
International Journal of Computer Applications (0975 – 8887)

Volume 48– No.23, June 2012

31

Hindi to English Machine Transliteration of Named

Entities using Conditional Random Fields

Manikrao L Dhore

Vishwakarma Institute of
Technology, Pune, India.

Shantanu K Dixit
Walchand Institute of

Technology, Solapur, India.

Tushar D Sonwalkar
Vishwakarma Institute of
Technology, Pune, India.

ABSTRACT

Machine transliteration has received significant research

attention in recent years. In most cases, the source language

has been English and the target language is an Asian

language. This paper focuses on Hindi to English machine

transliteration of Indian named entities such as proper nouns,

place names and organization names using conditional

random fields (CRF). Hindi is the national language of the

India and spoken by more than 500 millions Indian. Hindi is

the world‟s fourth most commonly used language after

Chinese, English and Spanish. This system takes Indian place

name as an input in Hindi language using Devanagari script

and transliterates it into English. The input to the system is

provided in the form of syllabification in order to apply the

n-gram techniques. As more than 50% named entities are

formed as a combination of two and three syllabic units, the n-

gram approach with unigrams, bigrams and trigrams of Hindi

are used to train the corpus. The system provides the

satisfactory performance for trigrams as compared to

unigrams and bigrams.

General Terms

Machine Transliteration

Keywords

Bigram, Conditional Random Fields, Trigram, Transliteration,

Syllabification

1. INTRODUCTION
It is challenging to translate names and technical terms

occurring in the user input across languages with different

alphabets and sound inventories. One of the most frequent

problems translators must deal with is translating proper

names and technical terms in the user input. These items are

commonly transliterated, i.e., replaced with approximate

phonetic equivalents. For example, a place name “कंचनपुर” in

Devanagari language is transliterated as "Kanchanpur" in

English. Translating such items from English back to

Devanagari language is even more challenging, and of

practical interest, as transliterated items make up the bulk of

text phrases not found in bilingual dictionaries.

The major challenge is the transliteration of out of vocabulary

(OOV) words appearing in the user input. The major portion

of user input consists of named entities, numbers, acronyms

and technical terms. These words can be the most important

words in the user input. These words need to be transcribed

into the document language when the query and document

languages do not share a common alphabet. The practice of

transcribing a word or text written in one language into

another language is called transliteration. Transliteration is

the conversion of a word from one language to another

without losing its phonological characteristics [1]. Phonetic

translation across these pairs is called transliteration.

Transliteration is the conversion of a given name in the source

language (a text string in the source writing system or

orthography) to a name in the target language (another text

string in the target writing system or orthography), such that

the target language name is:

 phonemically equivalent to the source name

 conforms to the phonology of the target language and

 matches the user intuition of the equivalent of the source

language name in the target language [2]. It is the

practice of transcribing a word or text written in one

writing system into another writing system. Machine

transliteration is usually used to support the machine

translation (MT) and cross-language information

retrieval (CLIR) to convert the named entities.

The direct transliteration of Hindi to English is quite difficult

due to the following factors:

 Hindi uses the Devanagari script whereas English uses

the Roman script

 The Hindi alphabet contains 52 characters whereas the

English alphabet contains only 26 characters.

 There is no concept of capitalization of leading

characters of names in Indian languages unlike English

and other European languages which plays an important

role in identifying named entities (NEs).

 Hindi has highly phonetic characteristics whereas

English is not a phonetic language.

 In English proper names are not used as person names

whereas in Hindi most of the person names are being

used as common names.

 In India place names are frequently homographic with

common words or with person names, presence of a

number of exonyms (foreign language equivalences),

endonyms (local variants) and historical variants for

many place names.

