
Contents lists available at ScienceDirect

Int. J. Human–Computer Studies

journal homepage: www.elsevier.com/locate/ijhcs

Hip-directed walking-in-place using a single depth camera

Luís Brunoa,⁎, Maurício Sousab, Alfredo Ferreirab, João Madeiras Pereirab, Joaquim Jorgeb

a Instituto Politécnico de Beja, Rua Pedro Soares, Apartado 6155, 7800-295 Beja, Portugal
b INESC-ID/IST/University of Lisboa, R Alves Redol, 9, 1000-021 Lisboa, Portugal

A R T I C L E I N F O

Keywords:
Walking in place
Virtual locomotion
Navigation control
Virtual environments
Interaction design

A B S T R A C T

Walking-in-place (WIP) is a locomotion technique that allows users to travel in virtual environments (VEs)
without significantly changing their physical position on the floor. Hip-directed steering(HDS) is a novel
physical technique for controlling direction changes in virtual travel using hip movements. We present an WIP-
based navigation approach for controlling locomotion in VEs that combines the speed and direction in a
scenario similar to a domestic setup in which people interact with a flat screen. Their physical motion data are
captured by one depth camera properly aligned with the screen and oriented toward the user.

We approach the characteristically noisy data generated by depth cameras via a user study to determine both
the range of values and their robustness from the motion data associated with the joints relevant to WIP
speed(knee, ankle and foot) and HDS (spine, hip and shoulder) to derive a reliable technique. Our WIP speed
method is supported in a simple vocabulary of five different footstep types. Experimental results show that both
the knee and hip provide the most robust data.

We evaluated our techniques via usability tests exercising common locomotion tasks. The results show that
users liked both the speed control and comfort afforded by our speed method. Regarding HDS, users reported
that the angular-based method allowed them to travel faster and was both more controllable and easier to learn
than the time-based method. Our work shows that a single depth camera can be used to combine locomotion
and direction control in a simple and affordable setup.

1. Introduction

Controlling navigation in virtual environments can rely on indirect
interactions supported by physical devices and graphical user interface
controllers. Alternatively, it can be driven by direct interactions based
on gestures expressed by different body parts. In particular, walking-
in-place (WIP) enables people to control movements in a VE by
mimicking real walking movements. In contrast to unrestricted real
walking, WIP allows users to operate in small areas. In current
approaches, WIP gestures only control the linear movement of a virtual
camera. To change direction, different techniques are required. The
joystick is probably the most common physical device used for this
purpose. However, it renders the hands unavailable for more appro-
priate tasks, such as selecting and manipulating objects and burdens
them with too many control actions. In our approach we use a single
depth camera to track different body parts. This low-cost device has
considerable potential to provide additional degrees of freedom to
control avatar navigation. However, it poses specific problems. Due to
camera limitations, a single sensor may not provide reliable skeleton

data due to occlusions.
Display modalities also affect navigation. Most WIP approaches use

head-mounted displays (HMD). A few methods operate in a CAVE
(Settgast et al., 2014; Razzaque et al., 2002; Zielinski and Brady, 2011)
or use a flat screen (Terziman et al., 2010). These devices require
distinct techniques to control movement direction changes.
Furthermore, different devices present diverse field of Regard (FOR)
constraints. When using an HMD, it is possible for users to rotate
physically 360°without losing visual feedback. In contrast, inside a
CAVE, the allowed body rotation depends on the number of screen
walls surrounding the person. Eg in a CAVE with three walls, users
cannot rotate by more than 90°without losing the FOR, which may
hinder interaction. Finally, when using a single depth sensor its
placement can pose problems. To avoid interfering with visualization,
sensors should be placed above the display, which increases the
likelihood of lower-limb occlusions.

Moreover, in front of a flat screen, body rotation becomes more
constrained because user may lose her FOR. Its allowable extent
depends on both the screen size and user distance to the display.
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Indeed, previous studies (Settgast et al., 2014; Williams et al., 2013;
Zheng et al., 2012; Langbehn et al., 2015) reported problems using a
single depth camera. Although camera placement can be crucial to both
data accuracy and noise, our approach demonstrates that proper
filtering and the judicious choice of tracked joints can greatly con-
tribute to reliable, controlled motions. This is in contrast to previous
methods that relied solely on either foot or torso data collected
separately.

In this paper, we present a simple (but not simplistic) approach to
reliably control navigation using a single depth camera in front of a
large screen display. Our technique tries to ensure the maximum of
data accuracy coming from specific joints related to torso-leg move-
ments. Furthermore, through a comprehensive user study, we devised
algorithms especially adapted to both the visualization and single-
camera constraints.

Our results show that it is possible to control locomotion and
direction using a simple affordable setup, which can be amenable to
many different scenarios.

The remainder of this paper is organized as follows. In Section 2, we
discuss the main related works on controlling speed and direction
travel using WIP and other comparative techniques, as well on the data
accuracy problems when body joints are captured by one low-cost
depth camera. Section 3 details our setup and presents a user study
conducted to collect the parameters to implement the proposed
algorithms and to choose appropriate skeleton joints. Section 4
describes the design of our speed WIP and HDS approaches. Section
5 describes the usability study and its results for assessing both the
performance and user experience of the proposed methods using
common locomotion tasks. Finally, we present the main conclusions
of our work in Section 6 and identify paths for future research.

2. Related work

Our work builds on related research on walking in place techniques
and sensing people's movements using commodity depth cameras.

2.1. Walking in place

Early research on WIP-based navigation techniques for large VEs
explored footstep detection algorithms (Slater et al., 1995; Templeman
et al., 1999; Feasel et al., 2008; Wendt et al., 2010). Controlling virtual
speed is another topic that has been investigated, and various methods
have been proposed for this purpose. Some approaches rely on step
frequency (Wendt et al., 2010; Nilsson et al., 2014), whereas others rely
on scaling of real walking speeds (Williams et al., 2006; Interrante
et al., 2007), on foot speed (Feasel et al., 2008) or even on the steps’
height and speed combination (Bruno et al., 2013). Some work was
focused to improve the user experience, like to understand what speed
users find the most natural while walking in place (Nilsson et al.,
2014a, 2014b).

