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Abstract

Purpose—Accelerometers are a valuable tool for objective measurement of physical activity 

(PA). Wrist-worn devices may improve compliance over standard hip placement, but more 

research is needed to evaluate their validity for measuring PA in free-living settings. Traditional 

cut-point methods for accelerometers can be inaccurate, and need testing in free-living with wrist-

worn devices. In this study we developed and tested the performance of machine learned (ML) 

algorithms for classifying PA types from both hip and wrist accelerometer data.

Methods—Forty overweight or obese women (mean age = 55.2 ±15.3 yrs; BMI = 32.0 ± 3.7) 

wore two ActiGraph GT3X+ accelerometers (right hip, non-dominant wrist) for seven free-living 

days. Wearable cameras captured ground truth activity labels. A classifier consisting of a random 

forest and hidden Markov model classified the accelerometer data into four activities (sitting, 

standing, walking/running, riding in a vehicle). Free-living wrist and hip ML classifiers were 

compared to each other, to traditional accelerometer cut points, and to an algorithm developed in a 

laboratory setting.

Results—The ML classifier obtained an average of 89.4% and 84.6% balanced accuracy over the 

four activities using the hip and wrist accelerometer, respectively. In our dataset with an average of 

28.4 minutes of walking or running per day, the ML classifier predicted an average of 28.5 

minutes and 24.5 minutes of walking or running using the hip and wrist accelerometer, 

respectively. Intensity-based cutpoints and the laboratory algorithm significantly underestimated 

walking minutes.

Conclusions—Our results demonstrate the superior performance of our PA type classification 

algorithm, particularly in comparison to traditional cut-points. While the hip algorithm performed 

better, additional compliance achieved with wrist devices might justify using a slightly lower 

performing algorithm.
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INTRODUCTION

Objective measurement of Physical Activity

Accelerometers are a valuable tool for objective measurement of physical activity (PA), and 

accelerometer use in PA research has increased exponentially in recent years (1). Objective 

PA measurement is an important tool for examining the relationship between PA and various 

health outcomes, assessing the effects of behavioral interventions, and studying the 

relationships between PA and built environments. Traditional analysis of accelerometer data 

in PA research has been based on proprietary manufacturer-defined second-level summary 

measures known as “activity counts.” Researchers have established cut-points, based on 

laboratory-collected accelerometer data from healthy mostly young adults, to group activity 

count data into intensity categories of sedentary, light or moderate to vigorous PA (MVPA) 

(11).

Tri-axial accelerometry and machine learning

More recently, accelerometer manufacturers have been providing access to raw tri-axial 

acceleration data in units of gravity (g). This has allowed researchers more flexibility in data 

processing. In particular, machine learning (ML) methods to analyze raw accelerometer data 

have gained popularity. Machine learning methods can capture complex dependencies and 

nonlinearities in accelerometer data to improve recognition of PA. A particular advantage is 

that ML methods can be used to classify PA behaviors, in addition to intensity of 

acceleration (29). The ability to measure specific behaviors can be useful for PA researchers; 

for example, a researcher interested in measuring the effect of interventions might like to 

know that participants are increasing time spent in targeted behaviors such as walking or 

cycling as opposed to general MVPA. In Active Living Research, specific behaviors such as 

cycling and walking are more likely to be related to built environments than general MVPA 

(27). Additionally, advancing the understanding of the relationship between behaviors and 

health outcomes can allow for public health guidelines based on specific behaviors, which 

may be more easily interpreted by members of the public who might struggle to process and 

enact terms such as “moderate physical activity”.

Importance of free-living assessment

A limitation of traditional cut-point methods and emerging computation techniques is that 

they have been calibrated or trained on data collected in controlled laboratory-based settings. 

Recent research has shown that traditional cut-point methods misclassify behaviors in free-

living data with high error rates (16). Bastian et al. demonstrated differences in classifiers 

developed in the laboratory and in observational protocols (2). Machine learning methods 

developed on free-living data have been shown to outperform methods based on 

observational protocols (9). While it is expensive and time-consuming to collect free-living 

accelerometer data with corresponding ground-truth activity labels, new camera 
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technologies have made this more feasible. Recent work has shown that wearable cameras 

can clearly be used to assess free-living behaviors (7).