 A source language word can have more than one valid

transliteration in target language. For example, for the

Hindi named entity below four different transliterations

are possible:

लक्ष्मणराव – Lakshmanrāv, Laxmanrāv, Lakshmanrāo

and Laxmanrāo

 Unavailability of resources such as the parts of speech

tagger (POS) and a good morphological analyzer for

Indian Languages (ILs). Name lists are found in webs

which are in English but no such lists for Indian

Languages can be found in Unicode.

 Hindi language is highly inflectional [3].

From a linguistic point of view there are many issues such as

orthographic variations, ambiguous spelling, lexical

ambiguity, morphological variations, affixation, root and

pattern, tokenization, translation divergences conflation,

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.23, June 2012

32

source meaning–target meaning, source syntax–target syntax

and source word – target word.

2. RELATED WORK
Most of the machine transliteration work outside India is

carried out for English to Japanese, English to Chinese,

English to Korean, English to Russian, English to Japanese

(Katakana), English to Korean Hangul, English to Pinyin,

Pinyin to Chinese, Thai to English, Chinese to English,

English to Arabic, Arabic to English, English to Thai, Urdu to

English, Persian to English, Spanish to Chinese, Japanese to

English, Swedish to Finnish, English to Hebrew, English to

Spanish and Spanish to English language pairs. For Indian

languages English to Hindi, English to Tamil, Shahmukhi to

Gurmukhi, English to Telugu, Bengali to English, English to

Kannada, English to Oriya, Hindi to English, Punjabi to Hindi

language pairs are used.

The grapheme-based and phoneme-based models are used for

the machine transliteration. The grapheme based model treats

transliteration as an orthographic process and tries to map the

source language graphemes directly to the target language

graphemes. Conceptually, it is a direct orthographical

mapping from source graphemes to target graphemes [4].

Phoneme-based model considers transliteration as a phonetic

process. One of the early works on transliteration is done by

Arababi in 1994 by combining neural net and expert systems

[5]. Knight and Graehl developed a five stage statistical

model to do back transliteration, that is, recover the original

English name from its transliteration into Japanese Katakana

in 1997[6]. Stalls and Knight adapted this approach for back

transliteration from Arabic to English of English names in

1998[7]. Al-Onaizan and Knight have produced a simpler

Arabic-English transliterator and evaluated how well their

system can match a source spelling in 2002. Their work

includes an evaluation of the transliterations in terms of their

reasonableness according to human judges [8]. Work in the

field of Indian Language CLIR was done by Jaleel and Larkey

in 2003 which was based on their work in English-Arabic

transliteration for CLIR [9]. Their approach was based on

Hidden Markov Model using GIZA++. Phoneme-based

models, based on weighted finite state transducers [10] and

Markov window [11] considers transliteration as a phonetic

process. In 2003 the team of National Centre for Software

Technology, Mumbai has given a unified table driven

approach for conversion between phonemic code and Unicode

[12]. OM transliteration scheme provides a script

representation which is common for all Indian languages [13].

In 2006, Punjabi machine transliteration for Punjabi language

from Shahmukhi to Gurmukhi used the set of transliteration

rules [14]. Sproat [15-17] presented a formal computational

analysis of Brahmi scripts. Kopytonenko [18] also focused on

computational models that perform grapheme-to-phoneme

conversion. Ganesh, Harsha, Pingali and Verma have

developed a statistical transliteration technique that is

language independent. They selected a statistical model for

transliteration which is based on Hidden Markov Model

(HMM) alignment and Conditional Random Fields (CRF)

