
HiMap: Adaptive Visualization of Large-Scale Online Social Networks
Lei Shi Nan Cao Shixia Liu Weihong Qian Li Tan

IBM China Research Laboratory
Guodong Wang
Tsinghua University

Jimeng Sun Ching-Yung Lin∗
IBM T. J. Watson Research Center

ABSTRACT

Visualizing large-scale online social network is a challenging yet
essential task. This paper presents HiMap, a system that visualizes
it by clustered graph via hierarchical grouping and summarization.
HiMap employs a novel adaptive data loading technique to accu-
rately control the visual density of each graph view, and along with
the optimized layout algorithm and the two kinds of edge bundling
methods, to effectively avoid the visual clutter commonly found in
previous social network visualization tools. HiMap also provides
an integrated suite of interactions to allow the users to easily
navigate the social map with smooth and coherent view transitions
to keep their momentum. Finally, we confirm the effectiveness of
HiMap algorithms through graph-travesal based evaluations.

Index Terms: H.5 [User Interfaces] Graphical User Interfaces, I.3
[Methodology and Techniques] Interaction Techniques

Keywords: adaptive visualization, clustered graph, social
network visualization

1 INTRODUCTION

In the past three years, we has witnessed the tremendous growth of
the online social networks. As one of the most exciting applications
of the Internet, it now connects 1.45 billion registered users, more
than ten times the year of 2005, according to the significant online
social network list in Wikipedia [33]. Now each Internet subscriber
is hosting himself in at least one social network websites in average,
and these sites account for 15 out of the Alexa top 50 websites [4]
around the world. People now connect friends and publish blogs
in Facebook and Myspace, share movie and picture in Youtube and
Flickr, and present resume and search for job in LinkedIn, shifting
nearly all traditional social activities online.

While a variety of applications have been integrated into the
online social network platform, there is still big gap in revealing
the social structure and hierarchies through their underling connec-
tions. Facebook has launched TouchGraph [2], LinkedIn and MyS-
pace also obtain similar applications via their open APIs, but all
these tools are limited to only reveal the networks around a given
user, without an overview of the entire social networks. Moreover,
they faithfully present the social connections, but avoid deep infor-
mation processing, such as clustering and summarizing. To present
the hierarchical view of the social network is critical, since it first al-
lows the online user to comprehend clearly his exact role and build
mental impression about the entire network, and secondly, provides
artifactitious yet rich material for the social network operators and
analysts to investigate the network further. In the past, quite a
lot stand-alone visualization systems have been built for viewing
the social networks, such as Vizster [14], MatrixExplorer [15] and
NodeTrix [16]. They either adopted the flat visualization that tiles

∗e-mails: {shllsh,nancao,liusx,qianwh,tltan}@cn.ibm.com,
wanggd04@gmail.com, {jimeng,chingyung}@us.ibm.com. This work
was performed when Guodong Wang was an intern student at IBM China
Research Laboratory.

all the nodes (representing the social network users) together in one
view, or they introduce customized visual metaphors, such as adja-
cency matrix, to compose the visualization. The former designs are
quite useful in showing an overview to the network, and the later
ones would be popular for the serious studies focusing more on the
details of the network.

In this paper, our motivation for the social network visualization
is significantly different from these previous works. Our system is
built upon the assumption that the entire social network may scale
to millions of nodes which could turn the overview graph into an
all-black copy paper; and the target users of the system are gener-
ally ordinary people that will be frustrated and impatient with the
advanced visualization metaphors. The goals for our visualization
system is defined below:

(i) Each graph view of the network should be adaptively visual-
ized in a readable manner that is easy to be comprehended, inde-
pendent with its scale, topology and the screen size to display.

(ii) A suite of navigation methods should be provided so that it
is capable to visualize and diagnose every detail of the network.

(iii) Smooth animations should be presented between any view
changes, so as to keep user’s momentum [25].

(iv) The visualization system should run fast enough and keep
lightweight: it could catch up with the animation speed and load
social network data incrementally and on-demand.

We have designed and implemented HiMap, the Hierarchical in-
teractive social Maps, which could adaptively visualize large-scale
online social networks while meeting our goals above. We choose
to use clustered node-link graph for HiMap, as shown in Figure 1
for the visualization of a group of IBM users with their social con-
nections extracted by smallblue [23]. It is well-known that the on-
line social network possesses highly clustered and self-similar com-
munity structure. Herein, the clustered graph, which could reveal
their built-in hierarchy information, is one of the best way to visual-
ize it, let alone it also provides semantic abstraction that makes the
readable visualization possible. We have also developed the Stable
Kamada-Kawai layout algorithm for Clustered graphs (SKK-C). It
works in a recursive manner, aiming to avoid cluster overlapping,
stabilize layout across consecutive views, while preserving the ex-
cellent graph aesthetics inherited from the original Kamada-Kawai
layout algorithm [20].

To adapt each visualization view with the changing screen size,
we have introduced a novel adaptive data loading method. It in-
cludes three steps: 1) Rank the visual items in the same hierarchy
by pre-defined importance metric; 2) Quantify the number of dis-
played visual items1 according to the current screen size; 3) Adap-
tively load the visual items by their rankings and the available vi-
sual item budget. We currently provide two ranking algorithms for
separate usage scenarios. Although they are of relatively high com-
putational complexity, the ranking results, as well as part of the item
quantification intermediate results, could be pre-computed offline,
so that our adaptive data loading method will run fast enough for
online purpose.

HiMap employs the adaptive data loading method to preserve the
readability of the graph view, but it does not trade-off this advan-
tage through the compensation of losing the reachability of network

1Visual items in this paper include the clusters, leaf-nodes and the edges
connecting them.

