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Abstract

The quantum dynamical behavior of the Van der Waals molecule (N5); and that of the ordered « and
v phases of solid Nj have recently been calculated, starting from the same ab initio N,—N, potential.
By interpreting the results of these calculations we try to improve our understanding of the libration/internal
rotation motions of the N, monomers and the orientational order-disorder (a—f3) phase transition. Some
new results are presented and further (mean-field and libron-model) calculations are proposed which assess
explicitly the intermolecular pair correlation effects caused by the anisotropic interaction potential.

1. Introduction

Van der Waals molecules, which are weakly bound complexes of normal molecules,
can be considered as small segments of molecular crystals. The study of these com-
plexes in conjunction with molecular crystals is very illustrative and useful. In the first
place, their dynamical behaviour, although it lacks the collective aspects, shows many
of the typical characteristics found in molecular solids. Here, we concentrate on or-
ientational order—disorder transitions, 1.e., the transitions from bending vibrations
(librations) to more or less free internal rotations. Classical Monte Carlo calculations
[1] on (CO»), clusters with » = 2 to 13 have shown that complexes as small as dimers
(n = 2) exhibit remarkably sharp order-disorder phase transitions, as a function of
temperature. Since Van der Waals molecules are considerably simpler than molecular
crystals, their dynamical properties can be calculated in much more detail by both
classical and quantum mechanical methods.

Second, Van der Waals molecules provide the most sensitive tests of intermolecular
potentials, especially in the physically important region around the Van der Waals
minimum [2]. Although it has also been advocated [3] that molecular crystals and,
in particular, their phonon dispersion relations, are very useful in this respect, we note
that the route from the intermolecular potential to the phonon frequencies that can
be compared with experiment, involves approximations, such as the assumption of
pairwise additivity for the potential and the (usually harmonic) model for the lattice
dynamics. For simple Van der Waals molecules, on the other hand, accurate dynamieal
calculations can be performed which lead directly from a given potential to the ro-
vibrational spectrum.

As an example we study nitrogen. Apart from extensive work [3,4] on solid N>,
which has two ordered (« and y) phases and one orientationally disordered (/3) phase,
there 1s also much interest in gas and liquid properties [5-7]. An important part of
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this work is concerned with extracting empirical No,—N> interaction potentials [3]
from the experimental data. Recently, a detailed N,—N> potential has been obtained
from ab initio calculations [8,9]. This potential has been successfully used in lattice
dynamics studies [10] on a and v N; and, at the same time, 1n accurate dynamical
calculations [11] on the Van der Waals molecule (N»),. In the present paper, we
discuss some new results and ways to extract further useful information.

2. Lattice Dynamics of Solid N,

Using the ab initio N»—N> potential in its site-site representation [9] with the force
centres shifted on the N—N axes, away from the nuclei, Luty et al. [10] have per-
formed lattice dynamics calculations on the ordered cubic («) and tetragonal (7y) N>
crystal phases. They applied not only the usual harmonic method [12], but also the
self-consistent phonon (SCP) method [12] which corrects for the anharmonicity of
the potential by using effective force constants obtained by (quantum mechanical and
thermal) averaging over the molecular displacements in the crystal. In the general-
1zation of the SCP method from atomic (rare gas) crystals [13] to molecular solids
[14] it had to be assumed, however, that the librations have small amplitudes.

The results [10] are generally in good agreement with experiment: lattice constants,
cohesion energy, the phonon frequencies and their pressure or volume dependence
(Griineisen parameters). This is the more satisfactory since no adjustments of the ab
initio potential to the crystal data have been made (in contrast with the usual semi-
empirical treatments [3]). For the translational phonon modes the agreement 1s almost
perfect: the frequencies are only 4% higher than the neutron scattering results (11%
higher if one neglects anharmonicity). For the librational modes the agreement 1s
somewhat less good: the frequencies are overestimated by 28% on the average (34%
in the harmonic model). Also these modes do not soften sufficiently with increasing
temperature. This 1s not surprising, however, as the librational displacements are
actually not small even at low temperature (estimated [3] root-mean-square dis-
placement 17 deg at 7' = 20 K). When the temperature rises to the a—[3 phase tran-
sition point, the N, rotations in the crystal become more and more free. So, one may
expect that the generalized SCP method [14] breaks down for the librational
modes.