[19]. Sujan Kumar Saha, Partha Sarathi Ghosh, Sudeshna

Sarkar, and Pabitra Mitra [20] have proposed a two-phase

transliteration methodology in 2008. The transliteration

module uses an intermediate alphabet, which is designed by

preserving the phonetic properties. Ekbal, Naskar and

Bandyopadhyay (2007-2010) made significant attempt to

develop transliteration systems for Indian languages to

English and especially for Bengali-English transliteration [21-

28]. Manoj K. Chinnakotla, Om P. Damani, and Avijit

Satoskar have developed a reasonable transliteration system

for resource scared languages by judiciously applying

statistical techniques to monolingual resources in conjunction

with manually created bilingual rule bases in 2010. The

statistical technique is the Character Sequence Modeling

(CSM), called Language Modeling. They have proved that if

the word origin is used for the transliteration, then the system

performs better than statistical methods [29]. Jong-Hoon Oh

approach is based on two transliteration models. They used

three different machine learning algorithms CRF, MIRA and

MEM for building multiple machine transliteration engines

[30]. Our work is related to the machine transliteration of

Hindi to English using CRF. A Hindi-English language is less

studied and can be better investigated using CRF. For doing

this, we have used n-gram as a feature over the syllabified

Hindi input to obtain the transliteration in English.

3. CRF
A CRF is a form of undirected graphical model that defines a

single log-linear distribution over label sequences given a

particular observation sequence. CRF model defines a

conditional probability P(Y|X) over label sequences given a

particular observation sequence X, rather than a joint

distribution over both label and observation sequences.

Formally, we define G = (V, E) to be an undirected graph

such that there is a node v є V corresponding to each of the

random variables representing an element Yv of Y. If each

random variable Yv obeys the Markov property with respect

to G, then (Y, X) is a conditional random field. In machine

transliteration CRF can be used to generate the target

language word from a source language word. CRF is defined

as conditional probability distributions P(Y |X) of target

language words given source language words. The probability

of a particular target language word Y given source language

word X is the normalized product of potential functions each

of the form

where tj(Yi−1, Yi, X, i) is a transition feature function of the

entire source language word and the target language

characters at positions i and i−1 in the target language word;

sk(Yi, X, i) is a state feature function of the target language

word at position i and the source language word; and λj and μk

are parameters to be estimated from training data. The

notations can be simplified by writing

and

where each fj(Yi−1, Yi, X, i) is either a state function s(Yi−1, Yi,

X, i) or a transition function t(Yi−1, Yi, X, i). This allows the

probability of a target language word Y given a source

language word X to be written as

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.23, June 2012

33

Z(X) is a normalization factor. When applying CRFs to

transliteration problem, an observation sequence X is a string

of source language transliteration units and state sequence or

tag sequence Y is the string of target language transliteration

units [31-33].

4. TRANSLITERATION SYSTEM
The overall logical flow of Hindi to English machine

transliteration system is depicted in figure 1 and 2.

Figure 1. Training of Data Set

Figure 2. Transliteration System

4.1 ANALYSIS OF NAMED ENTITY

 FORMATION IN HINDI
Hindi is written using Devanagari script, and the minimum

syllabic unit of Devanagari is called as akshara. For example,

the named entity “सचचन” – स + चच + न (Sachin) has three

aksharas स, चच and न respectively. It has been observed that

in Hindi language the minimum length of the named entity is

1 akshara (formed using 1 syllabic unit) and maximum length

is 8 aksharas. There are very few named entities consisting

one syllable. From the number of aksharas in the named

entities, 8 categories are made. One akshara is considered

equivalent to one phonetic unit in the Devanagari word. It is

found that nearly 50% named entities used in India are

compound of two or more individual named entities. For

example, the named entity चवजयराघवगढ़ (Vijayrāghavgarh - a

place name) is formed using three named entities चवजय

(Vijay), राघव (Rāghav) and गढ़ (garh) respectively. For the

one akshara, two aksharas and three aksharas named entities,

transliteration is quite simple. As the length of named entity

increases, the segmentation becomes important to find out the

number of words used to form the named entity in order to

separate the rhythms within it and in turn number of phonetic

units in each rhythm. Following is the analysis based on the

number of aksharas in the Hindi and Marathi named entities.

Most of the four aksharas named entities (denoted by NEs) are

formed with the combination of two different words. Table 1

shows the possible combinations of phonetic segments from

pronunciation point of view. In four aksharas word, if it is

made up of any above combination, finding the boundaries of

these combinations is important from transliteration point of

view. It confirms that there are always minimum two

segments in the four syllables word.