41

IEEE Pacific Visualization Symposium 2009
April 20 - 23, Beijing, China
978-1-4244-4404-5/09/$25.00 ©2009 IEEE

Figure 1: HiMap visualization of a group of IBM smallblue users.
Edges are bundled together geometrically.

details. Instead, it is equipped with a rich set of interactions, in-
cluding selecting, dragging, zooming, panning, and two classes of
edge bundling methods. Within them, the zooming operation is the
most unique one compared with the interaction of the other graph
genres. We have implemented three kinds of zooming operations:
the hierarchical zoom-in/zoom-out (namely drill-in/roll-up later in
the paper) that navigate through different graph hierarchies, the se-
mantic zoom-in/zoom-out that focus the view on a smaller/larger
portion of the previous graph and adaptively reload graph data, and
the traditional geometric zoom-in/zoom-out operation. To maintain
the user’s visual momentum, we have also designed customized an-
imations for each HiMap interactions upon view changes.

The contribution of this paper is three-fold:
(i) We designed, implemented and evaluated the methods of

adaptively visualizing the online social networks with clustered
graph;

(ii) We extended the classic Kamada-Kawai layout algorithm to
SKK-C algorithm that could stabilize the graphs across consecutive
views and avoid cluster overlapping;

(iii) We customized the interactions for navigating the clustered
graph visualization of online social networks and designed specific
animations to keep the user’s visual momentum during the naviga-
tion.

The rest of the paper is organized as follows. Section 2 summa-
rizes related work. Section 3 overviews the HiMap visualization
pipeline. Section 4 details its adaptive data loading method and
introduces the ranking algorithms. Section 5 proposes the SKK-C
layout algorithm, Section 6 describes the HiMap interactions and
smooth animation design. Section 7 presents various evaluation re-
sults, and finally Section 8 concludes the paper.

2 RELATED WORK

Here we summarize the related works by three categories: the social
network visualization systems, including the general topic of huge
graph visualization; the algorithms for visual filtering and summa-
rization; and the works on graph drawing, especially the layout al-
gorithms for clustered graphs.

Vizster [14] is a system for pleasant exploration of online social
networks. It provides interactions for both user-oriented naviga-
tion and interactive community detection. MatrixExplorer [15] and
Nodetrix [16] proposed the idea of combining the advantage of ad-

jacency matrix and traditional node-link visualization to present the
social network relationships. Van Ham and van Wijk introduced the
focus+context techniques to visualize small-world graphs [31].

The clustered graph visualization is first studied in Feng’s the-
sis [11], but her focus is on the aesthetic graph drawing methods,
e.g. how to avoid edge crossings. They also considered the vari-
ant in 3D visualization form [10][18]. The approach by Auber
et al. [5] is probably the most closed work to our HiMap design,
which also adopts the hierarchical graph for visualization. How-
ever, it puts more emphasis on the decomposition of social network
graphs, while our work discusses more on the subsequent graph vi-
sualization. For a detailed introduction on huge graph visualization
works, please refer to Herman’s comprehensive survey [17].

There has been considerable works on visual filtering and sum-
marizing of huge graphs. Six and Tollis discussed several ways
to visualize grouping relationships and proposed the method of in-
teractive node abstraction [30]. The works in [22][28] studied the
sampling methods to simplify the huge graph. They generally rely
on randomization methods and take the user’s visual focus into ac-
count. Edge summarization and bundling is another popular tech-
nique to reduce the visual clutter. Jia et al. proposed the idea of
filtering edges with small betweenness centrality [19], while Van
Ham and Wattenberg evaluated the approach to produce the lay-
out of a graph with minimum edge centrality spanning tree and add
other edges with arcs [32]. For edge clustering, Cui et al. have
proposed the method of using some control points to bundle the
edges [8]. OntoVis [29] includes a set of novel techniques for graph
abstraction and filtering. It leverages the ontology graph to facilitate
the analysis on social networks. Perer and Shneiderman developed
an integrated system, SocialAction [27], which introduces the at-
tribute ranking based solution to overview, filter, find outliers and
code the social network visualization. Users of SocialAction is free
to choose visualization metaphors to analysis and discover interest-
ing patterns from complex network.

The layout algorithm is a well-studied problem in graph draw-
ing community. The most popular solutions are generally en-
ergy based force-directed algorithms [20][12][9]. For clustered
graph, most current approaches apply the classic force-directed so-
lution [18][11][5], but few are based on the Kamada-Kawai layout
algorithm, which is the major approach in this paper.

3 HIMAP OVERVIEW

This section overviews the techniques involved in HiMap design,
including the visualization pipeline, the data manipulation methods
and the various visual metaphors tailored for presenting social net-
works.

3.1 Pipeline

The visualization process in HiMap follows the general pipeline
formalized in [6], as illustrated in Figure 2. It could be divided
into two separate parts: the offline data manipulation and the online
adaptive visualization. The offline data manipulation includes data
collecting, cleaning, and hierarchical clustering stages. It prepares
the graph data required for further on-line visualization of the target
social networks.

The adaptive visualization part involves the data loading, graph
layout, projection and rendering stages. Different from the flat vi-
sualization approach that shows all the leaf-nodes of the social net-
work in one view, our HiMap solution clusters them into a hierar-
chical tree and only presents the nodes within certain depth from
the root node of the current view. This strategy greatly reduces the
visual clutter commonly found in previous huge graph visualization
design. Moreover, through a novel adaptive data loading method,
the visual density of each graph view is maintained within the hu-
man perception capability. In this way, the data amount required to

42

Figure 2: HiMap visualization pipeline.

load upon each view transition is kept small by the screen’s con-
straint, so that the users could not even find lags except for the
smooth animation designed to assist his comprehension. We also
maintain a data cache that stores all the view graph data in the user’s
navigation history. When the user goes back to the previous view,
no extra overhead is paid for the second time unless their cache has
been swapped out after the timeout.

