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Hintsfor Computer System Design®

Butler W. Lampson

Computer Science Laboratory
Xerox Palo Alto Research Center
Palo Alto, CA 94304

Abstract

Studying the design and implementation of a number of computer has led to some genere
for system design. They are described here and illustrated by many examples, ranging fro
hardware such as the Alto and the Dorado to application programs such as Bravo and Ste

1. Introduction

Designing a computer system is very different from designing an algorithm:

The external interface (that is, the requirement) is less precisely defined, more comple;
more subject to change.

The system has much more internal structure, and hence many internal interfaces.
The measure of success is much less clear.

The designer usually finds himself floundering in a sea of possibilities, unclear about how
choice will limit his freedom to make other choices, or affect the size and performance of t
entire system. There probably isn’t a ‘best’ way to build the system, or even any major par
much more important is to avoid choosing a terrible way, and to have clear division of
responsibilities among the parts.

| have designed and built a number of computer systems, some that worked and some the
| have also used and studied many other systems, both successful and unsuccessful. Fro
experience come some general hints for designing successful systems. | claim no original
them; most are part of the folk wisdom of experienced designers. Nonetheless, even the €
often forgets, and after the second system [6] comes the fourth one.

Disclaimer These are not
novel (with a few exceptions),
foolproof recipes,
laws of system design or operation,
precisely formulated,
consistent,
always appropriate,
approved by all the leading experts, or
guaranteed to work.

' This paper was originally presented at the.AtiM Symposium on Operating Systems Principles and appearec
Operating Systems Revid®, 5, Oct. 1983, p 33-48. The present version is slightly revised.
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They are just hints. Some are quite general and vague; others are specific techniques whi
more widely applicable than many people know. Both the hints and the illustrative exampl
necessarily oversimplified. Many are controversial.

| have tried to avoid exhortations to modularity, methodologies for top-down, bottom-up, o
iterative design, techniques for data abstraction, and other schemes that have already bee
disseminated. Sometimes | have pointed out pitfalls in the reckless application of popular
methods for system design.

The hints are illustrated by a number of examples, mostly drawn from systems | have worl
They range from hardware such as the Ethernet local area network and the Alto and Dora
personal computers, through operating systems such ass/940 and the Alto operating
system and programming systems such as Lisp and Mesa, to application programs such :
Bravo editor and the Star office system and network servers such as the Dover printer anc
Grapevine mail system. | have tried to avoid the most obvious examples in favor of others
show unexpected uses for some well-known methods. There are references for nearly all
specific examples but for only a few of the ideas; many of these are part of the folklore, an
would take a lot of work to track down their multiple sources.

And these few precepts in thy memory
Look thou character.

It seemed appropriate to decorate a guide to the doubtful process of system design with
guotations fromHamlet.Unless otherwise indicated, they are taken from Polbadisce to
Laertes (I iii 58-82). Some quotations are from other sources, as noted. Each one is intenc
apply to the text which follows it.

Each hint is summarized by a slogan that when properly interpreted reveals the essence c
hint. Figure 1 organizes the slogans along two axes:

Whyit helps in making a good system: with functionality (does it work?), speed (is it fas
enough?), or fault-tolerance (does it keep working?).

Wherein the system design it helps: in ensuring completeness, in choosing interfaces,
devising implementations.

Fat lines connect repetitions of the same slogan, and thin lines connect related slogans.

The body of the paper is in three sections, according teligdeadings: functionality (section
2), speed (section 3), and fault-tolerance (section 4).

2. Functionality

The most important hints, and the vaguest, have to do with obtaining the right functionality
a system, that is, with getting it to do the things you want it to do. Most of these hints depe
the notion of annterfacethat separates amplementatiorof some abstraction from tlodients

who use the abstraction. The interface between two programs consists of the set of assun
that each programmer needs to make about the other program in order to demonstrate the
correctness of his program (paraphrased from [5]). Defining interfaces is the most importa
of system design. Usually it is also the most difficult, since the interface design must satis
conflicting requirements: an interface should be simple, it should be complete, and it shou
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Why? Functionality Speed Fault-tolerance

Does it work? Is it fast enough? Does it keep working
Where?
Completeness | Separate normal aﬂd—|: Shed load
worst case End-to-enge————— End-to-end
Safety first
Interface Do one thing well—— Make it fast———— End-to-end
Dort generalize Split resources Log updates
Get it right Static analysis Make actions atomic
Don’t hide power Dynamic translation
Use procedure arguments
Leave it to the client
Keep basic interfaces stable
Keep a place to stand
Implementation | Plan to throw one away Cache answers Make actions atomic
Keep secrets Use hints Use hints
Use a good idea again Use brute force
Divide and conquer Compute in background
Batch processing

Figure 1: Summary of the slogans

admit a sufficiently small and fast implementation. Alas, all too often the assumptions emt
in an interface turn out to be misconceptions instead. Pataasic paper [38] and a more rece
one on device interfaces [5] offer excellent practical advice on this subject.

The main reason interfaces are difficult to design is that each interface is a small program
language: it defines a set of objects and the operations that can be used to manipulate the
Concrete syntax is not an issue, but every other aspect of programming language design |
present. Hoare’s hints on language design [19] can thus be read as a supplement to this

2.1 Keep it smple

Perfection is reached not when there is no longer anything to add,
but when there is no longer anything to take awg. Saint-Exupery

Those friends thou hast, and their adoption tried,
Grapple them unto thy soul with hoops of steel;
But do not dull thy palm with entertainment

Of each newratch’d unfledg’d comrade.

» Do one thing at a time, and do it welln interface should capture thenimumessentials of ar
abstractionDon’t generalizegeneralizations are generally wrong.
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We are faced with an insurmountable opportunitfV. Kelley)

When an interface undertakes to do too much its implementation will probably be large, sl
complicated. An interface is a contract to deliver a certain amount of service; clients of the
interface depend on the contract, which is usually documented in the interface specificatio
They also depend on incurring a reasonable cost (in time or other scarce resources) for us
interface; the definition of ‘reasonable’ is usually not documented anywhere. If there are si
levels of abstraction, and each costs 50% more than is ‘reasonable’, the service delivered
top will miss by more than a factor of 10.

KISS:Keep It Simple, Stupid(Anonymous)
If in doubt, leave if out. (Anonymous)
Exterminate features. (C. Thacker)
On the other hand,
Everything should be made as simple as possible, but no sim@elEinstein)

Thus, service must have a fairly predictable cost, and the interface must not pnomagban
the implementer knows how to deliiéspecially, it should not promise features needed by o
a few clients, unless the implementer knows how to provide them without penalizing other
better implementer, or one who comes along ten years later wharolihem is better
understood, might be able to deliver, but untaesone you havean do so, it is wise to reduce
your aspirations.

For examplepPL/1 got into serious trouble by attempting to provide consistent meanings for
large number of generic operations across a wide variety of data types. Early implementat
tended to handle all tleases inefficiently, but even with the optimizing compilers of 15 year
later, it is hard for the programmer to tell what will be fast and what will be slow [31]. A
language like Pascal or C is much easier to use, because every construct has a roughly ¢
cost that is independent of context or arguments, and in fact most constructs have about t
cost.

