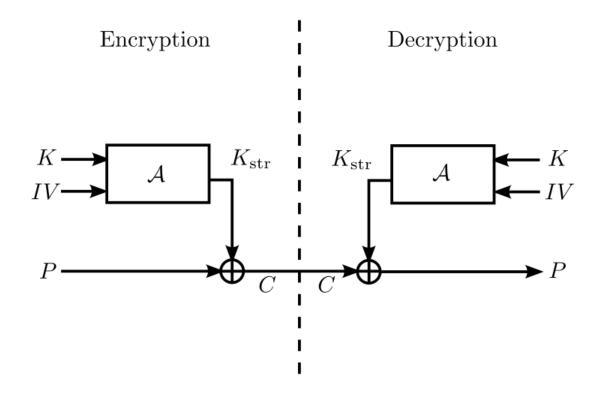


Outline of the Talk



Motivation and Preliminaries

- Design of Integrated Accelerator HiPAcc-LTE
- Implementation and Experimental Results
- Summary and Conclusion

Hardware for Stream Ciphers

- Enhance hardware performance of existing designs
 - Dedicated hardware modules for high speed and low area
- New designs targeted towards hardware performance
 - eSTREAM profile 2 (HW): Grain v1, MICKEY v2, Trivium

M P C

Our Motivation

- Enhance hardware performance of existing designs
- The general trend
 - Standalone modules for individual ciphers (eSTREAM)
 - Few different ciphers put into a single package (HSMs)
- The path not charted
 - Fuse multiple designs together before implementation
 - Algorithm-level merger for ciphers with similar structure
 - Single base framework, rather than a package

If there is a requirement to implement an array of ciphers on the same platform, how should one approach the hardware design?

Case Study

3GPP LTE Advanced – Security Suite

EEA1/EIA1 – based on SNOW 3G (same as in 3G)

■ EEA2/EIA2 - based on AES-128 (changed from KASUMI)

■ EEA3/EIA3 – based on ZUC (brand new inclusion)

Observation

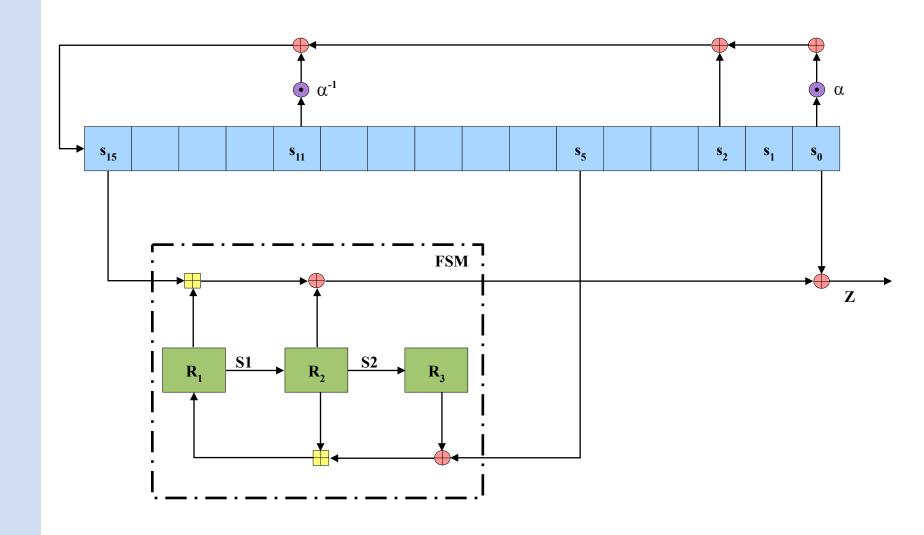
- Two similar stream ciphers in the same package
- In general, only one will be used at any given time

