ISSN 0249-6399

%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

HIPPCO: A High Performance Protocol Code
Optimizer

Claude Castelluccia, Walid Dabbous

N° 2748
Décembre 1995

PROGRAMME 1

apport
derecherche

%I INRIA

SOPHIA ANTIPOLIS

HIPPCO: A High Performance Protocol Code

Optimizer

Claude Castelluccia, Walid Dabbous

Programme 1 — Architectures paralléles, bases de données, réseaux
et systémes distribués

Projet RODEO

Rapport de recherche n ® 2748 — Décembre 1995 — 76 pages

Abstract: This report presents HIPPCO, an High Performance Protocol Code Op-
timizer. HIPPCO belongs to the HIPPARCH compiler. HIPPARCH is a tool which
proposes to generate automatically from the application communication require-
ments and the network characteristics an efficient implementation of a customized
protocol.

HIPPCO is the last stage of this protocol compiler. It takes as input a description
of the protocol automaton, optimizes it and generates an implementation in C.
HIPPCO decomposes the protocol automaton in two parts: the common and uncom-
mon path. It then uses this decomposition to apply a set of optimizations toward a
good code speed/code size tradeoff.

In the first part of this report, the code speed optimizations are described. Those
optimizations reduces the number of executed instructions and improves the instruc-
tion cache and pipeline behaviors. In the second part, a comparaison of HIPPCO
automatically generated implementations of TCP are compared with the BSD im-
plementation. We show that the HIPPCO generated codes requires up to 70% less
instructions than its BSD counterpart.

Key-words: Code optimization, Automated Protocol Generation, ALF

(Résumé : tsvp)

Unité de recherche INRIA Sophia-Antipolis
2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex (France)
Téléphone: (33) 93 65 77 77 — Télécopie: (33) 9365 77 65

HIPPCO: Un optimiseur haute performance de code de
protocole

Résumé : Ce rapport décrit 'architecture de HIPPCO, un optimiseur et géné-
rateur d’implémentation de protocoles de communication. HIPPCO fait parti du
compilateur de protocoles HIPPARCH. Ce compilateur propose de générer automa-
tiquement, & partir des besoins de communication d’une application distribuée et
des caractéristiques du réseau sous-jacent, le protocole spécialisé correspondant.
HIPPCO est la derniére passe du compilateur HIPPARCH. Il génére & partir de la
description de l'automate du protocole, une implémentation optimisée en C.
HIPPCO décompose 'automate de communication en deux parties distinctes: le
chemin fréquent et le chemin rare. Utilisant cette décomposition, un ensemble
d’optimisations est appliqué pour obtenir le meilleur compromis entre la vitesse
d’exécution et la taille du code.

Ce rapport est structuré en 2 parties: La premiére détaille les différentes optimi-
sations utilisées pour ’amélioration de la vitesse d’exécution du code. Ces optimi-
sations sont basées sur une réduction du nombre d’instructions & exécuter, sur une
meilleure utilisation du cache d’instruction et du pipelining.

Dans le seconde partie, une implémentation automatique du protocole TCP est de-
taillée. Les performances de cette implémentation sont comparées avec celles de la

version BSD de TCP.

Mots-clé : Optimisation de code, Génération automatique de protocoles, ALF

HIPPCO: A High Performance Protocol Code Optimizer 3

1 Introduction

The emergence of new distributed computing applications and of new networking
technologies is driving the need of more specialized communication protocols. Ge-
nerating and implementing those new protocols manually in an efficient way is very
often a complex and time-consuming task.

One option, that has been extensively studied in the last few years, is to automate
or semi-automate the protocol design and implementation phases. This is usually
performed by selecting a set of predefined modules, which generally implement the
basic protocol mechanisms, and combining them into the final communication system
using configuration tools like ADAPTIVE or z-kernel [BSS92, NL88, OP91|. This
approach has the advantage over the manual approach to generate a modular and
configurable system.!

However, this approach has not encountered yet the success that was expected.
The main reason is that the modularity of those systems introduces a performance
penalty on the generated protocol implementation. In fact, those configuration tools
very often derive the implementation directly and naively from the specification. As
a result, the generated protocol implementation is composed of several modules that
communicate and interact via some kind of interfaces. These module interaction
mechanisms are usually very costly and are the source of performance penalties that
overtake the gain achieved by the configuration.

Another limitation of these configuration tools is that they generally use a
bottom-up approach: i.e. they configure a communication system based on the
mechanisms provided by current “transport protocol”. The granularity of those
tools is then very often coarse.

In the HIPPARCH project, we propose to build a protocol compiler which au-
tomatically generates the communication system of a distributed application. This
approach is interesting only if the generated implementations are performant. The
efficiency of the implementations was therefore one of our main goals. To reach this
objective, the HIPPARCH compiler has been built around the following properties:

e Synchrony: The HIPPARCH compiler is built around a synchronous lan-
guage, Esterel. Esterel generates from a set of concurrent modules an inte-
grated automaton. In this automaton, all the specification building blocks are
merged together and communicate directly without interfaces.