Of course, these observations apply most strongly to interfaces that clients use heavily, st
virtual memory, files, display handling, or arithmetic. It is all right to sacrifice some performn
for functionality in a seldom used interface such as password checking, interpreting user
commands, or printing 72 point characters. (What this really means is that though the cos
still be predictable, it can be many times the minimum achievable cost.) And such cautiou:
don’t apply to research whose object is learning how to make better implementations. But
research may well fail, others mustn’t depend on its success.

Algol 60 was not only an improvement on its predecessors,
but also on nearly all its successors. (C. Hoare)

Examples of offering too much are legion. The Alto operating system [29] has an ordinary
read/writen-bytes interface to files, and was extended for Interlisp-D [7] with an ordinary p:
system that stores each virtual page on a dedicated disk page. Both have small implemen
(about 900 lines of code for files, 500 for paging) and are fast (a page fault takes one disk
and has a constant computing cost that is a small fraction of the disk access time, and the
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can fairly easily run the disk at full speed). The Pilot system [42] which succeeded the Altc
follows Multics and several other systems in allowing virtual pages to be mapped to file pa
thus subsuming file input/output within the virtual memory system. The implementation is
larger (about 11,000 lines of code) and slower (it often incurs two disk accesses to handle
fault and cannot run the disk at full speed). The extra functionality is bought at a high price

This is not to say that a good implementation of this interface is impossible, merely that it
hard. This system was designed and coded by several highly competent and experienced
Part of the problem is avoiding circularity: the file system would like to use the virtual men
but virtual memory depends on files. Quite general ways are known to solve this problem |
but they are tricky and easily lead to greater cost and complexity in the normal case.

And, in this upshot, purposes mistook
Fall’'n on th’ inventors’ heads. (V ii 387)

Another example illustrates how easily generality can lead to unexpected complexity. The
system [2] has the following innocent-looking combination of features:

It reports a reference to an unassigned virtual page by a trap to the user program.

A system call is viewed as a machine instruction for an extended machine, and any ref
it makes to an unassigned virtual page is thus similarly reported to the user program.

Large arguments to system calls, including strings, are passed by reference.

There is a system callONNECTto obtain access to another directory; one of its argumen
a string containing the password for the directory. If the password is wrong, the call fail
a three second delay, to prevent guessing passwords at high speed.

CONNECTIs implemented by a loop of the form

for i := Oto Length{directoryPassworiido
if directoryPassworfd] # passwordArgumefii then
Wait three seconds; retuBadPassword
end if
end loop;
connect to directory; returBuccess

The following trick finds a password of lengthin 64n tries on the average, rather than"128
(Tenex uses 7 bit characters in strings). Arrang@#dsswordArgumerso that its first character
is the last character of a page and the next page is unassigned, and try each possible cha
the first. IfCONNECTreportsBadPasswordthe guess was wrong; if the system reports a
reference to an unassigned page, it was correct. Now arrangestveordArgumerso that its
second character is the last character of the page, and proceed in the obvious way.

This obscure and amusing bug went unnoticed by the designers because the interface prc
a Tenex system call is quite complex: it includes the possibility of a reported reference to ¢
unassigned page. Or looked at another way, the interface provided by an ordinary memor
reference instruction in system code is quite complex: it includes the possibility that an imj
reference will be reported to the client without any chance for the system code to get cont
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An engineer is a man who can do for a dime
what any fool can do for a dollar. (Anonymous)

At times, however, i worth a lot of work to make a fast implementation of a clean and

powerful interface. If the interface is used widely enough, the effort put into designing and
tuning the implementation can pay off many times over. But do this only for an interface w
importance is already known from existing uses. And be sure that you know how to make

For example, th8itBlt or RasterOpnterface for manipulating raster images [21, 37] was

devised by Dan Ingalls after several years of experimenting with the Alto’s high-resolution
interactive display. Its implementation costs about as much microcode as the entire emula
the Alto’s standard instruction set and required a lot of skill and experience to construct. B
performance is nearly as good as the special-purpose character-to-raster operations that |
it, and its simplicity and generality have made it much easier to build display applications.

The Dorado memory system [8] contains a cache and a separate high-bandwidth path for
input/output. It provides a cache read or write in every 64 ns cycle, together with 500
MBits/second of 1/0 bandwidth, virtual addressing from both cache and 1/0, and no specis
for the microprogrammer to worry about. However, the implementation takeas3sbips and
consumed several man-years of design time. This could only be justified by extensive prio
experience (30 years!) with this interface, and the knowledge that memory access is usua
limiting factor in performance. Even so, it seems in retrospect that the high 1/O bandwidth
worth the cost; it is used mainly for displays, and a dual-ported frame buffer would almost
certainly be better.

Finally, lest this advice seem too easy to take,

» Get it right.Neither abstraction nor simplicity is a substitute for getting it right. In fact,
abstraction can be a source of severe difficulties, as this cautionary tale shows. Word proc
and office information systems usually have provision for embedding named fields in the
documents they handle. For example, a form letter might have ‘address’ and ‘salutation’ fi
Usually a document is represented as a sequence of characters, and a field is encoded by
something like fiame contenty. Among other operations, there is a procedtireiNamedField
that finds the field with a given name. One major commercial system for some time used &
FindNamedFieldrocedure that ran in time @), wheren is the length of the document. This
remarkable result was achieved by first writing a proceBun@lthFieldto find theith field
(which must take time @ if there is no auxiliary data structure), and then implementing
FindNamedFiel¢hame with the very natural program

for i := 0 tonumberofFieldsio

FindIthField; if its name immamethen exit
end loop

Once the (unwisely chosen) abstractiondithField is available, only a lively awareness of its
cost will avoid this disaster. Of course, this is not an argument against abstraction, but it is
to be aware of its dangers.
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2.2Corollaries

The rule about simplicity and generalization has many interesting corollaries.

Costly thy habit as thy purse can buy,
But not express’d in fancy; rich, not gaudy.

» Make it fastratherthan general or powerful. If it's fast, the client can program the function
wants, and another client can program some other function. It is much better to have basit
operations executed quickly than more powerful ones that are slower (of course, a fast, pc
operation is best, if you know how to get it). The trouble with slow, powerful operations is 1
the client who doesn’t want the power pays more for the basic function. Usually it turns ou
the powerful operation is not the right one.

Had | but time (as this fell sergeant, death,
Is strict in his arrest) O, | could tell you —
But let it be. (Vi 339)

For example, many studies (such as [23, 51, 52]) have shown that programs spend most
time doing very simple things: loads, stores, tests for equality, adding one. Machines like 1
[41] or theRrISC[39] with instructions that do these simple operations quickly can run progr:
faster (for the same amount of hardware) than machines liketheith more general and
powerful instructions that take longer in the simple cases. It is easy to lose a factor of two
running time of a program, with the same amount of hardware in the implementation. Mac
with still more grandiose ideas about what the client needs do even worse [18].

To find the places where time is being spent in a large system, it is necessary to have
measurement tools that will pinpoint the time-consuming code. Few systems are well eno
understood to be properly tuned without such tools; it is normal for 80% of the time to be <
in 20% of the code, buat priori analysis or intuition usually can’t find the 20% with any
certainty. The performance tuning of Interlisp-D sped it up by a factor of 10 using one set «
effective tools [7].

