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ABSTRACT
Distributed processing of real-world graphs is challenging
due to their size and the inherent irregular structure of graph
computations. We present HipG, a distributed framework
that facilitates programming parallel graph algorithms by
composing the parallel application automatically from the
user-defined pieces of sequential work on graph nodes. To
make the user code high-level, the framework provides a uni-
fied interface to executing methods on local and non-local
graph nodes and an abstraction of exclusive execution. The
graph computations are managed by logical objects called
synchronizers, which we used, for example, to implement
distributed divide-and-conquer decomposition into strongly
connected components. The code written in HipG is inde-
pendent of a particular graph representation, to the point
that the graph can be created on-the-fly, i.e. by the algo-
rithm that computes on this graph, which we used to im-
plement a distributed model checker. HipG programs are
in general short and elegant; they achieve good portability,
memory utilization, and performance.

1. INTRODUCTION
The number of large real-world graphs is growing rapidly.
For example, in 2010, Facebook, a popular social networking
site, reached more than half a billion registered users [1]. In
2011, OpenStreetMap, a community-owned geographic data
repository, reported more than a billion of nodes [2]. In
2008, in an official blog, Google reported indexing 1 trillion
of unique web URLs [3]. And for decades now, the formal
methods community has been verifying mission-critical pro-
tocols, with virtually unbounded state spaces [4–6]. With
the increasing abundance of large graphs, there is a need
for a parallel graph processing language that is easy-to-use,
high-level, and both memory and computation efficient.

Because of their size, real-world graphs need to be par-
titioned between memories of multiple machines and pro-
cessed in parallel in such a distributed environment. Real-
world graphs tend to be sparse, as, for instance, the number

of links in a web page or the number of person’s friends are
small compared to the size of the network. This allows for
efficient storage of edges with their source nodes, i.e. as ad-
jacency lists. Because of their size, partitioning graphs into
chunks of balanced size and with a small number of edges
spanning different chunks may be hard [7, 8].

Parallelizing graph algorithms is challenging. The compu-
tation is typically driven by a node-edge relation in an un-
structured graph. Although the degree of parallelism is often
considerable, the amount of computation per graph’s node
is generally very small, and the communication overhead
immense, especially when many edges span different graph
chunks. Given the lack of structure of the computation, the
computation is hard to partition and locality is affected [9].
In addition, on a distributed memory machine good load
balancing is hard to obtain, because in general work cannot
be migrated (part of the graph would have to be migrated
and all workers informed).

While for sequential graph algorithms a few graph libraries
exist, notably the Boost Graph Library [10], for parallel
graph algorithms no standards have been established. The
current state-of-the-art amongst users wanting to implement
parallel graph algorithms is to either use the generic C++
Parallel Boost Graph Library (PBGL) [11,12] or, most often,
create ad-hoc implementations, which are usually structured
around their communication scheme. Not only does the ad-
hoc coding effort have to be repeated for each new algorithm,
but it also results in obscuring the original elegant concept.
A programmer spends considerable time tuning the commu-
nication, which is prone to errors. While it may result in a
highly-optimized problem-tailored implementation, the code
can only be maintained or modified with substantial effort.

In this paper we propose HipG1, a distributed framework
aimed at facilitating implementations of HIerarchical Parallel
Graph algorithms that operate on large-scale graphs. Graphs
can be read from disk, synthesized in memory or created
on-the-fly during execution of the algorithm. They can be
pre-partitioned by the user or partitioned automatically by
the framework. Graphs are stored in memories of multiple
machines that transparently communicate to execute graph
algorithms. HipG delivers a unified interface to execut-
ing methods on local and non-local nodes, and thus allows
implementing high-level fine-grained structure-driven graph

1This paper is a modified (and further developed) version of
an earlier conference paper [13].
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Figure 1: Reachability search from pivot p.

computations. Such computations are coordinated by logi-
cal objects called synchronizers. A HipG parallel program
is composed automatically from the sequential-like compo-
nents provided by the user: pieces of work on graph nodes
and synchronizers that initiate such work. The basic model
and interface of HipG are explained in Section 2. One of the
examples used there implements the bulk synchronous par-
allel (BSP) [14] model, which thus can be easily expressed in
HipG. The two sections that follow detail advanced uses of
HipG. The HipG model supports, but is not limited to, cre-
ating divide-and-conquer graph algorithms, as synchronizers
can spawn sub-synchronizers to solve graph sub-problems.
In Section 3 we show how to implement a divide-and-conquer
parallel decomposition of a graph into strongly-connected
components. In this paper we extend the model of HipG [13]
with the support for execution and implementation of algo-
rithms operating on graphs that are generated on-the-fly.
Section 4 presents how we used this new feature to create
a distributed model checker: we implemented a distributed
cycle detection algorithm [15].

Although the user must be aware that a HipG program runs
in a distributed environment, the code is high-level: explicit
communication is not exposed by the API, nor are the algo-
rithms tied to graph representations. Parallel composition
is done in a way that does not allow race conditions, so that
no locks or thread synchronization code have to be imple-
mented by the user. These facts, coupled with the use of
an object-oriented language, makes for an easy-to-use, but
expressive, language to code parallel graph algorithms.

We implemented HipG in Java. In Section 5 we discuss
this choice as well as other implementation details, such as
layout of the data structures used to store graphs (repre-
sented explicitly or generated on-the-fly) and organization
of a worker. We evaluate performance of HipG in Section 6
on algorithms introduced in Sections 2-4. Using our newly-
built cluster, DAS-4, we processed graphs of size of the or-
der of 1010 (a magnitude larger than those used in [13]), and
obtained good performance. The HipG code of the strongly
connected components decomposition in HipG is an order
of magnitude shorter than the hand-optimized C/MPI ver-
sion of this program and three times shorter than the corre-
sponding implementation in PBGL—See Section 7 for a dis-
cussion of the related work in the field of distributed graph
processing. HipG’s current limitations and future work are
discussed in the concluding Section 8.