After the graph data for each view is loaded to memory, layout
algorithm is invoked to assign every node a location in the global
coordinate system. We currently use SKK-C layout algorithm, a
variant of force-directed Kamada-Kawai algorithm for the layout of
each hierarchy. It could generate high quality layout result timely
for graphs with less than a hundred nodes, quite appealing to our
case. The entire layout process works in a bottom-up manner so
that the sizes of the clusters are determined before the layout of
the graph at their hierarchy. To obtain aesthetically pleasing clus-
tered graph layout and keep visual momentum between consecutive
views, the SKK-C algorithm also integrates the hierarchy informa-
tion and the previous node coordinates to the layout computation.

The projection process maps the coordinate of each node from
the global coordinate system to the local coordinate system of the
screen for further displaying. Different from the layout process,
it works in a top-down manner from the root node of the current
view to the deepest viewable hierarchy defined by the system re-
cursively. After all the node’s locations are determined, the system
starts rendering the nodes and edges according to defined visualiza-
tion theme.

HiMap also provides a wide suite of interactions to navigate the
social network, which leverage the standard huge graph navigation
API to probably reload the graph data. They will be detailed in
Section 6.

3.2 Data Manipulation

We have visualized data sets from three major sources. One is
the IBM internal social network with 0.25 million staffs connected
through email, instant message and calendar events extracted by
smallblue [23] (Figure 1 only shows a small group of it for legal
issues). The second one is the group of 2000+ users from the same
department of a university on xiaonei.com [3], a popular online so-
cial network in China. Both the user profiles and their relation-
ships are obtained. And the last one is the public DBLP dataset [1],
which constructs a co-authorship network of more than 0.6 million
researchers in computer science.

Figure 3: HiMap visualization of an online social network within a
university department. Edges between clusters are bundled together
by hierarchy. The portrait of the selected people is shown as tooltip
and the nodes/edges induced from him are highlighted. Here the
induced clusters/edges of its parent cluster are also highlighted to
assist the comprehension of hierarchical edge bundling.

Each set of raw data is clustered with methods introduced in [26]
which could group the data into binary tree. To obtain balanced hi-
erarchical clustering structure, we invoke them recursively: all the
nodes are grouped as the binary tree until some termination con-
dition is triggered (i.e. delta Q value decreases below zero), and
the remaining groups becomes the clusters of the first hierarchy;
then all these clusters are processed separately to obtain the sub-
clusters in the next hierarchy; the algorithm works recursively until
the pre-defined maximal tree depth is reached. In fact, we have put
a lot effort to generate the balanced hierarchical tree, but the details
would be out of the scope of this paper.

The data are stored in the database in mainly two tables: the
node table and the edge table. The node table records the affiliated
attributes of the node, including the unique id, user name, etc. It
also records the hierarchy information, encompassing its parent ID
and the depth in the tree structure. To assist the online visualization,
we carry out some pre-processings on the graph data. The impor-
tance rank of nodes (or clusters) in the same hierarchy is computed
according to the ranking algorithms proposed in Section 4.1. This
rank determines the sequence to display when the screen size can
not accommodate all the nodes in the same hierarchy. Three kinds
of node centrality (degree, closeness and betweenness) in the graph
are also calculated and recorded to facilitate the node filtering. We
pre-compute the hyper-edges between any two clusters in the same
hierarchy to reduce the online computation complexity. Every two
clusters establish a hyper-edge if there is at least one leaf-edge con-
necting two nodes in the separate cluster.

3.3 Visual Metaphors
The visual items in HiMap are rendered to facilitate the human per-
ception. The clusters are drawn as circles without explicit frame,
background color for each cluster is painted from the center in a
descending lightness along the radius to indicate its boundary. The
clusters not capable to show its internal structure due to the screen
constraints are drawn as a much smaller circle without any sub-
cluster (node) in it. To maintain consistency of the entire view, we
set the maximal viewable depth to 2, and the sub-clusters inside

43

each top-hierarchy cluster are drawn as a icon indicating a group of
people, tagged with the most representative people’s name followed
by a ”+”. When the sub-cluster only represents one leaf node, it is
shown as a people icon instead. The background color of the clus-
ter is set according to its depth in the entire tree structure, rendering
darker for the deeper depth.

By default, the edges between any two leaf nodes are drawn in
the view by straight line. To reduce the visual clutter commonly
found in the densely connected graph, we also introduce two edge
bundling methods: the geometric edge bundling and the hierarchi-
cal edge bundling. The geometric bundling implements the solution
similar to [8]. It works by carefully selecting some control points
in the graph and forcing all the edges to traverse them, as shown in
Figure 1. The other method bundles all the edges between any two
upper-hierarchy cluster together and only shows the intra-edges in-
side each cluster for the lower-hierarchy sub-clusters. An example
is given in Figure 3.

HiMap also provides a way to navigate user profile. When the
leaf node in the view is moused over, its corresponding profile (in-
cluding its picture) is shown as tooltip, and all the connecting nodes
and induced edges are highlighted to facilitate user’s comprehen-
sion, as shown in Figure 3.

4 ADAPTIVE DATA LOADING

This section describes the algorithm to summarize graph to main-
tain comfortable visual density and readability subject to the chang-
ing screen size. It involves two steps (except for the final loading
step), first the nodes in each view are ranked by its customized im-
portance. We currently provide two ranking algorithms: the first
is a maximal coverage based algorithm seeking to display a mini-
mal set of representative nodes to cover a maximal set of nodes in
the same hierarchy, so that the user could find at least one friend
of his interested person in the representative set with highest prob-
ability. A generalization of this algorithm is also proposed to deal
with a broader scope of situation. The second algorithm is to rank
the nodes according to the clustered betweenness centrality, so as to
display the brokers connecting the clusters first for social network
diagnosis purpose. The ranks with the both ranking algorithms are
pre-computed and kept in the database, so that the user could switch
the view freely as his specified demand with rather low overhead.
The second step to summarize the graph is to determine the num-
ber of visual items to select in each hierarchy, for which we have
designed a recursive allocation algorithm.