» Don’t hide powerThis slogan is closely related to the last one. When a low level of abstr:
allows something to be done quickly, higher levels should not bury this power inside some
more general. The purpose of abstractions is to conodalsirableproperties; desirable ones
should not be hidden. Sometimes, of course, an abstraction is multiplexing a resource, an
necessarily has some cost. But it should be possible to deliver all or nearly all of it to a sin
client with only slight loss of performance.

For example, the Alto disk hardware [53] can transfer a full cylinder at disk speed. The ba:
system [29] can transfer successive file pages to client memory at full disk speed, with tim
the client to do some computing on each sector; thus with a few sectors of buffering the el
disk can be scanned at disk speed. This facility has been used to write a variety of applica
ranging from a scavenger that reconstructs a broken file system, to programs that search
substrings that match a pattern. The stream level of the file system can read oibwyteteto or
from client memory; any portions of tindbytes that occupy full disk sectors are transferred a
full disk speed. Loaders, compilers, editors and many other programs depend for their
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performance on this ability to read large files quickly. At this level the client gives up the fe
to see the pages as they arrive; this is the only price paid for the higher level of abstractior

» Use procedure argumentts provide flexibility in an interface. They can be restricted or
encoded in various ways if necessary for protection or portability. This technique can grea
simplify an interface, eliminating a jumble of parameters that amount to a small programm
language. A simple example is an enumeration procedure that returns all the elements of
satisfying some property. The cleanest interface allows the client to pass a filter procedure
tests for the property, rather than defining a special language of patterns or whatever.

But this theme has many variations. A more interesting example is the Spy system monitc
facility in the 940 system at Berkeley [10], which allows an untrusted user program to plan
patches in the code of the supervisor. A patch is coded in machine language, but the oper
that installs it checks that it does no wild branches, contains no loops, is not too long, and
only into a designated region of memory dedicated to collecting statistics. Using the Spy, 1
student of the system can fine-tune his measurements without any fear of breaking the sy:
even perturbing its operation much.

Another unusual example that illustrates the power of this methodAREIBJRNmMechanism

in the Cal time-sharing system for thec 6400 [30]. From any supervisor céliit is possible to
make another on€F that executes exactly likeé in the normal case, but sends control to a
designated failure handler@fgives an error return. THeF operation can do more (for exampl
it can extend files on a fast, limited-capacity storage device to larger files on a slower devi
but it runs as fast &in the (hopefully) normal case.

It may be better to have a specialized language, however, if it is more amenable to static ¢
for optimization. This is a major criterion in the design of database query languages, for e>

* Leave it to the clienfAs long as it is cheap to pass control back and forth, an interface car
combine simplicity, flexibility and high performance by solving only one problem and leavi
the rest to the client. For example, many parsers confine themselves to doing context free
recognition and call client-supplied “semantic routines” to record the results of the parse. T
has obvious advantages over always building a parse tree that the client must traverse to
what happened.

The success of monitors [20, 25] as a synchronization device is partly due to the fact that
locking and signaling mechanisms do very little, leaving all the real work to the client prog
in the monitor procedures. This simplifies the monitor implementation and keeps it fast; if
client needs buffer allocation, resource accounting or other frills, it provides these function
or calls other library facilities, and pays for what it needs. The fact that monitors give no cc
over the scheduling of processes waiting on monitor locks or condition variables, often cite
drawback, is actually an advantage, since it leaves the client free to provide the schedulini
needs (using a separate condition variable for each class of process), without having to ps
fight with some built-in mechanism that is unlikely to do the right thing.

The Unix system [44] encourages the building of small programs that take one or more ch
streams as input, produce one or more streams as output, and do one operation. When th
imitated properly, each program has a simple interface and does one thing well, leaving th
to combine a set of such programs with its own code and achieve precisely the effect desi
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Theend-to-endslogan discussed in section 3 is another corollary of keeping it simple.

2.3 Continuity

There is a constant tension between the desire to improve a design and the need for stabi
continuity.

» Keep basic interfaces stabince an interface embodies assumptions that are shared by
than one part of a system, and sometimes by a great many parts, it is very desirable not tc
the interface. When the system is programmed in a language without type-checking, itis r
out of the question to change any public interface because there is no way of tracking dow
clients and checking for elementary incompatibilities, such as disagreements on the numb
arguments or confusion between pointers and integers. With a language like Mesa [15] th:
complete type-checking and language support for interfaces, it is much easier to change ¢
interface without causing the system to collapse. But even if type-checking can usually de
that an assumption no longer holds, a programmer must still correct the assumption. Whe
system grows to more than 250K lines of code the amount of change becomes intolerable
when there is no doubt about what has to be done, it takes too long to do it. There is no cl
but to break the system into smaller pieces related only by interfaces that are stable for ye
Traditionally only the interface defined by a programming language or operating system ke
this stable.

» Keep a place to stantlyou do have to change interfaces. Here are two rather different
examples to illustrate this idea. One is the compatibility package, which implements an olc
interface on top of a new system. This allows programs that depend on the old interface tc
continue working. Many new operating systems (including Tenex [2] and Cal [50]) have ke
software usable by simulating the supervisor calls of an old systPs {0 and Scope,
respectively). Usually these simulators need only a small amount of effort compared to the
of reimplementing the old software, and it is not hard to get acceptable performance. At a
different level, theBm 360/370 systems provided emulation of the instruction sets of older
machines like the 1401 and 7090. Taken a little further, this leads to virtual machines, whi
simulate (several copies of) a machine on the machine itself [9].

A rather different example is the world-swap debugger, which works by writing the real me
of the target system (the one being debugged) onto a secondary storage device and readi
debugging system in its place. The debugger then provides its user with complete access
target world, mapping each target memory address to the proper place on secondary stor:
With care it is possible to swap the target back in and continue execution. This is somewh
clumsy, but it allows very low levels of a system to be debugged conveniently, since the
debugger does not depend on the correct functioning of anything in the target except the \
simple world-swap mechanism. It is especially useful during bootstrapping. There are mar
variations. For instance, the debugger can run on a different machine, with dederall
debugging’ nub in the target world that can interleadWordWriteWord StopandGo
commands arriving from the debugger over a network. Or if the target is a process in a tirr
sharing system, the debugger can run in a different process.
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2.4 M aking implementations wor k

Perfection must be reached by degrees; she requires the slow hand of time.
(Voltaire)

* Plan to throw one awayou will anyhow [6]. If there is anything new about the function of
systemthefirst implementation will have to be redone completely to achieve a satisfactory
is, acceptably small, fast, and maintainable) result. It costs a lot less if you plan to have a
prototype. Unfortunately, sometimes two prototypes are needed, especially if there is a lot
innovation. If you are lucky you can copy a lot from a previous system; thus Tenex was bz
thesDs940[2]. This can even work even if the previous system was too grandiose; Unix to
many ideas from Multics [44].

Even when an implementation is successful, it pays to revisit old decisions as the system
evolves; in particular, optimizations for particular properties of the load or the environment
(memory size, for example) often come to be far from optimal.

Give thy thoughts no tongue,
Nor any unproportion’d thought his act.