2. BASIC HipG MODEL AND API
The input to a HipG program is a directed graph. HipG par-
titions the graph into equal-size chunks. A chunk is a set of
graph nodes and their outgoing edges; in other words, edges
are co-located with their source nodes. Undirected edges are
modeled as two directed edges. Each node is an object con-

interface MyNode extends Node {
public void visit();

}
class MyLocalNode implements MyNode

extends LocalNode<MyNode> {
boolean visited = false;
public void visit() {
if (!visited) {
visited = true;
for (int i=0; hasNeighbor(i); i++)
neighbor(i).visit();

}
}

}

Figure 2: Reachability search in HipG.

taining arbitrary data and uniquely identified, for example
by a pair (chunk, index). The target node of an edge is called
a neighbor or a successor. Chunks are given to workers who
are responsible for processing nodes that belong to them.

Graphs are typically processed by following their structure,
i.e. the node-edge relationship. For example, an algorithm
may start processing at a pivot node, then process its neigh-
bors, the neighbors’ neighbors, etc., until no nodes are left
to be processed. Figure 1 illustrates such a computation
of a set of nodes reachable from a pivot. This fine-grained
structure-driven graph processing is the most basic ”primi-
tive” of HipG. It is realized by providing the user with a uni-
fied interface to executing methods on local and non-local
nodes, and a seamless access to a node’s list of neighbors.

Reachability search. Figure 2 displays the reachability
search in HipG in Java. First, a node interface is defined,
MyNode, telling HipG which methods can be executed on
remote nodes. In general, methods listed in the node inter-
face can be executed on any graph node of which the unique
identifier is known. The MyLocalNode the node implementa-
tion. Each node has a flag that denotes whether it has been
visited. The visit() method visits an unvisited node and its
neighbors. The parts underlined in the code are provided or
required by HipG, the remaining parts were created by the
user. There are several essential observations to be made
about the code in Figure 2. First, no locks or other meth-
ods of synchronization were needed; the exclusive access to
the node is assured by the framework. Lack of synchro-
nization makes the code look sequential and therefore easy
to program; nevertheless, the user must be aware that the
code will execute in a parallel setting: the order in which
methods execute cannot be predicted and relied upon in the
algorithm. Even on a single processor, HipG might reorder
node methods calls to prevent stack overflow. Second, the
layout of the graph data structures is not exposed to the
user; in fact, not only may the actual data structure vary
in various graph implementations, but parts of it might not
even be created yet (see Section 4). Finally, the user did
not need to provide different handling of local and non-local
neighbors: access to all graph’s nodes is unified. All these
facts make HipG node methods easy to read and high-level:
the code reflects the algorithm behind it.

The algorithm in Figure 2 is initiated at the pivot node and
terminates when all reachable nodes have been processed.
In HipG this is written as:



pivot.visit();
barrier();

This code is, in fact, the simplest example of a synchronizer,
a logical object that manages distributed computations. The
three basic operations of a synchronizer are:

(i) Initiating multiple distributed computations that exe-
cute in parallel or in sequence. For example, the call
to pivot.visit() starts a wave of visit() method calls il-
lustrated in Figure 1.

(ii) Waiting for issued computations to terminate by call-
ing a barrier(). The barrier blocks the synchronizer un-
til all computations initiated by this synchronizer have
completed. For example, the barrier after pivot.visit()
blocks until all reached nodes have been visited and
there are no visit()’s in transfer.

(iii) Computing global results of distributed computations
e.g. a globally elected pivot, or a size of a set of nodes
partitioned between workers (see the next example).

One can imagine a synchronizer as an ”agent” (or an in-
stance of the synchronizer) on each worker that manages
distributed graph computations on behalf of the user. In
HipG, the user writes a single-threaded program while au-
tomatic parallelization is provided by the library.

Breadth-first search. Figure 3 shows the breadth-first
search implemented in HipG. Its major part is the BFS syn-
chronizer, which executes on each worker. BFS maintains a
queue Q of nodes in the current layer, partitioned between
the workers. The constructor adds the pivot to the queue at
the worker that owns the pivot. The run method loops over
the nodes in the current layer, and appends their unvisited
neighbors to Q in the method found (not shown), in this way
building the new layer. Note that the new elements may be
added to queues on other workers. The barrier blocks until
the new layer is fully created. Afterwards, the GlobalQsize
method computes the global size of the new layer, and BFS
terminates when all layers have been processed. Without
the Reduce annotation, the call to GlobalQsize would be a
regular method call returning the size of the local queue.
With the annotation, it is a global reduce operation, which
blocks until the sum of the sizes of all queues is computed.
A single call to a reduce operation combines a partial result,
supplied as an argument, with local data in a synchronizer
and returns the combined value. The final value is a result
of a chain of applications of the reduce method by all work-
ers: each worker applies the reduce operation to a value
from another worker, while the initiator applies it to the
value supplied by the user. We note that (i) each worker
executes the reduce method exactly once, (ii) the execution
blocks until the result of the reduction is obtained, (iii) the
final result is consistent across all workers, and, most im-
portantly, (iv) the order of execution of reduce operations
cannot be predicted and relied upon in the user’s code.

We note that synchronizers only use high-level communica-
tion routines such as barriers and reduce operations. No
other synchronization mechanisms are needed, even if there
are multiple synchronizers per worker. Conceptually, the
framework executes each run method sequentially, with ex-

class BFS extends Synchronizer {
Queue<MyLocalNode>Q = new Queue<MyLocalNode>();
int localQsize;

public BFS(MyLocalNode pivot) {
if (pivot != null) Q.add(pivot);
localQsize = Q.size();

}

public void run() {
int depth = 0;
do {
for (int i = 0; i < localQsize; i++)
Q.pop().found(this, depth);

depth++;
barrier();
localQsize = Q.size();

} while (GlobalQsize(0) > 0);
}
@Reduce public long GlobalQsize(long partialQsize) {
return partialQsize + localQsize;

}
}

Figure 3: Breadth-first search in HipG.

clusive access to the synchronizer’s data structures, and in-
dependently of other synchronizers. We observe that BFS
alternates computation with global synchronization. Such
algorithms are called bulk synchronous parallel (BSP) [14].