Growing popularity of wrist accelerometers

Traditionally, a hip-mounted accelerometer has been used to measure PA (1). However, the 

use of wrist-worn accelerometers to measure PA has been gaining popularity in recent years. 

For example, the large-scale National Health and Nutrition Examination Survey (NHANES) 

changed its accelerometer measurement location from the hip to the wrist in 2011 (30). An 

advantage of wrist accelerometers is that they may improve compliance, and can be worn 24 

hours without removal for sleep (33). Previous studies have shown that a wrist accelerometer 

can be used to classify PA behaviors (12, 19) and estimate overall PA (10) and intensity 

thresholds (13, 23, 25). More research is needed, however, to evaluate the validity of wrist-

worn devices for measuring PA in free-living. Intuitively, wrist acceleration will have a more 

noisy relationship with PA than hip acceleration, as extraneous arm movements can create 

high accelerations without correspondingly high energy expenditure. A wrist accelerometer 

will, therefore, record higher overall levels of acceleration than a hip accelerometer (13). 

Machine learning methods for classifying PA have been shown to perform well on free-

living hip-worn accelerometer data (9, 18). However, these methods have not been tested in 

participants with multiple days of entirely free-living wrist worn accelerometer data.

The aims of this study were to compare ML behavior classifications made from wrist-worn 

accelerometer data and hip-worn accelerometer data on a free-living population. We also 

compare our ML behavior classifications with traditional intensity cut-points, to highlight 

differences that might impact comparisons across future studies of population estimates 

using different techniques. There have been calls for greater standardization in 

accelerometer methods and the current findings will inform consensus development for 

accelerometer wear and data processing protocols in future studies (34). Further, we 

compare our new free-living algorithms to a published computation technique developed in a 

laboratory setting. The two-level ML behavior classification algorithm presented in this 

paper is available as an R package that is free for other researchers to download and use on 

their own data (cran.r-project.org/web/packages/TLBC).

METHODS

Dataset collection

Subjects—Forty overweight or obese women (mean age = 55.2 ±15.3 yrs; BMI = 32.0 

± 3.7) performed their normal daily activities for seven days. This population was recruited 

as part of the NCI funded Transdisciplinary Research in Energetics and Cancer (TREC) 

(21). Almost half of these women were breast cancer survivors. Written informed consent 

was provided by all participants. Details regarding participant eligibility are published 

elsewhere (22).

Accelerometers—Participants were asked to wear two ActiGraph GT3X+ (ActiGraph, 

Pensacola, FL) accelerometers: one on a belt on their right hip and one on their non-

dominant wrist. The ActiGraph GT3X+ captured raw triaxial acceleration (± 6 g) at 30 Hz 
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(Previous literature (4, 20) has shown 30Hz to be sufficient for human behavior 

classification). Participants were instructed to wear the hip accelerometer during waking 

hours and the wrist accelerometer 24 hours/day, including overnight.

Ground truth capture—In order to capture ground truth information about participant 

behavior, participants also wore a small camera called a SenseCam (Vicon Revue) on a 

lanyard around their neck. The SenseCam captured first-person images approximately every 

20 seconds. Participants were trained on IRB-approved procedures for ensuring privacy and 

confidentially for themselves and others. Participants wore the camera for the full seven days 

of data collection. SenseCam image data were downloaded and imported into the Clarity 

SenseCam Browser (8), and researchers annotated the SenseCam images with ground truth 

behavior labels. A standardized annotation protocol was developed, and inter-rater reliability 

was established. More details on SenseCam image annotation can be found elsewhere (16) 

and the complete annotation protocol is available from the authors upon request. The 

SenseCam annotation protocol assigns one of six mutually exclusive posture labels to each 

image: sitting, standing still, standing moving, walking/running, and bicycling. For this 

analysis we combined the two types of standing, ignored bicycling (as only participant 

bicycled), and separated sitting in a vehicle from other types of sitting (This separation was 

done for ease of classification only, as the accelerometer measurements look different in 

vehicle travel. Note that sitting in a vehicle and other types of sitting can be combined after 

behavior classification). This resulted in four behavior labels: sitting, standing, walking/

running, and riding in a vehicle. The resulting dataset contains over 100,000 annotated 

minutes of data, comprising a free-living dataset much larger than comparable literature 

(19).