'A system is said to be modular if it is composed by a number of functional entities called
modules which interact together. A system is said to be configurable or flexible if it is relatively
easy to add or remove a functionality without modifying the whole system.

RR n° 2748

4 C. Castelluccia , W. Dabbous

¢ Configurability: The HIPPARCH compiler selects the protocol mechanisms
according to the application requirements and networks characteristics. The
HIPPARCH approach is application-led (top-down): the communication re-
quirements of several applications (such as JPEG photo server [C. 95], secure
login, multicast video and audio, WWW transactions, multimedia multicast
mail delivery, large scale multicast image dissemination [A. 95]) have been stu-
died and analyzed. The compiler should generate the complete communication
system for such applications.

e HIPPCO: The HIPPARCH compiler features a code optimizer, called HIP-
PCO, which optimizes the structure of the automaton and generates highly
optimized code in C. HIPPCO uses profiling information provided by the pro-
tocol designer to dynamically identify the common path and apply a set of
optimizations. Those optimizations are specific to the automaton structure
and are not redundant with optimizations that may be performed by existing
low-level compilers. The goal of HIPPCO is to generate protocol code that can
efficiently be compiled and optimized by current C compilers. It optimizes a
program execution time by reducing the number of instructions on its common
path and generating code that exhibits good cache and pipeline behaviors.

In this report, we describe the design of HIPPCO and present some performance
results of TCP automatically generated implementations. We show that automa-
tically generated protocol code can be faster than the best optimized hand-coded
implementations. This report is composed of 6 main sections. Section 2 introduces
the HIPPARCH project and gives some insights on the Esterel language. Section
3 presents HIPPCO concepts and describes its optimization principles. Section 4
details the design of HIPPCO. In this section, we present the various optimizations
that are performed by HIPPCO. Section 5 evaluates the performance of HIPPCO
automatically generated codes. We compare the instruction counts, i-cache and pi-
peline performance of some HIPPCO generated TCP implementations with the BSD
implementation. We also evaluate the individual effects of each proposed optimiza-
tion. We, finally, conclude in section 6.

2 Context: The HIPPARCH Protocol Compiler

2.1 General Presentation

The work presented in this report was done in the context of the HIPPARCH project
[CCD'94]: an European-Australian collaboration action which proposes to study

INRIA

HIPPCO: A High Performance Protocol Code Optimizer 5

a novel architecture for communication protocols based on the Application Level
Framing (ALF) and Integrated Layer Processing (ILP) concepts [Cla90]. Its final
objective is to build a compiler which generates the communication system of a
distributed application. This tool uses application-specific knowledge to configure
this communication system for improved performance [Cas94al.

The HIPPARCH compiler is composed of 2 tools : the ALF and ILP compi-
ler. The ALF compiler generates from the application requirements and the net-
works characteristics an automaton representing the control part. This control part
contains the application and protocol control parts. The idea of HIPPARCH is to
integrate the application and its communication subsystem within a single auto-
maton. This integration removes a lot of interfaces and leads to more performant
systems. In this report, for simplicity reason, we separate the control part of the
application from the control part of the communication subsystem. This allows us
to generate existing protocols and compare their performance to their manually im-
plemented counterparts. The ILP compiler is a stub compiler, which combines the
data manipulations functions in an ILP manner.

The control automaton and the data manipulation functions are combined toge-
ther to form the complete protocol implementation as illustrated in figure 1. Whe-
never the application sends a piece of data to a remote correspondant, it calls the
protocol output procedures which process the control part of the protocol. The pro-
tocol control variables (sequence number, timers, transmission window,...) are then
updated and the data manipulation functions are called with the data and some
control information as arguments. This control information depends on the genera-
ted protocol. It may be composed of some fields of the protocol control block that
are used to build the protocol header or to process some of the manipulation func-
tions. After the data manipulation operations (checksum, encryption, marshalling,
...) are performed, packets are built and sent on the network. At the other side,
when a packet is received, it is first marshalled, decrypted ans checksummed. The
processed information (data and control information) is then handed to the control
automaton. The protocol control variables will then be updated, a packet possibly
sent, and data is delivered to the application.

Separating the data manipulation functions from the control flow processing
has the advantage of isolating the problems and simplifying the overall compiler
design. It also allows to consider each part independently and apply more specific
optimizations. In this report, we do not consider the ILP compiler (i.e. how the
data manipulation functions are implemented). We describe the HIPPCO tool which
optimizes the control automaton, and therefore is a part of the ALF compiler.

RR n°2748

6 C. Castelluccia , W. Dabbous

Application

Data — Data

Control automaton

A |
Data Crtl_info Data
Crtl_info

Data Manipulation

I

Packets — Packets

Figure 1: Protocol Structure

Protocol

The ALF compiler is designed around a synchronous language, Esterel ([Ber89],
[Ber92]). It is composed of 4 main parts (figure 2-a):

- a library of predefined modules in Esterel. It is a collection of various protocol

building blocks.