The WIP model proposed by Bruno et al. (2013) based its virtual
speed formula on the footstep height and speed metrics. A comparison
study against the WIP model proposed by Wendt et al. (2010)
supported the speed equation mainly in the footstep frequency, showed
that the user is more effective, efficient and precise using the first
model. This work follows this Bruno et al. (2013) model using those
input metrics, but introducing a different approach for capturing lower
limb motion, change travel direction, and using a single depth camera
rather than a sophisticated IR tracking system. Indeed, precision IR
tracking systems using multiple cameras, are expensive and are not
available in common home settings.

However, when using a single depth camera, lower-limb occlusions
can occur while stepping in place. In addition to the issues related to
user performance, other technical aspects of WIP user experience have
been addressed in previous studies. Various studies (Williams et al.,
2011; Templeman et al., 2006) compared the joystick against gestural

interfaces for spatial orientation tasks. An usability study conducted by
Slater et al. (1995) reported that user experience has a higher
subjective sense of presence when traveling by walking-in-place
(virtual walking) than when they push-button-fly (along the floor
plane). Another study by Feasel et al. (2008), in which participants
controlled motion in the VE via a chest orientation sensor, found that
their WIP performed better compared to joystick-navigation but
significantly worse than real walking. Williams et al. (2013) studied
the user spatial orientation in an immersive environment and reported
that her WIP interface is better than joystick navigation but similar to
normal walking.

Different inputs, outputs and control laws of virtual displacement
or simulated movements have been explored for developing effective
WIP methods. Additionally, different technologies have been used to
detect steps in place to WIP techniques: magnetic trackers (Slater et al.,
1995; Feasel et al., 2008), force sensors placed on shoe insoles
(Templeman et al., 1999) and optical camera trackers (Wendt et al.,
2010; Bruno et al., 2013). However, all of these approaches utilize
expensive tracking systems to track the position of the knees
(Templeman et al., 1999), feet (Bruno et al., 2013), head (Slater
et al., 1995) or shins (Feasel et al., 2008). Other techniques relied on
physical interfaces, such as custom-made platforms (Bouguila et al.,
2003, 2005). The recent survey by Velloso et al. (2015) provides a
comprehensive overview of devices and interactions that focus on lower
limbs. In order for WIP systems to be used in living room-sized spaces
in common house settings, affordable and versatile tracking systems
are required to cope with both the dimensions and use of such spaces.
This requires researching new WIP techniques that are adapted to the
limitations and characteristics of these tracking systems.

In this context, several WIP approaches explored
NintendoTMWiimote devices with inertial measurement units
(Shiratori and Hodgins, 2008; Williams et al. 2011). Shiratori and
Hodgins (2008) used Wiimote devices attached to each of the user's
legs, and the step motion data were collected by the devices own
internal accelerometer. In contrast, Williams et al. (2011) collected the
steps input data using the pressure of the feet on a Wii Balance Board.
Both approaches require users to be connected to physical devices,
which seriously impacts the naturalness of the user experience due to
the intrusive nature of these devices, and both works reported footstep
lag problems.

2.2. Using depth cameras for navigation control

The depth cameras offer an affordable price range, do not require
wearing additional contraptions, and provides a sensing feature
suitable for common living rooms, thus making them suitable for
domestic settings. However, occlusion by lower limbs becomes an issue
and can lead to accuracy problems when capturing motion.

Recent studies adopted skeleton information captured from depth
cameras, such as Microsoft Kinect sensors, to control travel in VEs. One
of the earliest works using this input device used body posture (not
WIP gestures) as a metaphorical joystick to navigate in VEs. The
method developed by Khan et al. (2012) tracks the user's head position
in the physical room to calculate the distance from the user to the
center of the CAVE to predict virtual speed. In the method proposed by
Dam et al. (2013), users just point their feet toward the desired
direction of movement, which is then calculated based on the direction
of the users’ feet relative to their waist. However, it is not clear where
the depth cameras are positioned inside the physical rooms, and the
authors did not report on accuracy problems when capturing the user's
skeleton.

Another study (Settgast et al., 2014) described navigation control in
a four-sided CAVE using the Microsoft Kinect to capture both the
stepping-in-place gestures and user body posture. These authors found
that placing the depth camera on top of the front wall yielded
considerably better skeleton recognition results than at the ceiling or
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at the back opening of the CAVE. Additionally, users needed to stand
approximately 1.5 m away from the front wall to be completely visible
due to the sensor specifications. Informal user studies related to their
WIP gestures suggest that ankle joint data were too noisy and that knee
data were apparently more reliable. This result is logical given the
employed camera placement. Indeed, the authors reported that the
Kinect can only recognize the skeleton if the legs and arms are not
occluded and if the maximum allowed body rotation angle is less than
45 degrees. In our work, we attempt to validate and minimize these
limitations to capture data from the legs and the torso movement by
only one depth sensor.

A preliminary work (Zheng et al., 2012) confirmed that the skeletal
data provided by the Kinect from users walking in place are noisy. To
better detect steps-in-place, those authors argued that the most robust
data could be obtained from the knees. Also, they found the steps are
correctly detected when the knee reaches a threshold value of 0.08 m
above the standing height. Refuting this conclusion for WIP gestures
detection, Williams et al. (2013) found that the most robust data were
obtained from the feet (not knees) and that foot occlusion was
effectively a problem. This ambiguity motivates our work to identify
more accurate data from lower limb joints related to different footstep
types. To overcome this limitation, Williams et al. proposed developing
a WIP method supported by two depth sensors that are exactly 90°
apart and each 2.5 m away from the intended user. One of the two
directional methods allows users wearing an HMD to change WIP
direction using the torso orientation reported from the Kinect sensor,
and the other method relied on gaze direction.

Langbehn et al. (2015) recently introduced a WIP approach with
omnidirectional tracking using four cameras placed in a circle around
the subject. They used torso leaning angles to scale virtual locomotion
speed. Their preliminary user evaluation showed that the setup can be
viable. However, leaning angles can be impractical for locomotion at
higher speeds.

Our work is based on a powerwall visualization setup that restricts
the user rotations to avoid losing her visual feedback. We hypothesize
that under these conditions, it will be possible to develop a robust
method that processes reliable skeleton data from the torso and lower
limbs through only one depth camera. An earlier work (Wilson et al.,
2014) used a similar approach to skeletal tracking data using two
Kinect sensors placed 90° apart and approximately 3 m away from the
user that accurately track the participant and reduce occlusion
problems. The authors described a WIP method to overcome some of
the limitations of previous works (Williams et al., 2013). To this end,
they measured the angle between the hip, knee, and ankle of the
participant's legs to detect steps when that angle would reach a certain
threshold. However, both approaches do not allow users to change
virtual locomotion speed.