4.1 Ranking Algorithms
Ranking algorithm is to determine the selection order of visual
items in case the screen size is limited. Without loss of general-
ity, we consider the ranking of the child items of a particular parent
cluster C. For the top-hierarchy items, C will be an artificial super
cluster of the entire social network graph. The set of the child items
of C is denoted as V and the set of edges (including hyper-edges)
connecting those in V is denoted as E. The child graph of C is de-
noted as G(V,E). G is considered as an undirected graph in our
case. Given a subset S of V , its coverage set S+ in V is defined as

S+ = S∪{v ∈V |∃e = (v,v∗) ∈ E,v∗ ∈ S} (1)

Intuitively, to maximize the user’s search capability in the view,
we need to follow the maximal coverage guideline given below.

Maximal Coverage Guideline: The i highest-rank child items of
C should be those that maximize the cardinality (number of mem-
bers in the set) of their coverage set.

The maximal coverage set problem is NP-hard with no known
polynomial time solution. (The classical set covering problem,
which is one of the Karp’s 21 NP-complete problems [21], is poly-
nomial time Turing-reducible to this maximal coverage set prob-

lem.) We introduce the greedy algorithm to approximate it. Here,
Ii denotes the set of child items of C with ranks no more than i.

Maximal Coverage Greedy Algorithm: The rank-i child item
of C, denoted as vi, is selected to be the one that maximizes |I+i |−
|I+i−1|.

The problem with the maximal coverage algorithm is that it does
not provide method to break the ties. To handle that, we introduce
two minor ranking guidelines followed after the first one.

Given a subset S of V , the coverage strength of item v in set
S+−S is defined to be the number of edges in E connecting v with
items in S.

Maximal Coverage Strength Guideline: The rank-i child item of
C should maximize the increase of the total coverage strength of
items in I+i − Ii.

Maximal Degree Guideline: The rank-i child item of C should
maximize its own degree.

With these two minor guidelines, we generalize the ranking al-
gorithm to a maximal weighted-degree algorithm. Denoting S as
the selected item set, for any item v in the unselected set V −S, we
decompose its degree d(v) into d(v) = ds(v)+dc(v)+dr(v), where
ds(v), dc(v) and dr(v) are the number of edges in E connecting v to
items in set S, S+−S and V −S+ respectively.

Maximal Weighted-Degree Greedy Algorithm: Given the se-
lected item set Ii−1, the rank-i child item of C is selected to be
item v in set V − Ii−1 with the largest weighted degree wd(v) =
φsds(v) + φcdc(v) + φrdr(v). Here, φs = d−1

max,φc = d−2
max,φr = 1.

dmax is the degree of the rank-1 item in V .
The maximal weighted-degree greedy algorithm follows the

maximal coverage guideline, maximal coverage strength guideline
and the maximal degree guideline in a strict priority manner.

The above ranking algorithm is positioned to improve the people
search experience of HiMap. While in another important scenario,
the users are more interested in finding the brokers that connect dif-
ferent group (cluster) of people. To meet this requirement, we pro-
vide another betweenness based ranking algorithm. Particularly, we
define a new topology metric for clustered graph, the clustered be-
tweenness centrality (CBC). Different from the graph-theory version
betweenness centrality, it only considers the shortest path between
nodes in separate clusters.

Consider the same scenario of ranking the child items of a parent
cluster C. This time, we trace upwards to the parent item of C. In
case C is already the super cluster of the entire social network, i.e.,
these child items are the top-hierarchy items, we do not implement
betweenness based ranking, but use the coverage based ranking.
Denote the parent item of C as GC, the grand-children item set of
GC as V , the set of edges connecting those in V as E and their graph
as G(V,E). For each item v in V , its parent cluster is denoted as p(v).
The clustered betweenness centrality of item v is defined by

CBC(v) = ∑
s6=v 6=t∈V,p(s)6=p(t)

σst(v)
σst

(2)

where σst is the number of shortest paths in G from s to t, and σst(v)
is the number of shortest paths in G from s to t that pass through v.
It is further normalized by dividing through by the number of pairs
of items in V with different parent clusters.

Maximal Clustered Betweenness Centrality Algorithm:
Given selected item set Ii−1, the rank-i child item of C is selected
to be item v in the unselected set V − Ii−1 with the largest CBC.

4.2 Quantifying visual items

The underlying goal to quantify the visual items in HiMap is to dis-
play readable social network graph for each possible view subject to
the current screen size. Although the readability of a graph is quite
a subjective metric, there are still two important factors that indeed

44

impacts heavily the viewer’s mark on graph readability: 1) the num-
ber and size of visual items displayed in the screen; 2) the detailed
topological manner they are displayed. While the latter factor will
be determined by the layout algorithms, which is not changed on-
line in HiMap, we mainly depend on tuning the former factor to
control the readability of each graph. In this sense, our method
could be thought as controlling the visual density of graphs.

The visual density of graph G = (V,E) shown in screen Γ with
size ω (by screen pixels) is defined by

V D(G) =
ϒV ∑v∈V Sv +ϒE ∑e∈e WeLe

ω
(3)

where Sv, We and Le are the node size of v ∈ V , edge width and
edge length of e ∈ E shown in screen Γ, ϒV and ϒE are impacting
coefficient of nodes and edges on the visual density. The graph G
is said to be visually dense-free if V D(G) ≤ V Dth where V Dth is a
user-tunable threshold defining his maximal perception capability.