Table 1. Segmentations of Devanagari NEs consisting Four

Aksharas

Named Entity Segmentation

श्रीवर्धन(Shriwardhan) श्री + वर्धन (Shrī + wardhan)

रामचंद्र(Rāmchandrā) राम + चंद्र (Rām + chandrā)

र्वलश्री(Dhawalshrī) र्वल + श्री (Dhawal + shrī)

The five aksharas named entities are formed with the

combination of two different words. Table 2 shows the

possible combinations of phonetic segments from

pronunciation point of view. In five aksharas word, if it is

made up of any above combination, finding the break point

whether it occurs at second or third syllable is important. It

confirms that the five aksharas named entity always consists

of minimum two segments.

Table 2. Segmentations of Devanagari NEs consisting Five

Aksharas

Named Entity Segmentation

भानुप्रताप(Bhānuprātāp) भानु + प्रताप (Bhānu + prātāp)

माचणकराव(Mānikrāo) माचणक + राव (Mānik + rāo)

श्रीनारायण(Shrinārāyan) श्री + नारायण (Shrī + nārāyan)

The six aksharas named entities are formed with the

combination of two or three different words. Table 3 shows

the possible combinations of phonetic segments from

pronunciation point of view. In six aksharas word, if it is

made up of any above combination, finding the break point

whether it occurs at second, third, fourth or fifth syllable is

important. It confirms that the six aksharas named entity

always consists of minimum two segments.

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.23, June 2012

34

Table 3. Segmentations of Devanagari NEs consisting Six

Aksharas

Named Entity Segmentation

 करमरकर(Karmarkar) कर + मर + कर

(Kar + mar + kar)

 प्रेमनारायण(Premnārāyan) प्रेम + नारायण

(Prem + nārāyan)

 कमलकीशोर(Kamalkishor) कमल + कीशोर

(Kamal + kīshor)

 जवाहरलाल(Jawāharlāl) जवाहर + लाल

(Jawāhar + lāl)

Most of the seven aksharas words are formed with the

combination of two or three. In seven aksharas words, there

can be two or three segments. As there are two or segments in

the word finding the boundaries of these words is difficult

task. It confirms that there are always two or more rhythms in

the seven aksharas word. Table 4 shows the possible

combinations of phonetic segments from pronunciation point

of view.

Table 4. Segmentations of Devanagari NEs consisting

Seven Aksharas

Named Entity Segmentation

राजगुरुनगर

(Rājgurunagar)

राज + गुरु + नगर

(Rāj + guru +nagar)

गुरसहायगंज

(Gursahāyganj)

गुर + सहाय + गंज

(Gur + sahāy + ganj)

कंचनपुरकर

(Kanchanpurkar)

कंचन + पुर + कर

(Kanchan + pur+ kar)

मुरलीमनोहर

(Muralimanohar)

मुरली + मनोहर

(Murali + manohar)

नारायनस्वरुप

(Nārāyanswarup)

नारायन + स्वरुप

(Nārāyan + swarup)

चगररराजककशोर

(Girirājkishor)

चगररराज + ककशोर

(Girirāj + kishor)

Most of the eight aksharas words are formed with the

combination of two or three words. In eight aksharas words,

as there are two segments in the word, there has to be two or

three rhythmic units. Table 5 shows the possible combinations

of phonetic segments from pronunciation point of view. This

analysis is useful to find out the number of segments and int

turn number syllabic units commonly appear in the multi

word named entities. This statistic clearly shows that the size

of the n-gram in Hindi named entities is either two or three in

most of the cases.