- a parser which combines the application specification written in Esterel with
selected library modules, to generate an Esterel specification of the communi-
cation stack and some profiling information.

- an FEsterel Front-End: compiles the Esterel specification into an integrated

automaton.

- HIPPCO: optimizes the generated automaton and generates an efficient im-
plementation in a target language (C in HIPPARCH).

Although HIPPCO is developped in the context of the HIPPARCH project,
it was designed independently of the other HIPPARCH compiler tools. HIPPCO
takes as input any automaton description in a standard language called Oc and ge-
nerates an implementation in the C language. Therefore HIPPCO can in principle

INRIA

HIPPCO: A High Performance Protocol Code Optimizer 7

be used to optimize the output of any tool generating Oc automata, independently
of the high-level specification language. To illustrate this, we describe in figure 2-b,
an alternative way to use HIPPCO. The proposed architecture optimizes existing
communication system implementations provided that an integrated automaton ge-
nerator exists. This automata generator takes as input the different C protocol
implementations of a communication stack, and generate an integrated automaton
in the Oc language, which is feeded into HIPPCO to produce an integrated and
optimized implementation of the communication system.

ol

:
sppliations U00o
bt

Transport Protocol
networks __,_..,configurator’(P e

characteristics qucvgléol;;otocol e%;l)‘liggggn
#include <ip.h: I 4 i
DI i
g

prob(data) = 45%
prob(frame) = 20%
prob(alarm) = 1%

~

= ~ -
__ profiling communication ~ ¥ .
information module Automaton
Esterel specification ~profiling Generator
Front End information
. integrated
integrated automaton
automaton
HIPPCO
HIPPCO

#include <tcp.h> communication
#include <tcp.h> communication '{T'a n0 module)
2na| n() module implementation
implementation
(a) HIPPARCH Compiler (b) Alternative Use of HIPPCO

Figure 2: Protocol Compiler Architectures

In the HIPPARCH compiler, HIPPCO takes as input an automaton descrip-
tion generated by the Esterel compiler. In the following, we introduce the Esterel
language and describe the generated automaton format.

RR n°2748

8 C. Castelluccia , W. Dabbous

2.2 Esterel
2.2.1 The Esterel Language

Programs can basically be divided into three classes : (1)transformational programs
that compute results from a given set of inputs, (2) interactive programs which
interact at their own speed with users or other programs and (3) reactive programs
that interact with the environment, at a speed determined by the environment, not
by the program itself.

Synchronous languages were specifically designed to implement reactive systems.
The Esterel language is one example [BdS91, BG89]; others include languages such
as Lustre [|, Signal [], Sml [] and Statecharts |].

Protocols are good examples of reactive systems; they can be seen as black bozes,
activated by input events (such as incoming packets) and reacting by producing
output events (such as outgoing packets). Other systems e.g. window servers such
as X, NeWs and MS Windows, can be considered as reactive systems and may be
specified using synchronous languages.

The Esterel language was chosen as the specification language within the HIP-
PARCH project [|.

Esterel programs are composed of parallel modules, which communicate and
synchronize using signals. The output signal of a module is broadcast within the
whole program and can be tested for presence and value by any other module. This
communication mechanism provides a lot of design flexibility, because modules can
be added, removed or exchanged without perturbing the overall system. A module
is defined by its inputs (the signals that activate it, they can potentially be modified
by the module), sensors (input signals used only for consultation, they can not
be modified) and outputs (signals emitted). The inputs of a module can either
be the outputs of another one (modules executed sequentially) or external signals
(such as incoming packets). The design of an Esterel program is then performed
by combining and synchronizing the different elementary modules using their input,
sensor and output signals.

Synchronous languages are used to implement the control part of a program, the
computational and data manipulation parts are performed by functions implemented
in another language (C for example). Data declarations are encapsulated, so that
only the visible interface declarations are provided in Esterel (i.e. type, constant,
function and procedure names). These declarations can then be freely implemented
independently of the Esterel program design. They will be linked with the automaton
generated in the last phase, when executable code is produced.

INRIA

HIPPCO: A High Performance Protocol Code Optimizer 9

Esterel makes the assumption of perfect synchrony: program reactions can not
overlap. There is no possibility of activating a system while it is still reacting to
the current activation. This assumption makes Esterel programs deterministic, since
their behaviors are reproducible; the generated automaton can then be tested for
correctness using validation tools [RdS90].

At compile time, the Esterel program is translated into a sequential finite au-
tomaton; the code of the different modules is sequentialized according the program
concurrency and synchronization specifications.

However the synchronous approach cannot be considered as a stand-alone solu-
tion, principally because the synchronous assumption is not a valid one in the real
implementation world. A so-called Ezecution Machine is required [AMP91]|. This
machine is aimed at interfacing the asynchronous environment to the synchronous
automaton. It collects the inputs and outputs and activates the automaton only
when it is not executing; the “synchronous assumption” is then respected.