Denote the social network graph under investigation as G, and
its top-hierarchy graph as G1 = (V1,E1). Graph G∗ = (V ∗,E∗) is
said to be an integrated subgraph of G = (V,E) if V ∗ ⊆V and ∀e =
(v1,v2) ∈ E,v1 ∈V ∗∧ v2 ∈V ∗→ e ∈ E∗.

Recursive Item Quantifying Algorithm: Given the social net-
work graph G, the algorithm works in three steps: 1) Find the max-
imal visually dense-free integrated subgraph G∗1 of G1 subject to
the current screen size ω . The algorithm exits here if G∗1 6= G1; 2)
Calculate the extra screen size ω after feeding the graph G1. Pro-
portionally assign ω to all the clusters v ∈ G1, according to the
number of leaf nodes inside each v; 3) Quantify the items selected
inside each v∈G1 by recursively invoking this algorithm subject to
the screen size assigned to it.

Upon the basic quantifying algorithm, we introduce several con-
trol parameters according to HiMap visualization guideline.

Maximal Visualization Depth (dmax): It defines the maximal
depth of items selected to show in each view from the current super
cluster. When the recursive quantifying algorithm runs into such
depth, it simply exits after Step 1. In HiMap, we set this value to 2.

Minimal Visualization Depth (dmin): It defines the minimal depth
of leaf items in each view from the current super cluster. Each item
with depth smaller than that should have at least one child item
selected if there is any. In HiMap, we set this value to 2.

Maximal Visualization Breadth (bmax): It defines the maximal
number of items to expand in Step 3 of the quantifying algorithm.
Showing the hierarchies of too many clusters will degrade the user’s
capability to comprehend the graph, we currently set this value to
the magic number of seven plus two [24].

Overview Depth (doverview): Complemental to the maximal visu-
alization breadth, another common demand is to give an overview
to the entire social network graph. We therefore define an overview
depth parameter that the items with depth no more than that are al-
ways selected. We currently set this depth to 1. This requirement
will override the above three constraints.

The pseudocode to describe the integrated algorithm of item
quantifying and subsequent data loading is given below.

5 CLUSTERED GRAPH LAYOUT

HiMap layout algorithm is designed based on the Kamada and
Kawai method [20], which is a force-directed algorithm that mini-
mizes the energy of a simulated physical spring systems, given in
(4). The desirable geometric distance between any two nodes is
selected to be the graph shortest path between them.

n−1

∑
i=1

n

∑
j=i+1

ωi j(‖ Xi−X j ‖ −di j)2 (4)

where Xi is the layout position of node i, di j is the desirable distance
between node i and j, and ωi j is spring strength with ωi j = d−2

i j .

The major improvements of HiMap layout algorithm upon the
above basic approach lie in two aspects: 1) it generalizes and op-
timizes the Kamada-Kawai algorithm to work recursively for the
clustered graph; 2) it introduces an adaptive stabilizing term to
maintain visual momentum between consecutive graph layouts. We
therefore name our layout algorithm as Stable Kamada-Kawai lay-
out algorithm for Clustered graph (SKK-C). Below we describe the
SKK-C algorithm in detail.

SKK-C Algorithm: Given a clustered graph G = (V,E) and de-
noting its top-hierarchy graph by G̃ = (Ṽ , Ẽ) (n = |Ṽ |), the process
to layout G includes three steps: 1) Invoke this algorithm recur-
sively to layout the child graph of any non-leaf cluster vi ∈ Ṽ ; 2)
Calculate the boundary for each such cluster vi; 3) Calculate the
layout of G̃ by minimizing the summed energy

(1−α)
n−1

∑
i=1

n

∑
j=i+1

ωi j(‖ Xi−X j ‖ −di j)2 +α
n

∑
i=1

µi ‖ Xi−λX
′
i ‖2

(5)
where Xi and X

′
i are the positions of cluster (node) vi in the current

and previous view respectively. λ > 0 is a scaling factor, di j is the
desirable distance between vi and v j , ωi j is the strength of spring
connecting vi and v j , µi is the strength connecting vi with its previ-
ous location, α ∈ [0,1] is the factor trading off the layout term and
the stabilizing term of the energy equation.

Algorithm 1 SUMMARIZENODE(R,d,ω,ρ)
/∗ R: root node, d: summarize depth, ω: window size, ρ : desired
visual density, ωmin: minimal window size for a cluster ∗/
/∗ Initialization and find the maximal dense-free graph ∗/
σ ← 0, r[i]← 0, k ← 0, ExpandNs[k]← NULL
ChildG← CHILDGRAPH(R)
ChildNs← CHILDNODES(R) // listed by rank;
SubNs← DENSEFREENODES(ChildG,ω ,ρ) // listed by rank;
if Len(SubNs) == 0&&Len(ChildNs) > 0&&d <= dmin then

SubNs[0]←ChildNs[0], Len(SubNs)← 1

/∗ Load nodes ∗/
for i = 0 to Len(SubNs)−1 do

Load SubNs[i];
if !IsLea f (SubNs[i])&&(k < bmax||d < dmin) then

ExpandNs[k]← SubNs[i]
r[k]← GETLEAFRATIO(SubNs[i])
σ ← σ + r[k], k ← k +1

if d <= doverview then
for i = Len(SubNs) to Len(ChildNs)−1 do

Load ChildNs[i]

/∗ Compute extra window size ∗/
ρ̂ ← COMPUTEVISUALDENSITY(SubNs, ω)
ω ← ω× (1− ρ̂

ρ)

/∗ Expand hierarchies inside the nodes ∗/
if d < dmax then

for i = k−1 to 0 do
if ω < ωmin&&d >= dmin then

break;
ω̂ ← ω×r[i]

σ
if ω̂ >= ωmin then

ν ← SUMMARIZENODE(ExpandNs[i],d +1, ω̂ ,ρ)
ω ← ω− ω̂ +ν

else if d < dmin then
SUMMARIZENODE(ExpandNs[i],d +1,ωmin,ρ)

σ ← σ − r[i]
return ω

45

The major difference of the layout term for the clustered graph is
on the determination of di j and ωi j . The major consideration is to
avoid the overlapping of clusters while preserving the high-quality
layout aesthetics. We set

di j = 2r×gi j +θ × ri + r j

2
, ωi j = 1 (6)

where ri is the diameter of the circular bound of cluster vi, r is the
average diameter of all the clusters in Ṽ , gi j is the graph shortest
path between vi and v j , θ is the scaling parameter.

