2. Variation of �pc with Esw for different
departures of boundary parameters from baseline values,
as indicated. The baseline values are psw = 1 nPa, � = 6 S,
q = p, and D = 1. Variable �m is the magnetopause
reconnection potential.

Figure 3. Comparison of saturation as given by Hill
model and as revealed in data from a magnetic storm as
analyzed by Russell et al. [2000].

Figure 4. The current-voltage relation generated by the
Integrated Space Weather Prediction Model (ISM) code and
a linear fit to it.
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(Table 1). The relation is very closely linear, as found also
for the simulations that Fedder and Lyon [1987] examined.
This behavior is characteristic of the I–V curve of a
generator with internal resistance driving an external resist-
ance as predicted by the Hill model. The linear fit to the
curve is

�pc kVð Þ ¼ 103� 21:9 I1 MAð Þ; ð20Þ

which corresponds to an ‘‘internal resistance’’ of 0.022 �.
This result is very similar to (17) above that was obtained
for the Hill model. It is true that (17) was ‘‘tuned’’ with this
ultimate comparison in mind, but the tuning was fine not
coarse. This current-voltage relation is independent of
conductance product x�, which is the parameter that is
eliminated between the ionospheric Ohm’s law and the
expression for IS to arrive at (17) from the Hill equation (1).
Thus it is free from uncertainty due to variability of the
value of x.
[25] Figure 5 gives another way to compare the Hill

model with results of ISM runs. The curves for �pc and I1
are obtained from (13) and (2), respectively, with (18) used
to evaluate x. Other parameters are ‘‘baseline’’ (Esw =
1.75 mV m�1, psw = 1 nPa, D = 1, and q = p). The points
are ISM values listed in Table 1. Again, the agreement is
quite good. Evidently, the ISM code simulates the physics
of the Hill model over the range of parameters compared.

6. SW-M-I Coupling as a Function of
Dipole Strength

[26] We live at a time when the strength of the geo-
magnetic dipole is decreasing rapidly on a geological time-
scale. By setting D = 0.5 in (13) and (2) the Hill model
allows us to estimate the strength of SW-M-I coupling under
conditions toward which the Earth might be heading and
which typify the average dipole strength over the last Ice
Age [Merrill et al., 1998, p. 129]. Archeomagnetic data, on
the other hand, indicate that the dipole has been stronger
than at present for more than 4000 years. It passed through
a broad maximum in strength that crested a little less
than 3000 years ago when it approached 1.5 times the
present value [McElhinny and Senanyake, 1982]. Setting
D = 1.5 therefore allows us to estimate the strength of SW-
M-I coupling at times corresponding to the mythopoetic and
classical ages of Greece, Egypt, and Mesopotamia. To make
the comparison interesting, we explore dipole strength
dependence of the model under storm time conditions:
Esw = 50 mV m�1, � = 12 S, psw = 16.7 nPa, and q = p.
These parameters represent conditions during the so-called
Bastille-Day storm of 2000.
[27] Figure 6 shows how, according to (3), (13), and (18)

with x set to a constant 3.5, �pc and I1 vary as a function of
dipole strength under Bastille Day conditions. Perhaps
unsurprisingly, current and potential increase monotonically
with D. What is perhaps surprising, however, is the big
range of variation in �pc. It is 103, 243, and 391 kV for
D = 0.5, 1.0, and 1.5, respectively. Current varies less: 8.7,
10.2, and 10.9 MA, in the same order. The power into the
ionosphere is approximately the product of these two
quantities: 0.9, 2.5, and 4.3 TW, respectively. As inferred
on the basis of input power to the ionosphere (other things
being equal), storms might have been considerably more
active between 2000 and 3000 years ago than now. Earlier
than 15,000 years ago, storms might have been relative dull
affairs compared to the present, and they might become so
again in the (geologically) near future.
[28] We have run ISM under Bastille Day conditions for

D = 0.5, 1, and 1.5. The results compared with the Hill
model are given in Table 2. The Hill values in this case
are based on the values of x given in Table 2 (instead of
the average value 3.5) for closer comparison. The ISM
values show the same strong dependence of �pc on D as
the Hill model values and the same relatively flat depend-
ence of I1 on D, although direct comparison with Figure 6
is prevented by �o being different for each run. The two
sets of numbers generally agree within 10–20%. The

Figure 5. (a) A comparison of �pc versus � as determined
with the Hill model and with the ISM. (b) A comparison of
I1 versus � as determined with the Hill model and with the
ISM.

