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Abstract. We consider the Kirchhoff-Love model for the supported plate, that is, the fourth order
differential equation ∆2u = f with appropriate boundary conditions. Due to the expectation that a
downwardly directed force f will imply that the plate, which is supported at its boundary, touches
that support everywhere, one commonly identifies those boundary conditions with the ones for
the so-called hinged plate: u = 0 = ∆u − (1− σ)κun. Engineers however are usually aware that
rectangular roofs tend to bend upwards near the corners and this would mean that u = 0 is not
appropriate. We will confirm this behaviour and show the difference of the supported and the
hinged plates in case of domains with corners.
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1. Introduction

1.1. Description and motivation

Consider a thin plate subjected to a negative (downward) vertical load that lies freely at its sides on a
supporting structure. Whenever the plate touches its support, the corresponding boundary condition
fixes the height. A second boundary condition, which is necessary for the Kirchhoff-Love model of
the plate in order to find a well-posed boundary value problem, comes naturally from the variational
model describing the energy. This set of boundary conditions are known as hinged. However, if the
plate does not touch its supporting structure, one finds a different set of boundary conditions. So it
means that a supported plate may satisfy different sets of boundary conditions at different parts at
the boundary. For a downward force one expects the plate to touch at least at some boundary parts.

In the mathematical and engineering literature the (simply) supported and hinged boundary
conditions are often confused; see also the comments by Blaauwendraad on [4, Chapter 13.4]. So before
deriving a mathematical formulation let us clearly describe these two types of boundary conditions:

• hinged: the deflection of the plate is zero on the boundary;
• supported: the deflection of the plate cannot become negative on the boundary.

So the main question is:

Does a plate which is supported at its boundary by walls of constant height and is pushed
downwards, touch this supporting structure everywhere?

In engineering literature that considers supported plates, such as [4, 5], one finds that a rectan-
gular supported plate will lift at the corners when pushed downwards. A rule of thumb is described
by Figure 1. One approximates a thin plate by a configuration of 9 rigid tiles, elastically connected
to each other, and supposes that the force is distributed over 12 points at the boundary. Pushed
downwards by a uniformly distributed weight of size 1, the forces working on these 12 points act as
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depicted in Figure 1. That is, upward forces appear at the corners which, if the roof is not fixed to its
supporting walls, will tend to move the plate upwards.

Figure 1. A discretized square roof with homogeneous weight distribution lifts at the corners
(see [4, Chapter 9.3] or [4, p. 18]).

Here we will show that a similar result comes out of the analysis of a model that uses the
continuous formulation. Within the framework of this Kirchhoff-Love model, a negatively loaded,
simply supported plate will exhibit bending moments, concentrated at the corners, which will force
the plate to lift there. The unilateral boundary condition that is involved makes the present model of
the supported plate nonlinear.

Friedrichs in [9] is one of the first to give a modern variational formulation for the plate. See
also [8]. Kirchhoff plates under several linear boundary conditions with angular corners have been
studied in the seminal paper by Blum and Rannacher [6] from 1980. For numerical approaches to this
biharmonic plate model we refer to a paper by Babuška and Li [3]. Corner singularities for clamped and
so-called ‘supported’ Kirchhoff plates have been numerically dealt with in [23], [22]. In [4, Chapter
13.4] one finds numerical evidence that a square, supported plate under a uniform load will move
upwards near the corners.

1.2. The mathematical setting

The Kirchhoff-Love model for thin elastic plates can be considered as the Euler-Lagrange equation
that arises in the following minimization problem:

Find u0 : Ω 7−→ R in an appropriate family of functions V such that:

u0 = argmin {u ∈ V; Jσ (u)} (1.1)

with

Jσ(u) =

∫

Ω

(
1
2 (∆u)

2 + (1− σ)(u2xy − uxxuyy)− fu
)
dλ (1.2)

Here Ω represents the shape of the plate and u(x) the deflection at x ∈ Ω under the vertical
load density f(x). The mechanical problem that we are interested in concerns a downward force
f ≤ 0 resulting in a largely negative deflection u. The parameter σ denotes the Poisson ratio of
the plate, constant for the homogeneous situation considere here, and, depending on the material,
varying from −1 up to 0.5. The minimal value of the functional corresponds to the elastic energy of
the deformed plate. The minimizer u, if it exists, gives the deflection of the plate. Introducing the
boundary conditions through an appropriate set of functions V, one models the different cases; see
[31] for a detailed discussion.
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Assuming that the minimizer is smooth enough, one can perform the usual integration by parts
of the weak Euler-Lagrange equation J ′

σ (u;ϕ) = 0, that is
∫

Ω

(∆u∆ϕ+ (1− σ) (2uxyϕxy − uxxϕyy − uyyϕxx)− fϕ) dλ = 0 for all ϕ ∈ V,

to obtain, for a sufficiently smooth domain, the differential equation and the corresponding natural
boundary conditions.

• For the hinged plate the appropriate function space for the weak setting is

V =W 2,2(Ω) ∩W 1,2
0 (Ω),

for the notation see e.g. [2]. A strong solution should satisfy the boundary value problem:




∆2u = f in Ω,

u = 0 on ∂Ω,

σ∆u+ (1− σ)unn = 0 on ∂Ω.

(1.3)

• For the simply supported plate the weak setting uses

V =
{
u ∈W 2,2(Ω) and min(u, 0) ∈W 1,2

0 (Ω)
}
.

In this case we are minimizing in a closed subset of W 2,2(Ω) and the solution will satisfy a
variational inequality. Applying local arguments one sees that a strong solution u should satisfy:




∆2u = f in Ω,

u ≥ 0 on ∂Ω,

σ∆u+ (1− σ)unn = 0 on ∂Ω,

u(x) = 0 or ∂n

(
∆u(x)

)
+ (1− σ)unττ (x) = 0 for x ∈ ∂Ω.

(1.4)

Here n and τ represent the exterior normal and the counter-clockwise tangent vectors respectively.
The third equation in (1.3) and (1.4) can be rewritten as

σ∆u+ (1− σ)unn = ∆u− (1− σ)uττ − (1− σ)κun on ∂Ω

and uττ |∂Ω = 0 when u|∂Ω = 0. The function κ is the signed curvature of the boundary taken positive
on strictly convex boundary parts.

The Poisson ratio gives a measure of the tendency of materials to expand or contract in the other
directions when they are forced to expand or contract in one direction. Most materials tend to expand
when forcefully contracted in one direction and thus possess a positive Poisson ratio; cork has almost
zero and metals are close to 0.3, whereas for some exotic foam polymers σ < 0, i.e. they can contract
in all directions when they are forced to do so only in one. See [31] and references therein.

1.3. The set-up of this paper

We deal with hinged and supported plates that have at most finitely many convex or concave corners
with smooth remaining boundary parts. The existence results in the weak setting do not depend to
strongly on the presence of these corners and will be considered in Section 2.

After having existence for the hinged and the supported case, we want to compare both solutions.
In order to do so we will need some more regularity and this depends strongly on the presence of
corners. This is dealt with at Section 3. We need to distinguish between convex and concave corners.
Moreover, for the hinged problem on convex corners there is a difference between acute (< 1

2π), square

(= 1
2π) and obtuse (∈

(
1
2π, π

)
). We will measure angles from inside and assume C4-smoothness outside

those corners.

• By a concave corner we mean that after a possible rotation and a translation to put the corner
in O, we may write locally, for some open neighborhood U of O, that

Ω ∩ U = {(x1, x2) ;x2 > min (ϕ1 (x1) , ϕ2 (x1))} ∩ U
with ϕ1, ϕ2 ∈ C4 (−1, 1) and ϕ1 (0) = ϕ2 (0) = 0, ϕ′

1 (0) > ϕ′
2 (0).
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Ω Ω Ω

Figure 2. Respectively a concave, an obtuse-convex and acute-convex corner.

• By a convex corner we mean that after a possible rotation and a translation we may write locally,
that

Ω ∩ U = {(x1, x2) ;x2 > max (ϕ1 (x1) , ϕ2 (x1))} ∩ U
with ϕ1, ϕ2 ∈ C4 (−1, 1) and ϕ1 (0) = ϕ2 (0) = 0, ϕ′

1 (0) > ϕ′
2 (0). In this setting acute means

ϕ′
1 (0)ϕ

′
2 (0) < −1 and obtuse ϕ′

1 (0)ϕ
′
2 (0) > −1. For a square angle it holds that ϕ′

1 (0)ϕ
′
2 (0) =

−1.

In two dimensions such a curvilinear corner can be mapped through a two-side-bounded biconfor-
mal mapping on a domain which is locally polygonal with a corner of the same angle. For a conformal
mapping h one finds ∆ (u ◦ h) = |h′|2 (∆u) ◦ h. Two-side-bounded biconformal mapping h is means

0 < c1 ≤ |h′|2 ≤ c2 < ∞. Since a polygonal angle will simplify the mathematics involved, we will
sometimes just consider this setting.

The case of square angles presents a special case for the hinged plate. If the force f equals zero in
a neighborhood of the corner, the presence of this corner no longer puts a restriction on the regularity.
An outline of this case was presented in [30]. The details can be found in Section 3.1.

For plates with general angles we need to use the theory due to Kondratiev, see [18], which is
based on the asymptotic formula due to [32].

In Section 4 we will show our main result, namely that the supported plate generically is not
supported everywhere on the boundary but comes loose at certain subsets of the boundary. In other
words, the hinged and the supported plate behave differently.

Finally, in the Appendix, we show some numerical results for a supported L-shaped plate with
different loads.

2. Existence results

Let us start with some notation. For the appropriate function classes V we write

• hinged case: H0(Ω) :=W 2,2(Ω) ∩W 1,2
0 (Ω),

• supported case: H+(Ω) :=
{
u ∈W 2,2(Ω)

∣∣∣u− := −min(u, 0) ∈W 1,2
0 (Ω)

}
.

We let dλ and ds denote respectively the 2D and 1D boundary Lebesgue measures. Moreover,
differentiation will be denoted with subscripts (e.g. ux, uy, uxy), n and τ will denote the exterior
normal and counter-clockwise oriented tangent vector respectively and the Lp and Wm,p norms will
be written as ‖·‖p and ‖·‖m,p, whenever there is no confusion on the domain of integration. We will
also use the following semi-norm

|u|2,2 =
∥∥∣∣∇2u

∣∣∥∥
2
.