Behavior classification algorithm

We designed a behavior classification system that uses machine learning algorithms to 

predict behaviors from raw triaxial accelerometer data. Our system predicts a behavior label 

for each minute of accelerometer data. A one-minute window was chosen because we 

believe it is a sufficiently detailed interval by which to represent public health relevant 

behaviors on a daily level, and allows comparison to traditional counts-per-minute based 

methods. The behavior classification process is comprised of three steps: feature extraction, 

minute-level classification, and time-smoothing. A detailed description of these three steps 

follows:

Feature extraction—A sliding one-minute window was used to convert raw (unfiltered) 

triaxial accelerometer data into a sequence of forty-one dimensional feature vectors. The 

features extracted include basic time-domain descriptors, correlation features, angular 

features, and frequency-domain features.

For each sample in a data window, the vector magnitude (VM) of the acceleration signal was 

calculated i.e., v = (x2 + y2 + z2)1/2. The following basic statistical descriptors of the VM 

were calculated over the data window: mean, standard deviation (sd), coefficient of variation 

(coefvariation), minimum (min), maximum (max), 25th, 50th and 75th percentile (25thp, 

median, 75thp). The 1-s lag autocorrelation (autocorr) of the VM and the correlation 
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between each axis were computed (corrxy, corrxz, corryz). Many of these features have been 

shown to be useful for identifying behaviors in previous literature (28). For each sample in 

the window, the roll, pitch and yaw angles of the direction of acceleration were computed, as 

roll = tan−1(y, z), pitch = tan−1(x, z) and yaw = tan−1(y, x). The average (avgroll, avgpitch, 

avgyaw) and standard deviation (sdroll, sdpitch, sdyaw) of these angles were computed over 

the window. A low-pass filter with a cutoff frequency of 0.5 Hz (preliminary experiments 

tested a few cutoff frequencies and found 0.5Hz to perform best) was applied to the data 

window to estimate the average direction of gravity, and the roll, pitch and yaw angles of 

this direction were computed (rollg, pitchg, yawg) (14).

The fast Fourier transform (FFT) was applied to the VM to decompose the time domain 

signal vt to its frequency components. The resulting power spectrum describes the 

contribution of a given frequency to the measured acceleration signal. The dominant 

frequency of the signal (fmax), i.e., the frequency with highest power, and corresponding 

maximal power (pmax) were computed from the power spectrum. A similar calculation was 

done between the frequency bands of 0.3 Hz and 3Hz (fmaxband, pmaxband). The entropy 
of the frequency domain signal was computed. Finally, the power in each frequency band 

between 1 and 15 Hz (fft1-fft15) was computed.

Minute-level classification—Next, each feature vector was input into a random forest 

classifier that produces a predicted behavior label. A random forest classifier is an ensemble 

of randomized decision trees. Each decision tree is learned from a random sample of training 

examples and a random sample of features. Test examples are classified by averaging the 

output of each decision tree in the forest. The random forest algorithm was chosen because it 

has a number of advantageous properties: (i) feature selection is encompassed in the training 

phase, and non-informative features are easily ignored, (ii) it can model interactions between 

features, (iii) it is a type of ensemble learning, which makes it more robust to noise than a 

single tree, (iv) it does not require much fine-tuning of parameters, and (v) it is relatively fast 

to train (5). The importance of each feature to the random forest classifier can be calculated 

by iteratively holding out each feature and calculating the change in accuracy of the 

resulting classifier.