A model which 1s better, 1n principle, at describing the librations in solid N, and
their change into hindered rotations which occurs at the «—3 phase transition is the
so-called libron model [15-17]. In this model it 1s assumed that the angular vibrations
of the molecules can be expanded in a basis of free-rotor functions. In case of linear
molecules such as N, these are simply spherical harmonics Y ,, (6,¢), where ¢ and
¢ are the angular displacement coordinates which can adopt any value in the range
0=0<m O0=¢ <27 The lattice dynamics treatment starts with a mean-field
calculation [17]; the wave functions emerging are then used in the “libron” model
which accounts for the pair correlation effects caused by the anisotropic intermolecular
potential, and, at the same time, introduces dispersion (dependence on the wave vector
q) into the libron frequencies.

For solid N, several of such libron model calculations have been made [15-17],
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always using approximate empirical potentials. The most advanced one is that by
Dunmore [16] who has summed the intermolecular potential over six shells (86
neighboring molecules) in the a-N, lattice, but has still neglected terms in the crystal
potential which have nonazimuthal symmetry around the equilibrium N> axes (i.€.,
the ¢ dependence of the mean-field potential). In all these libron treatments it has
been assumed that the translational vibrations of the molecules in the lattice are
completely decoupled from the angular motions. Actually, in crystals which have
inversion symmetry, such as N, the translations and the librations do separate at some
points 1n the Brillouin zone (for the optical modes at q = 0, for instance), but the
translational displacements still influence the effective librational potential. This effect
1s neglected by keeping the molecules with their centres fixed at the lattice points.

Here, we present some new results obtained by utilizing the same ab initio N,—N>»
potential [9] that was used previously in the harmonic and SCP lattice dynamics cal-
culations [10]. Instead of the site-site representation, we have now employed the
spherical expansion of this potential, however, which is more convenient in this case
and which has also been used for the (N,), dimer [11] (see Sec. 3). The spherically
expanded potential reads for a pair of molecules 4 and B:

Vg = (4m)3/2 ; ZL: : VL 4 1gL(R)AL , 15.0(0.4,04,05,05,0,P), (1)
ALB,

where the angular functions are defined as

(L,,, 5L
M, Mg M

with R being the distance between the centres of 4 and B, 04,04 and 0,05 de-
scribing the orientations of the molecular axes and © and ® the orientation of the vector
R, relative to some lattice coordinate system. The expression in brackets is a 3-j symbol
|18]. The ab initio calculations [8,9] have demonstrated that anisotropic terms in
potential (1) upto L4 = Lg = 4 inclusive are important; actually some higher terms
were included as well [9].

Summing this potential over six shells (86 neighbouring molecules), just as Dunmore
[16], but making no further approximations, mean-field calculations have been carried
out [19] for @-N> in the cubic Pa3 structure [4]. The spherical harmonic basis was
extended to j = 10 (66 functions) for ortho-N, and to j = 9 (55 functions) for para-N».
The results listed in Table I demonstrate that this is sufficient to converge the ground
state cohesion energy to within 0.5 cm~! and the first excitation energy to within 1
cm™!; the mean-field iterations were always convergent in three cycles.

The first excitation frequency 50 cm~! is very close to the value of 51 cm~! calcu-
lated by Dunmore [16], which is surprising as our anisotropic ab initio N,—N> po-
tential [9] is rather different from the empirical potential used by Dunmore [16], see
Table II. The difference between ortho-N, and para-N, crystals is small. Actually,
1t would be interesting if this difference could be observed since it presents a measure
for the degree of orientational rigidity of the N, crystal phases (7, «, and 3). In the
completely rigid case, the ortho- and para-N, results would be identical [16]; if the
N> molecules are free internal rotors, such as H, molecules in the solid, the excitation

Alp s = s
MaMp M

) Y1 oma(04,00)Y 1, 0508,08)Y(0,P), (2)
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TABLE I. Mean-field results for the a-N> crystal (lattice constant a = 5.644 A) using
the ab initio N,—N3 potential [9]. Total librational energy £ and first excitation
frequency w as functions of the spherical harmonic basis size for ortho- and para-IN,.

ortho para
] (size) E (kJ/mol)* w(cm—I) ] (size) E (kJ/mol)* w(cm-1)
max 0 max 0
2 (6) -6.253 128.7 3(10) =61c9>] 100.5
4(15) -6.711 79.0 5(21) -6.791 65.3
6(28) -6.829 5iliei3 7(36) -6.844 53.0
8(45) -6.849 2 9(55) -6.850 50.4
10(66) -6.851 50.2