Note that |·|2,2 is a norm in H0(Ω) which is equivalent to ‖·‖2,2. See Appendix 5.

Remark 2.1. One should notice that H+(Ω) is closed in W 2,2(Ω). Indeed, let un ∈ H+(Ω) with
un → u ∈ W 2,2(Ω) in the W 2,2 norm topology. Then un → u in W 1,2(Ω), which implies that

W 1,2
0 (Ω) ∋ u−n → u−. Since W 1,2

0 (Ω) is closed in W 1,2(Ω) it holds that u− ∈W 1,2
0 (Ω).
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2.1. The hinged case

We establish the existence of a minimizer for Jσ in the aforementioned cases. When the plate is hinged,
existence is a straightforward and a classical result but we include it here for the sake of completeness.

Theorem 2.2 (Existence and uniqueness for the hinged case). Let Ω ⊂ Rn be open, bounded with
Lipschitz boundary. Let Jσ be as in (1.2) with −1 < σ < 1 and f ∈ L2(Ω). Then Jσ possesses a
unique minimizer in H0(Ω).

Proof. Defining the bilinear form

ασ(u, v) =

∫

Ω

(
∆u∆v + (1− σ)(2uxyvxy − uxxvyy − uyyvxx)

)
dλ, (2.1)

we can write

Jσ(u) =
1

2
ασ(u, u)−

∫

Ω

fu dλ and J ′
σ(u; v) = ασ(u, v)−

∫

Ω

fv dλ.

One has the following estimate

ασ(u, u) =

∫

Ω

(
(∆u)2 + 2(1− σ)(u2xy − uxxuyy)

)
dλ

= 2

∫

Ω

(
1
2u

2
xx + 1

2u
2
yy + (1− σ)u2xy + σ uxxuyy

)
dλ

≥ 2(1− |σ|)
∫

Ω

(
1
2

(
u2xx + u2yy

)
+ u2xy

)
dλ = (1− |σ|) |u|22,2 (2.2)

and coercivity is implied by Corollary 5.4. Since ασ(u, v) is a continuous bilinear form and satisfies
(2.2), a direct application of the Lax-Milgram Lemma (e.g. [21, page 57]) completes the proof. �

2.2. The supported case and the variational inequality

Proving the existence of minimizers in H+(Ω) is not so straightforward. Two problems appear that
make it more appropriate to consider an alternative approach: the nature of the boundary conditions
and the fact that the corresponding bilinear form is not obviously coercive. Thus, we will prove
existence by studying the corresponding variational inequality and its regularization.

The connection between variational inequalities and minimization problems is well known (see
[17]) and illustrated by the following Lemma which we include for the sake of completeness.

Lemma 2.3. Let X be a Banach space, F ∈ C1(X;R) a convex functional, i.e.

F
(
u+ t (v − u)

)
≤ F (u) + t

(
F (v)− F (u)

)
for u, v ∈ X and t ∈ [0, 1] ,

and let K ⊂ X be closed and convex. For u ∈ K the following statements are equivalent.

(i) F ′(u; v − u) ≥ 0 for all v ∈ K,
(ii) F (u) = min

v∈K
F (v).

Here F ′(u;h) denotes the Gâteaux derivative of F at u in the direction of h.

Proof. (i) ⇒ (ii). Since F is convex, one has that

F ′(u; v − u) = lim
t↓0

F
(
u+ t(v − u)

)
− F (u)

t
≤ F (v)− F (u), for all v ∈ K,

i.e. F (u) ≤ F (v) for all v ∈ K.
(ii) ⇒ (i). Assume that u minimizes F in K and let v ∈ K. Since K is convex it holds that

u+ t(v − u) ∈ K, for all t ∈ [0, 1]. This implies that the C1 function

g(t) := F
(
u+ t(v − u)

)
with t ∈ [0, 1],
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attains its minimum at t = 0, i.e. g′(0) ≥ 0 or

F ′(u; v − u) ≥ 0.

�

We will now move on to the theorem.

Theorem 2.4 (Existence for the supported case). Let Ω ∈ R2 with a Lipschitz boundary and −1 <
σ < 1. Moreover assume that 0 6≡ f ∈ L2(Ω) such that∫

Ω

fζ dλ < 0, for all nontrivial ζ ∈ H+(Ω) with ασ(ζ, ζ) = 0. (2.3)

Then, there exists a minimizer uσ ∈ H+(Ω) of Jσ.

Remark 2.5. (i) The functions ζ which satisfy (2.3) are nothing more than the affine functions with
nonnegative boundary values. They represent the rigid motions of an unloaded plate. Assumption
(2.3) implies that the force density is such that all nontrivial nonnegative rigid motions will increase
the energy: Jσ (u+ r) > Jσ (u) for all r = a · x+ b 	 0 on Ω. For the condition (2.3) to be satisfied it
is not necessary that f is nonpositive everywhere.

(ii) The condition also implies that there exists x0 ∈ ∂Ω such that uσ(x0) = 0: assume that
the plate does not touch ∂Ω and so h = min

x∈∂Ω
uσ(x) > 0. Then uσ − h ∈ H+(Ω) and

Jσ(uσ − h) = Jσ(uσ) +

∫

Ω

fh dλ < Jσ(uσ),

which is a contradiction, since uσ is supposed to be a minimizer. In fact, the same argument shows
that h = 0 is the only affine function such that uσ − h ∈ H+(Ω).

(iii) A failure to fulfill (2.3) will result in the existence of multiple minimizers or even the
non-existence of such. To see this, assume that uσ is a minimizer and that ζ0 is a nontrivial affine
function in H+(Ω) for which

∫
Ω
fζ0 dλ ≥ 0. Then

Jσ(uσ + ζ0) = Jσ(uσ)−
∫

Ω

fζ0 dλ ≤ Jσ(uσ).

Hence uσ, if it exists, is not unique. If
∫
Ω
fζ0 dλ > 0 then no minimizer exists, since uσ+ t ζ0 ∈ H+(Ω)

for all t ≥ 0 and
lim
t→∞

Jσ(uσ + tζ0) = −∞.

Proof of Theorem 2.4. Following Lemma 2.3 a minimizer is a function uσ ∈ H+(Ω) such that

J ′
σ (uσ; v − uσ) ≥ 0 for all v ∈ H+(Ω). (2.4)

Since the functional Jσ is not coercive on W 2,2(Ω) or H+(Ω) we are going to consider an elliptic
regularization of ασ.

Define the inner product ((·, ·)) on W 2,2(Ω) by

((u, v)) =

∫

Ω

(
uv +∇u · ∇v +∇2u · ∇2v

)
dλ

and consider for ε > 0:

ασ,ε(u, v) = ασ(u, v) + ε ((u, v)) for u, v ∈W 2,2(Ω). (2.5)

Let Jσ,ε be the corresponding regularized functional, i.e.

Jσ,ε (u) =
1

2
ασ,ε(u, u)−

∫

Ω

fu dλ,

and let J ′
σ,ε : H+(Ω) →

(
W 2,2(Ω)

)′
denote the Gâteaux derivative of Jσ,ε given by

J ′
σ,ε (u; v) = ασ,ε(u, v)−

∫

Ω

fv dλ.
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We stay within the setting of [17, Chapter III]. Since u 7→
√
ασ,ε (u, u) is a norm on W 2,2(Ω), the

mapping u 7→ J ′
σ,ε(u; ·) is continuous and strictly monotone:

J ′
σ,ε (u;u− v)− J ′

σ,ε (v;u− v) = ασ,ε(u− v, u− v) ≥ 0, for u, v ∈ H+(Ω) (2.6)

with a strict inequality for u 6= v, and coercive in the sense that:

lim
u∈H+(Ω)
‖u‖2,2→∞

J ′
σ,ε (u;u)

‖u‖2,2
= +∞

(take ϕ ≡ 0 in [17, Definition 1.3, p. 84]). We also have that H+(Ω) is closed (see Remark 2.1) and
convex in W 2,2(Ω). Then [17, Corollary 1.8, p. 87] implies the existence of uε ∈ H+(Ω) satisfying

J ′
σ,ε (uε; v − uε) ≥ 0 for all v ∈ H+(Ω). (2.7)

By the strict monotonicity uε is unique: if uε, ũε would both satisfy (2.7), then

0 ≥ J ′
σ,ε (uε;uε − vε)− J ′

σ,ε (vε;uε − vε) = ασ,ε(u− v, u− v) > 0.

Rephrased (2.7) means that

ασ,ε(uε, uε − v) ≤
∫

Ω

f(uε − v) dλ for all v ∈ H+(Ω), (2.8)

which implies

ασ,ε(v, uε − v) = ασ,ε(uε, uε − v)− ασ,ε(uε − v, uε − v)

≤
∫

Ω

f(uε − v) dλ for all v ∈ H+(Ω). (2.9)

In fact (2.8) and (2.9) are equivalent. This equivalence is known as Minty’s lemma (see [17,
Lemma 1.5, p. 84]).

So we have a unique minimizer uε of Jσ (u) +
1
2ε ((u, u)) in H+(Ω).