Time-smoothing—Finally, the sequence of probabilities output by the random forest 

classifier was smoothed over time by a hidden Markov model (HMM) to produce the final 

sequence of predicted behaviors. The HMM is a probabilistic model defined over a sequence 

of observations ot, t = 1, 2, …T. In our model the observation ot represents the behavior 

prediction by the random forest classifier at time t. The HMM assumes that the observation 

at time t was generated by some process whose state ht is hidden from the observer. In our 

model the hidden state ht represents the true behavior at time t. The outputs were assumed to 

be independent given the hidden states, i.e. given ht, ot is independent of the hidden states 

and observations at all other time indices. Additionally, the sequence of hidden states was 

assumed to be a Markov process, i.e., given the value of state ht−1, the current state ht is 

independent of all states prior to time t−1.

Hence the model was defined by three parameters. The observation matrix D represents the 

probabilities of each observation value given each hidden state, i.e., the probabilities that the 
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random forest will classify an example of a given behavior with each behavior label. The 

transition matrix B represents the probabilities of transitioning between behaviors in the 

hidden state sequence. Finally, the vector of initial probabilities π represents the a priori 

probability of each given behavior. The model parameters B, D and π were learned from the 

training data using maximum likelihood estimation. Test sequences of predictions from the 

random forest classifier were smoothed by using the Viterbi algorithm to infer the most 

likely sequence of hidden states. (24)

The HMM can smooth errors made by the random forest by explicitly modeling the 

probability of transitioning between activities. For example, it is very unlikely to transition 

directly from sitting to riding in a vehicle without a small bout of walking in between. The 

HMM can also model the duration of an activity bout via the self-transition probability, i.e. 
the probability that the hidden state will remain in a given behavior. Similarly, modeling the 

random forest errors through the observation probabilities allows the HMM smoother to 

place higher confidence on behaviors with good classification accuracy, while behaviors 

with lower classification accuracy might be more likely to be changed through the 

smoothing process.

Evaluation—The performance of our behavior classification algorithm was evaluated using 

leave-one-participant-out cross-validation.

Standard cut-points

Standard cut-points were used to categorize hip accelerometer counts per minute (CPM) into 

sedentary (< 100 CPM), light (100 – 1951 CPM) and MVPA (≥ 1952 CPM) (11). These 

analyses were processed using the ActiLife software (ActiGraph, Pensacola, FL).

GGIR

A new method called GGIR calibrates and analyzes raw triaxial accelerometer data. The R 

package GGIR (31) was used to calibrate accelerometer data, compute the metric Euclidean 

norm minus one (ENMO) for each minute of data, and estimate the number of minutes in 

MVPA (32). For hip data the threshold ENMO > 69 and for wrist data the threshold ENMO 

>100 was used to define minutes of MVPA. These thresholds were developed in a 

laboratory-based study of 30 healthy adults aged 18–65 (13).

Statistical Analysis

Hip accelerometer non-wear time was assessed using the Choi algorithm (6). Ground truth 

behavior labels, ML behavior predictions, CPM and ENMO values were matched by time on 

the minute-level at the hip and wrist. We compared minutes under the sedentary cutpoint to 

minutes of sedentary behaviors (sitting and riding in a vehicle), and compared minutes 

classified as MVPA to minutes of walking.

Since the hip accelerometer and SenseCam were not worn overnight, only comparisons for 

the available matched minutes were performed. Minutes per wear day in each behavior or 

intensity category were computed. Mixed effects linear regression analyses, adjusting for 

wear time and the nesting of days within participants, were used to compare the number of 
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minutes/day in each method. Mixed effects linear regression was performed using the R 

package lme4 (3). All statistical analyses were performed in R (http://www.R-project.org/).

RESULTS

ML behavior classification

The sensitivity, specificity, and balanced accuracy (the mean of sensitivity and specificity) of 

the ML behavior classifiers using hip and wrist accelerometers are presented in Table 1. The 

ML behavior classifier using the hip accelerometer obtained on average 5% higher accuracy 

than the classifier using the wrist accelerometer. The mean minutes per day of behaviors 

predicted using each classifier are presented in Table 2. Predicted minutes of sitting and 

riding in vehicle were not significantly different from ground truth for either accelerometer 

position. Both hip and wrist ML classifiers significantly over-predicted minutes of standing. 

