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Abstract—Handwritten Signatures are one of the widely used 

biometrics for document authentication as well as human 

authorization. The purpose of this paper is to present an off-

line signature verification system involving Hindi signatures. 

Signature verification is a process by which the questioned 

signature is examined in detail in order to determine whether 

it belongs to the claimed person or not. Despite of substantial 

research in the field of signature verification involving 

Western signatures, very little attention has been dedicated to 

non-Western signatures such as Chinese, Japanese, Arabic, 

Persian etc. In this paper, the performance of an off-line 

signature verification system involving Hindi signatures, 

whose style is distinct from Western scripts, has been 

investigated. The gradient and Zernike moment features were 

employed and Support Vector Machines (SVMs) were 

considered for verification. To the best of the authors’ 

knowledge, Hindi signatures have never been used for the 

task of signature verification and this is the first report of 

using Hindi signatures in this area. The Hindi signature 

database employed for experimentation consisted of 840 

(35x24) genuine signatures and 1050 (35x30) forgeries. An 

encouraging accuracy of 7.42% FRR and 4.28% FAR were 

obtained following experimentation when the gradient 

features were employed. 

Keywords- Signature verification, Indian script, Hindi 

signatures, Document security. 

 

I. INTRODUCTION 

 Handwritten signatures are one of the most widely 

accepted personal attributes for identity verification. 

Signature verification has been a topic of renewed intensive 

research over the past several years [1, 2] due to the 

important role it plays in numerous areas, including in 

financial applications. 

Automatic signature verification systems can be 

classified into two categories:  on-line and off-line [3]. In an 

on-line technique, signatures are signed on a digitizer and 

dynamic information such as speed and pressure is captured 

in addition to a static image of the signature [4, 5]. In an 

off-line technique, signatures are signed on a piece of paper 

and then scanned to digitally store the signature image [6]. 

Hence, off-line signature verification deals with the 

verification of signatures, which appear in a static format 

[7]. Verification decisions are usually based on local or 

global features extracted from the signature being 

processed. Excellent verification results can be achieved by 

comparing the robust features of the test signature with that 

of the user’s signature using an appropriate classifier [20]. 

Signatures are considered as a complete image with a 

special distribution of pixels, and a particular writing style. 

They are not considered as a collection of letters and words 

[8]. A person’s signature may change radically during their 

lifetime. Great inconsistency can even be observed in 

signatures according to country, habits, psychological or 

mental state, physical and practical conditions [9]. 

There has been substantial work in the area involving 

off-line verification of Western signatures.  Armand et al. 

[10] presented an effective method to perform off-line 

signature verification and identification. Unique structural 

features were extracted from the signature's contour. Using 

a publicly available database of 2106 signatures containing 

936 genuine and 1170 forgeries, the verification rate of 

91.12% was obtained. Ramachandra et al. [11] proposed an 

off-line signature verification system based on a Cross-

Validation principle and graph matching. Schafer and Viriri 

[12] presented an off-line signature verification system 

based on the combination of feature sets. Some extracted 

features were: Aspect ratio, centroid feature, four surface 

features, six surface features, number of edge points, 

transition features etc. The verification of signatures was 

accomplished using the Euclidean distance classifier. 

Signatures may be written in different languages and 

there is a need to undertake a systematic study in this area. 

Many published works are available for Western signatures 

and only a few studies have been undertaken for signatures 

written in Chinese, Japanese, Persian, Arabic etc. [19]. To 

the best of the authors’ knowledge there is no published 

work on Hindi signature verification and this paper deals 

with Hindi signature verification. The present work of 

Hindi signature verification would be considered as a novel 
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Figure 1. Hindi signature sam

 

Figure 1. Hindi signature samples 

 
II. TYPES OF FORGERI

 
In general, off-line/on-line signature ver

considered as a two-class classification pro
first class represents the genuine signatu
second class represents the forged signatu
two types of errors are considered in a signa
system: The False Rejection or Type-I erro
Acceptance or Type-II error. These e
associated with two common types of error
Rejection Rate (FRR) which is the percen
signatures misclassified as forgeries, and Fa
Rate (FAR) which is the percentage of fo
misclassified as genuine. According to Coe
three basic types of forged signatures, which
into account, are: 

1. Random forgery. The forger has no
genuine signature (not even the author
reproduces a random one. In many cases, t
the forger’s own genuine signature. 