Lifting to parallel applications. In this section we de-
scribed and gave examples of the two components of a HipG
program that are defined by the user: node methods repre-
senting graph computations, and synchronizers orchestrat-
ing these computations. The two components are lifted au-
tomatically by HipG into a parallel application for a distri-
buted-memory machine. At compile-time HipG translates
method calls on non-local graph nodes into asynchronous
messages. Since messages are asynchronous, methods do not
return values. Returning a value of a method can be realized
by sending a message back to the source, although, typically,
the mechanism of computing global results by reduction is
more efficient. All executions of methods on nodes, and
messages representing them, form distributed graph compu-
tations managed by synchronizers. Each synchronizer is rep-
resented at each worker: each instance stores local state of
computations and can manage local computations by com-
municating with other instances (this is also illustrated later
in this paper in Figure 8). Each synchronizer has a unique
id, determined on spawn, and consistent across all its in-
stances. A typical HipG graph application starts by ob-
taining a graph, creates a synchronizer and waits until it
terminates. In the two following sections we discuss more
advanced programming with HipG.

3. DIVIDE-AND-CONQUER IN HipG
Divide-and-conquer graph algorithms divide computations
on a graph into several sub-computations on sub-graphs.
HipG enables creation of sub-algorithms by allowing syn-
chronizers to spawn any number of sub-synchronizers. There-
fore, a HipG algorithm is, in fact, a tree of executing syn-
chronizers, and thus a hierarchy of distributed algorithms.
Synchronizers can manage child synchronizers, for exam-
ple wait for child termination. Unless explicitly synchro-



FB(V ):
p = pick a pivot from V
F = FWD(p)
B = BWD(p)
Report (F ∩B) as SCC
In parallel:

FB(F \B)
FB(B \ F )
FB(V \ (F ∪B))

p B
F

V

Figure 4: Divide-and-conquer SCC-decomposition.

nized, all synchronizers execute independently and in paral-
lel. The user starts a graph algorithm by explicitly creating
and spawning the root synchronizer. The system terminates
when all synchronizers terminate. We illustrate divide-and-
conquer graph algorithms in HipG with an example of de-
composition into strongly-connected components.

Strongly-connected components. A strongly connected
component (SCC) of a directed graph is a maximal set of
nodes S such that there exists a path in S between any pair
of nodes in S. We briefly describe FB [16], a divide-and-
conquer graph algorithm for computing SCCs, and sketch
its implementation in HipG. The concept is explained in
Figure 4. FB partitions the problem of finding SCCs of
a set of nodes V into three sub-problems on three disjoint
subsets of V . First an arbitrary pivot node is selected from
V . Two sets F and B are computed as the sets of nodes that
are, respectively, forward reachable and backward reachable
(i.e. reachable in the transposed graph) from the pivot. The
set F ∩ B is an SCC. All SCCs remaining in V must be
entirely contained either within F \ B or within B \ F or
within the complement set V \ (F ∪B).

The crucial part of a synchronizer FB is displayed in Fig-
ure 5. First, a global pivot is selected from V with the
SelectPivot reduce operation. The pivot owner initializes
forward and backward reachability searches that create sets
F and B in V by flagging the reached nodes and storing them
in separate queues. After F and B are fully computed, three
sub-synchronizers are spawned to solve three sub-problems
on F \ B, B \ F and V \ (F ∪ B). To label sets of nodes
uniquely and consistently across all workers, the synchro-
nizer’s unique identifier was utilized. We note that this al-
gorithm uses a transposed graph; the transpose has to either
be provided by the user or can be created by HipG. The
HipG interface contains counterpart routines that work on
a transpose, prefixed with in, for example inNeighbor. Most
importantly, we observe that Figure 5 elegantly reflects the
algorithm in Figure 4. A corresponding C/MPI applica-
tion (see Section 6) has over 1700 lines of code that entirely
obscures the algorithm, the PBGL implementation has 341
lines, while the entire FB in HipG is only 113 lines.

4. ON-THE-FLY GRAPH ALGORITHMS
Encapsulating graph data structures and exposing only a
high-level graph interface to the user, makes HipG highly
malleable. Not only are algorithms not tied to particular
graph representations, but also graphs can be created on-
the-fly, i.e. during execution: a node is created on first access
to it. This allows overlapping graph creation with computa-
tion for speed, and is essential in cases when the algorithm

class FB extends Synchronizer {
...
public void run() {
MyNode pivot = SelectPivot(null);
if (pivot == null) return;
if (pivot.isLocal()) {
pivot.fwd(this, 2∗getId());
pivot.bwd(this, 2∗getId()+1);

}
barrier();
spawn(new FB(F \B));
spawn(new FB(B \ F ));
spawn(new FB(V \ (F ∪B)));

}
}

Figure 5: FB algorithm in HipG.

only requires a part of the graph to execute, while the entire
graph would not fit the memory. To execute an on-the-
fly algorithm the user only provides a definition of a next
neighbor function prior to execution. Using this feature we
implemented a distributed model checker, which otherwise
might have taken months to develop from scratch.

Distributed model checking. Model checking [4] is a
widely-used technique that allows automatic verification of
properties of computer programs (models) by systematically
enumerating and examining their state spaces. The major
problem this technique is facing is the state explosion: the
state space grows exponentially with the number of variables
or processes in the program to be checked. One way of
alleviating this problem is to use distributed-memory model
checkers, which make use of memories of multiple machines,
but also render model checking algorithms more challenging.
Such programs exist (see Section 7) and are typically large
projects; the high-level API of HipG allows to vastly speed
up development and try new algorithms with little effort.

We implemented SpinJadi, a distributed model checker based
on SpinJa2 [17], a recently developed clean Java reimple-
mentation of Spin [5], the state-of-the-art sequential model
checker. The input to the model checker is a Promela [5] file,
which represents a multithreaded program augmented with
assertions and a property to be checked. In general, model
checking algorithms generate the state space of the model,
while checking certain properties of generated states. In this
section, a state of a program corresponds to a graph node, a
state space corresponds to a graph, and checking properties
of the state space to a graph algorithm.