What happens if we let ε ↓ 0? If ‖uε‖2,2 is uniformly bounded, then, since bounded sets in

W 2,2(Ω) are weakly precompact, there exists uε ∈W 2,2(Ω) and a weakly convergent sequence uεn ⇀
uσ. The weak lower semicontinuity of u 7→ Jσ (u) implies

Jσ (uσ) ≤ lim inf
n→∞

Jσ (uεn) = lim inf
n→∞

(
Jσ,εn (uεn)− 1

2εn ((uεn , uεn))
)

= lim inf
n→∞

Jσ,εn (uεn) ≤ lim inf
n→∞

Jσ,εn (v) = Jσ (v) .

for any v ∈ H+(Ω). So, Jσ has a minimizer uσ and we are done. See also [17, Theorem 2.1, p. 88].
Now suppose that ‖uε‖2,2 is not uniformly bounded, that is, there exists a subsequence {uεn}n∈N

with εn → 0 and ‖uεn‖2,2 → ∞. Setting wn = ‖uεn‖−1
2,2 uεn ∈ H+(Ω), there exists a subsequence, again

denoted wn, that weakly converges in W 2,2(Ω), say wn ⇀ w. Since H+(Ω) is closed and convex it is
also weakly closed by Mazur’s Lemma (see [21, Theorem 6 page 103]). Hence w ∈ H+(Ω). Use (2.8)

and estimate (2.2) with v = 0, ε = εn and divide by ‖uεn‖22,2 to get

0 ≤ (1− |σ|) |wn|22,2 ≤ ασ(wn, wn) =
aσ,ε (uεn , uεn)− εn |uεn |22,2

‖uεn‖22,2

≤ 1

‖uεn‖2,2

∫

Ω

fwn dλ− εn ≤ ‖f‖2 ‖wεn‖2
‖uεn‖2,2

− εn

≤
‖f‖2 ‖wεn‖2,2

‖uεn‖2,2
− εn =

‖f‖2
‖uεn‖2,2

− εn. (2.10)
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Thus it follows that |wn|2,2 → 0 for n → ∞. Moreover the functional |·|2,2 : W 2,2(Ω) → R is weakly
lower semicontinuous. Indeed∫

Ω

|∂αwn|2 dλ−
∫

Ω

|∂αw|2 dλ =

∫

Ω

(∂αwn − ∂αw) (∂αwn + ∂αw) dλ

=

∫

Ω

(∂αwn − ∂αw) (∂αwn − ∂αw + 2∂αw) dλ

=

∫

Ω

(∂αwn − ∂αw)
2
dλ+ 2

∫

Ω

(∂αwn − ∂αw) ∂αw dλ

≥ 2

∫

Ω

(∂αwn − ∂αw) ∂αw dλ

for any multi-index α = (α1, α2) with |α| = 2. Since
∫
Ω
(∂αwn − ∂αw) ∂αw dλ → 0 as n → ∞ we

obtain the claim and thus |w|2,2 = 0. Hence w is affine.

Dividing (2.9) by ‖uεn‖2,2 we find

ασ,εn

(
v, wn − ‖uεn‖−1

2,2 v
)
≤
∫

Ω

f
(
wn − ‖uεn‖−1

2,2 v
)
dλ for all v ∈ H+(Ω). (2.11)

Since wn ⇀ w in W 2,2 (Ω) and since ‖wn‖2,2 = 1 we find that

ασ,εn (v, wn) → aσ (v, w) for n→ ∞.

Since moreover ‖uεn‖−1
2,2 → 0 and

∫
Ω
f wn dλ→

∫
Ω
f w dλ, one finds from (2.11) that

ασ(v, w) ≤
∫

Ω

f w dλ for all v ∈ H+(Ω). (2.12)

Since w is affine, it follows that

0 = ασ(v, w) ≤
∫

Ω

f w dλ ≤ 0 for all v ∈ H+(Ω),

with a strict inequality and hence a contradiction unless w ≡ 0. So w ≡ 0.
By (2.10) we have |wn|2,2 → 0 for n → ∞. The compact embedding of W 2,2(Ω) into W 1,2(Ω)

implies that wn → w strongly in W 1,2(Ω) and it follows that ‖wn‖1,2 → 0. Since ‖.‖1,2 + |.|2,2 and

‖.‖2,2 are equivalent norms one finds that ‖wn‖2,2 → 0 for n→ ∞ which contradicts ‖wn‖2,2 = 1. �

Next we show the uniqueness of the minimizer.

Proposition 2.6. Having the same assumptions as in Theorem 2.4, the minimizer uσ of Jσ is unique
in H+(Ω).

Proof. Let u, v ∈ H+(Ω). Then one has that

J ′
σ(u;u− v)− J ′

σ(v;u− v) =

=

∫

Ω

(
(u− v)2xx + (u− v)2yy + 2σ(u− v)xx(u− v)yy + 2(1− σ)(u− v)2xy

)
dλ

≥ (1− |σ|)
∫

Ω

(
(u− v)2xx + (u− v)2yy + 2(u− v)2xy

)
dλ

= (1− |σ|)|u− v|2,2 ≥ 0 (2.13)

with equality if and only if u− v is affine. Now let vσ ∈ H+(Ω) with vσ 6≡uσ such that

J ′
σ(vσ; v − vσ) ≥ 0, for all v ∈ H+(Ω). (2.14)

Assume that uσ − vσ is not affine. Then, using (2.13) we obtain

J ′
σ(vσ;uσ − vσ) < J ′

σ(uσ;uσ − vσ) = −J ′
σ(uσ; vσ − uσ) ≤ 0
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which is contradicting (2.14), since J ′
σ(uσ; v−uσ) ≥ 0 for all v ∈ H+(Ω). That means that w := uσ−vσ

is affine and one has

Jσ(uσ) = Jσ(vσ + w) = Jσ(vσ)−
∫

Ω

fw dλ > Jσ(uσ)

if and only if w 6≡ 0. �

3. The regularity of hinged plates

A corner with angle 1
2π forms an exceptional case, in the sense that the solution has more regularity

then for corners near 1
2π. We will first consider rectangular plate and would like to remark that similar

results hold locally whenever the plate has a corner with angle 1
2π without being rectangular.

3.1. The hinged rectangular plate

3.1.1. An extension and a density lemma on a rectangle. When one considers functions on Ω that
are 0 on ∂Ω, corners in the boundary ∂Ω may imply loss of regularity or demand extra conditions
for the behaviour of the function near such corners. Usually regularity near the boundary is obtained
by defining an extension operator on functions on Ω to those that live on a neighbourhood of Ω. For
domains with corners such an extension operator may be, if it exists, rather technical. The straight
angles of a rectangle

R = (0, a)× (0, b) (3.1)

with a, b > 0 however allow the following straightforward extension:

Lemma 3.1. Let R be as in (3.1). For u : R → R let us define

Eu (x, y) =





u (x, y) for (x, y) ∈ R,
−u (−x, y) for (−x, y) ∈ R,
−u (x,−y) for (x,−y) ∈ R,
u (−x,−y) for (−x,−y) ∈ R,

0 elsewhere.

Hence Eu defines a function from [−a, a]× [−b, b] to R. Set R0 = (−a, a)× (−b, b). Then
1. Let γ ∈ [0, 1]. The operator E : C1,γ

(
R
)
∩ C0

(
R
)
→ C1,γ

(
R0

)
∩ C0

(
R0

)
is continuous.

2. The operator E :W 2,2 (R) ∩W 1,2
0 (R) →W 2,2 (R0) ∩W 1,2

0 (R0) is continuous.

Figure 3. The construction of this extension can be viewed as unfolding a bulging doubly
folded piece of paper.

Proof. We will prove that the range of E is well defined and contained in the appropriate spaces. The
continuity is then immediate. Let us consider

E1u (x, y) =





u (x, y) for (x, y) ∈ R,
−u (−x, y) for (−x, y) ∈ R,

0 elsewhere,

which defines a first antisymmetric reflection to [−a, a] × [0, b] . With a similarly defined E2 in the
y-direction one finds E = E2 ◦ E1. It is thus enough to give the proof for E1.
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For the first item it is sufficient to notice that due to u (0, y) = 0 the function E1u and its first
derivatives are continuous over {0} × [0, b].

A short proof of the second item uses elliptic regularity. Set

f (x, y) =





− (∆u) (x, y) for (x, y) ∈ R,
(∆u) (−x, y) for (−x, y) ∈ R,

0 elsewhere.

Then f ∈ L2 (Ω). Let R1 = (−a, a)× (0, b) and consider the following
{

−∆ũ = f on R1,
ũ = 0 on ∂R1,

(3.2)

Problem (3.2) has a unique weak solution ũ ∈ W 1,2
0 (R1) and since R1 is convex one even finds

ũ ∈W 2,2 (R1) (see [16]). Now define

û (x, y) = −ũ (−x, y) .
Then û ∈W 2,2 (R1) and it satisfies (3.2). Since strong solutions of (3.2) are unique (see [11]) we find
ũ ≡ û and thus

ũ(0, y) = û(0, y) = −ũ(0, y), i.e. ũ (0, y) = 0.

Thus ũ − u ∈ W 2,2 (R) and since −∆(ũ− u) = 0 in R and ũ = u = 0 on ∂R we find by uniqueness
that ũ ≡ u on R, that is ũ ≡ E1u ∈W 2,2 (R1). �

Remark 3.2. Let GR1
denote the solution operator for (3.2). Then the last steps of the proof say

EGR = GR0E. (3.3)

We recall the following definitions

Ck(R) =
{
u ∈ Ck(R); ∂αu bounded, uniformly continuous in R,
for all α ∈ N× N with |α| ≤ k} ,

C∞(R) =
∞⋂

k=0

Ck(R),

C0(R) =
{
u ∈ C(R); u = 0 on ∂R

}
.

Since R is bounded and has a Lipschitz boundary there exists a total extension operator for R (see [2,
Theorem 5.24, p. 154]) and thus C∞(R) coincides with the space of functions in C∞

(
R2
)
, restricted

to R.
The result that follows is closely related to [15, Theorem 1.6.2].

Corollary 3.3. C∞(R) ∩ C0(R)
‖·‖2,2

= H0(R).

Proof. Since C∞(R) ∩ C0(R) ⊂ H0(R) and H0(R) is closed the ⊂-direction is immediate. Let us
write R00 = (−2a, 2a) × (−2b, 2b). For the other inclusion we may use Lemma 3.1 twice to define a
extension operator

Ẽ : RR → RR00 , (3.4)

that is, from functions on R to functions on R00. First we extend in an odd way as for E from
[0, a] × [0, b] to [0, 2a] × [0, 2b] and next again in an odd way, which could also be called a periodic

extension, from [0, 2a] × [0, 2b] to [−2a, 2a] × [−2b, 2b]. See Figure 4. By Lemma 3.1 Ẽ is continuous

as operator from W 2,2 (R) ∩W 1,2
0 (R) to W 2,2 (R00) ∩W 1,2

0 (R00).
Next we define a function χ ∈ C∞ (R00) with 0 ≤ χ ≤ 1 which satisfies

χ =

{
1 on

(
− 4

3a,
4
3a
)
×
(
− 4

3b,
4
3b
)
,

0 on R00 \
(
− 5

3a,
5
3a
)
×
(
− 5

3b,
5
3b
)
.
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Figure 4. Ẽ extends a function on R to a function on R00 by respectively ‘unfolding’ to
east, north, west and south.