2.2.2 The Esterel Tree Representation

The Esterel front-end generates from the specification an automaton in a standard
language called Oc. The generated automaton is usually composed of several states.
Each of those states are described by a state-tree (figure 3). Trees, unlike graphs, do
not contain any loop. This property facilitates dependency analysis and simplifies
optimizations design and implementation. As we will show later in this report, trees
can be easily modified for better performance. However the tree representation
generally leads to large code size. In fact in a tree representation, lots of actions
are duplicated in the different branches. A graph representation usually leads to a
smaller code size.

Each state-tree is composed of initialization actions followed by independent
subtrees processing the different types of input events. A test at the root of each
subtree determines whether the incoming event should be processed by this subtree.
If that is the case, the backward branch (then branch) is executed, otherwise the
subtree exits. The state-tree is generated by cascading those different subtree’s roots
as shown in figure 3. An incoming event will then be processed by a sequence of
tests until the appropriate subtree is found.

We define a set of notations that will be used throughout the whole report.
They are illustrated by the figure 3. A state-tree is composed of a collection of
cascaded nodes. There are three types of nodes: decision_nodes, state_nodes
and action_nodes:

RR n°2748

10

C. Castelluccia , W. Dabbous

inputl

n (else)

input 2 subtree

Figure 3: The Tree Structure

e In Esterel, a decision_node is composed of three elements: test, then and
else. The test is the predicate to test. then is a pointer on the node to exe-
cute if the test is correct. else is a pointer on the node to execute if the test is
uncorrect. We added two more elements: per and CP. These two elements will
be used by HIPPCO. Per is an integer which indicates the execution probabi-
lity of the then branch. CP is a flag, used by the common path identification
algorithm.

e A state_node is composed of one element nstate, an integer that indicates
the number of the next state the automaton is going to. The state_nodes are
the leaves of tree, but as we will see later in this report, every leaves are not
state_nodes. In fact, some leaves may be references to other trees.

INRIA

HIPPCO: A High Performance Protocol Code Optimizer 11

e An action_node is a node that performs an action or a set of actions, such as
variable assignements and/or function calls. It is composed of two elements:
the action itself (elt_action) and a pointer on the following node to execute
(nnext).

We adopt the following conventions in the tree figures. Decision nodes will be
drawn as diamonds. The backward branch of a decision node (the then branch) is
its left branch. Action nodes will be drawn as rectangles. State nodes will be drawn
as two brackets containing the value of the nstate variable (<>). After code size
optimisations, some trees are ponting on others trees. A reference to a tree labeled
n is coded as [n]. In this report, some of these details will be omitted if this does
not affect the figure clarity.

3 HIPPCO: High Performance Protocol Code Optimi-

zer

3.1 Presentation and General Concepts

The optimizer operates in two phases (see figure 4): the first stage, the structural
optimazer, modifies the structure of the internal automaton, reschedules the different
actions according to the optimization constraints and generates an optimized auto-
maton customized to the application that is being designed. The second stage, the
code optimizer generates, from this automaton representation, the final code.

The structural or automaton optimizer is independent of the final target lan-
guage. It takes as input the automaton representation in Oc and generates an other
automaton in Oc. The code optimizer is independent of the automaton optimizer,
it takes as input an automaton description (optimized or not) and generates code
in a target language (such as C). The optimization performed by those two stages
are quite different. The first stage generates optimizations that modify the software
structure: optimizations like header prediction [Jac88| should be taken into account
at this stage. The code optimizer applies code optimization techniques that are
more language-specific such as inlining. Separating these two kinds of optimizations
into two different stages has the advantage of isolating them and therefore leads to
more efficient algorithms.

HIPPCO design follows four basic concepts:

RR n°2748

12 C. Castelluccia , W. Dabbous

CAE)

a_© (00)

Structural
Optimizer
Optimized
Automaton
(Qc)
Code
Optimizer
findl B%e <sidio.n> Optimized
} Implementation
(©

Figure 4: HIPPCO Architecture

e Complementary to low-level compiler optimizations: Existing low-level
compilers 2 perform a lot of optimization techniques. Those optimizations
transform the code to generate faster code without information on the semantic
of the application. They are applied either as a result of a static analysis of
the program or systematically, such as inlining very small functions.

The HIPPCO optimizations uses profiling information provided by the applica-
tion designer. It can therefore perform more aggressive and specific optimiza-
tions. However some optimizations are more efficient when they are performed
at the low-level, such as Basic Block Rescheduling ([McF89]) for better cache
utilization. As a consequence, the approach that we followed in the design of
HIPPCO was to implement optimizations that are not redundant with the ones
present in the low-level compiler but that are complementary. HIPPCO was
not designed to replace the existing low-level optimizers, but to help them. In

2We call low level compiler, a compiler that generates executable code from a high level language
such as the C compiler.