M P

Goal of the Project

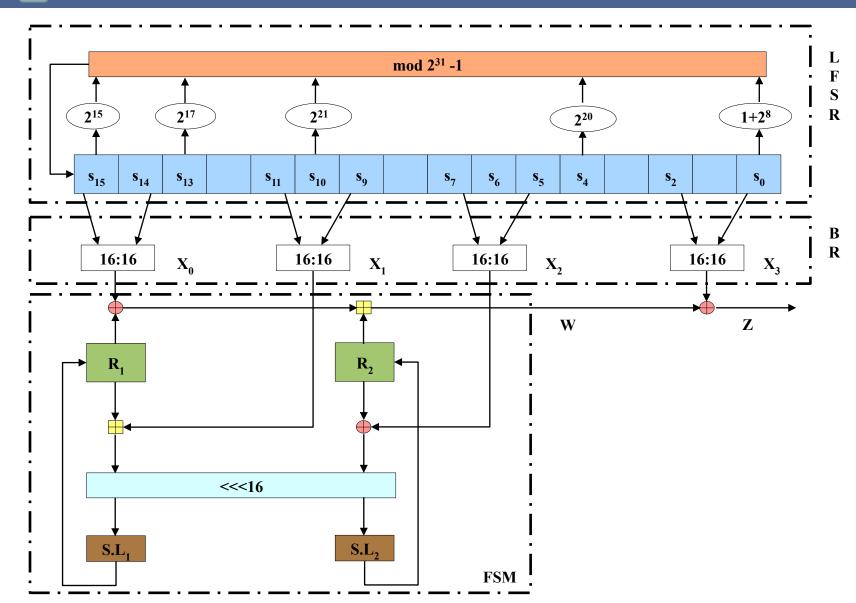
3GPP LTE Advanced Security Module HiPAcc-LTE SNOW 3G + ZUC + StandaloneCore AES-128

Fuse SNOW 3G and ZUC in hardware


- Sharing of resources, both storage and logic
- Throughput vs. area optimization at the base level

HiPAcc-LTE: Integrated platform

- Integrate similarities of the individual designs
- Push the performance (speed and area) for both

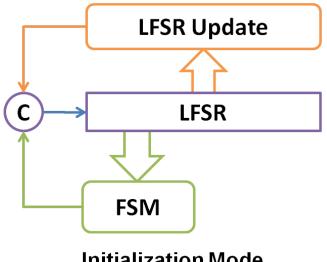


Preliminaries - SNOW 3G

Preliminaries - ZUC

M P

Outline of the Talk

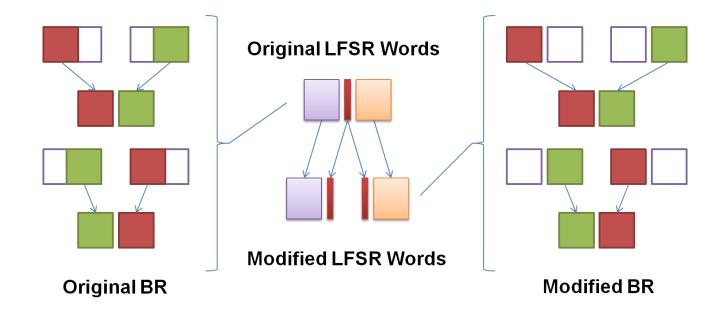

Motivation and Preliminaries

- Implementation and Experimental Results
- Summary and Conclusion

Scope for Integration

LFSR Update LFSR FSM

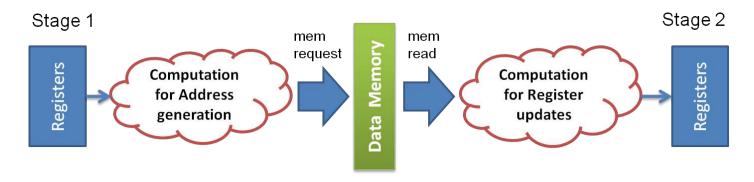
Initialization Mode


Keystream Generation Mode

Cipher	LFSR Update	LFSR	FSM
SNOW 3G	Field Mul/Div and XOR	32 bits x 16	3 Registers and 2 S-boxes
ZUC	Modulo prime addition	31 bits x 16	2 Registers and 2 (S.L)-boxes

Integration of LFSR

- Use 16 bits x 32 LFSR structure for both
 - SNOW 3G just break the 32 bit blocks into halves
 - ZUC 1 bit extra per 32 bits duplicate the middle bit