» Keep secretsf the implementation. Secrets are assumptions about an implementation th
client programs are not allowed to make (paraphrased from [5]). In other words, they are t
that can change; the interface defines the things that cannot change (without simultaneou:
changes to both implementation and client). Obviously, it is easier to program and modify
system if its parts make fewer assumptions about each other. On the other hand, the syst:
not be easier to design—it’s hard to design a good interface. And there is a tension with tr
desire not to hide power.

An efficient program is an exercise in logical brinkmanship. (E. Dijkstra)

There is another danger in keeping secrets. One way to improve performanperisagethe
number of assumptions that one part of a system makes about another; the additional
assumptions often allow less work to be done, sometimes a lot less. For instance, if a set
is known to be sorted, a membership test takes time father tham. This technique is very
important in the design of algorithms and the tuning of small modules. In a large system tt
ability to improve each part separately is usually more important. Striking the right balance
remains an art.

O throw away the worser part of it,
And live the purer with the other half.  (lll iv 157)

* Divide and conquerlThis is a well known method for solving a hard problem: reduce it to
several easier ones. The resulting program is usually recursive. When resources are limite
method takes a slightly different form: bite off as much as will fit, leaving the rest for anoth
iteration.

A good example is in the Alto’s Scavenger program, which scans the disk and rebuilds the
and directory structures of the file system from the file identifier and page number recorde
each disk sector [29]. A recent rewrite of this program has a phase in which it builds a dat:
structure in main storage, with one entry for each contiguous run of disk pages that is alsc
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contiguous set of pages in a file. Normally files are allocated more or less contiguously an
structure is not too large. If the disk is badly fragmented, however, the structure will not fit
storage. When this happens, the Scavenger discards the information for half the files and
continues with the other half. After the index for these files is rebuilt, the process is repeat:
the other files. If necessary the work is further subdivided; the method fails only if a sirigle
index won't fit.

Another interesting example arises in the Dover raster printer [26, 53], which scan-convert
of characters and rectangles into a largen array of bits, in which ones correspond to spots
ink on the paper and zeros to spots without ink. In this pmmt&300 anch=4200, so the array
contains fourteen million bits and is too large to store in memory. The printer consumes bi
faster than the available disks can deliver them, so the array cannot be stored on disk. Ins
entire array is divided into 164200 bit slices called bands, and the printer electronics contz
two one-band buffers. The characters and rectangles are sorted into buckets, one for eact
bucket receives the objects that start in the corresponding band. Scan conversion proceec
filling one band buffer from its bucket, and then playing it out to the printer and zeroing it w
filling the other buffer from the next bucket. Objects that spill over the edge of one band ar
added to the next bucket; this is the trick that allows the problem to be subdivided.

Sometimes it is convenient to artificially limit the resourcegbgntizingit in fixed-size units;
this simplifies bookkeeping and prevents one kind of fragmentation. The classical exampl
use of fixed-size pages for virtual memory, rather than variable-size segments. In spite of
apparent advantages of keeping logically related information together, and transferring it
between main storage and backing storage as a unit, paging systems have worked out be
reasons for this are complex and have not been systematically studied.

And makes us rather bear those ills we have
Than fly to others that we know not of. (Il i 81)

» Use a good idea againstead of generalizing it. A specialized implementation of the idea
be much more effective than a general one. The discussion of caching below gives severe
examples of applying this general principle. Another interesting example is the notion of

replicatingdata for reliability. A small amount of data can easily be replicated locally by wri
it on two or more disk drives [28]. When the amount of data is large or the data must be re
on separate machines, it is not easy to ensure that the copies are always the same. Giffor
shows how to solve this problem by building replicated data on top of a transactional stor.
system, which allows an arbitrarily large update to be done as an atomic operation (see s¢
4). The transactional storage itself depends on the simple local replication scheme to store
reliably. There is no circularity here, since only itheais used twice, not the code. A third wa
to use replication in this context is to store the commit record on several machines [27].

The user interface for the Star office system [47] has a small set of operations (type text, r
copy, delete, show properties) that apply to nearly all the objects in the system: text, grapl
file folders and file drawers, record files, printers, in and out baskets, etc. The exact mean
an operation varies with the class of object, within the limits of what the user might find na
For instance, copying a document to an out basket causes it to be sent as a message; mc
endpoint of a line causes the line to follow like a rubber band. Certainly the implementatiol
quite different in many cases. But the generic operations do not simply make the system ¢

Hints for Computer System Design July 1983



use; they represent a view of what operations are possible and how the implementation of
class of object should be organized.

2.5 Handling all the cases

Diseases desperate grown
By desperate appliance areliev’'d
or not at all. (11 vii 9)

Therefore this project
Should have a back or second, that might hold,
If this should blast in proof. (IV iii 151)

» Handle normal and worst cases separatdya rule, because the requirements for the two &
quite different:

The normal case must be fast.
The worst case must make some progress.

In most systems it is all right to schedule unfairly and give no service to some of the proce
or even to deadlock the entire system, as long as this evettdsedieautomatically and doesn’
happen too often. The usual recovery is by crashing some processes, or even the entire s
At first this sounds terrible, but one crash a week is usually a cheap price to pay for 20% &
performance. Of course the system must have decent error recovery (an application of the
end principle; see section 4), but that is required in any case, since there are so many oth
possible causes of a crash.

Caches and hints (section 3) are examples of special treatment for the normal case, but tt
many others. The Interlisp-D and Cedar programming systems use a reference-counting ¢
collector [11] that has an important optimization of this kind. Pointers in the local frames o
activation records of procedures are not counted; instead, the frames are scanned whene'
garbage is collected. This saves a lot of reference-counting, since most pointer assignmer
local variables. There are not very many frames, so the time to scan them is small and the
collector is nearly real-time. Cedar goes farther and does not keep track of which local var
contain pointers; instead, it assumes that they all do. This means that an integer that hapy
contain the address of an object which is no longer referenced will keep that object from b
freed. Measurements show that less than 1% of the storage is incorrectly retained [45].

Reference-counting makes it easy to have an incremental collector, so that computation n
stop during collection. However, it cannot reclaim circular structures that are no longer
reachable. Cedar therefore has a conventional trace-and-sweep collector as well. This is 1
suitable for real time applications, since it stops the entire system for many seconds, but i
interactive applications it can be used during coffee breaks to reclaim accumulated circula
structures.

Another problem with reference-counting is that the count may overflow the space provide
it. This happens very seldom, because only a few objects have more than two or three refi
It is simple to make the maximum value sticky. Unfortunately, in some applications the roc
large structure is referenced from many places; if the root becomes sticky, a lot of storage
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unexpectedly become permanent. An attractive solution is to have an ‘overflow count’ tabl
which is a hash table keyed on the address of an object. When the count reaches its limit
reduced by half, the overflow count is increased by one, and an overflow flag is set in the
When the count reaches zero, the process is reversed if the overflow flag is set. Thus eve
as few as four bits there is room to count up to seven, and the overflow table is touched ol
the rare case that the count swings by more than four.