Two algorithms play a major role in distributed enumera-
tive LTL3 model checking; SpinJadi invokes one of them,
depending on the options supplied by the user. The on-the-
fly visitor is implemented similarly to the code in Figure 2,
but augmented with safety checks (assertions, deadlocks) on
visited states. The states are generated and checked until
an error is found or the state-space is exhausted. The sec-
ond algorithm checks properties of infinite executions of the
model (for example a property that a certain ”stable”state is

2SpinJa rhymes with Ninja; SpinJadi rhymes with Jedi
3LTL stands for Linear Temporal Logic – properties in
Spin(Ja)(di) are expressed with the natural notion of lin-
ear time, i.e. words such as next, until, always, eventually



interface MapNode extends Node {
public void map(MAP algo, long propag);

}
class LocalMapNode extends LocalNode<MapNode>

implements MapNode {
long map = BOTTOM;
public void map(MAP algo, long propag) {
if (algo.accCycle) return;
if (id() == propag) {
algo.accCycle();

} else if (propag > map) {
map = propag;
if (accepting)
propag = max(map, id());

for (int i = 0; hasNeighbor(i) && !algo.accCycle; i++)
neighbor(i).map(algo, propag);

}
}

}

Figure 6: Node implementation in the MAP.

eventually reached from any other state), which is more chal-
lenging. Brim et al. [15] show that this can be accomplished
by searching for an accepting cycle. Namely, the Promela
input file annotates certain states (graph nodes) as ”bad”,
or accepting. Existence of an accepting cycle, i.e. a cycle
that contains an accepting state, proves that the property
under consideration does not hold. Therefore, the second
algorithm is the distributed on-the-fly Maximal Accepting
Predecessors (MAP) algorithm [15]. MAP assumes that the
graph nodes have unique totally-ordered identifiers. It relies
upon the observation that an accepting cycle exists if and
only if there exists a node with itself as its maximal (with
respect to id) accepting predecessor. Therefore, in each it-
eration, MAP computes the maximal accepting predecessor
for each node. If one of the accepting nodes is its own max-
imal accepting predecessor, an accepting cycle is reported.
Otherwise, nodes which cannot be on an accepting cycle are
discarded. The algorithm is described in detail and its cor-
rectness proved in [15]. Next, we briefly discuss how it was
implemented in HipG.

MAP. Figure 6 shows MAP’s ”primitive”: computation of
the maximal accepting predecessor for each graph node. The
identifier of the current maximal accepting predecessor is
stored in the variable map. If a node receives its own iden-
tifier, an accepting cycle is reported. Otherwise, only map
values greater than the current value are accepted for prop-
agation. An accepting node propagates the maximum of its
map and its identifier. The computation terminates when all
map values stabilize. The global MAP algorithm is displayed
in Figure 7. In each iteration, it computes all map values
(lines 9–11). If an accepting cycle was reported, MAP ter-
minates (line 12). Otherwise, it discards nodes that cannot
be on a accepting cycle (map<id) and restarts the map com-
putation (lines 14–21). When no accepting cycle is found
and the state space is exhausted and all accepting states
discarded, no accepting cycle exists. We note that a node
that has found an accepting cycle conveniently reports it to
all workers with a Notification method. Without the anno-
tation, the method would only execute locally. With the
annotation, it executes on all workers, effectively notifying
all instances of the synchronizer. Notifications do not block
and are in general useful in many parallel search algorithms.

1 class MAP extends Synchronizer {
Graph<MapNode> g; MapNode pivot;

int accNodes = 0;
boolean accCycle = false;

6

public void run() {
do {
if (pivot != null)
g.node(pivot).map(this, 0, NIL);

11 barrier();
if (accCycle) break;
accNodes = 0;
for (MapNode node : g) {
node.map = BOTTOM;

16 if (node.accepting) {
if (node.map < node.id())
node.accepting = false;

else accNodes++;
}

21 }
barrier();

} while (GlobalAccNodes(0) > 0);
}
@Notification public void accCycle() {

26 accCycle = true;
}
@Reduce public long GlobalAccNodes(long s) {
return s + accNodes;

}
31 }

Figure 7: MAP algorithm in HipG.

5. IMPLEMENTATION
HipG is designed to execute in a distributed-memory (mes-
sage-passing) environment. We chose to implement HipG
in Java because of its portability and performance (due to
the just-in-time compilation) as well as excellent software
support of the language, although Java required us to care-
fully ensure that memory is utilized efficiently. We used
the Ibis [18] message-passing communication library and the
Java 6 virtual machine implemented by Sun [19].

A HipG program is executed by a number of workers. Each
worker stores a single chunk of the graph. Logically, HipG
executes a set of synchronizers in parallel. In this section we
describe the implementation of workers and synchronizers,
and briefly mention the compile-time instrumentation, that
provides the syntactic sugar of a seamless graph interface
without any language extensions.

Graph storage on a worker. The input to a HipG pro-
gram is a directed graph (or graphs). If the graph is not
pre-partitioned by the user, HipG partitions the graph into
equal-size chunks by uniformly hashing each node to its
owner. Currently the number of edges spanning different
chunks is not minimized. Each worker stores the entire
chunk in memory. A chunk is a collection of graph nodes and
their outgoing edges. Two chunk layouts are currently im-
plemented: explicit and map. In the explicit layout all nodes
are stored in an array and uniquely identified by a pair of
integers (worker, index). Edges on a worker are stored in
two big global arrays, one for references to local nodes and
one for identifiers of remote nodes. Although this structure
is not elegant, it is transparent to the user and memory-
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Figure 8: Tree of 4 synchronizers on 2 workers.

efficient, as it minimizes the prohibitive per-object memory
overhead of garbage-collected languages (16 bytes per-object
in 64-bit HotSpot). The explicit layout is efficient but dif-
ficult to modify at run-time, which is in contrast with the
map implementation based on a hash table. The user defines
a key of this table and a hashing method. The map repre-
sentation is used in on-the-fly graph algorithms. In the dis-
tributed model checker that we implemented, the key used
was a byte array that represents a state in the checked pro-
gram. In the on-the-fly algorithms the edges are not stored,
but generated by the user’s successor function. Last but
not least, as most of the worker’s memory is used to store
the graph, we tuned the garbage collector to use a relatively
small young generation size (5–10% of the heap size).