Table 5. Segmentations of Devanagari NEs consisting

Eight Aksharas

Named Entity Segmentation

चवजयराघवगढ़

(Vijayrāghavgarh)

चवजय + राघव + गढ़

(Vijay + rāghav + garh)

नांदरुखंदरमाळ

(Nāndurkhandarmāl)

नांदरु + खंदर + माळ

(Nāndur + khandar + māl)

नारायणगावकर

(Nārāyangāonkar)

नारायण + गाव + कर

(Nārāyan + gāon + kar)

चिभुवननारायण

(Tribhuvannārāyan)

चिभुवन + नारायण

(Tribhuvan + nārāyan)

4.2 SYLLABIFICATION
Syllabification is the process of dividing named entity written

in Devanagari script into fundamental units called aksharas or

syllabic unit. In our case study the one akshara in Devanagari

it taken as one syllabic unit in English. It is needed to obtain

syllabic unit alignment of source language named entity to

target language named entity. This syllabification is useful to

retain the phonemic features of the source language Hindi into

transliterated form of English. It is also useful to train the

input data according to the n-grams of the source language. It

is to be noted that the length of the transliterated n-gram from

Hindi to English will always differ. The syllabication of

source language Hindi and its equivalent into target language

English is depicted in table 6.

Table 6. Syllabification Format

Source Language(Hindi) Target Language(English)

[ओ] [म] [o] [m]

[ऐ] [श्व] [याध] [ai] [shwa] [rya]

[म] [हा] [रा] [ष््ट] [ma] [hā] [rā] [shtra]

[ओं] [का] [रे] [श्व] [र] [om] [kā] [re] [shwa] [r]

[अ] [ब्द]ु [ल्ला] [ह] [गं] [ज] [a] [bdu] [llā] [h] [gan] [j]

[चन] [रं] [ज] [न] [कु] [मा] [र] [ni] [ran][ja] [n] [ku] [mā] [r]

5. IMPLEMENTATION
Our aim is to investigate the problem of machine

transliteration where given a named entity in Hindi using

Devanagari script need to be transliterated in English using

CRF as a statistical probability tool and n-gram as a features

set. The task is to generate a valid English language

transliteration for the Hindi language as shown below.

 …

Here, Xi represents Hindi syllabic unit and Yi represents

English syllabic unit as shown in table 6. A conditional

random field can be viewed as an undirected graphical model

or Markov random field, globally conditioned on X, the

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.23, June 2012

35

random variable representing observation sequence. For

example, the named entity “माचणक” (mānik) a person name

can be represented as shown in figure 3.

Figure 3. CRF Model Example

System implementation can be divided into two stages as

follow:

5.1 TRAINING PHASE
Training phase requires two things, one is training data and

other is features on which the data is to be trained. Parallel

data obtained during syllabification is arranged in the CRF++

required format and then n-gram features are used to train this

data.

Following templates are used to train the data for uni-grams,

bi-grams and tri-grams.

U01:%x[0,1] is current observation under context.

U02:%x[1,1] is the observation next to the current observation

under context.

U03:%x[2,1] is next to next observation to the current

observation under context.

For training system on Unigram feature, only template U01 is

used.

For example, if input from figure 2 is taken into consideration

then the training data would look like as follows.

→ मा मा mā

चण चण ni

क क k

Here, if the first input token is taken into consideration, the

output tag for „मा’ will depend only on current input which is

„मा’, whereas for bigram feature U02 is used as template

along with U01. In this case the output tag depends not only

on current input „मा’ but also depends on next input which is

„चण’. In case of tri-gram, the output tag for „मा’ becomes

dependent on both „चण’ and ‘क’ along with „मा’.

Use of bi-gram feature can be elaborated in case of tagging

the Hindi akshara „व’. The Hindi akshara „व’ can be

transliterated as „v‟, „va‟, „w‟, „wa‟, „o‟ or „on‟ depending on

the context of input named entity. If a tag „व’ occurs at the end

of name entity, for example, „राजनंदगाव’ (Rājnandgāon)

which is place name, then most of the time it is to be tagged

with „on‟ otherwise for personal nouns it is normally tagged

as „v‟ or „va‟ („v‟ in झवर and „va‟ in वरद). Using same

analogy, other such examples can be trained using this feature

and proper training data.