* Includes the librational zero-point energy (well depth £, = 7.436 kJ/mol), but not the
zero-point energy corresponding with the translational lattice vibrations. Experimental

cohesion energy 6.92 kJ/mol.

frequencies would differ by 8 cm™!. Also in the (N>), dimer there 1s a noticeable
difference between ortho-ortho, ortho-para, and para-para complexes [11].
[t is striking that the mean-field spectrum is very similar to that of a two-dimensional

harmonic oscillator, just as Dunmore [16] has found with his empirical potential. This
justifies the application of his libron model, in order to take the pair correlation effects
into account. It appeared [16] that, for q = 0, this gives a significant lowering of the
mean-field librational frequencies bringing them into good agreement with the ex-
perimental values. We intend to proceed with this model and, also, we will attempt
to include the effects of the translational lattice vibrations by combining the libron
model with the self-consistent phonon model or by a renormalization procedure.

3. Dynamics of the Van der Waals Molecule (N;),

The questions which are pertinent to the understanding of the librational motions
in solid N> and the a—(3 phase transition, what is the importance of pair correlation
effects and how well does the libron model account for these effects, can be answered
explicitly for the (N,)> dimer. The dynamics of this dimer 1s also interesting by itself,
however, since the (N,), complex can be expected to lie between a normal molecule
with a near-rigid nuclear framework and a system in which the nuclear positions are
completely undefined. We are familiar with the latter situation for electrons in atoms
and molecules; for the nuclei it i1s rather unusual, but it occurs in noble gas-H, [2]
and (H»)> [20,21] complexes where the H, molecules are practically free quantum
mechanical internal rotors.

The ab initio potential [9] favors a crossed equilibrium structure for the (N,), dimer
with D, = 122 cm~! and R, = 3.5 A. There are different barriers to internal rotations:
25 cm~! through the parallel structure with R,,, = 3.6 A and 40 cm~! through the
T-shaped structure with R, = 4.2 A. Using the spherical expansion (1) of this po-
tential (in a body-fixed frame with © = ® =0, ¢ = ¢4 — ¢p), accurate dynamical
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TABLE Il. Spherical expansion (1) of the ab initio N,—N; potential [9], compared
with the empirical potential of Raich and Mills used by Dunmore [16]. The expansion
coefficients vy, 1, 1 (R) are tabulated (in cm™') for the nearest (R = 3.991 A) and next-
nearest (R = 5.644 A) neighbor distances in the a-N; lattice.

R = 3.991 & R = 5.644 &
L, Lp L | empirical [16] | ab initio [9] | empirical [16] | ab initio [9]
0 0 ()' =79 35 [ =593 415 -17.834 =131 8311
2 0} 5 7/ 15.905 32359 = 1351 =1 Ol
2 2500 3.104 5.564 - 0.053 =-05015
2 2182 =216r:144 - 9.146 — +(0)7)1) ¢ - 0.002
2 20 4 25.628 39.239 2.833 2.555
4 05 <4 DS 8.635 0.035 0.007
4 2502 0.820 0.629 0.001
4 2 4 =51tei160 =in1ie4677 - 0.002 - 0.001
4 28016 2.816 10.282 0.010 0.356
4 4ih+0 0.087 0.010
4 45 72 =054 - 0.012
4 4 4 0.165 0.052
4 GeaN6 =10,.307 - 0.263
4 4 8 0.875 4.052 0.001 0.089
6 0O 6 0.816 0.779 0.002 0.001
6 2" 4 0.132 0.022 0.001
6 26 - 0.200 - 0.114
6 2948 0.533 1.075 0.013

calculations have just been finished [11]. These start from the exact (rigid monomer)

ro-vibrational Hamiltonian including centrifugal distortions and Coriolis interactions
[22]

om e il

JB
2R OR? 2uR?  2u4r’ 2 QUprs t Vas(R0.4.05,¢), Q)
where j4 and jg are the monomer angular momenta associated with the body fixed
angles (0 4,04) and (0p,¢5), respectively, j = j4 + Jg; J describes the overall rotation;
K, g, and upg are the dimer and monomer reduced masses; and 4 and rz are the
(fixed) N, monomer bond lengths. An appropriate and convenient basis to calculate
the bound states of Hamiltonian (3) is the following:

Xn (R) yt;Ak,jB(eA 9¢A a033¢B)D‘/{4,k(a’690)a (4)
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with D, . being overall rotation functions. The generalized spherical harmonics are
defined as

L}/ffjg N Z YJ.A.IH,.;(HA agbA)Yj[).INB(HBvd)B)UA /1 4 ;jBa'nB IJJ()’ (5)

mA4MRB

and the radial (Morse oscillator) functions (in terms of normalized associated Laguerre
functions L) as [23]

Xn(R): =18V 2y et VicesVEL();
with
y=A exp[B(R - R.)]. (6)

Using this basis the secular problem over the full Hamiltonian (3) has been solved,
after symmetry adaptation to the permutation-inversion group S; ® C; [11]. The
parameters (3 and A4 (and hence «, which is the integer closest to 4) are related to those
of the Morse potential for diatomic molecules [24]

A=4D,/w,, B = w.(u/2D,)"?.

In the (N»)> dynamical calculation [11], the Morse parameters R,, D,, and w, were
variationally optimized.

Basis (4) consists of free rotor functions [spherical harmonics, Eq. (5), which are
coupled for computational convenience] in the internal angular coordinates. However,
in the ground state, the A state for the ortho-N>-ortho-N, complex and the B; state
for the para-para complex, the monomers are rather well localized around the equi-
librium configuration, see Figure 1. Actually, there are two equivalent equilibrium
configurations with ¢ = 90° and ¢ = 270° (f ; = 63 = 90°) and the 4] and B7 states
correspond with the even and odd tunneling combinations. This degree of localization
can be reached when the basis 1s converged, which it was found [11] to be with j 4./p
< 8 for ortho-N> and j 4,/ = 9 for para-N, (with five radial basis functions, n =
4); there 1s strong admixture between the different (even or odd) j 4./ values.

The results were compared with harmonic oscillator model results [11], in order
to analyze the character of the vibrations in terms of normal modes. In the ground
state the near-rigid harmonic oscillator limit 1s not too unrealistic (cf. the zero-point
energy in Table I11), although the librational amplitudes are not small (see Fig. 1).
The first angularly excited states are still localised (cf. the BT state in Fig. 1, which
1s mainly the ¢ fundamental) and lying just below the tops of the effective internal
rotation barriers, but they are strongly anharmonic already (cf. the fundamental
frequencies in Table I11) and penetrate into the classically forbidden regions around
¢ = 0° and ¢ = 180°. In the higher excited states, such as the first excited 47 state
which corresponds with the ¢ overtone (Fig. 1), the monomers rotate almost freely.
This free rotation does not occur in all directions simultaneously, however. For instance,
in the first excited A7 state only the torsional rotation (¢) about the binding axis R
i1s free, while the bending (6 4,0 5) motions are still librations, localised around 0 4 =
g = 90°. So, it 1s concluded [11] that the (N,), dimer displays both the features of
a normal structured molecule, although rather floppy, in the ground state, and those
of a system with nearly free internal rotations, at higher vibrational energies. In the
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180 ERRr Ground slate A}

----------- owest BT state

- ——————— -
- - - -

180

3.0 4.0 &UR/R

Figure 1. Cuts through the vibrational (J = 0) wave functions in (N>), for the lowest
four states, with 6 4 and 6 fixed at 90°. The contours enclose regions with 8%, 16%,

32%, and 64% of the maximum amplitude. Solid curves correspond with positive values
of the wavefunction and dashed curves with negative values.

intermediate range the internal rotations are free in specific directions. As a function
of temperature one should be able to observe an orientational order-disorder transition,

just as 1n the solid (but at lower temperatures, since the dimer is floppier than the solid,
and without a sharp transition point).

The secular problem with basis (4) 1s analogous to the full configuration interaction

TABLE I1I. Comparison of the fundamental vibration frequencies
in (N»)> from the harmonic oscillator model and from the full
dynamical calculation [using Hamiltonian (3), with the ab initio
potential (1), and the basis (4)] | 11].