If u ∈ H0(R) then Ẽu ∈ H0(R00) and χẼu ∈ W 2,2
0 (R00). Using the standard mollifier with z =

(x, y) ∈ R2

ϕ1(z) :=

{
ce

− 1
1−|z|2 , for |z| < 1,

0, for |z| ≥ 1

with c−1 =

∫

R2

e
− 1

1−|z|2 dλ and ϕε(z) = ε−2ϕ1(z/ε), we find for the convolution

ϕε ∗ χẼu ∈ C∞
0 (R00) for ε < dist

(
suppχẼu, ∂R00

)
= min

(
a

3
,
b

3

)

and ∥∥∥ϕε ∗ χẼu− Ẽu
∥∥∥
W 2,2(R00)

→ 0 for ε ↓ 0.

It follows that ∥∥∥∥
(
ϕε ∗ χẼu

)
|R

− u

∥∥∥∥
W 2,2(R)

→ 0 for ε ↓ 0.

By the symmetry of Ẽ and ϕε and the fact that χ = 1 near ∂R it follows that ϕε ∗ χẼu = 0 on ∂R
for ε small enough. Hence

(
ϕε ∗ χẼu

)
|R

∈ C0

(
R
)
for those small ε. �

3.1.2. The Dirichlet Laplace problem on a rectangle. We will show that a hinged rectangular plate
solves the Navier Bilaplace problem. To that end we recall some results for the Dirichlet Laplace
problem on a rectangle.

In the proof of Lemma 3.1 we have used properties of the solution of the Dirichlet-Laplace
problem. Indeed, if f ∈ L2 (R) then the solution of

{
−∆u = f on R,

u = 0 on ∂R,
(3.5)

satisfies u ∈ W 2,2 (R) ∩W 1,2
0 (R). If f ∈ Cγ (R) with γ ∈ (0, 1), then Ẽf ∈ L∞ (R00) and in general

Ẽf 6∈ Cγ (R00), such that for the solution we may conclude using regularity on R00 that u ∈W 2,p (R)
for any p ∈ (1,∞) and through a Sobolev imbedding that u ∈ C1,θ

(
R
)
for any θ ∈ (0, 1). This is the

optimal regularity if we refrain from putting additional restrictions on f .

3.1.3. Iterated Dirichlet Laplace and Navier Bilaplace. Concerning the Navier boundary conditions
for the Bilaplace operator, i.e. the problem

{
∆2u = f on R,

∆u = u = 0 on ∂R,
(3.6)

an iterated use of the regularity for (3.5) yields a function u ∈W 2,2(R) with ∆u ∈W 2,2(R) satisfying
{

−∆u = w in R,
u = 0 on ∂R,

{
−∆w = f in R,
w = 0 on ∂R. (3.7)
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But this does not give a priori the optimal result: For any bounded domain Ω and f ∈ L2(Ω) one
obtains a unique weak solution û ∈ H0 (Ω) of (3.6) by minimizing the functional

J1 (u) =

∫

Ω

(
1
2 (∆u)

2 − fu
)
dλ.

On smooth boundary parts one finds that this solution û satisfies ∆û = 0. However, this function
is not necessarily the same as the system solution: ∆u ∈ W 2,2 (Ω) does not imply u ∈ W 4,2 (Ω) in
general (see [27]).

However, if f = 0 on ∂R and f ∈ Cγ (R), then Ẽf ∈ Cγ (R00). This implies that when we
consider (3.6) as an iterated Dirichlet Laplacian a better regularity result is available for the second
step.

Lemma 3.4. If f ∈ L2 (R) then the weak solution (u,−∆u) ∈ W 1,2
0 (R) ×W 1,2

0 (R) of (3.7) satisfies
u ∈W 4,2 (R).

Proof. Assuming that Ẽ and R00 are as in (3.4), we have that Ẽf ∈ L2 (R00). Solving
{

∆2ũ = Ẽf on R00,
∆ũ = ũ = 0 on ∂R00,

(3.8)

one finds by standard regularity theory (see [1]) for the weak solution that ũ ∈W 4,2
loc (Ω) for any

domain Ω with Ω ⊂ R00. This implies that ũ|R ∈W 4,2 (R). Since Ẽf is antisymmetric and the weak
solution of (3.8) is unique, applying an argument similar to that in the proof of Lemma 3.1(2) one
finds that ũ satisfies

ũ (x, y) = −ũ (−x, y) = −ũ (x,−y) = ũ (−x,−y)
for x ∈ R0 = (0, 2a)× (0, 2b). Thus

∆ũ (x, y) = −∆ũ (−x, y) = −∆ũ (x,−y) = ∆ũ (−x,−y)

which implies that ũ = ∆ũ = 0 on ∂R. So we have found that
(
ũ|R,−∆ũ|R

)
is a solution to

(3.6). Hence we may conclude that u ≡ ũ|R ∈W 4,2 (R). �

3.1.4. A regularity result for the rectangular plate. Let us use the following notation

K(u) :=

∫

R

det(∇2u)dλ, for u ∈W 2,2(R),

where ∇2u is the Hessian matrix of u and det(∇2u) = uxxuyy − u2xy. Defining

J1(u) :=

∫

R

(
1
2 (∆u)

2 − fu
)
dλ

we obtain the following decomposition of the energy functional:

Jσ(u) = J1(u)− (1− σ)K(u). (3.9)

In fact K(u) will turn out to be a boundary term and its behaviour is going to yield the corresponding
natural boundary conditions for a Kirchhoff plate (see also [15, Lemma 2.2.2]). When the domain is
smooth, one can apply the argumentation found in [28] or [31]. For our rectangular domain we use
Corollary 3.3.

Lemma 3.5. Let u ∈ C∞(R) ∩ C0(R). Then for all v ∈ C∞(R)

K′ (u; v) = −
∫

∂R

uτnvτdτ = 2 [uxyv]
(a,0)& (0,b)
(0,0)& (a,b) +

∫

∂R

uττnvdτ.

Here the entries above have a plus sign, those below a minus sign.
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Proof. Standard use of Fubini and integrating by parts gives

∫

R

uxyvxy dλ =

∫ a

0

[uxy(x, y)vx(x, y)]
b
y=0 dx−

∫ a

0

∫ b

0

uxyy(x, y)vx(x, y) dy dx

=

∫ b

0

[uxy(x, y)vy(x, y)]
a
x=0 dy −

∫ b

0

∫ a

0

uxxy(x, y)vy(x, y) dx dy.

Since R has boundary parts parallel to the axes,

u(x, 0) = u(x, b) = u(0, y) = u(a, y) = 0

implies that

uxx(x, 0) = uxx(x, b) = uyy(0, y) = uyy(a, y) = 0,

and one obtains
∫

R

uxxvyy dλ =

∫ a

0

[uxx(x, y)vy(x, y)]
b
y=0 dx−

∫ a

0

∫ b

0

uxxy(x, y)vy(x, y) dy dx

= −
∫ a

0

∫ b

0

uxxy(x, y)vy(x, y) dy dx

and similarly

∫

R

uyyvxx dλ =

∫ b

0

[uyy(x, y)vx(x, y)]
a
x=0 dy −

∫ b

0

∫ a

0

uxyy(x, y)vx(x, y) dx dy

= −
∫ b

0

∫ a

0

uxyy(x, y)vx(x, y) dx dy.

Thus, a direct calculation yields that

K′(u; v) =

∫

R

(uxxvyy + uyyvxx − 2uxyvxy) dλ

= −
∫ a

0

[uxy(x, y)vx(x, y)]
b
y=0 dx−

∫ b

0

[uxy(x, y)vy(x, y)]
a
x=0 dy

= −
∫

∂R

uτnvτdτ.

Moreover, by

−
∫ a

0

uxy(x, b)vx(x, b)dx = − [uxyv]
(a,b)
(0,b) +

∫ a

0

uxxy(x, b)v(x, b)dx,

∫ a

0

uxy(x, 0)vx(x, 0)dx = [uxyv]
(a,0)
(0,0) −

∫ a

0

uxxy(x, b)v(x, b)dx,

−
∫ b

0

uxy(a, y)vy(a, y)dy = − [uxyv]
(a,b)
(a,0) +

∫ b

0

uxyy(a, y)v(a, y)dy,

∫ b

0

uxy(0, y)vy(0, y)dy = [uxyv]
(0,b)
(0,0) −

∫ b

0

uxyy(0, y)v(0, y)dy,

we find

K′(u; v) = 2 [uxyv]
(a,0)& (0,b)
(0,0)& (a,b) +

∫

∂R

uττnvdτ

and the lemma is proved. �

Corollary 3.6. K(u) = 0 for all u ∈ H0(R).
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Proof. Let u ∈ H0(R). Using Corollary 3.3 we can find a sequence {uk}k∈N ⊂ C∞(R) ∩ C0(R) such
that uk → u in H0(R) for k → ∞. For uk ∈ C∞(R) ∩ C0(R) one finds

K(uk) =
1

2
K′ (uk;uk)

and by Lemma 3.5

K′ (uk;uk) = −
∫

∂R

(uk)τn (uk)τ dτ = 0.

Since (u, v) 7→ K′(u; v) is continuous on H0(R)×H0(R), one has

K(u) =
1

2
K′ (u;u) =

1

2
lim
k→∞

K′ (uk;uk) = 0.

�

Remark 3.7. Thus, in the case of a rectangular plate with fixed boundary the total energy functional
becomes

Jσ(u) = J1(u) =

∫

R

(
1
2 (∆u)

2 − fu
)
dλ.

Corollary 3.8. If ũ is a minimizer of Jσ in H0(R) with f ∈ L2(R) then u ∈W 4,2(R).