The next studies adopted Kinect sensors for tasks other than to
control virtual travel direction and speed. Torres et al. (2012) used
motion data from the arm and torso together with OpenNI software in
a human-robot interaction system. They applied a low-pass filter to
smooth out noisy data provided by torso rotation by averaging the two
shoulder rotation angles. Another recent work on human posture
identification (Monir et al., 2012) not related to WIP also used
Kinect sensors to track users’ skeletons. Their results based on Kinect
SDK show an average accuracy above 94.9 percent in posture classi-
fication (standing, sitting, moving forward and bending) from skeletal
features using data collected at user-sensor distances ranging from
1.3 m to 3.5 m. The best results were obtained at distances between
2.0 m and 2.5 m. However, these data were not collected from common
leg/foot movements. Indeed, most reported studies do not provide
details of the position or orientation of the Kinect sensor. Our research
aims to determine these parameters to avoid body occlusions in legs
and torso movements. A work by Aitpayev and Gaber (2012) not
focused in virtual locomotion techniques reported that a single depth
camera is not sufficient to provide accurate body data using the Kinect

SDK 2 for Windows. They found accuracy problems when measuring
joint skeleton data, particularly when users rotated 90°off the camera
direction. Previous works on WIP methods supported by Kinect
sensors are not clear on the accuracy of data from lower limb joints
(foot or knee). Our work contributes to clarifying these points and thus
fills the gap through empirical studies to rigorously derive the accuracy
from different footstep types and torso rotation. In the next section we
describe these studies, before describing the full technique.

3. Estimating motion parameters

In order to implement the speed and HDS methods, we developed a
user study to determine which lower limb and torso joints provide the
most accurate data when using only one Kinect sensing camera, as well
as to estimate the parameters required to generate the equations to
control the travel motion. This section describes the system setup and
the user study to select the more appropriate joints to those methods
fig. 1.

3.1. Setup

Our WIP system operates in a laboratory with a large wall-mounted
display and a single depth camera, as depicted in Fig. 2. The wall
display is comprised of a flexible screen of 4x2.25 square meters in a

Fig. 1. Our vision for future applications of this work in a domestic setup.

Fig. 2. Setup of the locomotion system where the user stands about 3.0 m from the
screen.
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2x2 tiled system of projectors in rear-projection mode. The adopted
camera was the Microsoft Kinect V1 at 30 Hz sampling rate. It includes
a visualization module to display a virtual world and a Kinect-based
user motion tracker to identify body gestures and navigate the virtual
environment. The large display is a 2x2 High Definition tiled screen in
rear-projection mode at 8.6 mega-pixel resolution. The display dimen-
sions create spatial constraints for positioning the Kinect camera,
restricting the range of optimal user detection between 1.2 and 4.0 m.

Despite the spatial restrictions of our setup and the Microsoft
Kinect product recommendations, user tracking can be successfully
achieved with the depth sensor on the floor at a tilt angle that fits the
entire user in the camera's field-of-view. The sensor is placed on the
floor tilted 10.0° upward. Participants stand approximately 3.0 m from
the camera and are free to move within a 2x2 meter area in front of the
display, as depicted in Fig. 2. The Kinect-based user motion tracker
software module is responsible for recognizing people and follows their
actions by means of accessing and controlling the depth camera. It
relies on using Microsoft's Kinect for Windows SDK Kinect for
Windows SDK, 2016-05-01 software which estimates the skeleton
model as depicted in Fig. 2. With such data, in every new frame of
the camera, we can obtain the position of the joints and segments that
comprise the calculated user skeleton. In the Kinect skeleton model,
each lower limb is divided into segments that contain joint data for the
foot, ankle and knee, which we use to compute the navigation speed
within the virtual environment. The SDK also provides us individual
joint orientation relative to the camera position. Our steering technique
relies on the orientation of the user's torso. We get these data through
three joints that comprise the upper body of the model: shoulder center
(referred below as shoulder), spine and hip center (referred below as
hip). The use of just one single depth sensor can limit the tracking
efficacy when some joints are occluded by other body parts. A slight
rotation of the user's body can occlude the joints of at least one leg. A
higher elevation of the knee can cause miscalculations of the torso
joints.

In most cases, the SDK is able to infer the position of an occluded
joint through a predicting model. However, this feature returns noisy
and inaccurate values that may cause erroneous calculations by the WIP
algorithm and negatively impact the fluidity of the navigation.
Fortunately, the SDK returns a parameter for each joint that represents
its tracking confidence, ranging from Tracked to Inferred values. Not all
the joint positions labeled as inferred are accurate. Our approach
strongly depends on accurate measures of user height and the sensor's
ability to detect steps. The user height is computed in real time by adding
the lengths of each segment that comprise the upper body, head and one
of the legs. We add 0.1 m to the result to account for the distance
between the sensor-detected head joint to the top of the user's head. To
detect steps, our user tracker needs to differentiate between the lower
limb's rest state (on the floor) and the raised state during gait. Rather
than estimating the ground plane, our approach detects the onset of a
step via height differences between the joints of each lower limb.

3.2. Collecting data from users

We conducted a preliminary study to assess the accuracy of data
from three lower limb joints (ankle, foot and knee) and from three
torso joints (hip, shoulder and spine) sensed by only one depth camera,
as shown in Fig. 3. This study allowed us to estimate specific kinematic
parameters from five different footsteps types and torso rotation
actions. The metrics analyzed are the footstep height and speed
computed from these joint data, referred to bellow as height and speed
metrics. The footstep types describe different gestures, which are
combinations from those metric features: (i) short and slow (SS), (ii)
short and fast (SF), (iii) medium and moderate (MM), (iv) long and
slow (LS), and long and fast (LF). The data was collected in a controlled
experiment using the setup and apparatus described previously, and
participants were asked to execute the requested tasks.

3.2.1. Tasks
The participants were asked to execute two different task types: (i)

stepping-in-place without rotating their torso (linear tasks) and (ii)
stepping in place while rotating their torso clockwise, from 0° to 90°,
and counterclockwise, from 0° to −90° (nonlinear tasks).