Bland-Altman plots (Figure 1) showing the difference between predicted and ground truth 

minutes per day of walking (on the participant level) indicate good agreement and that there 

is no bias with increasing time. The root mean squared error (RMSE) for the hip classifier 

was 11.5 min/day. For the wrist classifier, the RMSE was 13.3 min/day. Standing was most 

commonly confused for sitting by the hip classifier and most commonly confused for 

walking by the wrist classifier (Table 3). The wrist classifier under-predicted walking by an 

average of 4 minutes, while the hip classifier showed no significant difference in minutes of 

walking predicted. Figure 2 shows the importance of each feature used by the ML classifier. 

Differences between feature importance for the wrist and hip classifiers demonstrate that 

each algorithm is unique to the wear location. Notably, the hip classifier puts more trust in 

the features such as the standard deviation, coefficient of variation, and maximum, which 

might be less informative in noisier wrist data. Conversely, a feature such as power at the 

dominant frequency, which can extract information from a noisy signal, is more important to 

the wrist classifier.

Traditional hip accelerometer cut-points

The mean minutes per day of each intensity category are presented in Table 2. The 100 CPM 

cut-point applied to the hip accelerometer under-predicted minutes in sedentary behaviors by 

an average of 47 minutes. The majority of the CPMs (Table 4). The 1952 CPM cut-point for 

MVPA applied to the hip accelerometer under-predicted walking by 16 minutes. In fact, as 

Table 4 shows, the majority of walking minutes fell under the 1952 CPM cut-point. The 

Bland-Altman plots (Figure 1) show the under prediction of walking minutes, and increasing 

discrepancies as participants’ walking time increases missed sedentary time was due to 

vehicle time with high. The RMSE was 20.4 min/day.

GGIR

The mean minutes per day classified as MVPA are presented in Table 2. Minutes of MVPA 

estimated by the hip and wrist accelerometer under-estimate walking by 11 and 10 minutes, 

respectively. The estimates are fairly consistent between the hip and wrist devices, with only 

one minute difference between the two estimates. No comparison for sitting time was 

available. Bland-Altman plots show that estimated MVPA and true minutes of walking are in 

relatively good agreement, although there is a slightly increasing underestimation with 
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increasing walking minutes). The Hip accelerometer had a RMSE of 15.5 min/day and the 

wrist accelerometer had a RMSE of 17.5 min/day.

DISCUSSION

In this study, we presented a method to classify free-living behaviors from a hip-mounted or 

wrist-mounted accelerometer. This two-layer machine learning method improved 

classification over traditional cutpoint methods. The hip based classifier demonstrated higher 

minute-level accuracy than the wrist based classifier, although both classifiers correctly 

estimated minutes in sedentary behaviors and walking time.

The performance of both hip and wrist free-living ML classifiers was comparable to 

previous studies (9). Variations in performance can depend on the number of activities being 

classified and the amounts of signal and noise in the training data. For example, laboratory 

data can be classified with higher accuracy than observation protocol data (2), and 

observational protocol data can be classified with higher accuracy than free-living data (9, 

17). However, classifiers trained on both laboratory and observational protocol data perform 

poorly when applied to free-living data. This study demonstrated that free-living data can be 

successfully classifier using a ML trained on free-living data.

These results demonstrate some limitations of traditional cut-point methods for categorizing 

hip accelerometer data into intensity categories. A sizeable portion of vehicle travel (29%) 

fell above the threshold for sedentary activity. This is unsurprising, as the cutpoints were 

developed in laboratory datasets that did not include vehicle time. However, in daily life 

vehicle time often constitutes a significant portion of sedentary time – in fact, the population 

of women measured in this study spent on average more than an hour a day in a vehicle. 

Researchers investigating the relationship between commuting and sedentary behavior will 

be especially interested in correctly capturing sedentary behavior in a vehicle. Previous work 

with wearable cameras showed high errors with self-reported travel diaries (15)—reliable 

detection of travel behaviors using accelerometers would allow larger-scale studies. Further, 

studies of commuting and pollution that compared sitting in vehicle to riding in traffic could 

benefits from these estimates. Additionally, the majority of standing time fell under the 

threshold for sedentary activity; an incorrect classification particularly for researchers 

interested in measuring standing as breaks from sitting.