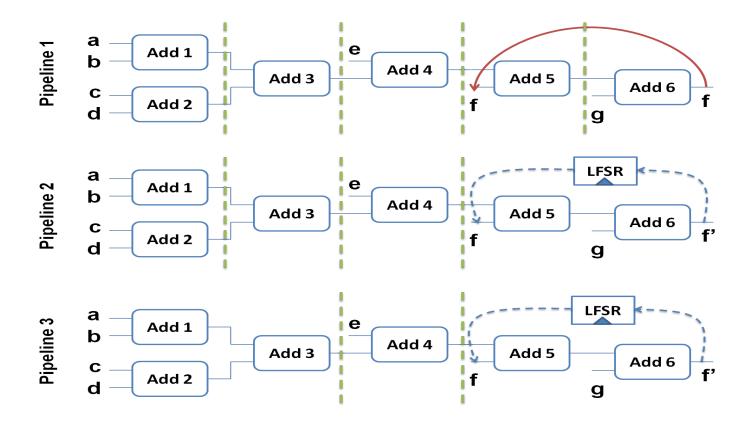

- BR layer moved to LFSR update from FSM operation
 - Reduces the critical path that flows through the FSM
 - Causes no significant disadvantage in LFSR update routine

Designing the Pipeline – FSM

- Store S-box and Mul/Div-alpha tables in Memory
 - Allow for memory request and read time
 - Share resources: 2 registers and 8 memory tables

Initial design

Final design


- Just precomputation at the first stage
- Memory request moved to the end of second stage

Designing the Pipeline – LFSR

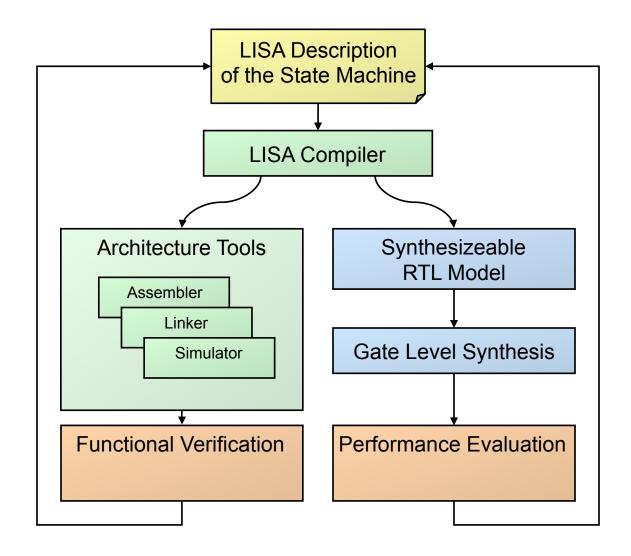
ZUC – 6 modulo prime additions for the update

$$s_{16} = s_0 + 2^8 s_0 + 2^{20} s_4 + 2^{21} s_{10} + 2^{17} s_{13} + 2^{15} s_{15} \pmod{2^{31} - 1}$$

SNOW 3G – 3 simple XORs; fits into the same structure

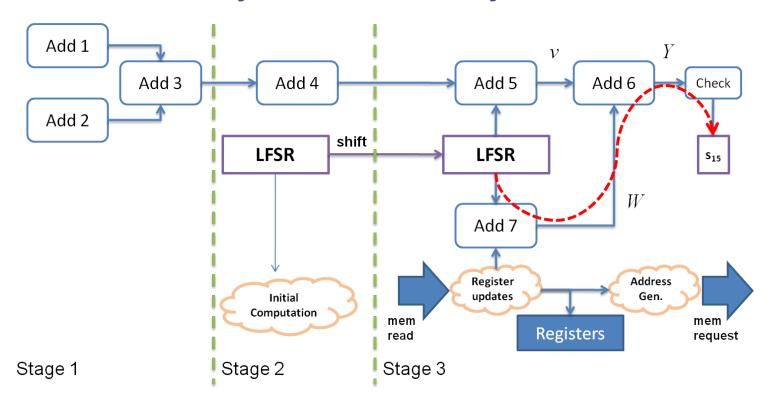
Final Pipeline Structure

- FSM: Two stages
 - initial computations for address generation in the first stage
 - memory access and related computations in the second stage
- LFSR Movement: Two stages
 - shift in first stage and s₁₅ write in second stage
- LFSR Update: Two/Three stages


M P C

Outline of the Talk

- Motivation and Preliminaries
- Design of Integrated Accelerator HiPAcc-LTE
- > Implementation and Experimental Results
 - Summary and Conclusion


High-Level Design Flow

M P C

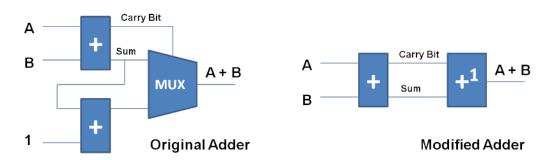
Critical Path

After the initial synthesis: In ZUC Key Initialization

LFSR Key_Initialization (W)