(Normal) coordinate Symmetry Energy (cm-1)
! .
Dog S, ® C. Harmonic  Full
+
2 A, A 39.2 33.2
£ E 22.1 14.2
°a*°B : :
+
¢ B1 B1 13.9 8.1

zero—-polnt energy 48 .7 47 .1
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problem in electronic structure calculations. So the ro-vibrational states which emerge
from this calculation are fully correlated (within the given finite basis). Speaking in
terms of solid lattice dynamics, this means that all the (pair) correlations between the
monomer librations and also the coupling with the translational vibrations (the dimer
stretch) are exactly included. In analogy with electronic structure theory, one can look
at the natural orbitals which diagonalize the first order density matrix [25,26]; this
density matrix can be obtained for each ro-vibrational state from the full configuration
interaction function in terms of basis (4) by integrating over the coordinates of all
particles except one. As particles one could take the individual nuclei, but it seems
more natural in this case where the centre of mass translational motion is separated
off, the monomer stretch vibrations are decoupled and we are interested in the
monomer librational motions, the dimer stretch and the overall rotation to define the

following four “‘particles” (degrees of freedom): (0.4,04), (05,98), R, (8,a). The
“natural orbitals’ are those orbitals for which the “configuration interaction’ ex-

pansion converges the fastest [25].
In order to study the effects of the pair correlations between the librations and the

coupling with the dimer stretch vibration explicitly, we define the mean-field Ham-
1ltonian for the librations (for J = 0, where we have no Coriolis coupling with the

overall rotation)

HY" = Hs+ (Yg(0p,98) | Hap|¥s(05,98)), (7)
where the “one-particle” term and the pair term are defined as
J 1 2
H vr 5 + p ) 8
e 2 ar <2uR2>RJ'4 | %
1 o P
Hap = (Vap)r + ( 2) )4+ 1B (9)
R 4| R

and the mean-field wave functions ¥z can be expanded as

‘r,/B = Z Cﬁ;.mBYjBJnB(QB’(bB)- (10)

jB,mg

Since these functions ¥z must be the eigenvectors of the mean-field Hamiltonian "
which is analogous to Eq. (7) and contains the functions ¥ 4, the problem has to be
solved self-consistently. The expectation values over the dimer stretch coordinate R
can be evaluated if this coordinate is also included in the mean-field procedure by
defining an effective radial Hamiltonian (averaging the full Hamiltonian (3) over
the angular wave functions ¥ 4¥g). Alternatively, one can decouple the dimer stretch
motion by solving the mean-field problem, Egs. (7) to (10), for fixed distance R. Doing
this for various R values, one obtains an effective radial potential in the Born-Op-
penheimer sense, which can be used, then, to generate the radial solutions.

The latter way of decoupling the radial coordinate R from the angular problem by
freezing 1t at various values, has just been performed [27], not for the mean-field
problem but for full Hamiltonian (3). The results for R = R, = 3.46 A and R = (R)
= 3.79 A are shown in Figure 2, together with the results of the full radial and angular
solution [11] of Hamiltonian (3). The comparison is quite interesting. At R = R,,
all the angular vibration frequencies are much too high and the order of the levels is
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Figure 2. Vibrational (J/ = 0) energy levels in (N,), from the full dynamical [linear
combination of radial and angular momentum products (LC-RAMP)] calculation [11],
as compared with the angular vibrational levels calculated for fixed R (see text). The
free rotor (R = =) levels are shifted (see right-hand energy scale) with respect to the
others.

incorrect. At R = (R), the ground state average distance in the full calculation, the
levels up to about 20 cm~! above the ground state are quite well represented. These
correspond with angular excitations [11]; apparently, the barriers to internal rotations
felt by the monomers at R = (R) are similar to the effective barriers in the full cal-
culation (whereas at R = R, they are much higher). Around 25 cm~! above the
ground state, the level ordering for R = (R) begins to deviate more strongly from the
ordering in the full calculation. This is due to the interaction (Fermi resonance) be-
tween the angular overtones and the first dimer stretch excitation at 33 cm~—'. We
conclude that freezing R at (R) (which might be the experimental ground state av-
erage distance) yields reasonable values for the fundamental libration frequencies,
as well as for the tunneling frequency.