There are many cases when resources are dynamically allocated and freed (for example,

memory in a paging system), and sometimes additional resources are needed temporarily
an item (some table might have to be swapped in to find out where to write out a page). N
there is a cushion (clean pages that can be freed with no work), but in the worst case the «
may disappear (all pages are dirty). The trick here is to keep a little something in reserve
mattress, bringing it out only in a crisis. It is necessary to bound the resources needed to 1
item; this determines the size of the reserve under the mattress, which must be regarded
fixed cost of the resource multiplexing. When the crisis arrives, only one item should be fre
a time, so that the entire reserve is devoted to that job; this may slow things down a lot bu
ensures that progress will be made.

Sometimes radically different strategies are appropriate in the normal and worst cases. Tt
editor [24] uses a ‘piece table’ to represent the document being edited. This is an array of
pointers to strings of characters stored in a file; each piece contains the file address of the
character in the string and its length. The strings are never modified during normal editing
Instead, when some characters are deleted, for example, the piece containing the deleted
characters is split into two pieces, one pointing to the first undeleted string and the other ti
second. Characters inserted from the keyboard are appended to the file, and the piece co
the insertion point is split into three pieces: one for the preceding characters, a second for
inserted characters, and a third for the following characters. After hours of editing there ar
hundreds of pieces and things start to bog down. It is then time for a cleanup, which writes
file containing all the characters of the document in order. Now the piece table can be repl
by a single piece pointing to the new file, and editing can continue. Cleanup is a specialize
of garbage collection. It can be done in background so that the user doesn’t have to stop ¢
(though Bravo doesn’t do this).

3. Speed

This section describes hints for making systems faster, forgoing any further discussion of
this is important. Bentley’s excellent book [55] says more about some of these ideas and ¢
many others.

Neither a borrower, nor a lender be;
For loan oft loses both itself and friend,
And borrowing dulleth edge of husbandry.

* Split resources a fixed way if in doubt, rather than sharing them. It is usually faster to
allocate dedicated resources, it is often faster to access them, and the behavior of the allo
more predictable. The obvious disadvantage is that more total resources are needed, ignc
multiplexing overheads, than if all come from a common pool. In many cases, however, th
of the extra resources is small, or the overhead is larger than the fragmentation, or both.
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For example, it is always faster to access information in the registers of a processor than t
from memory, even if the machine has a high-performance cache. Registers have gotten :
name because it can be tricky to allocate them intelligently, and because saving and resto
them across procedure calls may negate their speed advantages. But when programs are
in the approved modern style with lots of small procedures, 16 registers are nearly always
enough for all the local variables and temporaries, so that allocation is not a problem s&igl
of registers arranged in a stack, saving is needed only when thersumaessive calls without
return [14, 39].

Input/output channels, floating-point coprocessors, and similar specialized computing devi
other applications of this principle. When extra hardware is expensive these services are
by multiplexing a single processor, but when it is cheap, static allocation of computing pov
various purposes is worthwhile.

The Interlisp virtual memory system mentioned earlier [7] needs to keep track of the disk ¢
corresponding to each virtual address. This information could itself be held in the virtual m
(as itis in several systems, including Pilot [42]), but the need to avoid circularity makes thi
rather complicated. Instead, real memory is dedicated to this purpose. Unless the disk is
ridiculously fragmented the space thus consumed is less than the space for the code to pr
circularity.

» Use static analysis you can; this is a generalization of the last slogan. Static analysis
discovers properties of the program that can usually be used to improve its performance.
hooker is “if you can”; when a good static analysis is not possible, don’t delude yourself w
bad one, but fall back on a dynamic scheme.

The remarks about registers above depend on the fact that the compiler can easily decide
allocate them, simply by putting the local variables and temporaries there. Most machines
multiple sets of registers or lack a way of stacking them efficiently. Good allocation is then
more difficult, requiring an elaborate inter-procedural analysis that may not succeed, and i
case must be redone each time the program changes. So a little bit of dynamic analysis (s
the registers) goes a long way. Of course the static analysis can still pay off in a large proc
if the compiler is clever.

A program can read data much faster when it reads the data sequentially. This makes it e
predict what data will be needed next and read it ahead into a buffer. Often the data can b
allocated sequentially on a disk, which allows it to be transferred at least an order of magr
faster. These performance gains depend on the fact that the programmer has arranged th
that it is accessed according to some predictable pattern, that is, so that static analysis is

Many attempts have been made to analyze programs after the fact and optimize the disk

transfers, but as far as | know this has never worked. The dynamic analysis done by dem:
paging is always at least as good.

Some kinds of static analysis exploit the fact that some invariant is maintained. A system |
depends on such facts may be less robust in the face of hardware failures or bugs in softw
falsify the invariant.

» Dynamic translatiorfrom a convenient (compact, easily modified or easily displayed)
representation to one that can be quickly interpreted is an important variation on the old id
compiling. Translating a bit at a time is the idea behind separate compilation, which goes |
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least to Fortran 2. Incremental compilers do it automatically when a statement, procedure
whatever is changed. Mitchell investigated smooth motion on a continuum between the
convenient and the fast representation [34]. A simpler version of his scheme is to always ¢
translation on demand and cache the result; then only one interpreter is required, and no
decisions are needed except for cache replacement.

For example, an experimental Smalltalk implementation [12] uses the bytecodes producec
standard Smalltalk compiler as the convenient (in this case, compact) representation, and
translates a single procedure from byte codes into machine language when it is invoked. |
a cache with room for a few thousand instructions of translated code. For the scheme to p
the cache must be large enough that on the average a procedure is executedtahésgst
wheren is the ratio of translation time to execution time for the untranslated code.

The C-machine stack cache [14] provides a rather different example. In this device instruc
are fetched into an instruction cache; as they are loaded, any operand address that is rela
the local frame pointer FP is converted into an absolute address, using the current value c
(which remains constant during execution of the procedure). In addition, if the resulting ad
is in the range of addresses currently in the stack data cache, the operand is changed to r
mode; later execution of the instruction will then access the register directly in the data ca
The FP value is concatenated with the instruction address to form the key of the translate
instruction in the cache, so that multiple activations of the same procedure will still work.

If thou didst ever hold me in thy heart.  (V ii 349)

» Cache answer® expensive computations, rather than doing them over. By storing theftri
X, f(X)] in an associative store wiffandx as keys, we can retrie¥) with a lookup. This is
faster iff(x) is needed again before it gets replaced in the cache, which presumably has lin
capacity. How much faster depends on how expensive it is to cofyui® serious problem is
that whert is not functional (can give different results with the same arguments), we need
to invalidate or updata cache entry if the value f{k) changes. Updating depends on an
equation of the formf(x + A) = g(x, 4, (X)) in whichg is much cheaper to compute tHfakor
examplex might be an array of 1000 numbdrthe sum of the array elements, @d new
value for one of them, that is, a painf]. Theng(x, [i, v], sun) issum -x +v.

A cactle that is too small to hold all the ‘active’ values will thrash, and if recompfiing
expensive performance will suffer badly. Thus it is wise to choose the cache size adaptive
making it bigger when the hit rate decreases and smaller when many entries go unused fc
time.

The classic example of caching is hardware that speeds up access to main storage; its en
triples [Fetch,address, contents of address]. Ha¢choperation is certainly not functional:
Fetchx) gives a different answer aftBtorgx) has been done. Hence the cache must be upd
or invalidated after a store. Virtual memory systems do exactly the same thing; main stora
plays the role of the cache, disk plays the role of main storage, and the unit of transfer is t
page, segment or whatever.