Proof. This is a direct result of Remark 3.7 and Lemma 3.4. �

3.2. A plate with corners of arbitrary opening angle

Here we consider the general case where the corners of the plate have an arbitrary opening angle
ω ∈ (0, 2π), measured from the inside. Note that one does not expect that the solution will have the
regularity that a rectangular plate exhibits, unless some orthogonality conditions are fulfilled. Follow-
ing the theory developed by Kondrat’ev and Williams [18, 32], the solutions will have an expansion
near the corner consisting of a regular part and a singular one. The coefficients of these “singular
eigenfunctions” depend on the domain and f ; they are going to be zero only when f is orthogonal to
a set of “adjoint eigenfunctions”. Before we move on we will need the following definitions:

Definition 3.9 (Weighted Sobolev spaces on cones.). Let m ∈ N2 and (r, θ) be a polar coordinate
system centered at x0 ∈ Rn. For ω ∈ (0, 2π) let

Kx0,ω := {(r cos θ, r sin θ) ∈ R2; r > 0 and 0 < θ < ω}.
Then we define

‖u‖V k
α (Kx0,ω) :=


 ∑

|m|≤k

∫

Kx0,ω

r2(α−k−|m|)|∂mu|2 dx




1
2

(3.10)

and the following weighted space on Kx0
:

V k
α (Kx0,ω) := C∞

0 (Kx0,ω \ {x0})
‖·‖

V k
α . (3.11)

Remark 3.10. For S ⊂ Ω we take

C∞
0

(
Ω \ S

)
:=
{
u ∈ C(Ω); ∃v ∈ C∞(Rn), such that v|Ω = u and suppu ⊂ Ω \ S

}
.

Next we are going to define a weighted Sobolev space over a bounded domain Ω ⊂ R2. For that,
we are assuming that ∂Ω is C2-smooth with the exception of a finite number of points, where it locally
coincides with a cone, that is, if x ∈ ∂Ω is a singular point, there exists ε > 0 and ω ∈ (0, 2π) such
that

Ω ∩Bε(x) = Kx,ω ∩Bε(x), (3.12)

where Kx,ω is as in the above Definition.
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Definition 3.11 (Weighted Sobolev spaces on domains.). Let S be the set of conical points of ∂Ω. Let
ε > 0 be such that (3.12) holds for every x ∈ S and for these x ∈ S let ζx ∈ C∞(Ω) be a cut-off
function with

ζx =

{
1 in Ω ∩Bε/2(x),
0 in Ω \Bε(x).

Moreover, set ζ = 1−∑x∈S ζx and

ζ̂xu =

{
ζxu in Ω ∩Bε(x) ⊂ Kx,
0 in Kx \Bε(x).

Then we define

V k
α (Ω) := C∞

0 (Ω \ S)
‖·‖

V k
α (Ω)

, (3.13)

where

‖u‖V k
α (Ω) := ‖ζu‖Wk,2(Ω) +

∑

x∈S

∥∥ζ̂xu
∥∥
V k
α (Kx)

. (3.14)

Definition 3.12. We define V
k−1/2
α (∂Ω) to be the space of traces on ∂Ω of functions in V k

α (Ω) with
the norm

‖u‖
V

k−1/2
α (∂Ω)

:= inf
v∈V k

α (Ω)
‖v‖V k

α (Ω) .

For boundary value problems on polygonal domains we refer to the monographs [14, 15]. For
more general elliptic operators with a wider class of singularities see [19, 20, 25, 26]. The biharmonic
problem for a so-called freely supported plate is studied in [24].

3.2.1. The boundary value problem. We start with two useful observations that are going to enable us
to compare minimizers and solutions for the hinged plate boundary value problem in weighted spaces.
The goal is to show that a minimizer of Jσ in H0(Ω) satisfies a boundary value problem away from
the cornerpoints in a weighted Sobolev space and vice versa. Thus we are going to be able to prove
existence of a strong solution in a weighted space.

Lemma 3.13. Let uσ be a minimizer of Jσ in H+(Ω). Then

J ′(uσ;uσ) = 0 and J ′(uσ; v) ≥ 0 for all v ∈ H+(Ω). (3.15)

Proof. Since uσ is a minimizer, it satisfies the variational inequality

J ′(uσ; v − uσ) ≥ 0 for all v ∈ H+(Ω).

Taking v = 2uσ ∈ H+(Ω) and v ≡ 0 ∈ H+(Ω) completes the proof. �

In the next lemma we consider for ω ∈ (0, 2π) the bounded cone

Ωω :=
{
(r cos θ, r sin θ) ∈ R2; 0 < r < 1 and 0 < θ < ω

}
.

Lemma 3.14. Let ∂i, for i = 1, ...,4 a multiindex with i = |i|, denote any partial derivative of order i.
Then the bilinear forms

(i) b1(u, v) :=

∫

∂Ωω

∂2u ∂1v ds,

(ii) b2(u, v) :=

∫

Ωω

∂2u ∂2v dxdy and

(iii) b3(u, v) :=

∫

Ωω

∂4u v dxdy

are continuous in V 4
2 (Ωω)×H0(Ωω).
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Proof. (i) Since u ∈ V 4
2 (Ωω), one gets that ∂2u ∈ V 2

4 (Ωω), that is

∂2u|∂Ωω
∈ V

3/2
4 (∂Ωω) ⊂ V 0

1/2(∂Ωω),

with the last imbedding taken from [19, Lemma 6.1.2]. On the other hand, we have that

H0(Ωω) ⊂ V 2
0 (Ωω) ∩ V 1

−1(Ωω)

(see [27, Lemma 3.4]) and thus ∂1v|∂Ωω
∈ V

1/2
0 (∂Ωω) ⊂ V 0

−1/2(∂Ωω). Then, by Cauchy-Schwarz, one
gets

|b1(u, v)| =

∫

∂Ωω

(r
1
2 ∂2u) (r

− 1
2 ∂1v) ds

≤
(∫

∂Ωω

r (∂2u)2 ds

) 1
2
(∫

∂Ωω

r−1(∂1v)2 ds

) 1
2

≤ c
∥∥∂2u

∥∥
V 2
2 (Ωω)

‖v‖V 2
0 (Ωω) .

(ii) The result is immediate since ∂2u ∈ V 2
2 (Ωω) ⊂ V 0

0 (Ωω) = L2(Ωω).
(iii) One has the following estimate

|b3(u, v)| =

∫

Ωω

(r2∂4u)(r−2v) dxdy

≤
(∫

Ωω

r4|∂4u|2 dxdy
) 1

2
(∫

Ωω

r−4|v|2 dxdy
) 1

2

. (3.16)

=
:
A

=
:
B

Moreover, since u ∈ V 4
2 (Ωω), we get that

A2 ≤
∑

|m|≤4

∫

Ωω

r2|m|−4|∂mu|2 dxdy = ‖u‖2V 4
2 (Ωω) (3.17)

and since v ∈ H0(Ωω) ⊂ V 2
0 (Ωω) (see [27, Lemma 3.4]) it holds with Corollary 5.4 that

B2 ≤
∑

|m|≤2

∫

Ωω

r2|m|−4|∂mv|2 dxdy = ‖v‖2V 2
0 (Ωω) ≤ c ‖v‖22,2 . (3.18)

Combining (3.16), (3.17) and (3.18) completes the proof. �

The above Lemma enables us to integrate by parts functions which belong to a weighted space.

Corollary 3.15. Let Ω ⊂ R2 be bounded, piecewise smooth with corner boundary singularities, u ∈
V 4
2 (Ω) and v ∈ H0(Ω). Then the following Green’s identity holds:

∫

Ω

∆u∆v dxdy =

∫

Ω

∆2u v dxdy +

∫

∂Ω

∆u ∂nv ds. (3.19)

Proof. Let S be the set of cornerpoints of ∂Ω and {uk}k∈N
⊂ C∞

0

(
Ω \ S

)
, such that

lim
k→∞

‖uk − u‖V 4
2 (Ω) = 0.

Then, (3.19) holds true for u ≡ uk and Lemma 3.14 allows us to take the limit as k → ∞ to complete
the proof. �

As in previous sections, we define

K(u) :=

∫

Ω

det(∇2u) dxdy

for u ∈W 2,2(Ω), where ∇2u denotes the Hessian matrix of u.



Hinged and supported plates with corners 17

Corollary 3.16. Let Ω ⊂ R2 be bounded and piecewise smooth with corner boundary singularities and
let S be the set containing the corners of ∂Ω. Then the following holds true:

(i) For all u ∈ H0(Ω) and v ∈W 3,2(Ω) it holds that

K′(u; v) =

∫

∂Ω

(κ(s) ∂nu ∂nv + ∂nu ∂ττv) ds. (3.20)

(ii) For all u ∈ H0(Ω) we have

K(u) =
1

2

∫

∂Ω

κ(s)(∂nu)
2 ds. (3.21)

(iii) (u, v) 7−→ K′(u; v) is a continuous bilinear form on V 4
2 (Ω)×H0(Ω).

Proof. For smooth u, v one obtains (i) and (ii) by a direct computation; see for example [10, 28]. The
proof follows then by a density argument and by using [15, Theorem 1.6.2].

Concerning (iii), one gets

K′(u; v) =

∫

∂Ω

(κ(s) ∂nu ∂nv + ∂nv ∂ττu) ds

for u ∈ C∞
0

(
Ω\S

)
and v ∈ H0(Ω). The result follows then by density with the help of Lemma 3.14. �

Now we are able to give the relationship between the minimization and the boundary value
problem for a hinged plate.

Corollary 3.17. Let f ∈ L2(Ω) and −1 < σ < 1.

• The solution of the hinged plate, i.e. the unique minimizer of Jσ in H0(Ω) lies in W 4,2 (Ω1), for
any open Ω1 with Ω̄1 ⊂ Ω̄ \ S, and satisfies




∆2u = f a.e. in Ω,
u = 0 on ∂Ω,

∆u− (1− σ)κ∂nu = 0 on ∂Ω \ S,
(3.22)

where S is the set of corners of ∂Ω.
• If u ∈ V 4

2 (Ω) satisfies (3.22) then it is a minimizer of Jσ in H0(Ω).

Proof. Let ε > 0 and define

B(S) :=
⋃

x∈S

Bε(x).