The linear tasks simulates the user body movements to travel
forward. All these tasks had no visual feedback from their actions in a
virtual environment. However, the user body and head should be
perpendicularly oriented towards the wall screen while receiving the
appropriate instructions to 5 different tasks, each one corresponding to
one footstep type (SS, SF, MM, LS and LF). For each of these tasks, the
participants were asked to step-in-place with the specified footstep
gestures lasting 10 s.

The non-linear tasks simulates the body movements to change the
travel direction and were divided into 10 different sub-tasks (5
different footstep types (SS, SF, MM, LS and LF) X 2 opposite body
rotations). Each task took 10 s. Initially, the users’ bodies were oriented
toward a screen, then they had to rotate clockwise or counterclockwise,
from 0° to 90°, and finally, they had to rotate to the initial body
orientation. In these actions user should orient her head to large
display.

Each task was repeated in two similar sessions to avoid data loss or
other problems that could occur during the experiment. One interval of
5 seconds was used between two consecutive sessions. At the beginning
of each task session, instructions related to the next task were
presented to the user in a large screen, as shown in Fig. 4. This allows
the user to focus on their tasks and avoids misunderstandings. The
moderator of the experience was available to help the user when
questions arose.

3.2.2. Participants
Twenty participants, thirteen males and seven females, ranging in

age from 22 to 30 years (mean=24.1 years) participated in the user
study and were recruited from our local university campus. Their
height ranged from 1.55 m to 1.95 m (mean=1.73 m). The Shapiro-
Wilkinson normality test revealed that height data sample presents a
normal distribution (p=0.498). No participant had motor or physical
impairments.

3.2.3. Experimental procedure
At the beginning of the experiment, the participants were informed

of the study purpose and the script was explained. To introduce the
stepping-in-place technique, the participants experimented for at least
10 minutes with a WIP prototype to control the virtual locomotion in

Fig. 3. Skeleton model with torso joints (blue), used for steering, and lower limb joints
(green), used for speed control, sensed by camera. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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one VE. Thereafter, the experiment moderator demonstrated the
footstep types and the torso rotation movements that the users should
perform. The sequence of task sessions and how users can follow the
instructions exhibited on the screen were also explained. When ready,
the participant began the successive tasks according to the instructions.
When a system error occurred or the participant experienced a
particular difficulty, the session was repeated by order of experiment
moderator. At the end of the experiment, a post-test questionnaire was
administered to collect user demographic data.

3.2.4. Metrics
In this work, the data accuracy metric is measured through the

tracking confidence state values obtained from skeleton tracker data
structure. The height and speed are the metrics that describe WIP
gestures. The maximum rotation angle is the metric that describes the
torso orientation threshold.

3.2.5. Design and data analysis
The experiment design was within-subjects, where each participant

performed the five linear and ten non-linear tasks. Therefore, the
original data consisted of 20 participants x 5 linear tasks x 10 nonlinear
tasks (1000 samples). The “height”, “speed”, and “maximum rotation
for non-linear tasks” data metrics presented normality in their data
samples, and then two-way repeated-measures ANOVA (tasks x joints)
was applied. Greenhouse-Geisser's sphericity corrections were applied
whenever Mauchly's test of sphericity showed a significant effect. The
post-hoc test of pairwise multiple comparisons for each factor was
adjusted by Bonferroni test. The tracking confidence state and the
maximum rotation for linear tasks samples did not present a normal
distribution; thus, the non-parametric Friedman test was used to
determine the main effect of the factors step type and joint. The
Wilcoxon test was used to determine the pairwise differences among
factor levels. The level of significance used for all of the hypothesis tests
was α = 0.05.

3.2.6. Results and discussion
The quantitative data collected from the trials were statically

analyzed to understand the comparative effects of the footstep type
and joint on the mentioned metrics. All the trials data was 100% kept.

Height metric The maximum height was achieved for each lower
limb joint and for each footstep type was recorded to compute the
respectively average values. As shown in Table 1, the average maximum
height naturally increases from the short steps (slow to fast) to the long
steps (slow to fast). The two-way repeated-measures ANOVA revealed

the significant effect of the step type (F = 119.1022.154,28.006 , p < .0001)
on the maximum height metric but did not show a significant effect of
the joint (F = 3.4881.301,16.916 , p=.070). No interactions between the step
type and the joint were found (F = 2.2823.756,48.827 , p=.078). Regarding
the footstep type, the post-hoc test for pairwise multiple comparisons
revealed differences between all the pairs (p < .0001) except for the two
short type steps (p=1.000) and for the two long type steps (p=.348).
These results suggest a consistent relationship between the step height
and the footstep types and can be safely used to support a WIP design
with different footstep gestures.

The average height values obtained for each joint are very similar:
foot ( m0.19 ), ankle ( m0.19 ) and knee ( m0.20 ). The ANOVA reveals no
significant differences among these three levels, indicating that this
metric is invariant to the joint type, and thus, this feature does not
contribute to the selection of the most appropriate joint for the WIP
system design.

Speed Metric The footstep average speed was calculated for each
lower limb joint and for each footstep type from the relation between
the distances (ascendant and descendant) performed by each joint with
the time spent for this action. As shown in Table 1, the average speed
increases from the shorter steps (short/slow and short/fast) to the
medium height steps, and finally to the longer steps (long/slow and
long/fast). The two-way repeated-measures ANOVA reveals the sig-
nificant effect of the step type (F = 103.9024,52 , p < .0001) as well as the
effect of the joint (F p= 8.840, = .0051.379,17.921 ) on the speed metric.
Interactions between step type and joint were found
(F p= 3.126, = .0353.114,40.477 ). The post-hoc test supported by pairwise
multiple comparisons reveals significant differences for all the footstep
types on the speed metric (p < .05). These results suggest that these
different WIP footstep gestures can be classified through the speed
metric and could be used to design an perceptible method to user.
Regarding the joint metric, the foot presented the fastest speed
(0.83 m/s), followed by the ankle (0.80 m/s), and finally by the knee
(0.73 m/s). The post-hoc test shows differences between the foot and
the knee (p=0.004). No significant differences were found between the
foot and the ankle (p=0.062) or between the ankle and the knee
(0.187). If one of the joints had a proven higher speed value among the
others then it can provide a wider speeds range to control the virtual
speed. But, since that was not the case, then it is not possible to choose
one joint over the others to our WIP method design.