Figure 6. Variation of �pc and I1 with dipole strength for
storm (Bastille Day) conditions.

Table 2. Comparison Between Values of Transpolar Potentials

and Region 1 Currents Obtained by ISM and the Hill Model for

Three Different Dipole Strengthsa

D �o x �pc (ISM) �pc (Hill) I1 (ISM) I1 (Hill)

0.5 12 2.9 135 123 9.5 8.6
1.0 12 4.0 243 216 11.7 10.4
1.5 12 3.6 455 382 13.2 11.0

aThe ionospheric conductance varies between runs as shown (scaled by
equation (14) to equivalent conductances for D = 1). Conductances are
in siemens, potentials are in kilovolts, and currents are in megamperes.
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differences between the two sets of potentials for a fixed D
are much less than the change in the potentials between
successive values of D. ISM potentials are bigger than Hill
model potentials, which might reflect an inaccuracy in
Chapman-Ferraro (C–F) scaling for size ( p�1/6D1/3) when
(as for Bastille Day conditions) the IMF is strong and
southward. Then the magnetosphere is wider than C–F
scaling predicts, which would increase the potential. In
any case the agreement between the numbers, which
compares a relatively simple model with a full-up global
MHD simulation in a parameter regime never before
explored, is impressive.
[29] Looking at the result from the opposite direction, we

may infer that since the ISM results obey the predictions of
the Hill model to a good-to-excellent approximation, MHD
simulations, as represented by ISM, must exhibit the defin-
ing feature of the Hill model, that is, saturation of the
transpolar potential. We can demonstrate this property
directly by comparing the baseline case (unsaturated)
against the Bastille Day case (saturated) with respect to
the fraction of solar wind potential �sw that is impressed
across the polar cap as �pc. For this we take �sw to be given
by the following expression:

�sw ¼ Esw Lr0 RE p
�1=6 D1=3: ð21Þ

Then the baseline ratio (from Table 1) is �pc/�sw = 70.5/368
= 0.19, whereas the Bastille Day ratio (from Table 2, D = 1)
is 243/6570 = 0.037. The magnetosphere’s capture
efficiency for solar wind potential drops from 19% for
unsaturated baseline conditions to 3.7% for saturated
Bastille Day conditions. This example illustrates how
poorly a linear extrapolation of �m to high values
approximates �pc. For Bastille Day conditions and D = 1,
�m is 1800 kV versus 243 kV for �pc according to ISM. As
the comparison in Table 2 demonstrates, the Hill model
gives a value in much better agreement with MHD
simulations (in this case, 216 kV versus 243 kV).
[30] A discussion of the origin of saturation in an MHD

code is different than that given above in connection with
the Hill model with its emphasis on the feedback from
region 1 current. Raeder et al. [2002] have shown that in
an MHD code, saturation results as follows. As the solar
wind electric field becomes more geoeffective, the mag-
netopause develops ‘‘shoulders’’ poleward of the cusps
that choke the flow into the reconnection site at low
latitudes. Of course, the two modes of description are
mutually consistent (region 1 currents are ‘‘responsible’’
for the shoulders), but they emphasize different aspects of
the phenomenon.

7. Effects of Region 2 Currents

[31] The Hill model as presently formulated ignores
region 2 currents. MHD simulations of SW-M-I coupling
generally produce weak region 2 currents. (A discussion of
the reason for this property goes beyond what is appropriate
here. It has to do with particle-drift physics rather than
MHD physics dominating the inner magnetosphere where
region 2 currents arise.) In a sense, the comparison between
the Hill model and ISM results has been facilitated by the
property of MHD codes to produce weak region 2 currents.