But nearly every non-trivial system has more specialized applications of caching. This is
especially true for interactive or real-time systems, in which the basic problem is to
incrementally update a complex state in response to frequent small changes. Doing this ir
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hoc way is extremely error-prone. The best organizing principle is to recompute the entire
after each change but cache all the expensive results of this computation. A change must
invalidate at least the cache entries that it renders invalid; if these are too hard to identify

precisely, it may invalidate more entries at the price of more computing to reestablish then
secret of success is to organize the cache so that small changes invalidate only a few enti

For example, the Bravo editor [24] has a functiasplayLinddocument, firstCharthat returns
the bitmap for the line of text in the displayed document thatibasmer{firstChar] as its first
character. It also returfastCharandlastCharUsedthe numbers of the last character display:e
on the line and the last character examined in computing the bitmap (these are usually no
same, since it is necessary to look past the end of the line in order to choose the line brea
function computes line breaks, does justification, uses font tables to map characters into t
raster pictures, etc. There is a cache with an entry for each line currently displayed on the
and sometimes a few lines just above or below. An edit that changes charéwctarghj
invalidates any cache entry for whidirgtChar .. lastCharUseldintersectsi[.. |]. The display is
recomputed by

loop
(bitMap, lastChar,) := DisplayLinddocument, firstChar Paint(bitMap);
firstChar := lastChar+ 1

end loop

The call ofDisplayLineis short-circuited by using the cache entry fitwmqument, firstChgnf it
exists. At the end any cache entry that has not been used is discarded; these entries are 1
invalid, but they are no longer interesting because the line breaks have changed so that a
longer begins at these points.

The same idea can be applied in a very different setting. Bravo allows a document to be
structured into paragraphs, each with specified left and right margins, inter-line leading, et
ordinary page layout all the information about the paragraph that is needed to do the layot
be represented very compactly:

the number of lines;

the height of each line (normally all lines are the same height);
any keep properties;

the pre and post leading.

In the usual case this can be encoded in three or four bytes. A 30 page chapter has perha
paragraphs, so about 1k bytes are required for all this data; this is less information than is
required to specify the characters on a page. Since the layout computation is comparable
line layout computation for a page, it should be possible to do the pagination for this chap
less time than is required to render one page. Layout can be done independently for each

What makes this idea work is a cachepzfrhgraph, ParagraphShafearagraph] entries. If
the paragraph is edited, the cache entry is invalid and must be recomputed. This can be d
the time of the edit (reasonable if the paragraph is on the screen, as is usually the case, b
good for a global substitute), in background, or only when repagination is requested.
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For the apparel oft proclaims the man.

» Use hintgo speed up normal execution. A hint, like a cache entry, is the saved result of <
computation. It is different in two ways: it may be wrong, and it is not necessarily reached
associative lookup. Because a hint may be wrong, there must be a way to check its correc
before taking any unrecoverable action. It is checked againstutie, information that must be
correct but can be optimized for this purpose rather than for efficient execution. Like a cac
entry, the purpose of a hint is to make the system run faster. Usually this means that it mu
correct nearly all the time.

For example, in the Alto [29] and Pilot [42] operating systems each file has a unique ident
and each disk page has a ‘label’ field whose contents can be checked before reading or w
the data without slowing down the data transfer. The label contains the identifier of the file
contains the page and the number of that page in the file. Page zero of each file is called t
‘leader page’ and contains, among other things, the directory in which the file resides and
string name in that directory. This is the truth on which the file systems are based, and the
great pains to keep it correct.

With only this information, however, there is no way to find the identifier of a file from its n;
in a directory, or to find the disk address of pagxcept to search the entire disk, a method t
works but is unacceptably slow. Each system therefore maintains hints to speed up these
operations. Both systems represent directory by a file that contains triples [string name, fil
identifier, address of first page]. Each file has a data structure that maps a page number ir
disk address of the page. The Alto uses a link in each label that points to the next label; th
makes it fast to get from pagdo pagen + 1. Pilot uses a B-tree that implements the map
directly, taking advantage of the common case in which consecutive file pages occupy
consecutive disk pages. Information obtained from any of these hints is checked when it is
by checking the label or reading the file name from the leader page. If it proves to be wron
of it can be reconstructed by scanning the disk. Similarly, the bit table that keeps track of f
disk pages is a hint; the truth is represented by a special value in the label of a free page,
checked when the page is allocated and before the label is overwritten with a file identifier
page number.

Another example of hints is the store and forward routing first used in the Arpanet [32]. Ea
node in the network keeps a table that gives the best route to each other node. This table
updated by periodic broadcasts in which each node announces to all the other nodes its o
about the quality of its links to its neighbors. Because these broadcast messages are not

synchronized and are not guaranteed to be delivered, the nodes may not have a consistel
any instant. The truth in this case is that each node knows its own identity and hence kno
when it receives a packet destined for itself. For the rest, the routing does the best it can;
things aren’t changing too fast it is nearly optimal.

A more curious example is the Ethernet [33], in which lack of a carrier signal on the cable
as a hint that a packet can be sent. If two senders take the hint simultaneously, there is a
that both can detect; both stop, delay for a randomly chosen interval, and then try again. I
successive collisions occur, this is taken as a hint that the number of senjeandseach
sender sets the mean of its random delay intervdlttm@s its initial value. This ‘exponential
backoff' ensures that the net does not become overloaded.
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A very different application of hints speeds up execution of Smalltalk programs [12]. In
Smalltalk the code executed when a procedure is called is determined dynamically by the
the first argument. ThuRrint(x, forma} invokes thePrint procedure that is part of the typexof
Since Smalltalk has no declarations, the typeisfnot known statically. Instead, each object |
a pointer to a table of pairs [procedure name, address of code], and when this call is execi
Print is looked up<'s table(l have normalized the unusual Smalltalk terminology and syntax
and oversimplified a bit). This is expensive. It turns out that usually the typis tie same as i
was last time. So the code for the &int(x, forma) can be arranged like this:

push format push x;
push lastType call lastProc

and eachPrint procedure begins with
lastT := Pop(); x := Pop(); t := type ofx;
if t # lastTthen LookupAndCallx, “Print”) else the body of the proceduead if.

HerelastTypeandlastProcare immediate values stored in the code. The idea is that
LookupAndCalkhould store the type &fand the code address it finds back intol#s¢Typeand
lastProcfields. If the type is the same next time, the procedure is called directly. Measuren
show that this cache hits about 96% of the time. In a machine with an instruction fetch uni
scheme has the nice property that the transfiast®roccan proceed at full speed; thus when
hint is correct the call is as fast as an ordinary subroutine call. The chietkastT can be
arranged so that it normally does not branch.

The same idea in a different guise is used in the S-1 [48], which has an extra bit for each

instruction in its instruction cache. It clears the bit when the instruction is loaded, sets it w
instruction causes a branch to be taken, and uses it to choose the path that the instructior
unit follows. If the prediction turns out to be wrong, it changes the bit and follows the other

* When in doubt, use brute fordespecially as the cost of hardware declines, a straightforwe
easily analyzed solution that requires a lot of special-purpose computing cycles is better tt
complex, poorly characterized one that may work well if certain assumptions are satisfied.
example, Ken Thompson’s chess machine Belle relies mainly on special-purpose hardwar
generate moves and evaluate positions, rather than on sophisticated chess strategies. Be
won the world computer chess championships several times. Another instructive example
success of personal computers over time-sharing systems; the latter include much more
cleverness and have many fewer wasted cycles, but the former are increasingly recognize
most cost-effective way to do interactive computing.