Since problem (3.22) is regular on ∂Ω \ S and the boundary of the domain is smooth away from the
corners, one can show, using standard regularity techiniques, that the minimizer u ∈ H0(Ω) of Jσ lies

in W 4,2
(
Ω \B(S)

)
. Then one has that J ′(u;ϕ) = 0 for all ϕ ∈ C∞(Ω) ∩ C0(Ω) compactly supported

with suppϕ ⊂ Ω \B(S) and an integration by parts is allowed:

0 =

∫

∂Ω\B(S)

(∆u∆ϕ− fϕ) dxdy − (1− σ)K′(u;ϕ)

=

∫

Ω\B(S)

(
∆2u− f

)
ϕ dx+

∫

∂Ω\B(S)

(
∆u− (1− σ)κ∂nu

)
∂nϕ ds

−
∫

∂Ω\B(S)

(
(1− σ) ∂ττnu+ ∂n∆u

)
ϕ ds. (3.23)

Thus, one obtains the differential equation in Ω \ B(S) and the natural boundary condition on ∂Ω \
B(S). Letting ε→ 0 we get that

∆2u = f in Ω and ∆u− (1− σ)κ∂nu = 0 on ∂Ω \ S.
On the other hand, (3.20) and Green’s identity (3.19) imply that if for the solution u to (3.22)

holds that u ∈ V 4
2 (Ω), then u will satisfy the weak Euler-Lagrange equation Jσ(u; v) = 0 for all

v ∈ H0(Ω). �
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3.2.2. Kondrat’ev’s expansion near a corner. Let ω ∈ (0, 2π) and define

Kω :=
{
(r cos θ, r sin θ) ∈ R2; r > 0 and 0 < θ < ω

}
, (3.24)

an infinite circular sector of R2, centered at the origin with an opening angle ω. Consider the following
problem {

∆2u = f in Kω,
u = ∆u = 0 on ∂Kω.

(3.25)

According to [18], for solving (3.25) one needs to find the nonzero solutions for the following two-point
boundary value problem





v′′′′2)v′′2(λ− 2)2v(θ) = 0, when θ ∈ (0, ω),
v(0) = v′′(0) = 0,
v(ω) = v′′(ω) = 0.

(3.26)

We assume that Ω is smooth with the exception of N corners with interior opening angles ωi ∈ (0, 2π)
for i = 1, .., N . Using the results of the previous section we are able to prove a regularity assertion for
a hinged plate.

Proposition 3.18. Let f ∈ L2(Ω) and assume for all i = 1, .., N that ωi ∈ (0, 2π). Then the weak
solution u for (3.22), i.e. the minimizer of Jσ in H0(Ω), belongs to V 4

2 (Ω).

Proof. We first show the existence of a solution for (3.22) in V 4
2 (Ω), when f belongs in a larger space

than L2(Ω). Assume, for the time being, that f ∈ V 0
2 (Ω) and define the operator

L : V 4
2 (Ω) → V 0

2 (Ω) with Lu := ∆2u and

D(L) := {u ∈ V 4
2 (Ω); u = 0 on ∂Ω and ∆u− (1− σ)κ∂nu = 0 on ∂Ω \ S}.

Note that functions in V 4
2 (Ω) lie in W 2,2 (Ω) and are hence continuous since Ω ⊂ R2; so u is defined

pointwise. Away from corners the function u is C2 up to the boundary and thus the second boundary
condition is well defined. So D(L) and hence the operator L is well defined. Now we apply [19, Theorem
6.3.3] to find that L is Fredholm when λ 6= 1, where λ is any eigenvalue of problem (3.26). We can
directly solve (3.26) by assuming exponential type solutions, to obtain for each j a pair of eigenvalues
λj , µj corresponding to the same type of eigenfunctions Φj :

λj =
jπ

ω
and µj =

jπ

ω
+ 2 with Φj = sin

(
jπ

ω
θ

)
.

Thus, L is Fredholm when ωi 6= 0, π, 2π and its range coincides with the set of all functions f ∈ V 0
2 (Ω)

such that ∫

Ω

fv dxdy = 0 for all v ∈ kerL†,

where the operator L† : V 4
2 (Ω) → V 0

2 (Ω) is defined similarly to L but by considering the formally
adjoint problem to (3.22): Let u, v ∈ C∞

0 (Ω \ S) and calculate
∫

Ω

(
∆2u

)
v dxdy +

∫

∂Ω

(∆u− (1− σ)κ∂nu) ∂nv ds

=

∫

Ω

∆u∆v dxdy − (1− σ)

∫

∂Ω

κ∂nu ∂nv ds

=

∫

Ω

(
∆2v

)
u dxdy +

∫

∂Ω

(∆v − (1− σ)κ∂nv) ∂nu ds.

Thus, in view of [19, Section 6.2.3], we obtain L = L†, that is, the problem (3.22) is formally self-
adjoint. To complete the proof of this step we need to show that kerL = {0}. Let u ∈ V 4

2 (Ω) be such
that {

∆2u = 0 in Ω,
u = ∆u− (1− σ)κ∂nu = 0 on ∂Ω \ S. (3.27)
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Since V 4
2 (Ω) ⊂ V 2

0 (Ω) ⊂ W 2,2(Ω), Corollary 3.17 implies that u is the unique minimizer of Jσ in
H0(Ω) with f ≡ 0, that is u ≡ 0. �

4. The comparison argument

4.1. A rectangular plate

Finally we can state our main result. The right angles of our rectangle will allow us to deploy an
argument based on Serrin’s corner point Lemma ([29]).

Theorem 4.1. Let f ∈ L2(R) with 0 6≡ f ≤ 0. Then, the minimizer ũ of J1 in H0(R) cannot be a
minimizer of Jσ in H+(R).

Proof. We proceed by contradiction and assume that ũ ∈ H0(R) minimizes Jσ also in H+(R). By
Corollary 3.8 we find that ũ ∈ W 4,2 (R). Consequently, Sobolev’s embedding Theorem implies that
ũ ∈ C2,θ(R) for 0 < θ < 1 and that the traces of 3rd order derivatives of ũ are well defined in L2(∂R).

Letting v ∈ C∞(R) and integrating by parts the corresponding variational inequality we find

J ′
σ(ũ; v − ũ) = J ′

σ(ũ; v)− J ′
σ(ũ; ũ) = J ′

σ(ũ; v)

= J ′
1(ũ; v)− (1− σ)K′(ũ; v)

=

∫

R

(∆ũ∆v − fv) dλ− (1− σ)K′(ũ; v). (4.1)

Moreover, since ũ also minimizes Jσ in H0(R), Remark 3.7 yields that ∆ũ = 0 on ∂R. Hence we have
∫

R

∆ũ∆v dλ =

∫ a

0

[∆ũ vy −∆ũy v]
b
y=0 dx+

∫ b

0

[∆ũ vx −∆ũx v]
a
x=0 dy

+

∫

R

∆2ũ v dλ

=

∫

R

∆2ũ v dλ−
∫ a

0

[∆ũy v]
b
y=0 dx−

∫ b

0

[∆ũx v]
a
x=0 dy

=

∫

R

∆2ũ v dλ−
∫

∂R

∂n (∆ũ) v dτ.

Using Lemma 3.5, Corollary 3.3 and the density of smooth functions into L2(∂R) we find

J ′
σ(ũ; v − ũ) =

∫

R

(
∆2ũ− f

)
v dλ−

∫

∂R

∂n (∆ũ+ (1− σ) ũττ ) v dτ

−2 (1− σ) [ũxyv]
(a,0)& (0,b)
(0,0)& (a,b) .

Since we assumed that ũ is a minimizer in H+ (R) one has J ′
σ(ũ; v − ũ) ≥ 0 for all v ≥ 0 on ∂R and

thus ∆2ũ = f and ∫

∂R

∂n (∆ũ+ (1− σ) ũττ ) v dτ + 2 (1− σ) [ũxyv]
(a,0)& (0,b)
(0,0)& (a,b) ≤ 0. (4.2)

Since ũ = 0 on ∂R and f ≤ 0 is nontrivial, then ũxy will have a sign at these corners. We claim that
ũxy(0, 0) < 0. Since ũ ∈W 4,2 (R) the function ũ solves

{
−∆ũ = w in R,
ũ = 0 on ∂R,

where w solves {
−∆w = f in R,
w = 0 on ∂R.

By the maximum principle it follows for f ≤ 0 and nontrivial, that w < 0 in R. A application of the
maximum principle to ũ implies ũ < 0 and by Hopf’s boundary point Lemma even that, on a boundary
point which is not a corner, that ũn > 0. At corners, ũ = 0 on ∂R and the C2 smoothness imply
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∇ũ = 0. Hence we may use Serrin’s corner point lemma (see [29]) which implies that ũγγ(0, 0) < 0 for

all directions γ, entering R non-tangentially. Taking γ =
(
1
2

√
2, 12

√
2
)
we have

ũγγ(0, 0) =
1
2 ũxx(0, 0) + ũxy(0, 0) +

1
2 ũyy(0, 0) = ũxy(0, 0).

So we find ũxy(0, 0) < 0. Let ε > 0 and consider the test function vε (x, y) = e−(x
2+y2)/ε. We then

find that ∫

∂R

∂n (∆ũ+ (1− σ) ũττ ) vε dτ = O (ε) for ε ↓ 0

and

2 (1− σ) [ũxyvε]
(a,0)& (0,b)
(a,b) = O

(
e−min(a,b)2/ε

)
≤ O (ε) for ε ↓ 0.

However

2 (1− σ) [ũxyvε](0,0) = −2 (1− σ) ũxy (0, 0) > 0,

and we find ∫

∂R

∂n (∆ũ+ (1− σ) ũττ ) vε dτ + 2 (1− σ) [ũxyvε]
(a,0)& (0,b)
(0,0)& (a,b) =

= O (ε)− 2 (1− σ) ũxy (0, 0) > 0,

for ε sufficiently small, a contradiction to (4.2). �

4.2. Comparison using Kondrat’ev’s “singular eigenfunctions”

We need to have a more accurate picture of the behaviour of the solution to the hinged plate problem
in the neighbourhood of a corner. To that end, we compute the asymptotic expansion given by Kon-
drat’ev’s theory, developed in the previous section. From now on and in order to avoid technicalities,
we will assume that the function f is smooth.