Communication. The HipG workers communicate inten-
sively all-to-all. Messages representing execution of methods
on remote nodes account for the bulk of the traffic between
the workers. Workers only execute methods on graph nodes
that they own (”owner-computes”). Each method call be-
longs to some synchronizer, which is the first argument of
the method. A message consists of an identifier of a syn-
chronizer it belongs to, an identifier of a graph, an identifier
of the target node, and serialized arguments. Arguments
are serialized automatically, and we strive to make the se-
rialization efficient. On reception of a message, the target
node is retrieved; if it belongs to a graph generated on-the-
fly, the node might not exist yet, in which case it is created
and stored. Processing of a message consists in determin-
ing the method to execute and de-serializing its parameters.
During the execution of the method, new node methods can
be spawned. If such a method is called on a local node, it
is executed right-away (until some depth), or stored on the
synchronizer’s queue (when that depth is exceeded) to be
processed later. If the method is called on a remote node,
it is buffered for sending. The messages are combined in
non-blocking buffers and flushed repeatedly by the worker’s
sender thread. Asynchronous receiving is performed by a
pool of threads provided by the Ibis communication library.

Synchronizer implementation. Each synchronizer has a
unique identifier, determined on spawn by the worker with
rank 0 and communicated to all workers. A synchronizer can
spawn any number of sub-synchronizers, so it also maintains
information about its father and children. Each of the syn-
chronizers in the tree is represented on each worker. An ex-
ample of this structure is shown in Figure 8, where numbers
indicate synchronizer’s identifier and dotted lines represent
instances of the same synchronizer. The execution of a syn-
chronizer, i.e. its run method, can be understood as alternat-
ing communication phases, when methods on nodes are ex-
ecuted, and synchronization phases, i.e. blocking calls. The

blocking calls of synchronizers include barriers and reduce
methods. Barriers are implemented with the token-based
distributed termination detection algorithm by Safra [20].
When a barrier returns, it means that method calls that be-
long to the synchronizer have been processed. The reduce
operation is also implemented by token traversal [21] and the
result announced to all workers by worker with rank 0. No-
tifications are implemented as acknowledged asynchronous
messages.

Worker implementation. After reading the graph, the
user’s main program typically initiates root synchronizers,
waits for all synchronizers to terminate, and handles the
computed results. That part of the runtime that executes
synchronizers we refer to as a worker. A worker is a single
thread that stores all synchronizer instances and emulates
execution of multiple independent synchronizers by looping
over a queue of active synchronizers. If a synchronizer is
ready to progress (a blocking routine has just terminated),
the worker executes the next ”step” of the run methods, or
terminates the synchronizer, when no such step exists. A
worker terminates when all synchronizers terminate.

Program instrumentation. Before executing, HipG pro-
grams have to be instrumented. The Ibis rewriter [18] op-
timizes object serialization. The HipG rewriter translates
remote method calls into messages, and breaks down the run
methods into ”steps” at each blocking call. Just before fin-
ishing a step, the run method is automatically checkpointed;
at the beginning of the next step, execution is restored.
The user perceives a synchronizer’s run method as a thread.
Thanks for instrumentation, the single worker thread exe-
cutes all synchronizers, without the need for many context
switches. Instrumentation is part of the provided HipG li-
brary, and needs to be called before execution. No special
Java compiler is necessary.

HipG is released under GPL at www.s.vu.nl/~ekr/HipG.

6. EVALUATION
In this section we report on the results of experiments con-
ducted with HipG. The evaluation was carried out on the
VU-cluster of the DAS-4 system [22]. The cluster consists of
74 dual quad-core 2.4 GHz Intel Xeon CPUs, each equipped
with 12 GB of memory, thus 24 GB of memory per com-
pute node. The processors are interconnected with 32Gbps-
capable 4x QDR InfiniBand. The time to initialize workers
and input graphs was not included in the measurements.

All graphs were partitioned randomly—meaning that if a
graph is partitioned in p chunks, a graph node is assigned
to a chunk with probability 1

p
. The portion of remote edges

is thus p−1
p

, which is very high (75-99% in used graphs) and

realistic to model an unfavorable partitioning (many edges
spanning different chunks). An advantage of this scheme is
load-balancing: the numbers of edges stored at the workers
are likely to be similar. We also note that in this setting,
when computing a graph problem with twice more workers,
2 · p, the amount of computation stays constant, but the
volume of communication increases by a factor (1+ 1

2(p−1)
).

For p ≥ 4, used in this evaluation, this factor is below 17%.
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Figure 9: Speedup of Visitor, BFS and SpinJadi.

Message-based applications. We start with the evalua-
tion of performance of applications that almost solely com-
municate (only one synchronizer spawned). Visitor, the
reachability search (see Figure 2) was started at the root
node of a large binary tree directed towards the leaves. BFS,
a breadth-first search (see Figure 3), was started at a random
node of a synthetic social network. Both graphs are stored
explicitly in memory prior to execution. The results are
presented in Table 1 and Figure 9. We tested both applica-
tions on 2–64 processors, running two workers per compute
code. To obtain more fair results, rather than keeping the
problem size constant, we double the problem size when we
double the number of workers. We note that this can only
be done for very regular graphs and computation structure,
and in this case we expect constant numbers in Table 1.
Thanks to this we avoid spurious improvement due to better
cache behavior, keep the heap filled, but also avoid too many
small messages that occur if the stored portion of a graph is
small. We normalized the results for the speedup computa-
tion (Figure 9) as follows. Let Tp(s) denote execution time
on p workers on problem of size s. The graph problem is
”regular”, if solving a doubled problem with the same num-
ber of workers takes twice as long, i.e. Tp(s) = Tp(2s)/2,
for any p, s, which is the case for Visitor/Bin-n and BFS

(statistically) on LN-n for large n. The speedup plotted is
given by the formula p · Tmin(smin)/Tp(p · smin), equal thus
to the ”traditional” speedup formula.