For trigram feature, a combination of U01, U02 and U03 is

used as feature. Training of this feature can be elaborated

using commonly used suffix „नगर‟ (nagar) in most of the

place names. For example, the named entity „कररमनगर‟

(Karimnagar) which is a place name, the trigram feature „नगर‟

is used and नगर is tagged as „nagar‟ whereas in case of

„गजपाठीनगरम‟ (Gajpāthinagaram) which is also a place name,

a sequence „नगर‟ need to be tagged as „nagara‟. This

difference in tagging can be modeled using combination of

unigram and bigram features.

5.2 TESTING AND PERFORMANCE
To calculate the performance of the proposed approach there

was the need of bilingual corpus in Unicode format. There

were no source available; hence the bilingual corpus of 7251

named entities is created from web resources and books

[34-45].

The test data includes personal names, surnames, and city and

village names. The following notation are used for the

evaluation metrics

N: Total number of names in the test set

Ri: i-th reference name (input) in source language in the test

set

Ci, k : k-th candidate transliteration (output) for i-th name in

the test set (1 < k < 7)

Ki: Number of candidate transliterations produced by a

transliteration system

The commonly used performance evaluation parameter „word

accuracy‟ denoted by ACC is used to test the performance of

our method. It measures correctness of the first transliteration

candidate in the candidate list produced by a transliteration

system [100]. ACC = 1 means that all top candidates are

correct transliterations i.e. they match one of the references,

and ACC = 0 means that none of the top candidates are

correct [46].

 (4)

The performance ACC using equation (4) for uni-gram, bi-

gram and tri-gram is shown in table 7.

Table 7. Performance
n-gram

size

No of

Records

Correct

Match

Incorrect

Match

ACC

(Top-1)

Uni 7251 4714 2537 65.01%

Bi 7251 6221 1030 85.79%

Tri 7251 6090 1131 83.98%

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.23, June 2012

36

Figure 4 shows the comparison based on the n-gram‟s size. It

is very difficult to provide the comparative statements as no

common bilingual corpus is used by others. Our results need

not to be compared with the corpus as the records are created

by user inputs.

Figure 4. Comparison Based on n-gram size

6. CONCLUSION
In this approach, we presented machine transliteration of

named entities for Hindi-English language pair using CRF as

a statistical probability tool and n-gram as feature set. As the

CRF calculates the probabilities over the entire input

sequences, this approach is very good for the named entities

of longer length. We have received very good accuracy

85.79% for the bi-grams of source language Hindi. As this

approach is based on statistical probability, the results are

always dependent on the training data size. The results for tri-

gram are expected more than the bi-gram as per the literature

review carried out by us but it may not have happened due to

the inadequacy of training data. It has been observed that CRF

is well suited for the Indian languages, as most of the named

entities are made up of multiple smaller named entities.

7. ACKNOWLEDGMENTS
We express our gratitude to Dr. Jalnekar R M, Director and

Prof. Haribhau Phakatkar, Dean Administration of

Vishwakarma Institute of Technology for their continuous

encouragement to carry out the research in the area of

Machine Transliteration. We also thank to Prof. S. B.

Karthick, Dr. S. N. Mali, Dr. Mansi Patwardhan, Prof. N. Z.

Tarapore, Prof. M. M. Kulkarni, Prof. S. R. Bandewar, Dr.

S.V. Joshi, Dr. Mukund Nalawade, Prof. Nitin Sahasrabuddhe

and Prof. A. M. Kulkarni for their valuable guidance of

Sanskrit and Hindi linguistics. Special thanks to Nandkishor

Janardan Gaigol who has helped in segmenting around 3000

named entities in Hindi.