Data accuracy from lower limb joints The accuracy level of the
skeleton joint input data is critical for the usability of the WIP
technique. From each frame transmitted by Kinect, the tracking
confidence state (tracked or inferred) is defined for each joint position.
For each footstep, the ratio between the frames labeled with the tracked
state by the total number of frames captured was calculated. This is
called the average confidence state ratio. Table 1 shows the average
ratio for each footstep type. The two faster steps (LS and LF) present on
average the lowest confidence values, and the moderate steps (MM)
present the best values. The slower and shorter steps (SS and SF)
present better confidence than the faster steps. The Friedman test
shows that the step type has a significant effect (p=0.005) on this
metric. The post-hoc Wilcoxon test confirms significant differences

Fig. 4. User stepping-in-place following the task instructions on a large screen.

Table 1
Average/St. Error of height and speed, and average of confidence tracking state for
footstep types.

Step Metric [SS] [SF] [MM] [LS] [LF]

Height (m) 0.07/0.09 0.07/0.07 0.15/0.01 0.32/0.02 0.36/
0.02

Speed (m/s) 0.39/0.04 0.51/0.03 0.69/0,05 0.90/0.05 1.45/
0.075

Tracking Confidence
State Ratio

99.72 99.75 99.86 99.23 99.27
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between all the pairs, except for the two slower steps (p=0.120), the
two faster steps (p=0.151), and MM against SS (p=0.070) and SF
(p=0.122). This result indicates that the tracking data obtained from
the moderate footsteps are more robust than those from the other
footstep types. Regarding the joint analysis, the average confidence
ratio indicated that the knee (99.94%) presents the best value, followed
by the foot (99.71%), and finally by the ankle (99.05%). The Friedman
test reveals the significant effect (p=0.001) of the joint on this metric.
The post-hoc Wilcoxon test reveals significant differences between the
foot/ankle (p=0.041), the ankle/knee (p=0.005) and foot/knee
(p=0.290). As the knee presents the best ratio, the stats results
confirms that this joint ensures the most robust data tracking from
Kinect.

Maximum rotation angle from torso joints for linear tasks To
determine the linear threshold angle in our HDS methods, the
maximum rotation angle metric for the footstep types and for joints
(hip, spine and shoulder) was processed. The mean amplitude values
for each joint are as follows: hip (7.85°), spine (3.75°) and shoulder
(3.85°). The mean values for each footstep type are as follows: SS
(3.65°), SF (2.65°), MM (5.70°), LS (8.20°) and LF (7.50°). The Friedman
test reveals the significant effect (p < .0001) of the joint on this metric.
The post-hoc Wilcoxon test reveals significant differences between the
hip/spine (p < .0001) and the hip/shoulder (p < .0001) but not the
spine/shoulder (p=.882). These results reveal that the torso rotation
amplitude for linear tasks presents values below10°, independent of the
joint source. On average, the hip joint provides a higher amplitude than
the spine and shoulder joints. Supported by the Friedman test, a
significant effect of this metric on the step type is found (p < .0001). All
the step type comparison pairs are different, except the two shortest
SF/SS (p=.228) and the two longest LF/LS (p=.225). The step type that
produces on average the highest amplitude is the LS (8.20°).

Maximum rotation angle from torso for non-linear tasks The
maximum rotation angle metric for non-linear tasks was processed to
infer significant differences for the footstep types and for joint (hip,
spine and shoulder) conditions. The mean values for each joint are as
follows: hip (65.0°), spine (36.0°) and shoulder (35.0°). The mean values
for each footstep type are as follows: SS (42.6°), SF (44.4°), MM (46.4°),
LS (46.1°) and LF (48.0°). The two-way repeated-measures ANOVA
reveals the significant effect of the joint (F p= 89.181, < .00012,38 ) on
this metric, but no effects were detected for the step type
(F p= 1.408, = 0.2394,76 ), and no interactions between step type and
joint were found (F p= 1.643, = 0.1723.996,75.920 ). The post-hoc test for
pairwise multiple comparisons reveals differences between the hip,
spine and shoulder joints (p < .0001 for both pairs) and did not reveal
differences between the spine and shoulder joints (p=1.000 for both
pairs). These results reveal that the hip joint provides the highest torso
angle amplitude for the same tracking confidence state ratio, ensuring a
wider amplitude range for the direction control algorithm.

From the previous results we selected the knee joint to input our
speed method due the robustness data tracking from Kinect to our
scenario. The hip joint was selected as input to methods that allow user
to control directional changes using body rotations in front a large
screen. Next section explains the design and implementation of the
speed and HDS methods proposed in this work.

4. Our approach

This section describes the design of the speed model and the two
alternative HDS models taking into account the user study results,
described in Section 3. The proposed interaction rules and algorithms
should assure the lowest possible number of body occlusions to one
camera. It allows us to obtain the maximum data accuracy from the
selected skeleton joints to provide a fluid experience for user. Based on
the previous study (in Section 3), we state the knee joint meets these
requirements to our speed method and hip joint to our proposed HDS
methods.

4.1. WIP speed algorithm model

The main guidelines to design the speed model consisted of defining
suitable interaction rules responsible for managing input data from
knee and deriving the speed control law that describes the avatar
movement.

4.1.1. Interaction rules
Our proposed speed model is supported by three state machines for

each left and right knee, and for virtual travel. The model of these states
machines are similar to those reported in other research works in this
area (Wendt et al., 2010; Bruno et al., 2013; Francese et al., 2012). As
depicted in Fig. 5, the state machine for the predefined knee joint is
composed of three states: ascending, descending and resting. The
events that trigger the transitions are the step up, maximum height
reached and step down. The ascending state occurs when the knee joint
vertical position (Pv) exceeds a minimum height threshold
(P m> 0.035v ) from its resting position. The descending state is
triggered when the knee maximum height is detected which occurs
when the vertical velocity decreases to a predefined threshold
(V m s< 0.10 /v ). The resting state occurs when the knee height is lower
than the minimum height threshold (P m> 0.035v ). Those threshold
parameters were empirically calculated through different experimental
tests with some voluntary colleagues (male and female with different
heights) that contribute to get a robust footstep detection model from
the knee data using only one depth camera. The computed value of the
virtual speed is updated in two phases of the step cycle. The first one
occurs when the user knee reaches the highest point, and the second
one occurs when the resting state is detected. The computed speed
value from our algorithm is divided by the imaging frame rate to get the
step distance performed for each frame. Stopping travel occurs when
the user stops the swing motion of the legs for a predefined period. The
detection of this event requires defining a timeout that allows the
system to predict whether a user intends to stop or not. The timeout
value should avoid not only stopping latency but also identifying false
stop events. The data collected from user tests identify the relationship
between the speed value of the descending phase and the joint time to
rest. The algorithm for predicting the stop timeout is supported by a
linear interpolation between the descending speed and the resting time
on the floor.