Corollary 4.2. Assume that u ∈ V 4
2 (Ω) solves (3.22) for f ∈ C∞

0

(
Ω \ S

)
. Then, for each corner of

opening angle ωi ∈ (0, 2π)\{π}, there exist constants mωi , cj , dj, such that, in a neighbourhood of this
corner, u has the following expansion:

u =
∑

0< jπ
ω <m+3

cjr
jπ
ω sin

(
jπ

ω
θ

)
+

∑

0<2+ jπ
ω <m+3

djr
2+ jπ

ω sin

( |j|π
ω
θ

)
+ w (4.3)

with m > mωi
and w ∈ V m+4

0 (Ω). Moreover, if ul denotes the lowest order term in the above expansion
(i.e. the smallest power of r), then for

• ω ∈ (0, π) : ul = c1 r
π
ω sin

(
π
ω θ
)
,

• ω ∈
(
π, 3π2

)
: ul = d−1 r

2− π
ω sin

(
π
ω θ
)
,

• ω = 3π
2 : ul = r

4
3

(
d−1 sin

(
2
3θ
)
+ c2 sin

(
4
3θ
))
,

• ω ∈
(
3π
2 , 2π

)
: ul = c2 r

2π
ω sin

(
2π
ω θ
)
.

Note that in the last case the lowest order term is sign-changing.

Proof. Since f ∈ C∞
0

(
Ω \ S

)
, we have that f ∈ V m

0 (Ω) for all m ∈ N. A solution of the hinged

plate problem satisfies u ∈ V 4
2 (Ω) ⊂ V 4

3 (Ω) and thus one can apply [18, Theorem 3.3] with k1 = m,
k = α1 = 0, and α = 3 to obtain that the solution will have the expansion

u =
∑

0< jπ
ω <m+3

cjr
jπ
ω sin

(
jπ

ω
θ

)
+

∑

0<2+ jπ
ω <m+3

djr
2+ jπ

ω sin

( |j|π
ω
θ

)
+ w (4.4)

whenever jπ
ω 6= m+3 with w ∈ V m+4

0 (Ω). Since ω 6= π, 2π, we can always choose m as large as needed,
such that

j =
ω

π
(m+ 3) (4.5)
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Figure 5. The exponents of the radial part of the expansion (4.3). The lowest order terms
are given by the thick blue line; everything below the horizontal grey line is “too singular”,
i.e. does not belong in W 2,2(Ω).

is not a positive integer: If ω
π ∈ Q and ω

π (m + 3) ∈ N, then ω
π (m + 1 + 3) /∈ N. Moreover, there will

exist at least one term in the above sum when

ω >
π

m+ 3
. (4.6)

Summing up, for a given opening angle ω we choose m such that (4.6) holds and (4.5) gives that j is
not a positive integer. �

Before we move on with the comparison of the hinged and supported plate, it is important to
have a certain estimate on the coefficients of the lowest order terms in the expansion (4.3). We would
wish to have a general answer to the sign of the coefficients of the lowest order terms. This depends
highly on Ω and f and thus a general answer is not to be expected. However, when the boundary of
the domain has only convex corners, then one can give the following estimate based on the maximum
principle.

Lemma 4.3. Assume that Ω is a convex polygon and let f ∈ C∞
0

(
Ω \ S

)
with f ≤ 0 and f 6≡ 0. Then

c1 < 0.

Remark 4.4. The proof of this lemma is based on the existence of a comparison principle for convex
polygonal plates, since, in that case, the hinged plate problem coincides with the Navier bilaplace
problem. When the boundary of the domain has curved parts, then these two problems are no longer
the same. However, for the hinged plate problem on convex domains with C2,1-smooth boundary, a
sign preserving property holds true; see [28]. Judging from the behaviour of hinged plates in polygonal
and smooth convex domains, we suppose that a similar result should hold on general convex domains
with nonsmooth boundary.

Proof of Lemma 4.3. If all corners of the boundary are convex, one obtains that u has the expansion

u = c1r
π
ω sin

(π
ω
θ
)
+ d1r

2+ π
ω sin

(π
ω
θ
)
+ higher order terms

in an ε-neighbourhood of a corner, where the first term is harmonic and the higher order terms
smoother than the first two. Then we have

∫ ε

0

(
r

π
ω−2

)2
r dr <∞,
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which implies that ∆u ∈W 2,2(Ω). Thus, a hinged plate will satisfy
{

−∆u = v in Ω,
u = 0 on ∂Ω

and

{
−∆v = f in Ω,

v = 0 on ∂Ω
(4.7)

and an iterated application of the maximum principle yields that u < 0 in Ω. Now u as a solution of
the Dirichlet Laplacian with right hand side v has the expansion

u =
∑

0<j<(m+2)ω
π

cjr
π
ω sin

(
jπ

ω
θ

)
+ w

with w ∈ V m+2
0 (Ω) (see [19, Section 6.6.1]). Note that V m+2

0 (Ω) ⊂ V 2
−m(Ω) and one can apply [27,

Lemma 6.7] with γ = −m to find that there exists a positive constant C, such that

|w| ≤ Cr1+m

sufficiently close to the corner. Since m can be taken arbitrarily large and the functions sin
(
jπ
ω θ
)
are

sign-changing for j > 1, we get that u = o
(
r

π
ω sin

(
π
ω θ
) )

and thus c1 < 0. �

We will make the comparison of the hinged and supported plates via a contradiction and we thus
need a way to check for solutions to the supported case. A criterion for checking whether a hinged
plate is also a solution to the supported problem is given by the following

Lemma 4.5. Let f ∈ C∞
0

(
Ω \ S

)
and assume that the minimizer u ∈ H0(Ω) of Jσ is also a minimizer

in H+(Ω). Then

∂n∆u+ (1− σ)∂nττu ≤ 0 on ∂Ω \ S, (4.8)

where S is the set containing the corners of ∂Ω.

Proof. Similarly as in the proof of Corollary 3.17 one can show that for f ∈ C∞
0

(
Ω \ S

)
⊂ W 1,2(Ω)

we get u ∈W 5,2
(
Ω \B(S)

)
and thus all third order derivatives of u are continuous on the boundary.

Testing the variational inequality J ′(u; v) ≥ 0 with functions v nonnegative on the boundary and
supported away from the corners proves the Lemma. �

Now we move on to compare the hinged and supported plates. For simplicity we assume that ∂Ω
contains only one corner at the origin, of opening angle ω.

Theorem 4.6. Let ω ∈ (0, 2π) \ {π}, f ∈ C∞
0 (Ω \ {0}) and suppose:

(i) for ω ∈ (0, π) that c1 < 0,
(ii) for ω ∈

(
π, 3π2

)
that d−1 < 0,

(iii) for ω = 3π
2 that d−1 <

2(1−σ)
4−σ |c2|,

(iv) for ω ∈
(
3π
2 , 2π

)
that c2 6= 0 or d−1 < 0.

In each of these cases the minimizer u ∈ H0(Ω) of Jσ cannot be a minimizer in H+(Ω).

Remark 4.7. Note that f should also satisfy assumption (2.3) on the existence of a minimizer of Jσ
in H+(Ω). Otherwise the result of the theorem is trivial: There would exist no minimizer in H+(Ω).

Proof of Theorem 4.6. Here we are going to use Lemma 4.5 in the following way: we assume that the
solution u to the hinged plate problem minimizes Jσ in H+(Ω) and thus the “supported” boundary
condition

N(u) := ∂n∆u+ (1− σ)∂nττu ≤ 0 on ∂Ω \ {0} (4.9)

holds true by Lemma 4.5. Then, if ul denotes the lowest order term in all cases of Corollary 4.2, we will
see that N(ul) is also the leading term of N(u). Thus, calculating N(ul), we will see that it does not
satisfy the supported condition near the origin, that is, N(ul) > 0 sufficiently close to 0, which yields
a contradiction. We thus conclude that the solution to the hinged plate problem is not a solution in
the supported case.
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A hinged plate, i.e. the minimizer of Jσ in H0(Ω) has the following expansion in a neighbourhood
of the origin:

u = ul + higher order terms + w,

where w ∈ V m+4
0 (Ω) with m arbitrarily large. Thus one has for its third order derivatives that

∂3w ∈ V m+1
0 (Ω) ⊂ V 2

1−m and therefore

|(∂3w)(r, θ)| ≤ c ‖w‖V 5
0 (Ω) r

m (4.10)

(see [27, Lemma 6.7]). Hence, there exists a sufficiently large m such that N(u) ∼ N(ul). For θ = ω
we get ∂n = ∂θ and ∂ττ = ∂rr. Consider the following cases:

(i) ω ∈ (0, π): We get

N
(
c1r

π
ω sin

(π
ω
θ
))∣∣∣

θ=ω
= (1− σ)

c1π
2
(
π
ω − 1

)

ω2
r

π
ω−2 cos

(
πθ

ω

)∣∣∣∣∣
θ=ω

= (1− σ)
c1π

2
(
1− π

ω

)

ω2
r

π
ω−2 > 0.

(ii) ω ∈
(
π, 3π2

)
: We compute

N
(
d−1r

2− π
ω sin

(π
ω
θ
))∣∣∣

θ=ω
=
d−1π(ω − π)

(
σ(2ω − π) + π − 6ω

)

ω3
r−

π
ω −→ +∞,

since for σ < 1 ≤ 6ω−π
2ω−π we find that σ(2ω − π) + π − 6ω < 0.

(iii) ω = 3π
2 : The calculation here is a bit more complex. We have

N
(
r

4
3

(
d−1 sin

(
2
3θ
)
+ c2 sin

(
4
3θ
)))∣∣∣

θ= 3π
2

= − 8

27
r−2/3

(
d−1(−4 + σ) cos

(
2θ
3

)
+ 2c2(−1 + σ) cos

(
4θ
3

))∣∣∣∣
θ= 3π

2

=
8

27
r−2/3(d−1(−4 + σ) + 2c2(1− σ)),

whereas for θ = 0 we have that ∂n = −∂θ and thus, similarly,

N
(
r

4
3

(
d−1 sin

(
2
3θ
)
+ c2 sin

(
4
3θ
)))∣∣∣

θ=0
=

8

27
r−2/3(d−1(−4 + σ)− 2c2(1− σ)).

Using our assumptions for this case, we obtain again that N(ul) → +∞ as r → 0, either for
θ = 0 or θ = ω.