8. REFERENCES
[1] Ankit Aggarwal, Transliteration involving English and

Hindi languages using syllabification approach, Thesis,

Indian Institute of Technology, Bombay, Mumbai, 2009

[2] Haizhou Li, A Kumaran, Vladimir Pervouchine and Min

Zhang, Report of NEWS 2009 Machine transliteration

shared task, named entities workshop: shared task on

transliteration, Singapore, pp. 1-18, 2009

[3] Darvinder kaur, Vishal Gupta, A survey of named entity

recognition in English and other Indian languages, IJCSI

International Journal of Computer Science Issues, Vol. 7,

Issue 6, pp. 239-245, November 2010

[4] Karimi S, Scholer F, and Turpin, Machine transliteration

survey. ACM Computing Surveys, Vol. 43, No. 3,

Article 17, pp.1-46, April 2011.

[5] Arbabi M, Fischthal S M, Cheng V C and Bart E,

Algorithms for Arabic name transliteration, IBM Journal

of Research and Development. pp. 183-194, 1994

[6] Knight Kevin and Graehl Jonathan, Machine

transliteration. In proceedings of the 35th annual

meetings of the Association for Computational

Linguistics, pp. 128-135, 1998

[7] Stalls Bonnie Glover and Kevin Knight, Translating

names and technical terms in Arabic text. 1998

[8] Al-Onaizan Y, Knight K, Machine translation of names

in Arabic text. Proceedings of the ACL conference

workshop on computational approaches to Semitic

languages. 2002

[9] Nasreen Abdul Jaleel and Leah S. Larkey, Statistical

transliteration for English-Arabic cross language

information retrieval. In Proceedings of the 12th

international conference on information and knowledge

management. pp: 139 – 146, 2003

[10] K Knight, J. Graehl, Machine transliteration ,

Computational Linguist, pp.128–135, 1997

[11] S. Y. Jung,, S. Hong, S., E. Paek,. English to Korean

transliteration model of extended Markov window, In

Proceedings of the 18th Conference on Computational

Linguistics, pp.383–389, 2003

[12] R.K. Joshi, K. Shroff , S. P. Mudur, A Phonemic Code

Based Scheme for Effective Processing of Indian

Languages 23rd Internationalization and Unicode

Conference, Prague, Czech Republic, 1 March 2003.

[13] M. Ganapathiraju, M. Balakrishnan, N. Balakrishnan, R.

Reddy.OM: One Tool for Many (Indian) Languages.

ICUDL: International Conference on Universal Digital

Library, Hangzhou, 2005.

[14] M.G.A. Malik, Punjabi Machine Transliteration,

Proceedings of the 21st International Conference on

Computational Linguistics and the 44th annual meeting

of the ACL, pages 1137–1144, 2006

[15] R Sproat. Brahmi scripts, In Constraints on Spelling

Changes: Fifth International Workshop on Writing

Systems, Nijmegen, The Netherlands, 2002.

[16] R. Sproat, A formal computational analysis of Indic

scripts, In International Symposium on Indic Scripts:

Past and Future, Tokyo, Dec. 2003.

[17] R. Sproat, A computational theory of writing systems,

In Constraints on Spelling Changes: Fifth International

Workshop on Writing Systems, Nijmegen, The

Netherlands, 2004.

[18] M. Kopytonenko, K. Lyytinen, and T. Krkkinen,

“Comparison of phonological representations for the

grapheme-to-phoneme mapping”, In Constraints on

Spelling Changes: Fifth International Workshop on

Writing Systems, Nijmegen, The Netherlands, 2006.