For visitor we used binary trees, Bin–n, of height n = 27..32,
i.e. up to 8.6 ·109 nodes and edges. he LN–n graphs used for
BFS are random directed graphs with degrees of nodes sam-
pled from the log-normal distribution LnN (4.0, 1.3), aimed
to resemble real-world social networks [23, 24]. An LN–n
graph has n · 107 nodes and expected n · 1.3 · 109 edges. We
used LN–n graphs for n up to 64 and thus up to 6.4 · 108

nodes and 8.1 · 109 edges. In both experiments, all edges of
the input graphs were visited. Both applications achieved
at least 60% efficiency on 128 workers, which is satisfactory
for applications with little computation, O(n), compared to
O(n) communication. The efficiency achieved by BFS on
LN–n graphs reaches almost 80%, as the input is more ran-
domized, and has a small diameter compared to a binary
tree, which reduces the number of barriers performed.

On-the-fly applications. We performed two kinds of eval-
uations of the distributed model checker (see Section 4):
safety checking SpinJadi-E, which enumerates the entire

Appl. Workers Input Time[s] Mem[GB]

Visitor 4 Bin-27 28.57 7.0
Visitor 8 Bin-28 30.36 7.1
Visitor 16 Bin-29 33.71 7.5
Visitor 32 Bin-30 37.68 7.7
Visitor 64 Bin-31 41.93 8.0
Visitor 128 Bin-32 45.64 8.1

BFS 4 LN-2 118.62 8.4
BFS 8 LN-4 129.39 8.7
BFS 16 LN-8 138.83 8.8
BFS 32 LN-16 146.72 9.2
BFS 64 LN-32 135.25 9.5
BFS 128 LN-64 138.95 9.6

S.Jadi-E 4 peterson.7 414.40 8.0
S.Jadi-E 8 peterson.7 224.64 6.2
S.Jadi-E 16 peterson.7 85.31 5.4
S.Jadi-E 32 peterson.7 70.03 5.2
S.Jadi-E 64 peterson.7 43.34 5.1
S.Jadi-E 128 peterson.7 24.65 5.2

S.Jadi-a 4 anderson.6 853.21 8.3
S.Jadi-a 8 anderson.6 534.11 6.6
S.Jadi-a 16 anderson.6 93.92 5.2
S.Jadi-a 32 anderson.6 47.33 4.9
S.Jadi-a 64 anderson.6 22.8 4.9
S.Jadi-a 128 anderson.6 7.95 5.0

Table 1: Performance of Visitor, BFS and SpinJadi.

state space (ignores errors), and SpinJadi-a, which searches
for accepting cycles. We used some of the larger examples
from the BEEM repository [25] of model checking bench-
marks: Peterson’s mutual exclusion protocol for 7 processes
and Anderson’s mutual exclusion protocol for 6 processes.
The liveness property tested for the latter model was: if a
process waits for entering a critical section, it will eventually
get access to it. We tested both application on 4–128 work-
ers, as presented in Table 1 and Figure 9. As expected, the
performance of the SpinJadi-E scales similarly to Visitor;
the major difference between the Visitor and SpinJadi-

E is that the Visitor allocates memory prior to execution
(not timed), while SpinJadi-E allocates almost all memory
during execution. Verification of the Peterson’s algorithm
generates altogether 142 mln states, and 615 mln of tran-
sitions. The SpinJadi-a is a parallel search algorithm and
it shows superlinear speedup. On the Anderson.7 example,
the workers generate altogether about 50–120 mln of states,
every time finding a bug in the model.

Synchronizer-based applications. To evaluate the per-
formance of hierarchical graph algorithms written in HipG,
we ran the OBFR-MP algorithm [26] that decomposes a
graph into strongly connected components (SCCs). OBFR-

MP is a divide-and-conquer algorithm like FB [16] (see Sec-
tion 3), but processes the graph in layers. We compared
the performance of the OBFR-MP implemented in HipG
against a highly-optimized C/MPI version of this program
used for performance evaluation in [26] and kindly provided
to us by the authors. The HipG version was implemented to
resemble the C/MPI version – the data structures used and
messages sent are the same. Here we are not interested in
the speedup of the decomposition algorithm, which may vary
depending on the input [26]; rather, we want to see the dif-
ference in performance between an optimized C/MPI version
and HipG version of the same application. We performed



p Myri Eth

MX OM HipG P4 HipG

L487487T5

4 36.6 141.4 41.1 94.8 45.7
8 26.6 81.6 22.1 82.5 30.0
16 96.5 60.5 48.4 179.0 37.0
32 40.0 57.3 39.1 163.4 41.0
64 24.1 46.7 24.4 234.6 41.8

L10L10T16

4 69 255 148 302 225
8 73 280 226 462 330
16 89 376 315 804 506
32 136 661 485 1794 851
64 128 646 277 1659 461

L60L60T11

4 45.1 152.9 47.3 110.8 98.8
8 34.5 99.8 46.8 111.5 116.0
16 37.1 128.6 60.4 216.2 125.9
32 30.1 82.0 57.4 214.7 171.8
64 32.0 108.8 66.1 311.4 141.2

Table 2: Performance of OBFR-MP.

the experiments on the DAS-3 [27] cluster, which has less
memory than DAS-4, but allows to perform a richer perfor-
mance analysis. DAS-3 consists of 74 dual dual-core 2.4 GHz
AMD Opterons with 4 GB of memory per compute node.
The compute nodes are interconnected with 10G-Myrinet
and 1G-Ethernet. We compare HipG against (i) MX, an
MPI implementation from Myrinet tied to the interface, low-
latency, almost unbeatable; (ii) OM, meaning OpenMPI, a
newer implementation of MPI, socket-based, running over
Myrinet; and (iii) P4, the standard implementation of MPI,
running on Ethernet. We used up to 64 compute nodes and
a single worker per compute node. We tested OBFR-MP

on synthetic graphs called LmLmTn, which are in essence
trees of height n of SCCs, such that each SCC is a lattice
(m+1)× (m+1). An LmLmTn graph has thus (2n+1 − 1)
SCCs, each of size (m+1)2. The performance of the OBFR-