INRIA

HIPPCO: A High Performance Protocol Code Optimizer 13

HIPPCO, we transform the code in order to make the low-level optimizations
more efficient. For example, when the Common Branches Extension algorithm
is applied (see section 4.2.3), it generates code on the common path that is
straightline. This code is faster because of the suppression of the function
call overheads but also because the streamlined structure of the common path
gives to the low-level compiler more optimization opportunities.

e Synchrony: Most of languages and code generators currently used for proto-
col specification and design, such as SDL or Estelle, are asynchronous ([Hof93],
[Leu94]): modules are specified and implemented as separate processes commu-
nicating via asynchronous queues. We believe that the synchronous approach
is more attractive for the generation of high performance implementation: syn-
chronous languages compile parallel or sequential specification modules into a
single automaton using the language semantic, the data and control depen-
dencies. This automaton can be implemented by a single process, removing
inter-module communication overhead. This approach has in addition the ad-
vantage of facilitating the verification of the generated code [RdAS90].

e Configurability: A possible way to enhance a communication system per-
formance is to reduce the protocol functionalities (i.e. the number of protocol
operations) to the minimum required by the application. This leads to a com-
munication system configured to meet the application needs. In HIPPCO,
profiling information provided by application designer are used to generate a
configured version of this system.

e Common/Uncommon path separation: Another way to enhance the per-
formance is to reduce the amount of processing per operation. Improving the
performance of the protocol operations is classically achieved by optimizing
the operations that are on the common path [HH93, CH95]. The common
path, also called the critical path or the fast path, is the part of the code
that is the most frequently executed. By optimizing this path, the execution
time of the overall program under normal conditions will be optimized. This
optimization technique has been widely utilized to increase the performance of
protocol code. The TCP BSD header prediction is probably the best known
example of an optimized common path protocol implementation [CJRS89].
The concept of separating the common and uncommon path for protocol code
optimization is motivated by three reasons:

RR n°2748

14

C. Castelluccia , W. Dabbous

1. Optimizing the execution speed a program is a difficult process, it is then

important to focus the optimization effort on the most profitable parts of
the code. The common path is only a small part of the whole program but
it is executed more frequently than the rest. Therefore, optimizing the
common path generates relatively higher performance gain. In fact, the
average number of instructions executed by a program can be evaluated
by the following formula:

IC 4y = ICc path * freqcpath + ICucPath * frequcpath

where IC¢ pain is the number of instructions that are executed when the
incoming event follows the common path and ICy¢pasn is the number
of instructions that are executed when the incomming event follows the
uncommon path. The variables freqcpan and frequcopan define the
execution frequencies of each path. fregcpain is expected to be close to
1.0, whereas frequcpain close to 0.0.

The gain achieved by reducing the number of instructions on the common
path is then fregcpain/frequepan times larger than the gain achieved
by the reducing the number of instructions by the same amount on the
uncommon path 3.

. Code optimizations involve somehow tradeoffs. A classic example is the

inlining optimization, which reduces the number of instructions by repla-
cing each function call by the body of the corresponding routines. This
optimization, if performed systematically, can generate very large codes
which lead to very bad instruction cache behavior and very poor perfor-
mance (see section 5.5.6). A solution to this problem is to perform those
optimizations selectively on the common path.

. In protocol implementation, the distinction between the common and

uncommon path is clear (this is not the case for all types of programs).
There are many paths through the protocol codes, however there is only
one common path which is usually only composed of few tens of instruc-
tions ([CJRS89]). The code to be optimized corresponds to the normal
case. In this case, the protocol behavior is generally predictable. In addi-
tion, there is no need to optimize the path followed when a error occurs,

3In this analyse, we neglected the performance penalty added to the uncommon path by the

optimization the common path. We expect the product of this penalty with the execution frequency

of the uncommon path to be very small.

INRIA

HIPPCO: A High Performance Protocol Code Optimizer 15

such as a packet loss. In fact, in those cases, the bottleneck is not the
protocol code but the network or the interface. Optimizing that path
will have a minimal effect on the protocol performance. HIPPCO makes
intensive usage of this common/uncommon path distinction.

3.2 Optimization Principles

HIPPCOs’ primary goal is to generate protocol code that has very fast execution
time and small code size. This optimization goal has been divided into two parts:

e code execution speed optimization
e code size optimization

These two optimizations can not be treated individually because they are not com-
pletely independent. As we show in this report, some code speed optimizations
increase the code size and similarily some code size optimization imply some speed
penalties. This report only presents the code speed optimization algorithms. The
results of the work on code size optimization algorithms will also be cited, but the
details will be presented in another paper [Cas95b]. The goal of the code speed
optimization is to reduce the number of cycles that a program takes to execute.
This is a complex task, because the execution speed of a code depends on several
components that interact together. The number of cycles required to execute the
program is given by the following formula [HP90, Cas95al:

Cyclesiotar = IC x C PlEgecution + M emory_accesses x Miss_rate x Miss_penalty

where IC is the number of instructions executed, C PIg ccuction the average number
of cycles per instruction, Memory_accesses the total number of memory accesses
within the program, Miss_rate the rate of memory references which are not in
the cache and Miss_penalty the penalty, expressed in cycles, encountered when a
memory access is performed.

The number of cycles is composed of the sum of the cycles spent executing the
instructions of the program and the cycles spent waiting for the memory system
(memory stalls).