[19] Ganesh S, Harsha S, Pingali P, and Verma V, Statistical

transliteration for cross language information retrieval

using HMM alignment and CRF. In Proceedings of the

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.23, June 2012

37

Workshop on CLIA, Addressing the Needs of

Multilingual Societies, 2008

[20] Sujan Kumar Saha, Partha Sarathi Ghosh, Sudeshna

Sarkar, and Pabitra Mitra, Named entity recognition in

Hindi using maximum entropy and transliteration, 2008

[21] A Ekbal and S. Bandyopadhyay, A hidden Markov

model based named entity recognition system: Bengali

and Hindi as case studies, Proceedings of 2nd

International conference in Pattern Recognition and

Machine Intelligence, Kolkata, India, pp. 545–552, 2007

[22] A Ekbal and S. Bandyopadhyay, Bengali named entity

recognition using support vector machine, in Proceedings

of the IJCNLP-08 Workshop on NER for South and

South East Asian languages, Hyderabad, India, pp. 51–

58, January 2008

[23] A Ekbal and S. Bandyopadhyay, Development of

Bengali named entity tagged corpus and its use in NER

system, in Proceedings of the 6th Workshop on Asian

Language Resources, 2008.

[24] A Ekbal and S. Bandyopadhyay, A web-based Bengali

news corpus for named entity recognition, Language

Resources & Evaluation, vol. 42, pp. 173–182, 2008.

[25] A Ekbal and S. Bandyopadhyay, Improving the

performance of a NER system by post-processing and

voting, in Proceedings of Joint IAPR International

Workshop on Structural Syntactic and Statistical Pattern

Recognition, Orlando, Florida, pp. 831–841, 2008

[26] A Ekbal and S. Bandyopadhyay, Bengali Named Entity

Recognition using Classifier Combination, in

Proceedings of Seventh International Conference on

Advances in Pattern Recognition, pp. 259–262, 2009

[27] A Ekbal and S. Bandyopadhyay, Voted NER system

using appropriate unlabelled data, in Proceedings of the

Named Entities Workshop, ACL-IJCNLP 2009,

[28] A Ekbal and S. Bandyopadhyay, Named entity

recognition using appropriate unlabeled data, post-

processing and voting. In Informatica, Volume (34), No.

1, pp. 55-76, 2010.

[29] Manoj K. Chinnakotla, Om P. Damani, and Avijit

Satoskar, Transliteration for Resource-Scarce Languages,

ACM Trans. Asian Lang. Inform. Process. 9, 4, Article

14, pp 1-30, December 2010

[30] Jong-Hoon Oh, Kiyotaka Uchimoto, and Kentaro

Torisawa, Machine transliteration using target-language

grapheme and phoneme: Multi-engine transliteration

approach, Proceedings of the Named Entities Workshop,

ACL-IJCNLP Suntec, Singapore,AFNLP, pp. 36–39,

August 2009

[31] J. Lafferty, A. McCallum, and F. Pereira. Conditional

random fields: probabilistic models for segmenting and

labeling sequence data,. In International Conference on

Machine Learning, 2001.

[32] Hanna M. Wallach, Conditional Random Fields: An

introduction, University of Pennsylvania CIS Technical

Report MS-CIS-04-21, February , 2004

[33] Charles Sutton and Andrew McCallum, An Introduction

to conditional random fields for relational learning,

University of Massachusetts, USA

[34] http://www.whereincity.com/babynames

[35] http://en.wikipedia.org/wiki/list_of_cities_in_India

[36] http://www.indianchild.com/

[37] http://encyclopedia.thefreedictionary.com/

[38] Road Atlas Rajasthan – by Government of India, 2008

[39] Road Atlas Utter Pradesh – by Government of India,

2008

[40] Road Atlas Jharkhand – by Government of India, 2008

[41] Road Atlas Bihar – by Government of India, 2008

[42] Road Atlas Madya Pradesh – by Government of India,

2008

[43] Road Atlas Maharashtra – by Government of India, 2008

[44] Tourist Guide India - by Government of India, 2008

[45] Tourist Guide Maharashtra - by Government of India,

2008

[46] Haizhou Li, A Kumaran, Vladimir Pervouchine and Min

Zhang, Report of NEWS 2009 Machine Transliteration

Shared Task, ACL-IJCNLP, pp. 1-19, 2009