4.1.2. Speed control equation
Our speed algorithm intends to relate the virtual speed to the

footstep height and speed. Higher and faster steps should be correlated
with higher virtual speeds (Bruno et al., 2013). However, because users
have different heights, as depicted in Fig. 6, the maximum virtual speed

Fig. 5. Foot states and conditions that trigger WIP events.
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achieved by different users will differ. Therefore, to overcome this
limitation, the designed algorithm should incorporate a scale factor
that attenuates these differences. This is very useful when adults and
children are exploring the same VE and want to experience similar
locomotion levels. The formula (1) was developed empirically to obtain
the dependent variable vs (virtual speed) that has the following
independent variables: footstep height (fh) defines the maximum
vertical distance performed by the knee in each step; footstep speed
(fs) defines the vertical mean speed during the ascending and
descending phases of each step; user height (uh) is automatically
captured from the Kinect software through the analysis of the skeleton
data; and the speed scale constant (ss) allows the equation to adapt the
speed according to the needs for each virtual environment and
locomotion requirements.

vs ss fh uh fs= *( /0.36)*(1.95/ ) + ( /1.45) (1)

In our hypothesis, the virtual speed is more predictable for the user
if it is supported in linear relationships. The ( fh/0.36) and ( fs/1.45)
describes ratios where the denominators represent respectively the
maximum mean values of the footstep heights and speeds, as shown in
Table 1. The (fh) variable value is adjusted by the ratio ( uh1.95/ ). The
chosen height threshold (1.95) matches to the tallest user in the
previous user study (in Section 3) that is also representative of the
highest people that can use the system. This solution allows shorter
people to compensate their shorter vertical footsteps, assuring that they
have similar speed values relative to taller people, as depicted in Fig. 6.
The user height (uh) is automatically captured from the Kinect software
when the system starts through the analysis of the skeleton data.

By simulating this formula for a mean values, as one user with a
common height of m1.75 , a mean footstep height (fh) equal to m0.18 ,
and a moderate speed (fs) equal to m s0.73 / , and a scale factor (ss) equal
to 1, then the virtual speed obtained is m s1.06 / . This value corresponds
to a mean speed in real walking at a moderate gait. The relationship
between those input may serve as reference for the user calibrate the
desired speed.

Stopping travel occurs when the user stops the swing motion of the
two legs for a predefined period. To trigger this event, it is necessary to
define a timeout that allows the system to detect whether a user intends
to stop. The timeout value should avoid false stops and minimize the
stopping latency. From the data collected in the previous study, we
identified a relationship between the speed value in the descending
phase and the time period where the user supports their feet on the
floor. From this relation, one linear interpolation was established, as
shown in Eq. (2).

timeout abs ds= −0.29* ( ) + 0.84 (2)

The interpolation is supported in the speed range from m s0.14 / to

m s1, 7 / , and in the time interval from s0.8 to s0.35 . The speed value
(ds) of the descending phase is the independent metric for predicting
the timeout. When the user supports their feet beyond the timeout
value, the virtual motion is stopped. Experimental tests with voluntary
users showed that this formula is suitable and does not cause false
positives.

The following section describes the designed models for controlling
travel directional changes of the WIP.

4.2. HDS algorithm model

Our HDS model design considered the visualization restrictions on
a single large flat screen, which significantly decreases the freedom of
user movements. In this context, the proposed design was adapted to
the hip joint that was selected from the previous user study described
in section 3. This joint assures the more accurate data and the widest
amplitude range when user rotate her body while stepping in place.
This model should provide the capability of controlling the virtual
travel either in a fixed direction (linear path) or changing the direction
(non-linear path) in omnidirectional way.

4.2.1. Interaction rules
Our design defined two yaw threshold angles for the hip joint

rotation that were derived from the previous user study (in section 3).
The first one, called linear threshold, refers to the maximum hip
amplitude (defined by α) that allows user to move in a fixed linear path;
above this amplitude, the user can change the travel direction induced
by torso rotations, as depicted in Fig. 7. The second threshold angle,
called non-linear threshold (defined by β), represents the maximum
hip rotation that is processed by the system to avoid body occlusions
for the sensing camera and prevents users from losing the visual output
on the large flat screen.

The α value was supported in statistical analysis of the maximum
torso amplitude while the user is stepping-in-place without rotate
voluntarily her body. On average, the hip presents an amplitude of
7.85° for all the footstep types and the highest amplitude is 8.20°) for LS
steps. Based on this value plus a safety margin (about 2.00°), we
selected α to 10°. This value was tested by some informal users and
performs well. The non-linear threshold was based on the visualization
restrictions of the flat screen and the sensing camera occlusions.
Therefore, if the torso rotates by more than 45°, body occlusions and
gazing outside the screen can occur more frequently. Based on this
value, we choose β value to 25° as the non-linear threshold. The sum of
the α plus β thresholds is equal to 35°, which provides a safety margin
relative to the limit of 45°.

4.2.2. Control methods
From the empirical analysis of users rotating their torsos to control

travel directions, we proposed two different methods. The first is
primarily dependent on the hip angle amplitude around the yaw axis,
and we called it the “angular method”. The second is supported on the
time metric during hip rotation and is called the “time method”. For
both methods user has to turn her whole body beyond the linear

Fig. 6. Different user heights cause different footstep heights.