- 1. $v = 2^{15}s_{15} + 2^{17}s_{13} + 2^{21}s_{10} + 2^{20}s_4 + 2^8s_0 + s_0 \pmod{2^{31} 1}$
- 2. $Y = v + (W \gg 1) \pmod{2^{31} 1}$
- 3. If Y = 0, then set $Y = 2^{31} 1$
- 4. Write Y to location s_{15} of the LFSR

M P C


Optimizations

LFSR read optimization

- Original: Register array access from different stages in pipeline
- Optimized: 32 distinct 16-bit registers placed independently

Modulo prime adder optimization

- Original: A layer of multiplexer in series with adder and increment
- Optimized: Just increment the first adder output by the carry bit

Check optimization

- Original: Check if Y = 0 where Y = v + (W >> 1) mod 2³¹ -1
- Optimized: Note that Y can never be 0 for proper v and W

Performance – Target Zone

- Standalone modes for SNOW 3G and ZUC
 - Academic literature generally 130 nm technology SNOW 3G: Kitsos et al, IFIP/IEEE VLSI-SOC '08
 ZUC: no attempt in ASIC till date
 - Commercial designs generally 90, 65 nm technology SNOW 3G: IP Cores Inc., SNOW3G1 core
 ZUC: Elliptic Tech. Inc., CLP-410 core

Integrated mode of HiPAcc-LTE

Performance - Standalone SNOW 3G

Comparison in 130 nm technology - Academic

Design	Designer	Throughput	Area	Memory
SNOW 3G	Kitsos et al	7.97 Gbps	25 Kgate	10 Kbyte
HiPAcc-LTE		24.0 Gbps	18 Kgate	10 Kbyte

Comparison in 65 nm technology - Commercial

Design	Designer	Throughput	Area	Memory
SNOW3G1	IP Cores Inc.	7.5 Gbps	8.9 Kgate	Hard Macro
HiPAcc-LTE		32.0 Gbps	7.0 Kgate	3 Kbyte
HiPAcc-LTE		52.8 Gbps	18 Kgate	Hard Macro

gate level synthesis results are obtained using Faraday 130, 90, 65 nm technology, best case performance using Synopsys DC topographical mode

Performance – Standalone ZUC

Comparison in 65 nm technology - Commercial

Design	Designer	Throughput	Area	Memory
CLP-410	Elliptic Tech	16.0 Gbps	10-13 Kgate	Hard Macro
HiPAcc-LTE		32.0 Gbps	11 Kgate	3 Kbyte
HiPAcc-LTE		29.4 Gbps	20.6 Kgate	Hard Macro

gate level synthesis results are obtained using Faraday 130, 90, 65 nm technology, best case performance using Synopsys DC topographical mode

Performance – Integrated Design

Performance figures for both ciphers together – 65 nm technology

Design	Frequency	Throughput	Area	Memory
HiPAcc-LTE	1090 MHz	34.88 Gbps	17 Kgate	10 Kbyte
HiPAcc-LTE	1090 MHz	34.88 Gbps	17 Kgate	3 Kbyte
HiPAcc-LTE	920 MHz	29.4 Gbps	24 Kgate	Hard Macro

Comparison in 65 nm technology - Commercial

Design	Designer	Throughput	Area	Units reqd.
SNOW3G1	IP Cores Inc.	7.5 Gbps	8.9 Kgate	4
CLP-410	Elliptic Tech	16.0 Gbps	10-13 Kgate	2
Combined	Both	30-32 Gbps	56-62 Kgate	1
HiPAcc-LTE		29.4 Gbps	24 Kgate	1

gate level synthesis results are obtained using Faraday 130, 90, 65 nm technology, best case performance using Synopsys DC topographical mode

Outline of the Talk

- Motivation and Preliminaries
- Design of Integrated Accelerator HiPAcc-LTE
- Implementation and Experimental Results

M P

In a nutshell

Summary

- Multiple designs are proposed to serve similar purpose
 - varying degree of security
 - minor design choice variation
 - non-technical reasons
- Integrated design offers significant performance improvement
- Case study with 3GPP LTE stream ciphers presented here

Long term vision

- Design of a flexible core supporting multiple ciphers
- Intermediate design points for individual algorithms
- Unified platform with optimal performance for various ciphers