2. Simple forgery. The forger knows the
and the script, but has no access to a 
signature.  

3. Skilled forgery. The forger has access
samples of the genuine signature and is able 
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signatures were collected from the writers

signature samples with their correspondin

displayed in Table 1.  

B. Pre-processing 

The signatures to be processed by the syste
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Figure 2. Scanned signature image

 

 

Figure 3. Binary signature image 

 

IV. PROPERTIES OF DEVNAGA

 

Devnagari is an oriental script descended

script [14]. It is the most popular official scr

language of India. In Hindi script, the writ

from left to right and there is no concept 
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Figure 5. Basic characters of 
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V. FEATURE EXTRACTION

 

Feature extraction is a crucial

recognition system. The Zernike 

feature extraction technique are des
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The complex Zernike moments of order n and repetition m 

are given by: 
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Where  $6 7 &6 8 9 and the symbol O denotes the 

complex conjugate operator [15]. 

The Zernike moments can be computed by the scale 

invariant Central moments as follows: 
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B. Computation of 576-dimensional gradient 

features 

The grey-scale local-orientation histogram of the 

handwriting component is used for 576-dimensional feature 

extraction. 

To obtain a 576-dimensional gradient-based feature vector, 

the following steps were executed. 

Step 1: 2 x 2 mean filtering is applied 5 times on the input 

image. 

Step 2: The grey-scale image obtained in Step 1 is 

normalized so that the mean grey scale becomes zero with a 

maximum value of 1. 

Step 3: The normalized image is then segmented into 17x7 

blocks. Compromising trade-off between accuracy and 

complexity, this block size is decided experimentally. To 

get the bounding box of the grey-scale image, it is 

converted into a two-tone image using Otsu’s thresholding 

algorithm [16]. This will exclude unnecessary background 

information from the image. 
 

Step 4: A Roberts filter is then applied on the image to 
obtain the gradient image. The arc tangent of the gradient 
(direction of gradient) is quantized into 32 directions and 
the strength of the gradient is accumulated with each of the 
quantized directions. The strength of the Gradient #.`#a% b'' 
is defined as follows: 

 

 `#a% b' ( c#de'6 7 #df'6  (1) 

 
and the direction of gradient    #g#,% h''  is: 
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and             df ( k#, 7 9% h' ; k#,% h 7 9' (4) 
 
and k#,% h' is the grey level of point 

#,% h'. 
 
Step 5: Histograms of the values of 32 quantized directions 
are computed for each of the 17 x 7 blocks. 
 

Step 6: The directional histogram of the 17 x 7 blocks is 
down-sampled into 9 x 4 blocks and 16 directions using 
Gaussian filters. Finally, a 9 x 4 x 16 = 576-dimensional 
feature vector is obtained. 

VI. CLASSIFIER DETAILS 

In our experiments, we have used Support Vector 
Machines (SVMs) as classifiers. SVMs have been 
originally defined for two-class problems and they look for 
the optimal hyper plane, which maximizes the distance and 
the margin between the nearest examples of both classes, 
namely support vectors (SVs). Given a training database of 
M data: {xm| m=1,..., M}, the linear SVM classifier is then 
defined as: 

 
where {xj} are the set of support vectors and the parameters 

αj and b have been determined by solving a quadratic 

problem [17]. The linear SVM can be extended to various 

non-linear variants; details can be found in [17, 18]. In our 

experiments, the RBF kernel SVM outperformed other 

non-linear SVM kernels, hence we are reporting our 

verification results based on the RBF kernel only. Different 

parameters of the kernel are chosen experimentally. 
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Figure 8. Forged signature sample treated as a genuin
on the gradient feature). 

 

 

 

Figure 9. Genuine signature treated as a forged signa
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Figure 10. Forged signature treated as a genuine signa

Zernike moment feature). 

X. CONCLUSIONS AND FUTU

This paper presents an investigation of t
of a signature verification system involving
signatures. The gradient feature, Zernike m
and SVM classifiers were employed, an
results were obtained. To the best of ou
Hindi signature database has not previously
the task of signature verification and this is
of using Hindi signatures in this area. The p
verification scheme is the first investiga
signatures in the field of off-line signature
the near future, we plan to extend our w
more samples of Hindi signatures with the
different feature extraction techniques and 
also plan to prepare a Hindi signature datab
publicly available. 
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