Even an asymptotically faster algorithm is not necessarily better. There is an algorithm the
multiplies twon x n matrices faster than @(), but the constant factor is prohibitive. On a mo
mundane note, the 7040 Watfor compiler uses linear search to look up symbols; student

programs have so few symbols that the setup time for a better algorithm can’t be recovere

» Compute in backgrounahen possible. In an interactive or real-time system, it is good to ¢
little work as possible before responding to a request. The reason is twofold: first, a rapid
response is better for the users, and second, the load usually varies a great deal, so there
to be idle processor time later in which to do background work. Many kinds of work can be
deferred to background. The Interlisp and Cedar garbage collectors [7, 11] do nearly all th
work this way. Many paging systems write out dirty pages and prepare candidates for
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replacement in background. Electronic mail can be delivered and retrieved by background
processes, since delivery within an hour or two is usually acceptable. Many banking syste
consolidate the data on accounts at night and have it ready the next morning. These four
amples have successively less need for synchronization between foreground and backgrc
tasks. As the amount of synchronization increases more care is needed to avoid subtle er
extreme example is the on-the-fly garbage collection algorithm given in [13]. But in most ¢
simple producer-consumer relationship between two otherwise independent processes is

» Use batch processingpossible. Doing things incrementally almost always costs more, ev
aside from the fact that disks and tapes work much better when accessed sequentially. Al
batch processing permits much simpler error recovery. The Bank of America has an intere
system that allows tellers to record deposits and check withdrawals. It is loaded with curre
account balances in the morning and does its best to maintain them during the day. But e:
next morning the on-line data is discarded and replaced with the results &f bagbh run. This
design makes it much easier to meet the bank’s requirements for trustworthy long-term da
there is no significant loss in function.

Be wary then; best safety lies in fear. (I iii 43)

» Safety firstln allocating resources, strive to avoid disaster rather than to attain an optimu
Many years of experience with virtual memory, networks, disk allocation, database layout,
other resource allocation problems has made it clear that a general-purpose system cann
optimize the use of resources. On the other hand, it is easy enough to overload a system .
drastically degrade the service. A system cannot be expected to function well if the demar
any resource exceeds two-thirds of the capacity, unless the load can be characterized ext
well. Fortunately hardware is cheap and getting cheaper; we can afford to provide excess
capacity. Memory is especially cheap, which is especially fortunate since to some extent .
of memory can allow other resources like processor cycles or communication bandwidth t
utilized more fully.

The sad truth about optimization was brought home by the first paging systems. In those ¢
memory was very expensive, and people had visions of squeezing the most out of every t
clever optimization of the swapping: putting related procedures on the same page, predict
next pages to be referenced from previous references, running jobs together that share dz
code, etc. No one ever learned how to do this. Instead, memory got cheaper, and systems
to provide enough cushion for simple demand paging to work. We learned that the only
important thing is to avoid thrashing, or too much demand for the available memory. A sys
that thrashes spends all its time waiting for the disk.

The only systems in which cleverness has worked are those with very well-known loads. F
instance, the 360/56PL system [4] has the same size workspace for each user and commao
system code for all of them. It makes all the system code resident, allocates a contiguous
disk for each user, and overlaps a swap-out and a swap-in with each unit of computation.
works fine.

The nicest thing about the Alto is that it doesn’t run faster at night. (J. Morris)

A similar lesson was learned about processor time. With interactive use the response time
demand for computing is important, since a person is waiting for it. Many attempts were m
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tune the processor scheduling as a function of priority of the computation, working set Size
memory loading, past history, likelihood of an I/O request, etc.. These efforts failed. Only t
crudest parameters produce intelligible effects: interactive vs. non-interactive computation
high, foreground and background priority levels. The most successful schemes give a fixe
of the cycles to each job and doallocate more than 100%; unused cycles are wasted or, wi
luck, consumed by a background job. The natural extension of this strategy is the persong
computer, in which each user has at least one processor to himself.

Give every man thy ear, but few thy voice;
Take each mas censure, but reserve thy judgment.

» Shed loado control demand, rather than allowing the system to become overloaded. Thi:
corollary of the previous rule. There are many ways to shed load. An interactive system ce
refuse new users, or even deny service to existing ones. A memory manager can limit the
being served so that all their working sets fit in the available memory. A network can disca
packets. If it comes to the worst, the system can crash and start over more prudently.

Bob Morris suggested that a shared interactive system should have a large red button on
terminal. The user pushes the button if he is dissatisfied with the service, and the system:
either improve the service or throw the user off; it makes an equitable choice over a suffici
long period. The idea is to keep people from wasting their time in front of terminals that ar
delivering a useful amount of service.

The original specification for the Arpanet [32] was that a packet accepted by the net is
guaranteed to be delivered unless the recipient machine is down or a network node fails w
is holding the packet. Thiarned out to be a bad idea. This rule makes it very hard to avoid
deadlock in the worst case, and attempts to obey it lead to many complications and ineffic
even in the normal case. Furthermore, the client does not benefit, since it still has to deal
packets lost by host or network failure (see section 4 on end-to-end). Eventually the rule w
abandoned. The Pup internet [3], faced with a much more variable set of transport facilitie
always ruthlessly discarded packets at the first sign of congestion.

4. Fault-tolerance

The unavoidable price of reliability is simplicity. (C. Hoar¢

Making a system reliable is not really hard, if you know how to go about it. But retrofitting
reliability to an existing design is very difficult.

This above all: to thine own self be true,
And it must follow, as the night the day,
Thou canst not then be false to any man.

» End-to-endError recovery at the application level is absolutely necessary for a reliable s
and any other error detection or recovery is not logically necessary but is strictly for
performance. This observation was first made by Saltzer [46] and is very widely applicable

For example, consider the operation of transferring a file from a file system on a disk attac
machine A, to another file system on another disk attached to machine B. To be confident
the right bits are really on B’s disk, you must read the file from B’s disk, compute a checks
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reasonable length (say 64 bits), and find that it is equal to a checkshenbits on A’s disk.
Checking the transfer from A’s disk to A’s memory, from A over the network to B, or from |
memory to B’s disk is not sufficient, since there might be trouble at some other point, the |
might be clobbered while sitting in memory, or whatever. These other checks are not nece
either, since if the end-to-end check fails the entire transfer can be repeated. Of course thi
of work, and if errors are frequent, intermediate checks can reduce the amount of work thg
be repeated. But this is strictly a question of performance, irrelevant to the reliability of the
transfer. Indeed, in the ring based system at Cambridge it is customary to copy an entire c
pack of 58 MBytes with only an end-to-end check; errors are so infrequent that the 20 min
work very seldom needs to be repeated [36].