Fig. 7. Torso orientation within the linear (alpha) and non-linear (beta) thresholds that
defines the travel direction.
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threshold to start changing travel direction. When user get the desired
path direction then he can recenter her body to the linear amplitude. In
the angular method, the directional change is directly proportional to
the torso angle amplitude. In the “time method”, the directional change
depends on the time spent by the user while rotating her torso. The
angular method has the advantage of being more natural because the
user perceives a relation between torso physical movement and
directional effect on VE. However, it has the disadvantage of a
restricted torso rotation amplitude to avoid the user looking outside
the flat screen and camera to obtain noisy data. The time method has
the advantage of not requiring the user to perform expressive rotations
amplitudes, keeping him more focused on the flat screen and avoiding
leaving the frustum of the camera sensing. The angular method offers
also to the user a proprioceptive cue that is more tangible and objective
than the time perception. Due to the impossibility of designing a 1:1
mapping between the physical and virtual rotation, it is necessary to
use a scale factor for the virtual camera rotation to accommodate the
omnidirectional travel requirement. The option to apply this scale was
based on the angular speed concept for the virtual camera. The angular
speed range determined for the two HDS methods was defined from
6.5°/s (this small value is very little perceptible to user) to 150°/s (for
very fast directional changes), which were obtained from several
empirical tests with users. The angular speed supports the omnidirec-
tional requirement for this approach and its values range allow user to
control direction in a perceptible and smooth way. The two designed
methods compute the angle offset of the virtual camera supported by a
linear interpolation between the range for the respective metrics and
angular speed range. The linear interpolation was chosen rather than
an exponential interpolation because the mapping between the input
values and the resulting directional change is more predictable to users
when based on a linear curve according tests with informal users.

Angular Method: When users rotate their hip joint beyond the
linear threshold amplitude (10.0°), the virtual angular offset (ao) is
computed according the following equation (3). This design was
supported by a linear interpolation between the angular speed range
(6.5°/s to 150°/s) defined before and the hip yaw angle range (10° to
35°). The value10° corresponds to the linear threshold that activates the
travel directional changes and 35° to the non-linear threshold as
defined before. To generate the equation all of those parameters were
converted to the respective percentage values.

ao abs ha= 57.4* ( ) − 5.09 (3)

The independent variable ha is a percentage value that defines the
current hip amplitude. The obtained ao value defines the angle offset
applied sequentially to the virtual camera when people rotate their
torso within the non-linear amplitude. This offset should be divided by
the frame rate of the imaging device.

Time Method: This method uses the time as the main indepen-
dent variable to calculate the angle offset of the virtual camera rotation.
When users rotate the hip yaw angle beyond the linear threshold, the
angular offset (ao) is computed according to the following equation (4).
This design was supported by a linear interpolation between the
angular speed range (6.5°/s to 150°/s) and time interval ( ms0 to

ms2000 ). The angular speed range is the same as the angular method,
and the speed range varies from ms0 to ms2000 . This maximum value
was obtained from several empirical tests with users.

ao abs t= 0.65* ( ) + 0.01 (4)

The t variable defines the time elapsed in milliseconds since the
user began rotating their torso beyond the non-linear threshold.
Simulating the equation for feet resting more than 2000ms, then the
angle offset (ao) computed is percent value of s150°/ (the maximum
value allowed).

Transition between linear and non-linear modes One problem
encountered in an exploratory prototype was the lack of smoothness in
the visual feedback caused by the abrupt activation of the travel

direction when the linear threshold is crossed.
To attenuate this jitter, one function was applied to produce

continuously small directional changes, below the linear threshold,
that are not clearly perceptible to user. That was selected an exponen-
tial curve, as shown in Eq. 5. This was obtained from an exponential
interpolation between the hip yaw angle amplitude (5° to 35°) and the
angular speed interval ( s5°/ to s30°/ ). The equation parameters were
converted to the respective percentage values which were obtained
from empirical studies with users. The result of this equation is only
used while the hip angle is lower than 10°.

ao Exp Log Log Log ha= ( (0.05) + ( (30) − (0.05))*
0.25

)
(5)

The ha variable represents the current hip amplitude. Simulating
the equation, the camera rotation offset (ao) is equal to 6.5° percent for
the linear threshold (10°). This value causes small changes in the travel
direction that are not perceptible to user according reports from
informal user tests. These changes are also balanced by the alternative
rhythmic movement of the two legs; thus, the travel direction changes
are counterbalanced by a complete footstep cycle.

The next section describes the evaluation of our approach compar-
ing the two HDS methods and the performance of WIP speed method
through an usability test.

5. Usability testing

We conducted a usability experiment in a controlled environment
using the same setup described in Section 3. The main purpose of this
experiment was to compare our two directional control methods and
check the proficiency level of the developed WIP speed method.

For this experiment, we developed a simple scenario consisting of a
virtual environment that combines open spaces with a few obstacles.
The overall layout is a wide courtyard enclosed by buildings. The
requested task was to walk along a path outlined by several checkpoints
(red spheres), as depicted in Fig. 8. At all times, the user was able to
visualize at least two of the next checkpoints. The arrays on the ground
help user to follow her own path in order to get in range of each sphere.
The task ends when the user goes through the last sphere.

5.1. Participants

A total of 12 participants (2 female) were asked to perform our
designed experiment. The age of the participants ranged between 21
and 32 (mean=24). Their height ranged between 1.55 m and 1.88 m

Fig. 8. User walking-in-place to control locomotion in a VE.
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(mean m= 1.76 ). Additionally, 9 of the 12 participants had previously
experienced a virtual navigation interface based on the WIP technique.

5.2. Procedures

Each participant could navigate the predefined path two times
(trials) using each directional control method, corresponding to a total
of four laps. Half of the users started with the angular method, and the
other half started with the time method to counterbalance the bias
effect. Each test session began with a brief explanation of the purpose
of the experiment, and the navigation control actions associated with
each method were explained. Prior to starting the trials, each user was
given a minimum of ten minutes to train with the methods by freely
navigating in a neutral virtual environment. Then, they executed the
trials, in which they traveled through a virtual predefined path while
trying to cross the checkpoints. After the trials, each participant
completed a questionnaire containing questions about demographic
information and previous experience with locomotion control in VE
systems and with these navigation methods.

5.3. Metrics

Two key metrics were used: the time to complete each task and the
errors that occurred. The time metric represented the elapsed time
seconds from the start until the arrival at the last checkpoint. An error
occurred when a user did not get in range of each sphere.