We know enough about region 2 currents both empirically
and theoretically, however, to evaluate how they might
affect results presented here were they to be included.
Two effects in particular stand out as being potentially
significant. Region 2 currents might modify the expression
for the saturation current IS, and they will likely change
the value of x in the whole-ionosphere Ohm’s law
(equation (2)).
[32] Region 2 currents will affect the value of IS if,

compared to region 1 currents, they generate a significant
magnetic field at the site of magnetopause reconnection.
Then, since region 2 currents circulate in a sense opposite to
region 1 currents, IS would have to be increased. It is
probably the case, however, that compared to region 1
currents, region 2 currents generate a substantially weaker
magnetic field at the site of magnetopause reconnection.
This seems likely because whereas region 1 currents close
(according to MHD simulations) high over the magneto-
pause, and so are well distributed to produce a significant
field at the dayside magnetopause, region 2 currents close
low and behind the Earth as a partial ring current [e.g.,
Erickson et al., 1991]. The site of dayside magnetopause
reconnection therefore lies farther from the region 2 current
system and in its weak-field latitude zone. We can estimate
the relative contributions that the two current systems make
to the magnetic field at the stagnation point (representing
the site of magnetopause reconnection) using wire loop
models. Earlier, we used a figure eight wire loop model to
estimate the strength of the region 1 current system at the
stagnation point. At a similar level of sophistication, we can
represent the region 2 current system by a circular wire loop
lying in the equatorial plane touching the Earth and the
inner edge of the plasma sheet tangentially. Then, taking the
radius of this loop to be 5 RE, we find, for the typical case
I2 = 0.75I1 [Iijima and Potemra, 1976], that its field at the
stagnation point is 22% as strong as the field from the
region 1 current system. The impact on the present calcu-
lation, were we to pursue it, would be to increase the
effective value of a in (11) from 0.41 to 0.53.
[33] The second effect that region 2 currents will have

on the current-voltage relation is to increase the value of x
in the whole-ionosphere Ohm’s law (equation (2))
[Crooker and Siscoe, 1981]. Depending on geometry, the
increase can be big (a factor of 2–4 if the current systems
are close together so that it is easier for region 1 currents
to close through the region 2 system than through the
ionosphere) or small (less than a factor of 2 if the currents
are well separated). Evidently, the increase is not big. We
infer this from typical measured values of the transpolar
potential (60 kV) and region 1 currents (2 MA). The
current-to-voltage ratio of these typical values is 33. For
the baseline (i.e., typical) ISM run, which displays weak
region 2 currents, the ratio (from Table 1) is 21. There
does not seem to be enough room between this approx-
imately region 2-less ratio and the ratio that nature exhibits
for a factor of 2 or more increase owing to region 2
currents. In any case, whatever its value, the increase can
be readily accommodated within the Hill model by adjust-
ing x. It will have the same effect as an increase in
conductance in Figures 1 and 3, that is, to decrease the
transpolar potential, to increase the region 1 currents, and
to decrease the saturation potential.
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8. Summary:
An Assessment of the Hill Model

[34] The Hill model is perhaps the simplest model that
builds saturation automatically into an expression for the
transpolar potential. It gives a basic principle for formulat-
ing the term that leads to saturation. As formulated here, it
relates the transpolar potential to external and internal
boundary conditions (solar wind motional electric field
and ram pressure, IMF direction, ionospheric conductance
and current closure pattern, and dipole strength). For typical
non-storm conditions (‘‘baseline’’) a comparison between
transpolar potential and region 1 currents obtained with the
Hill model and with the ISM MHD simulation code shows
good agreement. The current-voltage relations obtained by
varying ionospheric conductance while holding other boun-
dary conditions fixed are nearly identical between the Hill
and MHD models when the Hill model is tuned (slightly) to
maximize the agreement. Comparisons for storm conditions
(the Bastille Day runs) and for different dipole strengths
also show good agreement. They show that the Hill model
is much better than the magnetopause reconnection voltage
for estimating the transpolar potential for high values of the
solar wind electric field (i.e., for storm conditions).
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