The main idea here is to scale the desirable distance between
clusters by a factor of the average cluster radius and then append
it with the sum of the two cluster’s radius. After these operations,
the desirable distance between any two clusters still remain propor-
tional to their graph shortest path in case θ = 1. The advantage over
the typical value of di j is that the clusters will have less chance to
stay overlapped with each other after the layout. The key observa-
tion here is that we need not to maintain the equivalence of distance
unit in different hierarchies. The scaling parameter θ is also pro-
vided to reduce the cluster overlapping as it is set larger than 1. Be-
sides, ωi j is set to 1 to put more weight on the pair of clusters with
longer distance, compared with the previous value of ωi j = d−2

i j .
This approach also helps to prevent the cluster overlapping.

The main idea of the stabilizing term [7] of Equation (5) is to add
additional springs with zero initial length to drag each node towards
its old location if it is present in the previous view. In our implemen-
tation, we integrate this term into the CG Solver [13], which is one
of the effective method to compute the energy minimization point
for Kamada-Kawai layout algorithm. It works in an iterative man-
ner, and in each iteration, it computes a new location for each node
in the layout set from the location of last iteration. When the termi-
nation condition is met such that there is not a single node moving
significantly enough from the last position, the iteration will stop
and all the node locations are finalized.

6 INTERACTION AND ANIMATION

HiMap is equipped with a variety of interactions to allow the user to
navigate the social network, from a top view to every details. Here
we will highlight the two specific zooming operations designed for
clustered graph, and the animations customized to keep user’s vi-
sual momentum. At last, we will briefly introduce our interactive
user interface.

6.1 Zooming Operations
Semantic Zoom-in/Zoom-out: Different from the normal geomet-
ric zooming operation, the semantic zooming will bring new visual
items to the view upon magnifying and retract some old visual items
with low importance ranking upon minifying. This method is built
upon our adaptive visualization technique. For a previous screen Γ
with the view of the child graph of super cluster C, by the adaptive
visualization method given in Section 4, we will select to show the
child and grand-child items of C subject to the current screen size.
Upon semantic zoom-in, a virtual zoom-in window Γ′

is chosen
according to the current cursor position and the zoom granularity,
as shown in Figure 4(a). The zoom granularity is set to 60% by
default and can be changed by users. After the zoom-in, only the
child items of C in Γ′

is selected, and the items inside them are
picked up again by the adaptive loading algorithm, so that more
details could be visualized. Figure 4(c) shows an example for the
semantic zooming.

Hierarchical Drill-in/Roll-up: Like the semantic zooming, the
hierarchical drill-in also reveals new contents and requires data
reloading after the operation. The major difference is that the se-
mantic zooming will retain in the previous hierarchy while the drill-
in/roll-up allow the users to navigate through different hierarchies.
An example is given in Figure 4(d).

6.2 Animations
HiMap present animations during the operation generating view
changes. The major objectives for the animation are: 1) Keep the
user’s mental map on the social network graph; 2) Improve the
user’s capability to learn new contents.

For the first objective, we have designed the SKK-C layout algo-
rithm to stabilize the consecutive views. And for the second objec-
tive, we customize the animations of different operations to stages
of motions so that the user could focus on different types of changes
at each stage. The detailed animations are described below (reverse
animation is omitted), and the series of charts illustrating the typical
drill-in animation are given in Figure 5 as an example.

Semantic Zoom-in: Stage I: The top-hierarchy clusters remain-
ing in the new view will smoothly move to their new locations, with
their shapes morphing to the new shape, while the top-hierarchy
clusters absent in the new view will progressively move outside the
screen as if the entire view expands to squeeze them out. Stage II:
The new child items of the top-hierarchy clusters shown only after
the zoom-in operation grow from the center of its parent cluster,
like the blooming.

Hierarchical Drill-in: Stage I: The child items of the drilled-in
cluster will smoothly move to their new locations, with their shapes
morphing to the new shape. Note that by our summarization and
ranking methods, all these child items will be visualized in the new
view to preserve user’s momentum. Stage II: The child items of the
drilled-in cluster shown only after the drill-in operation fade in to
the new view. Stage III:The child items of the top-hierarchy clusters
of the new view grow from the center of its parent cluster.

6.3 Control Interface
Figure 6 visualizes the DBLP dataset, indicating the computer sci-
ence academic community with more than 0.6 million researchers.
At the right of the main panel, we create a column of control inter-
face that allows the users to adjust and tune the initial view of the so-
cial network. Users could choose summarization methods to show
different types of role players in the network, and search with re-
searcher names to go directly to the right community (cluster) they
are interested. People icon configurations allow the user to switch
between virtual icon and real picture and also specify the icon size
to allow more people in one view. The parameters introduced in
Section 4.2, such as graph visual density, maximal/minimal visu-
alization depth, maximal visualization breadth (Max Cluster Num-
ber) and overview depth, are also tunable through the user interface.

7 EVALUATION

This section evaluates the performance of the adaptive data loading
techniques and SKK-C layout algorithm in HiMap.