5.4. Design and data analysis

We used a within-subjects design in which each participant experi-
ment consisted of two directional methods x two trials. Therefore, the
original data consisted of 12 participants x 4 trials. The time metric
samples did not exhibit a normal distribution contrary to the angular
metric samples; therefore, the Friedman test was used to detect the
differences between the the four samples. Regarding the error metric,
the data samples did not show a normal distribution, then it was
applied the Friedman test too. The pairwise comparisons were sup-
ported by the Wilcoxon test. The subjective questionnaire data were
analyzed using the Friedman non-parametric test on the different
criteria and the Wilcoxon post-hoc test. The level of significance used
for all of the hypothesis tests was α = 0.05 that was adjusted by
Bonferroni method.

5.5. Results and discussion

All trials data were fully used for further statistical analysis. The
users navigated the predefined paths performing two trials (T1 and T2)
for each HDS control method (AM-angular method and TM-time
method). On average, the time spent with the angular method -
AM T s( 1) = 57.31 (SD=18.49) and AM T s( 2) = 44.99 (SD=6.66)- is
lower than using the time method trials - TM T s( 1) = 64.26
(SD=22.78) and TM T s( 2) = 60.28 (SD=15.01) - as illustrated in
Fig. 9. As far as it concerns to the error metric, users performed on
average fewer errors using the angular method - AM T( 1) = 0.084
(SD=0.29) and AM T( 2) = 0.08(SD=0.29) - than the time method -
TM T( 1) = 0.25(SD=0.45) and TM T( 2) = 0.17(SD=0.39) - as shown in
Table 2. On the time metric side, for the trial T1 on both methods, the
Friedman test didn't reveal statistical differences between the two
interfaces (p=.527). However, when analysing the data from the trial
T2, the Friedman test reveals statistical differences between them
(p=.011) corroborated by Wilcoxon test (p=.007). This seemed to
indicate that the angular method would provide faster navigation when
the user gains more practice on usage. To confirm that, the Friedman
test reveals significant differences between trials T1 and T2 for the
angular method (p=.011), confirmed by post-hoc Wilcoxon test
(p=.007), but no differences were detected for the time method

(p=1.000). This result suggests that the angular method allows users
to navigate faster and it is easier to learn than the time method.

The mean errors performed by users when crossing the targets were
very few for the two methods/trials. The Wilcoxon test does not present
significant differences among the four pairs - AM T TM T( 1)/ ( 1)
(p=.157), AM T TM T( 2)/ ( 2) (p=.564), AM T AM T( 1)/ ( 2) (p=1.000), and
TM T TM T( 1)/ ( 2) (p=.564). This means that both directional methods
provide a similar precision ability to cross path targets and control the
travel direction. As referred above, the angular method accomplished
better results regarding time metric, which may indicate that users felt
more confident when using the hip physical orientation to control
travel direction than to manage the time metric. It suggests that
physical movements are better perceived as a direct mapping to virtual
actions than to intangible metrics such as time.

The post-test questionnaire aims to reflect the opinion of the users
about their experience by using the speed method and the two HDS
methods. The charts in Fig. 10 presents the mean results from the user
ranks on a scale of 1 (the least agreement) to 7 (the most agreement).
The first two questions (chart in the left side) are related to the speed
method and the others (chart in the right side) to the HDS methods.
Question 1 is about the level of control offered by this WIP interface,
and question 2 is related to the level of comfort provided. The mean
ranks (5.42 and 5.08, respectively) show that users positively appreci-
ate this WIP method for these criteria. The results about control reveals
user has a positive perception of the system latency between the
amount of time that the users takes on step and the time that she
observe one step movement in the VE. Questions 3 and 4 are about the
level of control provided by the angular and time methods, respectively.
The angular method (5.92) presents a better rating than the time
method (4.42). The Wilcoxon test reveals a significant difference
(p=.004) between the two methods. This result suggests that the users
perceive the angular method as yielding more control than the time
method. Questions 5 and 6 ask the users how each technique can harm
the visualization experience - to loose the screen visual perception. As
the angular method was ranked at 5.50, and time one was ranked at
5.83. However, the Wilcoxon test does not reveal significant differences
(p=.279) between both methods. This suggests that the visual experi-
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Fig. 9. Time completion average.

Table 2
Performed mean errors and standard deviation from the usability test.

AM-T1 AM-T2 TM-T1 TM-T2

Mean (St. Error) 0.03 (0) 0.08 (0) 0.25 (0.13) 0.17 (0.11)
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ence is independent of the method used. Questions 7 and 8 are related
to the learning curve felt by users when conducting two consecutive
trials for both angular and time methods, respectively. The angular
method (6.33) was better ranked than the time method (5.17). The
Wilcoxon test confirms it revealing significant differences(p=0.48)
between both methods too, we concluded that users learned the
angular method easier than the time one. This result is consistent with
the performance results obtained for the time metric and shows that
users better manage the body physical cues than the elapsed time
perception. To summarize, taking into account our setting and the VE
scenario, the angular method, when compared to the time one, yielded
faster navigation,better control and easier to learn.

6. Conclusion and future work

This paper presented three different contributions to control virtual
travel using only one inexpensive depth camera while standing in front
of a large screen. A within-subjects study yielded both robustness and a
range of values from skeleton joints to control speed and direction.
These allowed us to provide a WIP approach based on five different
footsteps to control different speeds. Our results show that using the
knee to describe footsteps and the hip relative to torso yaw are the most
robust data source. Furthermore, we were able to adopt the footstep
height and speed metrics obtained in a previous study to design a WIP
speed equation. This proposed method has the advantage of providing
an accessible technique regardless of user height. We also found that
people found hip yaw angle to provide a faster, more comfortable and
easier to learn means for controlling direction than time-based
methods. This suggests that users better manage body physical cues
than using relative timeouts. This shows that a single depth camera can
be used to combine locomotion and direction control in a simple and
affordable setup. In the future, we intend to validate these speed and
HDS methods against other setups like HMD visualization to check the
effect of different footstep types in immersive virtual environments and
understand the sickness induced by the body rotations. An upcoming
study using a metronome can also validate our first user study. Also,
one intends to personalize the WIP algorithm to the individual user
calibrating the respective individual parameters. Other movements
such as walking backwards, walking sideways or jumping should be
studied to provide a more natural user experience, e.g., in action
games.
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