(iv) ω ∈
(
3π
2 , 2π

)
: Similar to the previous cases we compute for θ = ω that

N

(
c2r

2π
ω sin

(
2π

ω
θ

))∣∣∣∣
θ=ω

= (1− σ)
4c2π

2
(
2π
ω − 1

)

ω2
r

2π
ω −2 cos

(
2πθ

ω

)∣∣∣∣∣
θ=ω

= (1− σ)
4c2π

2
(
2π
ω − 1

)

ω2
r

2π
ω −2

and for θ = 0 we have that

N

(
c2r

2π
ω sin

(
2π

ω
θ

))∣∣∣∣
θ=0

= −(1− σ)
4c2π

2
(
2π
ω − 1

)

ω2
r

2π
ω −2.

In the last case the result follows for c2 6= 0 since the corresponding function is sign-changing.
If c2 = 0, then we have to consider the next leading term, which is the one with coefficient d−1 and
proceed as in case (ii). �
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5. Appendix

5.1. An inequality of Poincaré type

It is well known that for bounded domains Ω it holds that ‖u‖L2(Ω) ≤ cΩ ‖|∇u|‖L2(Ω) for u ∈W 1,2
0 (Ω).

It is less known that ‖|∇u|‖L2(Ω) ≤ cΩ
∥∥∣∣∇2u

∣∣∥∥
L2(Ω)

for u ∈W 2,2(Ω)∩W 1,2
0 (Ω) and we will include a

proof. Consider x = (x1, ..., xn) ∈ Ω and write dx and ds for the n-D Lebesgue and (n− 1)-D surface
measure.

Lemma 5.1. Let Ω ⊂ Rn be a simply connected bounded domain. Then there exists a constant c > 0,
such that ∫

Ω

|∇u(x)|2dx ≤ c |u|22,2 for all u ∈W 2,2(Ω) ∩ C2(Ω) ∩ C0(Ω)

Proof. First we consider the 1D case and assume that u ∈W 2,2(0, l)∩C2(0, l)∩C0[0, l]. Since u(0) =
u(l) = 0, the mean value theorem shows that there exists x0 ∈ (0, l) such that u′(x0) = 0. Using twice
Hölder’s inequality one has that

∫ l

x0

|u′(x)|2 dx =

∫ l

x0

∣∣∣∣
∫ x

x0

u′′(t) dt

∣∣∣∣
2

dx ≤
∫ l

x0

(∫ x

x0

|u′′(t)| dt
)2

dx

≤
∫ l

x0

[(∫ x

x0

|u′′(t)|2 dt
)(∫ x

x0

dt

)]
dx

≤
(∫ l

x0

|u′′(t)|2 dt
)∫ l

x0

(x− x0) dx =
1

2
(l − x0)

2
∫ l

x0

|u′′(t)|2 dt.

Since

∫ l

0

|u′(x)|2 dx =

∫ x0

0

|u′(x)|2 dx+

∫ l

x0

|u′(x)|2 dx, one obtains the desired result.

In the n−dimensional case we will proceed using Fubini’s theorem and the above result for one variable
at a time:

∫

Ω

|∇u|2dx =

∫

x1

∫

x2

...

∫

xn

|∇u(x1, x2, ..., xn)|2 dxn...dx2dx1

=

∫

x1

∫

x2

...

∫

xn

(
|ux1 |2 + |ux2 |2 + ...+ |uxn |2

)
dxn...dx2dx1

≤ c

∫

x1

∫

x2

...

∫

xn

(
|ux1x1 |2 + |ux2x2 |2 + ...+ |uxnxn |2

)
dxn...dx2dx1

≤ c|u|22,2
and the assertion is proved. �

Remark 5.2. A related result will hold for functions with nonzero boundary conditions. Let Ω be a
simply connected bounded domain of Rn. Then there exists c1 > 0 such that

∫

Ω

|∇u|2 dx ≤ c1

(
|u|22,2 +

∫

∂Ω

|∇u|2 ds
)

for all u ∈W 2,2(Ω) ∩ C2(Ω) ∩ C1(Ω).

Based on a remark on the Theorem of Meyers and Serrin (see [2]), stated in [12], one can prove
the following.

Proposition 5.3. Let Ω ⊂ Rn bounded, with Lipschitz boundary and define Ck
0 (Ω) as the space of

k-differentiable functions whose derivatives up to order k are zero on ∂Ω. Then, for m ≥ k + 1

Wm,p(Ω) ∩ C∞(Ω) ∩ Ck
0 (Ω)

‖·‖m,p

=Wm,p(Ω) ∩W k+1,p
0 (Ω).
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Proof. For consistency reasons we will first outline the proof given by Meyers and Serrin. Let k ∈ N
and define

Ωk :=

{
x ∈ Ω

∣∣∣∣ |x| < k and d(x, ∂Ω) >
1

k

}
,

Ω−1 = Ω0 := ∅.

Setting Uk := Ωk+1 ∩
(
Ωk−1

)c
one sees that {Uk}k∈N

is an open covering of Ω, so there exists
a partition of unity Ψ subordinate to {Uk}k∈N

. Moreover, let ψk be the sum of the finitely many
functions ψ ∈ Ψ with support in Uk and ηε the standard mollifier. Fixing

0 < ε <
1

(k + 1)(k + 2)

one can see that ηε ∗ (ψku) has support in Vk := Ωk+2 ∩ (Ωk−2)
c ⊂⊂ Ω. Choose εk small enough, such

that

‖ηεk ∗ (ψku)− ψku‖Wm,p(Ω) = ‖ηεk ∗ (ψku)− ψku‖Wm,p(Vk) <
ε

2k
(5.1)

and set

φε :=
∞∑

k=1

ηεk ∗ (ψku).

Then φε ∈ C∞(Ω) and, since ε is independent of Vk one obtains that ‖φε − u‖m,p,Ω < ε.

Following [12, Remark 1.18, p. 16] we consider δ > 0, ρ > 0, x0 ∈ ∂Ω and k0 =

⌈
1

ρ

⌉
− 2. Then

one has that for all x ∈ Bρ(x0) ∩ Ω

φδ(x)− u(x) =
∞∑

k=k0

(
ηδk ∗

(
ψk(x)u(x)

)
− ψk(x)u(x)

)
.

Now, estimate (5.1) yields

‖u− φδ‖Wm,p(Bρ(x0)∩Ω) ≤
∞∑

k=k0

‖Jδk ∗ (ψku)− ψku‖Wm,p(Bρ(x0)∩Ω) ≤ δ
∞∑

k=k0

1

2k
= 2−

1
ρ 8δ.

Assuming that the norm on the left is not identically zero, there exist constants c(δ), ρ(δ) > 0 such
that for all positive ρ < ρ(δ):

c(δ)ρ2 ≤ ‖u− φδ‖Wm,p(Bρ(x0)∩Ω) ≤ 8δ 2−
1
ρ

which cannot hold. Thus for ρ small enough

‖u− φδ‖Wm,p(Bρ(x0)∩Ω) = 0

which together with the Lebesgue’s differentation Theorem implies that the traces of the m− 1 order
derivatives of the approximating sequence ϕδ agree in an Lp-sense with the ones of u (which are well
defined since ∂Ω is Lipschitz) and the claim is proved. �

Combining Lemma 5.1 and Proposition 5.3 we obtain the desired result.

Corollary 5.4. Let Ω ⊂ Rn bounded with a Lipschitz boundary. Then |·|2,2 and ‖·‖2,2 are equivalent

norms on W 2,2(Ω) ∩W 1,2
0 (Ω).
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5.2. Numerical computations for the supported plate

Figure 6. An L-shaped plate with a uniform load (f = −1) leads to a solution that moves
upwards near all corner points.
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Figure 7. An L-shaped plate with small load (f = −.1) everywhere except for a local heavier
load (f = −1.1) on the dark circular area. On the right this force density.
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Figure 8. An L-shaped plate loaded locally on one side results to a large free boundary on
the other side.
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In order to illustrate these analytical results we display some numerical evidence. Note that it is not
our intention to prove convergence of the numerical scheme we used. For the sake of completeness and,
since numerics for fourth order variational inequalities on domains with corners are far from trivial, a
short sketch follows.

We have used a damped Newton method to solve the penalized problem corresponding to the
variational inequality (2.4) (see [13]): Find u ∈W 2,2(Ω) such that

J ′
σ(u; v)−

∫

∂Ω

β(u)v ds = 0 for all v ∈W 2,2(Ω),

where

β(s) :=

{
−1010s for s < 0,

0 for s ≥ 0.
(5.2)

The calculations were done using a negative right hand side f (see Figures 6-8) and C1∩W 2,2-Argyris
elements (see [7, Theorem 2.2.13]).

Define by VN := span
(
{ei}Ni=1

)
, the linear span of the Argyris basis element functions {ei}Ni=1,

defined on a triangulation of Ω consisting of N triangles (see [7]). A finite element approximation of
(5.2) would consist in solving the system of nonlinear equations

F (u) = 0, (5.3)

for u =
∑N

i=1 uiei, where F : RN → RN is defined by

F (u) =




F1(u)
...

FN (u)


 :=




J ′
σ(u; e1)−

∫

∂Ω

β(u)e1 ds

...

J ′
σ(u; eN )−

∫

∂Ω

β(u)eN ds



.

To solve (5.3), we start with an initial guess u(0) =
(
u
(0)
1 , ..., u

(0)
N

)⊤
and calculate the iterations via

the formula 


u
(k+1)
1
...

u
(k+1)
N


 =




u
(k)
1
...

u
(k)
N


− ϑ ·

(
F ′(u(k))

)−1

· F (u(k)).

The standard Newton method uses ϑ = 1 but is primarily equipped for differentiable functionals. Our
functional is not differentiable near 0 and for convergence we had to use a rather small damping factor
ϑ ∈ (0, 1). The matrix F ′(u) is the Jacobian of F , given by

F ′(u) :=

(
∂Fj

∂ui

)

i,j=1,...,N

,

where

∂Fj

∂ui
=

∫

Ω

(
∆ei∆ej + (1− σ)(2∂xyei∂xyej − ∂xxei∂yyej − ∂yyei∂xxej)

)
dx

−
∫

∂Ω

β′
(∑N

k=1 ukek

)
eiej ds.

Note also that, since the ei’s have small support, the Jacobian F ′(u) becomes a band matrix.
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e-mail: gsweers@math.uni-koeln.de