MP algorithm inherently depends on the SCC-structure of
the input graph, which is clearly visible in the MX, OM and
P4 columns of Table 2. We used three graphs: one with a
small number of large SCCs, L487L487T5; one with a large
number of small SCCs, L10L10T16; and one that balances
the number of SCCs and their size, L60L60T11. Each graph
contains a little over 15 · 106 nodes and 45 · 106 edges. The
performance of the C/MPI application running over MX is
the fastest, as it has the smallest software stack. HipG per-
forms, on average, 1.8 times slower than MX, but the most
”fair” opponents for HipG are OM and P4, which have simi-
lar (deeper) socket-based software stack. Table 2 is summa-
rized in Figure 10, where execution times are scaled against
MX and P4. On average, HipG is 2.0 times faster than
OM on Myrinet, and 2.5 times faster on Ethernet. Most
importantly, the speedup or slowdown of HipG follows the
speedup or slowdown of the C/MPI application run over
MX, which suggests that the overhead of HipG will not ex-
plode for larger problem sizes.

Memory utilization. More important than speedup is
in graph algorithms memory efficiency. The memory of a
HipG worker is divided between the graph, the communi-
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Figure 10: Scaled OBFR-MP execution time.

cation buffers and the memory allocated explicitly by the
user. On a 64-bit machine, a graph node uses 80 bytes in
Visitor and on average 1 KB in BFS, including the edges
and all overhead. Table 1 presents the maximum heap size
used per-worker. As expected, it remains almost constant.
BFS uses in general more memory than Visitor, because it
stores a queue of nodes (see Figure 3). We note that the sizes
of graphs tested with HipG are of the order of the largest
existing real-life graphs mentioned in Section 1.

The results in this section do not aim to prove that we ob-
tained the most efficient implementations of the Visitor,
BFS, MAP or OBFR-MP algorithms. When processing
large-scale graphs, the speedup is of secondary importance;
it is of primary importance to be able to store the graph
in memory and process it in acceptable time. We aimed to
show that large-scale graphs can be handled by HipG and
satisfactory performance can be obtained with little coding
effort, even for complex on-the-fly or hierarchical graph al-
gorithms.

7. RELATED WORK
HipG is a distributed framework aimed at providing users
with a way to code, with little effort, parallel algorithms
that operate on partitioned graphs. An analysis of other
platforms suitable for the execution of graph algorithms is
provided in an inspiring paper by Lumsdaine et al. [9] that,
in fact, advocates using massively multithreaded shared-
memory machines for this purpose. However, such machines
are very expensive and software support is lacking [9]. The
library in [28] realizes this concept on a Cray machine. Yet
another interesting alternative would be to use partitioned
global address space languages like UPC [29], X10 [30] or
ZPL [31], but we are not aware of support for graph algo-
rithms in these languages, except for the shared memory
solution [32] based on X10 and Cilk.

A graph programming framework that most closely resem-
bles HipG is the Signal/Collect [33] framework targeted at
the Semantic Web community. In Signal/Collect graph com-
putations are expressed in terms of signals sent along edges,
which correspond to HipG’s execution of methods on graph
nodes. An advantage of the Signal/Collect model is that
the scheduling of signals allows for malleability: the model
provides synchronized, asynchronous, and prioritized execu-
tions. However, similarly to Pregel, the user controls signals
but not the global execution; HipG allows the global execu-



tion to be defined by the user (via synchronizers). Signal/-
Collect is only implemented for shared memory systems.

The Bulk Synchronous Parallel (BSP) model of computa-
tion [14] alternates work and communication phases. We
know of two BSP-based libraries that support the devel-
opment of distributed graph algorithms: CGMgraph and
Pregel. CGMgraph [34] uses the unified communication API
and parallel routines offered by CGMlib, which is conceptu-
ally close to MPI [35]. In Google’s Pregel [24] the graph
program is a series of supersteps. In each superstep the
Compute(messages) method, implemented by the user, is
executed in parallel on all vertices. The system supports
fault-tolerance consisting of heartbeats and checkpointing.
Impressively, Pregel is reported to be able to handle billions
of nodes and use hundreds of workers. Unfortunately, it is
not available for download. Pregel is similar to HipG in
two aspects: the vertex-centered programming and compos-
ing the parallel program automatically from user-provided
simple sequential-like components. However, the repeated
global synchronization phase in BSP, although suitable for
many applications, is not always desirable. HipG is funda-
mentally different from BSP in this respect, as it uses asyn-
chronous messages with computation synchronized on the
user’s request. Notably, HipG can simulate the BSP model
as we did in the BFS application (Section 2).

The prominent sequential Boost Graph Library (BGL) [10]
gave rise to a parallelization that adopts a different approach
to graph algorithms. Parallel BGL [11,12] is a generic C++
library that implements distributed graph data structures
and graph algorithms. The main focus is to reuse existing se-
quential algorithms, only applying them to distributed data
structures, to obtain parallel algorithms. PBGL supports
a rich set of parallel graph implementations and property
maps. The system keeps information about ghost (remote)
vertices, although that works well only if the number of edges
spanning different processors is small. Parallel BGL offers a
very general model, while both Pregel and HipG trade ex-
pressiveness (for example neither offers any form of remote
read) for more predictable performance. ParGraph [36] is
another parallelization of BGL, similar to PBGL, but less
developed; it does not seem to be maintained. We are not
aware of any work directly supporting the development of
divide-and-conquer graph algorithms.

What HipG does not currently support is combining the
memory with external storage. In [37] some nodes created
during enumerative model checking are stored on disk and
accessed through Bloom filters to reduce the number of I/O
operations. In [38] parts of the graph are stored on solid-
state memory devices that are significantly faster than disks.
Both solutions were designed for shared memory systems.