In this evaluation, it is assumed that the memory stalls are all due to the cache.
Although this is not true for all machines, the stall due to the cache always dominate
the effect of other stall sources.

We also consider, in this formula, that the cycles for caches accesses are part of
the CPU-execution cycles and are therefore included in C Pl ccution-

RR n° 2748

16 C. Castelluccia , W. Dabbous

According to this formula, a program execution time depends on three compo-
nents:

e The instruction count (IC)
e The memory stall cost (Memory_accesses x Miss_rate x Miss_penalty)
e The number of cycles per instructions (CPI)

Optimizing the global execution speed involves optimizing each of its compo-
nents. We will present in the three following subsections the general program op-
timization principles for each of those components. In section 4, we describe how
these principles are applied to protocol code optimizations in HIPPCO.

3.2.1 Instruction Counts Optimizations

The optimizations that improve program performance by eliminating instructions
are widely used in today’s compilers. However most of those optimizations are li-
mited, because they are only based on static analysis (control flow, dependency
analysis). Compiler optimizers that use profiling data are not very commonly used
yet. In this subsection, we described the approach that is commonly used to op-
timize programs through high-level transformations. We will discuss machine level
optimizations (such as register allocation,...), or optimizations that can be perfor-
med by lower-level compilers such as loop unrolling, redundancy elimination. We
present optimization techniques that uses additional informations about the appli-
cation behavior to reduce the instruction count.

The optimizations that tend to reduce the number of instructions to perform
are usually performed on the most frequently executed parts of the code. Those
optimizations can be classified in two categories: first, those modifying the structure
of the program and which are independent of the programming language, we will call
them the structural optimizations. Second, the optimizations that reduce the number
of instructions by some programming techniques. We call them code optimizations.

The structural optimizations consist of restructuring a program such that the
most frequently path is scheduled at the beginning of the program. Events that
follow the common path are then detected earlier. All processings that belong
to the uncommon path are scheduled out of the common path stream. Such an
optimization is very desirable in the case of communication protocols is the cyclic
usage behavior of these protocols (e.g. bulk transfer TCP has same size, in order
packets 95 % of the time on most networks). A classic structural optimization is the

INRIA

HIPPCO: A High Performance Protocol Code Optimizer 17

TCP header prediction [CJRS89] implemented in TCP BSD. It predicts the values of
the fields of the next incoming packet, such that the reception of in order packets can
be processed in few instructions. Some experiments that we performed, and which
are presented in section 5.5.2, showed that the TCP header prediction reduces the
average number of instructions, necessary to process an incoming packet, from 508
to 186.

The code optimization that is the most usually used in programming language
such as C is the inlining technique. Inlining involves a space/speed tradeoff, therefore
it should be applied selectively. The effect of inlining on program performance
has been extensively studied [CHT91, DH92, Hos95]. The issue of how function
inlining can be automated has been addressed several times in previous research
[DH92, Hos95]. Current low-level compilers feature inlining optimizations. Usually
those compilers only inline simple and small functions. The heuristics used can
not perform very aggressive inlining because the frequencies of execution of each
functions is difficult to evaluate at the low-level.

In section 4.1, we show how the automatic common path identification and the
intermediate program representation facilitates the application of structural opti-
mizations in HIPPCO. We also show how the prediction information provided by
the application designer provides more opportunities to perform efficient code opti-
mizations. Heuristics based on the predictions of the different code part execution
frequency are used to apply inlining in the most optimal way.

3.2.2 Memory Stall Optimizations

Traditional optimization techniques improve program performance by reducing the
number of instructions. Those optimizations have been designed at the time where
most of the cycles were used to execute the program instructions.

However as the processor speeds increase at a much faster rate than the memory
speeds, the bootleneck has been shifted to the memory system [CT90, GPSV91,
Fel93].

The emergence of the RISC technology, which features very simple and uniform
instructions, amplified the effect of the costly memory access for at least 2 reasons:
first, programs running on a RISC processor are longer than the one running on
CISC type processor and therefore perform more instruction memory references.
Second, the uniform RISC instruction can be efficiently pipelined. However if one
of this pipeline components, such as the fetch instruction, takes more time than the
other, the pipeline efficiency is not optimal.

RR n°2748

18 C. Castelluccia , W. Dabbous

Optimizing the number of instructions is not enough anymore, optimizations of
the memory bandwidth is also required.

As expressed in the previous section, the memory stall cost is estimated by :
M emory_accesses x Miss_rate x Miss_penalty. Optimizing this cost requires to:

1. Reduce the total number of memory accesses (Memory accesses)
The memory accesses are of two types: the data and instruction memory
accesses.