A significant portion of walking fell under the cut-point for MVPA. The GGIR algorithm 

developed in the laboratory showed a similar pattern of predicting fewer minutes of MVPA 

than walking time. This is not surprising as much walking is not of moderate intensity. 

However, intensities of 1952 are not appropriate reflections of moderate in all populations, 

especially middle aged to older adults. Given the prevalence of walking/running as the 

preferred PA of many populations and the importance of walking for public health (e.g. 

Surgeon General’s Everybody walk! Initiative), it is important that we can accurately 

measure it. In this population of overweight and obese women, other forms of PA were 

seldom observed.
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The ML classifier trained on free-living data accurately estimated the average minutes of 

sitting and walking behaviors over the population, with no significant difference from 

ground truth. Higher levels of arm movement than torso movement lead to wrist data being 

noisier than hip data and emphasize the need for more sophisticated data processing 

methods. While the hip ML algorithm performed better on the available data, additional 

wear time achieved with wrist devices might justify use of a slightly lower performing 

algorithm. Because we only had ground truth data for a limited wear time (on average 7 

hours per day), we were not able to present the performance of the wrist algorithms over the 

full wear time.

This study demonstrated the validity of a ML behavior classifier trained on a homogeneous 

sample of 40 overweight and obese women. It should be noted that while the ML algorithms 

presented in this paper were tuned for the appropriate population, the cutpoint and GGIR 

methods were developed on data from laboratory studies of healthy adults. Additional work 

aims to understand the generalizability of these algorithms between heterogeneous 

populations (17). But this work provides a strong proof of concept and advances our 

understanding of the differences between wrist and hip placement of accelerometers for 

behavior monitoring. An additional source of limitation is the choice of a one-minute 

resolution for behavior classification. Minutes that consist of a combination of behaviors 

(i.e., a transition from sitting to standing) will presumably be classified as the single 

behavior most represented (i.e., either as sitting or standing). (Note that performance 

measures presented in this paper were assessed only on minutes containing a single 

behavior). Although traditionally count-based intensity measures have also been assessed on 

the minute level, future work should investigate methods to identify specific transition times 

between behaviors. An additional limitation was the use of a combination of walking and 

running into a single behavior—this was necessitated by the use of wearable cameras as a 

ground truth measure, as speed cannot be accurately assessed from still images, as well as a 

lack of running behaviors in our population. Future work can attempt to differentiate 

between these behaviors by including data from GPS devices to estimate speed.

The ML algorithms presented in this paper are available in an R package (cran.r-

project.org/web/packages/TLBC). The package contains both functions to train behavior 

classification models on your own dataset, and models that have been pre-trained on our 

free-living dataset and are ready to apply to raw accelerometer data.

Intensity and behaviors are two different windows into physical activity measurement. While 

intensity has been the paradigm of choice for years past, the ability to measure behaviors has 

several advantages. Behavior-specific interventions require the ability to measure the 

specific behaviors being targeted. Additionally, such methods enable research on dose-

response relationships between specific behaviors and health outcomes (26). Such findings 

can inform behavior-based public health guidelines that may be more understandable to the 

public. For example, a recommendation of 30 min/day of walking might be more easily 

understood and actionable than 30 min/day of MVPA as the public may struggle with 

intensity monitoring. Walking may need to be of a higher intensity or longer duration to 

impact health outcomes, but objective measures of walking have yet to be tested against 

outcomes in large cohort studies.
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Figure 1. 
Bland-Altman plots showing the difference between minutes of predicted walking/running 

or MVPA and ground truth minutes of walking/running, by participant, for the (a) hip 

accelerometer and (b) wrist accelerometer.
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Figure 2. 
Feature importance measured by mean decrease in accuracy of the random forest classifier
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Table 4

Confusion matrix: Intensity categories from hip accelerometer cut-points as a percentage of minutes of true 

behaviors

Cut-point intensities Ground truth behaviors

Sitting Vehicle Standing Walking/Running

Sedentary 90 70 44 6

Light 10 29 55 55

MVPA 0 0 0 39
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