The energy levels calculated [27] for a range of (frozen) distances R form a set of
potential curves for the radial problem. For the ground state the minimum in the curve
lies at R = 3.65 A, which is substantially larger than R, = 3.46 A. (Since the curve
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is asymmetric the average distance will still be larger; cf. (R) = 3.79 A in the full
calculation.) Solving for the levels in these one-dimensional effective radial problems
is called the Born-Oppenheimer angular radial separation (BOARS) method [28].
The shift in the lowest energy levels from the full (LC-RAMP) calculation to the R
= (R) levels in Figure 2 1s due to the zero-point energy in the stretch coordinate R,
which is not included in the frozen R calculations. The results obtained for R = (R)
indicate that the BOARS method could give reasonable answers for the lowest excitation
frequencies, although the conditions on which this scheme 1s based [28] are certainly
not fulfilled for (N»)».

Next, we wish to proceed with the mean-field model, using the procedure outlined
in Egs. (7) to (10), and to test the various libron models [15-17] for describing the
effect of the pair correlations in (N>)> and looking at orientational order—disorder
transitions. The mean-field “orbitals” (10) can be useful, moreover, as a basis for the
full dynamical problem, instead of the free rotor basis (5). They might help in reducing
the size of the secular problem over the exact Hamiltonian (3) which becomes quite

formidable for the higher J states [11].

Bibliography

D. Etters, K. Flurchick, R. P. Pan, and V. Chandrasekharan, J. Chem. Phys. 75, 929 (1981).
J. Le Roy and J. S. Carley, Adv. Chem. Phys. 42, 353 (1980).

C. Raich and N. S. Gillis, J. Chem. Phys. 66, 846 (1977), and references therein.

A.

Fi

. r

S = o 1 o e R T o S T e DO G Ty

v R 5
J A J - 4 (. '

Scott, Phys. Rep. C 27, 89 (1976), and references therein.
orese, J. Chem. Phys. 75, 4747 (1981).
M. L. Klein, D. Lévesque, and J. J. Weiss, J. Chem. Phys. 74, 2566 (1981).
D. J. Evans, Mol. Phys. 33,979 (1977); 34, 103 (1977).
F. Mulder, G. van Dijk and A. van der Avoird, Mol. Phys. 39, 407 (1980).
R. M. Berns and A. van der Avoird, J. Chem. Phys. 72, 6107 (1980).
T. Luty, A. van der Avoird, and R. M. Berns, J. Chem. Phys. 73, 5305 (1980).
J. Tennyson and A. van der Avoird, J. Chem. Phys. 77, 5664 (1982).
S. Califano, V. Schettino, and N. Neto, Lattice Dynamics of Molecular Crystals, Lecture Notes
in Chemistry, Vol. 26 (Springer, Berlin, 1981).
[13] N.R. Werthamer, in Rare Gas Solids, M. L. Klein and J. A. Venables, Eds. (Academic, London,

1976), Vol. I, p. 265.

R.
R.
2
il
G.
M.

J & r .

4 v r

"] | 4 -

| 4 A

14] T. Wasiutynski, Phys. Status Solidi B 76, 175 (1976).

[15] J. C. Raich, J. Chem. Phys. 56, 2395 (1972).

16] P.V.Dunmore, J. Chem. Phys. 57, 3348 (1972); Can J. Phys. 55, 554 (1977).

17] M. J. Mandell, J. Low. Temp. Phys. 17, 169 (1974); 18, 273 (1975).

18] D. M. Brink and G. T. Satchler, Angular Momentum, 2nd Ed. (Clarendon, Oxford, 1968).
19] W. Briels and A. van der Avoird (unpublished).

20] J. Verberne and J. Reuss, Chem. Phys. 50, 137 (1980); 54, 189 (1981).

21] M. Waaijer, M. Jacobs, and J. Reuss, Chem. Phys. 63, 257 (1981).

22] T. R. Dyke, B. J. Howard, and W. Klemperer, J. Chem. Phys. 56, 2442 (1972).

23] J. Tennyson and B. T. Sutcliffe, J. Chem. Phys. 77, 4061 (1982).

24] P. M. Morse, Physica (Utrecht) 34, 57 (1929).

25] P.-O. Lowdin, Phys. Rev. 97, 1474 (1955); 97, 1490 (1955); 97, 1509 (1955); Adv. Chem. Phys. 2,

207 (1959).

[26] A. C. Hurley, Electron Correlation in Small Molecules (Academic, London, 1976).

|27] M. Claessens and Th. van der Lee, Internal Report, Institute of Theoretical Chemistry, Niymegen
(1982).

[28] S. L. Holmgren, M. Waldman, and W. Klemperer, J. Chem. Phys. 67,4414 (1977).