Reducing the number of data memory accesses is performed by a technique
called Integrated Layer Processing (ILP) [CT90]. The motivation of ILP came
from the observation that data manipulations (checksum, presentation for-
matting, encryption) are very costly. The reason is that manipulating each
byte of the messages, requires a memory load and a memory store, which
are relatively slow operations on modern RISC architectures. Communication
systems make extensive uses of data manipulations. Data manipulations are
even more frequent in naive implementations of layered systems which code
protocol layers by different functions communicating asynchronously. A data
processed by the communication system is then processed sequentially by each
of its layers. This implementation architecture multiplies data manipulations.
The ILP technique consists of integrating all the manipulation functions of
the different layers into an unique function. The motivation of layer and func-
tion integration is double: first, the number of memory accesses is reduced
(the bytes are only read once, then all the data manipulation functions are
pipelined, and the resulting data is written back in memory). Second, inte-
gration increases the data locality of the program, which improves the data
cache behaviour. ILP has been extendively studied in the past few years
[AP92, BD95, GPSV91]. [AP92] proposes a a technique to automize ILP func-
tions implementation using a concept called the word filter. [BD95] shows
that the ILP is not very easy to implement and that the gain achieved is less
important than expected for various reasons. In this report, we are not consi-
dering ILP techniques. As detailed in section 2.1, the HIPPARCH compiler is
composed of two tools: the first generates the control part of the protocol and
the second the data manipulation functions. ILP techniques are considered in
the second tool, whereas HIPPCO belongs to the first one.

The reduction of the the number of instruction memory accesses is principally
performed in HIPPCO by the techniques proposed in section 4.2 (Instruction
Count Optimizations). Those optimizations reduce the number of instructions
to execute and consequently the number of fetch and load instructions.

INRIA

HIPPCO: A High Performance Protocol Code Optimizer 19

2. Reduce the cost of each memory access (Miss_ rate)
Reducing the cost of memory accesses is performed by reducing the miss-rate
through a better cache memory utilization.

Most of current architectures use a hierarchical memory system to reduce
the memory bottleneck. Typically memory systems are now composed of a
main memory and several memory caches. Cache memories are small, high-
speed buffer memory used to hold parts of the code which is frequently refered
[HP90, Smi92]. Information (data or instructions) located in cache memory
can be acceded in much less time than that located in main memory. Thus,
the CPU spends less time waiting for instructions and operands to be fetched
and/or stored. There is of course a trade-off between small, high miss rate
caches with fast access time and large caches that may increase processor
cycle time. Caches work better when the program exhibit significant locality.
Temporal locality exists when a program references the same memory location
several times in a short period. Caches exploit temporal locality by retaining
recently referenced data. Spatial locality occurs when the program access
memory locations close to those it has recently accessed. Caches exploit spatial
locality by fetching multiple contiguous words (a cache block) whenever a miss
occurs. Optimizing the memory access cost is then achieved by increasing those
localities and reducing cache misses.

Cache misses results from essentially two sources [GC90]:

e interference between instructions competing for the same block in the
cache

e lack of room for some instructions. This lack of room is often caused by
cache pollution. A cache can be polluted by instructions that are loaded
and never executed. There are two causes that generates this pollution:
First, if cache prefetching is used, instructions are loaded in the cache
before they are referenced. Second, as cache blocks are usually larger
than one instruction, some instructions are loaded and not executed.

If the cache is large enough to hold the entire program, cache pollution will not
deteriorate the program performance. However, if the cache is smaller than the
program size, cache pollution should be reduced to achieve high performance.

Many researchers worked on the problem of restructuring programs to improve
their memory performances. Most of those works use some profiling information to
restructure the object code of the programs to achieve better code locality.

RR n° 2748

20 C. Castelluccia , W. Dabbous

McFarling [McF89| proposed algorithms and heuristics that use profile data to
guide in excluding some instructions from the cache to increase the performance of
a direct mapped cache.

Pettis and Hansen [PH90| described techniques that pack the most frequently
executed instructions and move the unfrequently executed instructions at the end
of each function. Global analysis arranges functions to reduce inter-function cache
conflicts.

In [GCI0], the authors proposed to reduce instruction cache pollution by code
repositioning. Contrary to the other works, no profiling data is used. The optimi-
zations uses control flow and dependency analysis.

Profile guided code optimization is implemented in some of today’s compilers.
The C compiler for the Alpha CPU (distributed with OSF-1) features some of this
profile guided optimizations. A study of the effect of profile guided optimization
performed by commercial compiler (HP C compiler) on protocol codes (TCP and
UDP) is presented in [SKP94|. This compiler implements the code restructuring
algorithms described in [PH90]. Although the protocol throughput increased from
300 to 500KBit/s, the effect of those optimizations is limited. One reason is that
the optimizations performed in this experiment only work at the procedure level and
does not perform any cross-module optimizations.

The optimizations that we propose in section 4.4 are based on the techniques
presented in [McF89, PH90, SKP94|. They differ however on several aspects:

e The analysis is performed using prediction information specified by the module
designer and not from profiling data collected from a first implementation.
This approach, which reduces the profiling collection process overhead, makes
the compiling phase more efficient.

e global (cross-module) optimizations are performed. The optimizations are per-
formed directly on the intermediate tree generated by the Esterel compiler.
This compiler generates from a set of modules an integrated tree. The module
abstraction does not exist anymore at this level of representation.

e the optimizations are performed at a higher level than the object code level .
The goal of our optimizations is to generate good quality (language) code that
can be optimally processed by the low-level compiler (C-compiler).