Many uses of hints are applications of this idea. In the Alto file system described earlier, fc
example, the check of the label on a disk sector before writing the sector ensures that the
address for the write is correct. Any precautions taken to make it more likely that the addre
correct may be important, or even critical, for performance, but they do not affect the relial
of the file system.

The Pup internet [4] adopts the end-to-end strategy at several levels. The main service off
the network is transport of a data packet from a source to a destination. The packet may ti
a number of networks with widely varying error rates and other properties. Internet nodes
store and forward packets may run short of space and be forced to discard packets. Only
estimates of the best route for a packet are available, and these may be wildly wrong whe
of the network fail or resume operation. In the face of these uncertainties, the Pup internet
provides good service with a simple implementation by attempting only “best efforts” deliv
A packet may be lost with no notice to the sender, and it may be corrupted in transit. Clier
must provide their own error control to deal with these problems, and indeed highéievel

protocols do provide more complex services such as reliable byte streams. However, the |
transport does attempt to report problems to its clients, by providing a modest amount of ¢
control (a 16-bit checksum), notifying senders of discarded packets when possible, etc. Tf
services are intended to improve performance in the face of unreliable communication anc
overloading; since they too are best efforts, they don’'t complicate the implementation muc

There are two problems with the end-to-end strategy. First, it requires a cheap test for suc
Second, it can lead to working systems with severe performance defects that may not apg
the system becomes operational and is placed under heavy load.

Remember thee?
Yea, from the table of my memory
I'll wipe away all trivial fond records,
All saws of books, all forms, all pressures past,
That youth and observation copied there;
And thy commandment all alone shall live
Within the book and volume of my brain,
Unmix’d with baser matter (1v97)

* Log updateso record the truth about the state of an object. A log is a very simple data str
that can be reliably written and read, and cheaply forced out onto disk or other stable stor:
can survive a crash. Because it is append-only, the amount of writing is minimized, and it
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fairly easy to ensure that the log is valid no matter when a crash occurs. It is also easy an
to duplicate the log, write copies on tape, or whatever. Logs have been used for many yee
ensure that information in a data base is not lost [17], but the idea is a very general one at
be used in ordinary file systems [35, 49] and in many other less obvious situations. When
holds the truth, the current state of the objeetary much like a hint (it isn't exactly a hint
because there is no cheap way to check its correctness).

To use the technique, record every update to an object as a log entry consisting of the nat
the update procedure and its arguments. The procedure nfusthenal when applied to the
same arguments it must always have the same effect. In other words, there is no state ou
arguments that affects the operation of the procedure. This means that the procedure call
specified by the log entry can be re-executed later, and if the object being updated is in th:
state as when the update was first done, it will end up in the same state as after the updat
first done. By induction, this means that a sequence of log entries can be re-executed, sta
with the same objects, and produce the same objects that were produced in the original
execution.

For this to work, two requirements must be satisfied:
* The update procedure must be a true function:
Its result does not depend on any state outside its arguments.
It has no side effects, except on the object in whose log it appears.
* The arguments must alues one of:

Immediate values, such as integers, strings, etc. An immediate value can be
large thing, like an array or even a list, but the entire value must be copied ir
log entry.

References tonmutableobjects.

Most objects of course are not immutable, since they are updated. However, a padisidar
of an object is immutable; changes made to the object change the version. A simple way t
to an object version unambiguously is with the pair [object identifier, number of updates]. |
object identifier leads to the log for that object, then replaying the specified number of log «
yields the particular version. Of course doing this replay may require finding some other ol
versions, but as long as each update refers only to existing versions, there won'’t be any ¢
and this process will terminate.

For example, the Bravo editor [24] has exactly two update functions for editing a documer

Replacéold: Interval, new Interval)
ChangePropertigsvhere Interval, what FormattingOp

An Intervalis a triple [document version, first character, last charactdfprinattingOpis a
function from properties to properties; a property mighitdle or leftMargin, and a
FormattingOpmight beleftMargin: = leftMargin + 10 oritalic: = true. Thus only two kinds of
log entries are needed. All the editing commands reduce to applications of these two func
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Beware
Of entrance to a quarrel, but, being in,
Bear't that th’ opposed may beware of thee.

» Make actions atomic or restartabl&n atomic action (often calledteansactior) is one that
either completes or has no effect. For example, in most main storage systems fetching or
a word is atomic. The advantages of atomic actions for fault-tolerance are obvious: if a fall
occurs during the action it has no effect, so that in recovering from a failure it is not neces:
deal with any of the intermediate states of the action [28]. Database systems have provide
atomicity for some time [17], using a log to store the information needed to complete or ca
an action. The basic idea is to assign a unique identifier to each atomic action and use it t
all the log entries associated with that action. A commit record for the action [42] tells whe
is in progress, committed (logically complete, even if some cleanup work remains to be dc
aborted (logically canceled, even if some cleanup remains); changes in the state of the co
record are also recorded as log entries. An action cannot be committed unless there are Ic
entries for all of its updates. After a failure, recovery applies the log entries for each comm
action and undoes the updates for each aborted action. Many variations on this scheme a
possible [54].

For this to work, a log entry usually needs to be restartable. This means that it can be par
executed any number of times before a complete execution, without changing the result;
sometimes such an action is calligmpotent’. For example, storing a set of values into a s¢
variables is a restartable action; incrementing a variable by one is not. Restartable log ent
be applied to the current state of the object; there is no need to recover an old state.

This basic method can be used for any kind of permanent storage. If things are simple enc
rather distorted version will work. The Alto file system described above, for example, in eff
uses the disk labels and leader pages as a log and rebuilds its other data structures from-
necessary. As in most file systems, it is only the file allocation and directory actions that a
atomic; the file system does not help the client to make its updates atomic. The Juniper fil
system [35, 49] goes much further, allowing each client to make an arbitrary set of update
single atomic action. It uses a trick known as ‘shadow pages’, in which data pages are mao
from the log into the files simply by changing the pointers to them in the B-tree that implen
the map from file addresses to disk addresses; this trick was first used in the Cal system [
Cooperating clients of an ordinary file system can also implement atomic actions, by chec
whether recovery is needed before each access to a file; when it is they carry out the entri
specially named log files [40].

Atomic actions are not trivial to implement in general, although the preceding discussion t
show that they are not nearly as hard as their public image suggests. Sometimes a weake
cheaper method will do. The Grapevine mail transport and registration system [1], for exat
maintains a replicated data base of names and distribution lists on a large number of mac
a nationwide network. Updates are made at one site and propagated to other sites using t
system itself. This guarantees that the updates will eventually arrive, but as sites fail and r
and the network partitions, the order in which they arrive may vary greatly. Each update m
is time-stamped, and the latest one wins. After enough time has passed, all the sites will r
all the updates and will all agree. During the propagation, however, the sites may disagree
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example about whether a person is a member of a certain distribution list. Such occasione
disagreements and delays are not very important to the usefulness of this particular systel

5. Conclusion

Most humbly do | take my leave, my lord.

Such a collection of good advice and anecdotes is rather tiresome to read; perhaps it is be
in small doses at bedtime. In extenuation | can only plead that | have ignored most of thes
at least once, and nearly always regretted it. The references tell fuller stories about the sy:
techniques that | have only sketched. Many of them also have more complete rationalizati

All the slogans are collected in Figure 1 near the beginning of the paper.
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