7.1 Setup
All the experiments here are carried out with our demo implemen-
tations using the first data set describing the smallblue network. In
each experiment slot, we configure the demo to automatically nav-
igate the graph view inside every cluster within a maximum depth
of 2 from the root super cluster, adding up to 117 different views.
The navigation follows the standard preorder tree traversal so that
stable layout algorithm could take effect by knowing the previous
higher-hierarchy layout. By default, the maximal and minimal vi-
sualization depth are set to 2, the maximal visualization breadth is
set to a larger number of 20 to enable more complicated situations.

7.2 Graph Summarization
In this part, we compare the two types of ranking-based adaptive
graph summarization algorithms with the metric-based filtering al-
gorithms. By the ranking-based algorithms, the number of visual-
ized items will be selected to according to the desired visual den-
sity. While by the filtering algorithms, it is only determined by

46

(a) (b) (c) (d)
Figure 4: Zooming operation in HiMap: (a) Initial view, the blue frame shows the zoom-in window Γ′ ; (b) After geometric zoom-in, the items are
only signified; (c) After semantic zoom-in, more items are visualized adaptively; (d) After drilling in the cluster in the left of sub-figure (a).

(a) Stage I (b) Stage II (c) Stage III
Figure 5: Drill-in animation in HiMap, the circular blue frame in the leftmost figure indicates the focused cluster.

the graph characteristics by providing a lower bound for a pre-
defined metric. All the items with metric higher than that is vi-
sualized. We have evaluated three of this kind of algorithms using
degree/closeness/betweenness centrality as the metric respectively.
(The metric values are linearly normalized to [0,1].)

We plot in Figure 7 the average of actual visual density (as de-
fined in Eq. (3)) of some selected views during the graph naviga-
tion. By ranking based algorithms, we set the desired visual density
to 0 ∼ 0.2, as in the bottom X axes. By metric based algorithms,
we set the metric lower bound to 1 ∼ 0, as in the top X axes. To
better reveal the performance of ranking based algorithms, we only
select the views that are not fully summarized at the desired visual
density of 0.2. Note that, this does not affect the performance of
metric based algorithms. As shown by Figure 7, the ranking algo-
rithms achieve almost their desired visual density, with a maximal
error below 10%. It shows their capability in accurately controlling
the graph visual density. On the other hand, the metric based algo-
rithms will find it hard to operate the graph density smoothly and
linearly via tuning the metric lower bound.

Figure 8 illustrates the average of coverage percentage of the se-
lected items’ coverage set over all the items within any given view.
As shown by the figure, the average coverage percentage reaches
60% if only 20% items in each view are selected using the max-
imal coverage ranking algorithm. Meanwhile, the centrality met-
ric based algorithms could only reach 48%, 47% and 32% cover-
age percentage respectively. The ranking algorithm shows a con-
sistent gain of more than 20% before the selected item percentage
increases above 30%.

7.3 Layout Algorithm
We record the numbers of overlapped cluster pairs in all the views
during the navigation and translate them into the probability of clus-
ter overlaps given the number of visualized clusters in each view.
As shown in Figure 9, with the original Kamada-Kawai layout al-
gorithm, the average cluster overlap probability reaches 40% as the
number of cluster per graph view increases above 15.

Given in Figure 9, it is shown that, after adding the cluster radius
into the ideal distance between each cluster pair (di j = gi j +

ri+r j
2),

the overlap probability decreases dramatically to about 10% even
with more than 15 clusters in each view. Introducing the distance
scaling (di j = 2r× gi j + ri+r j

2), the overlap probability is further
halved. Finally after we set di j = 2r×gi j +θ × ri+r j

2 and tune θ to
be 1 + [n−10

10]+, the SKK-C algorithm will limit the overlap prob-
ability below 1.6% for all the evaluated situations, without greatly
affecting the layout aesthetics.

8 CONCLUSION

This paper presents HiMap, a visualization system that displays the
hierarchical structure and relationships of social networks. HiMap
puts the first emphasis on eliminating the visual clutter naturally
raised by the huge user base of state-of-the-art commercial online
social networks. The visual density based adaptive data loading
technique and the optimized layout algorithm for clustered graph
are both designed, implemented and evaluated for this purpose. Our
evaluation results demonstrate that HiMap is capable of rigidly con-
trolling the visual density of graph view, while limiting the cluster
overlap probability to rather low level.

ACKNOWLEDGEMENTS

We thank Xiaoxiao Lian, Xiaohua Sun, Weijia Cai and Hong Ren
for their valuable advices on the visual interface design and the
anonymous reviewers of PacificVis’09 for their insight comments.

REFERENCES

[1] The dblp computer science bibliography, http://www.informatik.uni-
trier.de/ ley/db/.

[2] Touchgraph, http://www.touchgraph.com.
[3] xiaonei.com, http://www.xiaonei.com.
[4] Alexa Internet Inc. Alexa Top 500 sites, http://www.alexa.com,

September 2008.
[5] D. Auber, Y. Chiricota, F. Jourdan, and G. Melancon. “Multiscale

Visualization of Small World Networks”. In IEEE Symposium on In-
formation Visualization, 2003.

[6] G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 1998.

47

Figure 6: HiMap visualization of DBLP dataset.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.05 0.1 0.15 0.2
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35
 0 0.2 0.4 0.6 0.8 1

A
c
tu

a
l
A

v
e

ra
g

e
 V

is
u

a
l
D

e
n
s
it
y

A
c
tu

a
l
A

v
e

ra
g

e
 V

is
u

a
l
D

e
n
s
it
y

Desired Visual Density for Ranking Algorithms

Centrality Lower Bound for Metric-based Selection Algorithms

Maximal Coverage Ranking Algorithm
Maximal Clustered Betweenness Ranking Algorithm

Degree Centrality Selection Algorithm
Closeness Centrality Selection Algorithm

Betweenness Centrality Selection Algorithm

Figure 7: Average visual density of graph views during the navigation.