Besides general graph programming frameworks, tailored so-
lutions to some parallel graph problems exist. In the formal
methods community a number of distributed model check-
ers were developed to cope with the state explosion problem.
The DiVinE LTL model checker [6,15,26,39] can utilize both
multi-cores and distributed memory. DiVinE has been opti-
mized for performance [40]. Another notable model check-
ing tool, LTSmin [41], introduces a new high-level layer in
which new algorithms and new interface languages can be

plugged in. Both tools are implemented in MPI/C++ and
they cannot be used for general graph processing.

To store graphs we used the SVC-II distributed graph for-
mat advocated in [42]. Graph formats are standardized only
within selected communities. In case of large graphs, binary
formats are typically preferable to text-based formats, as
compression is not needed. See [42] for a comparison of a
number of formats used in the formal methods community.
A popular text format is XML, which is used for example
to store OpenStreetMap [43]. RDF [44] is used to represent
semantic graphs in the form of triples (source, edge, target).
Najork [45] describes how the web graph can be compactly
stored in memory. By contrast, in bioinformatics, graphs are
stored in many databases and integrating them is ongoing
research [46].

8. CONCLUSIONS AND FUTURE WORK
This paper described HipG, a model and a distributed frame-
work that allows users to code, with little effort, parallel
graph algorithms. The parallel program is automatically
composed of user-defined sequential components: pieces of
sequential work on graph nodes and synchronizers to coordi-
nate this work. Advanced features of HipG allow to imple-
ment divide-and-conquer graph algorithms and algorithms
that generate the graph on-the-fly. We realized the model
in Java and obtained elegant and short implementations of
several published graph algorithms, good memory utiliza-
tion and performance, as well as out-of-the-box portability.

Fault-tolerance has not been currently implemented in HipG,
as the programs that we executed so far had short execution
time, run on a cluster and were not mission-critical. A so-
lution using checkpointing could be implemented, in which
when a machine fails, a new machine is requested and the en-
tire computation restarted from the last checkpoint. Such a
solution is standard and similar to the one used in [24]. Cre-
ating a checkpoint takes somewhat more effort, because of
the lack of global synchronization phases in HipG. Creating
a consistent image of the state space could be done either by
freezing the entire computation or with a distributed back-
ground snapshot algorithm such as the one by Lai-Yang [21].
Distributed snapshot poses overhead on messages that can
be minimized when using message combining, which is the
case in HipG.

HipG is work in progress. We already support multiple
graphs in a single application. The upcoming release of
HipG will contain seamless support for associating values
with edges with no object overhead. We would like to im-
prove speedup by using better graph partitioning methods,
e.g. [7]. Graphs stored explicitly cannot be modified at run-
time, however, in all cases that we looked at, this could
be solved by creating new graphs during execution–which is
possible in HipG–or by using a map-based graph. We are
currently working on providing tailored support for mul-
ticore processors. The next phase of HipG development
may be extending the framework to execute on a grid/-
cloud, where we can use more workers. Currently the size
of the graph that can be handled is limited to the amount
of memory available. Therefore, we would be interested in
temporarily storing a portion of a graph on disk, without
completely sacrificing efficiency [37].
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[25] R. Pelánek. BEEM: Benchmarks for explicit model
checkers. In Proceedings of the 14th International
SPIN Conference on Model Checking Software
(SPIN’07), pp 263–267, 2007.

[26] J. Barnat, J. Chaloupka, and J. van de Pol. Improved
distributed algorithms for SCC decomposition. In
Parallel and Distributed Methods in Verification
(PDMC’08), volume 198 of ENTCS, pp 63–77.
Elsevier, 2008.

[27] Distributed ASCI Supercomputer DAS-3.
www.cs.vu.nl/das3.

[28] J. Berry, B. Hendrickson, S. Kahan, and P. Konecny.
Graph software development and performance on the
MTA-2 and Eldorado. Presented at 48-th Cray User
Group meeting, 2006.

[29] C. Coarfa et al. An evaluation of global address space
languages: Co-array Fortran and Unified Parallel C.
In Principles and Practice of Parallel Programming
(PPoPP’05), pp 36–47. ACM, 2005.

[30] P. Charles, C. Grothoff, V. Saraswat, C. Donawa,
A. Kielstra, K. Ebcioglu, C. von Praun, and
V. Sarkar. X10: An object-oriented approach to
non-uniform cluster computing. In Object-Oriented
Programming, Systems, Languages and Applications
(OOPSLA’05), pp 519–538. ACM, 2005.

[31] B. L. Chamberlain, S.-E. Choi, E. C. Lewis,
L. Snyder, W. D. Weathersby, and C. Lin. The case
for high-level parallel programming in ZPL. IEEE
Comput. Sci. Eng., 5(3):76–86, 1998.

[32] G. Cong, S. Kodali, S. Krishnamoorthy, D. Lea,
V. Saraswat, and T. Wen. Solving large, irregular
graph problems using adaptive work-stealing. In
International Conference on Parallel Processing
(ICPP’08), pp 536–545. IEEE, 2008.

[33] P. Patel-Schneider, Y. Pan, P. Hitzler, P. Mika,



L. Zhang, J. Pan, I. Horrocks, and B. Glimm, editors.
Signal/Collect: Graph Algorithms for the (Semantic)
Web, volume 6496 of LNCS, 2010.

[34] A. Chan, F. Dehne, and R. Taylor.
CGMgraph/CGMlib: Implementing and testing
CGMgraph alg. on PC clusters and shared memory
machines. Journal of HPC Applications, 19(1):81–97,
2005.

[35] MPI Forum. MPI: A message passing interface. J of
Supercomp Appl, 8(3/4):169–416, 1994.

[36] F. Hielscher and P. Gottschling. ParGraph library.
pargraph.sourceforge.net, 2004.

[37] M. Hammer and M. Weber. To store or not to store
reloaded: Reclaiming memory on demand. In Formal
Methods in Industrial Critical Systems (FMICS’06),
LNCS 4346, pp 51–66, 2006.

[38] R. Pearce, M. Gokhale, and N. M. Amato.
Multithreaded asynchronous graph traversal for
in-memory and semi-external memory. In Proceedings
of the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage
and Analysis (SC’10), pp 1–11, 2010.

[39] J. Barnat, L. Brim, I. Černá, P. Moravec, P. Ročkai,
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