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

10 % 15 % 20 % 25 % 30 % 35 % 40 % 45 % 50 %

A
v
e
ra

g
e

 C
o

v
e

ra
g
e

 P
e

rc
e

n
ta

g
e

 o
f

A
ll

th
e

 V
ie

w
s

Percentage of Selected Items in Each View

Maximal Coverage Ranking Algorithm
Degree Centrality Selection Algorithm

Closeness Centrality Selection Algorithm
Betweenness Centrality Selection Algorithm

Figure 8: Coverage performance of summarization algorithms.

0.1 %

1 %

10 %

100 %

0 5 10 15 20

O
v
e

rl
a
p

p
in

g
 P

ro
b

a
b
ili

ty
 f

o
r

E
a
c
h

 C
o

u
p
le

 o
f
C

lu
s
te

rs

Number of Visualized Clusters in Each View

Original KK Layout Algorithm
Considering Cluster Radius

Scaling Ideal Distance
SKK-C Layout Algorithm

Figure 9: Cluster overlap probability with different layout algorithms.

[7] N. Cao, S. Liu, L. Tan, and M. X. Zhou. “Context-Preserving Dynamic
Graph Visualization”. In IEEE Symposium on Information Visualiza-
tion, poster paper, 2008.

[8] W. Cui, H. Zhou, H. Qu, P. C. Wong, and X. Li. “Geometry-Based
Edge Clustering for Graph Visualization”. In IEEE Symposium on
Information Visualization, 2008.

[9] P. Eades. “A heuristic for graph drawing”. In Congressus Numeran-
tium, volume 42, pages 149–160, 1984.

[10] P. Eades and Q.-W. Feng. “Multilevel Visualization of Clustered
Graphs”. In Proceedings of the International Symposium on Graph
Drawing, London, UK, 1997. Springer-Verlag.

[11] Q. Feng. Algorithms for Drawing Clustered Graphs. PhD thesis,
University of Newcastle, 1997.

[12] T. M. J. Fruchterman and E. M. Reingold. “Graph drawing by force-
directed placement”. Software, Practice & Experience, 21(11):1129–
1164, 1991.

[13] E. R. Gansner, Y. Koren, and S. North. “Graph drawing by stress
majorization”. In International Symposium on Graph Drawing, 2004.

[14] J. Heer and D. Boyd. “Vizster: Visualizing Online Social Networks”.
In IEEE Symposium on Information Visualization, 2005.

[15] N. Henry and J.-D. Fekete. “MatrixExplorer: a Dual-Representation
System to Explore Social Networks”. In IEEE Symposium on Infor-
mation Visualization, 2006.

[16] N. Henry, J.-D. Fekete, and M. J. McGuffin. “NodeTrix: a Hybrid Vi-
sualization of Social Networks”. In IEEE Symposium on Information
Visualization, 2007.

[17] I. Herman, G. Melancon, and M. S. Marshall. “Graph Visualization
and Navigation in Information Visualization: A Survey”. IEEE Trans-
actions on Visualization and Computer Graphics, 6(1):24–43, 2000.

[18] M. L. Huang and P. Eades. “A Fully Animated Interactive System
for Clustering and Navigating Huge Graphs”. In Proceedings of the
International Symposium on Graph Drawing, 1998.

[19] Y. Jia, J. Hoberock, M. Garland, and J. C. Hart. “On the Visualization
of Social and other Scale-Free Networks”. In IEEE Symposium on
Information Visualization, 2008.

[20] T. Kamada and S. Kawai. “An algorithm for drawing general undi-
rected graphs”. Inf. Process. Lett., 31(1):7–15, 1989.

[21] R. M. Karp. “Reducibility among combinatorial problems”. In R. E.
Miller and J. W. Thatcher, editors, Complexity of Computer Computa-
tions, pages 85–103. Plenum Press, 1972.

[22] J. Leskovec and C. Faloutsos. “Sampling from large graphs”. In ACM
SIGKDD, 2006.

[23] C.-Y. Lin, K. Ehrlich, V. Griffiths-Fisher, and C. Desforges. “Small-
Blue: People Mining for Expertise Search”. IEEE MultiMedia,
15(1):78–84, 2008.

[24] G. A. Miller. “The Magical Number Seven, Plus or Minus Two”. The
Psychological Review, 63(2):81–97, 1956.

[25] K. Misue, P. Eades, W. Lai, and K. Sugiyama. “Layout Adjustment
and the Mental Map”. Journal of Visual Languages & Computing,
6(2):183–210, June 1995.

[26] M. E. J. Newman. “Fast algorithm for detecting community structure
in networks”. Physical Review E, 69:066133, 2004.

[27] A. Perer and B. Shneiderman. “Balancing Systematic and Flexible
Exploration of Social Networks”. IEEE Transactions on Visualization
and Computer Graphics, 12(5):693–700, 2006.

[28] D. Rafiei and S. Curial. “Effectively Visualizing Large Networks
Through Sampling”. IEEE Visualization Conference, 2005.

[29] Z. Shen, K.-L. Ma, and T. Eliassi-Rad. “Visual Analysis of Large
Heterogeneous Social Networks by Semantic and Structural Abstrac-
tion”. IEEE Transactions on Visualization and Computer Graphics,
12(6):1427–1439, 2006.

[30] J. M. Six and I. G. Tollis. “Effective Graph Visualization Via Node
Grouping”. In IEEE Symposium on Information Visualization, 2001.

[31] F. van Ham and J. J. van Wijk. “Interactive Visualization of Small
World Graphs”. In IEEE Symposium on Information Visualization,
pages 199–206, 2004.

[32] F. van Ham and M. Wattenberg. “Centrality Based Visualization of
Small World Graphs”. Eurographics, 27(3), 2008.

[33] Wikipedia. List of Social Networking Websites,
http://en.wikipedia.org/wiki/List of social networking websites.

48