INRIA

HIPPCO: A High Performance Protocol Code Optimizer 21

3.2.3 Cycle Per Instruction (CPI) Optimizations

Processors’ speeds increased drastically over the last decade. The RISC architecture,
which aims for both simplicity in hardware and synergy with compilers, is probably
one of the most important factors of this improvement. In the RISC systems, each
instruction is composed of micro-instructions which execute in a single cycle and are
pipelined for better performance [HP90|. Pipelining is an implementation technique
whereby multiple instructions are overlapped in execution. This is a technique used
to make fast processors. A pipeline is often compared to an assembly line: each
step in the pipeline completes a part of the instructions. An instruction can be
implemented with five basic execution steps:

e [F- Instruction Fetch

e ID- Instruction Decode
e EX- Execution

¢ MEM- Memory access
e WB- Write back

Five instructions can be processed concurrently in the pipeline. One instruction
is fed into the pipeline at the start of each clock cycle and moved one stage further
with each clock cycle.

The low level compiler schedules the instructions to take advantage as much as
possible of the pipelining. However there are situations, called hazards, that prevent
the next instruction in instruction stream from executing during its designated cycle.
For example, if an instruction to be fetched in the first stage is not in the cache,
the processor stalls (waits) until the missing instruction is retrieved from the main
memory. It is then important to have the code in the cache to fully take advantage
of the pipelining behavior.

There are three classes of hazards:

o Structural hazards arise from resource conflicts

e Data hazards arise when a instruction depends on the result of a previous
instruction

e (Control hazards arise with instructions which change the Program Counter

RR n° 2748

22 C. Castelluccia , W. Dabbous

The low-level compilers try to minimize those hazards with an optimum sche-
duling of the basic instructions. However low-level compiler do not have usually
enough information on the program behavior to obtain the optimal performance.
For example, when a branch instruction is executed the address of the next instruc-
tion depends on the test result and therefore can not be defined before the third
step (instruction execution step). Three cycles are wasted for each branch of the
program. Therefore to reduce this penalty, most of the processors make predictions:
they make the assumption that the forward branch (else branch) is not taken and
continue to fetch instructions as if the backward branch (then branch) were a nor-
mal instruction. If the prediction turns out to be invalid, the pipeline is stopped
and restarted with the fetch of the new instruction. The branch penalty is then
suppressed for each valid prediction.

Low-level compilers usually keep the branch order of the original code, by lack
of information on the actual program behavior. Some researchers ([SKP94, PH90])
proposes to use profile information to reorder the basic blocks such that the most
heavily used basic blocks are placed in an order which favors the hardware branch
prediction logic. Those optimization techniques are usually cumbersome to use.
They require to generate a first version of the code, then to instrument it, to run it
in order to get some profiling information and finally to recompile the program.

In section 4.4.2, we show how HIPPCO uses the prediction information to reorder
the tests’ outcome in order to improve pipelining.

4 HIPPCO Design

In this section, we describe the details of HIPPCO design. We firstable describe the
common path identification phase, which is based on a Markov analysis. We then
present the various instruction count and the memory stall optimizations applied to
the common path.

4.1 Common Path Identification by Markov Analysis
4.1.1 General Presentation

For determining the execution frequency of different sections in a program, two
alternative approaches are known from general compiler construction: code profiling
[Cha9l] and static analysis of the program code ([Bal93]|, [Wu94], [Wag94]). With
code profiling, the program is executed using input data that is representative of
the program’s actual use. This has the advantage that a very accurate calculation

INRIA

HIPPCO: A High Performance Protocol Code Optimizer 23

of the probability of executing different program sections can be achieved. However,
profiling is a time consuming activity since it requires selecting representative input
data, and then modifying the program code according to the calculated execution
probabilities. An additional difficulty with protocol code is that profiling requires
the execution of two working program modules over a network connection.

Thus, for protocol code, static analysis of the program control flow graph seems
to be the more practical solution. Again, static analysis may be realized in several
ways: by simple loop detection ([Aho86]) or by a full Markov analysis of the control
flow graph ([Ram65], [Tri82], [Wag94]). While simple loop detection allows to deter-
mine a superset of program sections that will be executed with high frequency, the
optimizations we consider (such as test outcomes rescheduling or function inlining)
require more exact information on the execution frequency. We therefore use a full
Markov analysis of the control flow graph of an Esterel program [CH95].

The general idea of Markov analysis is to regard the control flow graph of a
program as a finite Markov chain. The control flow graph is composed of nodes
connected by arcs. It is constructed as follows: the nodes in the graph correspond
to sequential sequences of assignement statements or function calls. In accordance
with standard terminology of compiler construction [Aho86], these nodes are referred
to as basic blocks. The last statement in each basic block is either an if statement
or an await statement.

The arcs in the graph correspond to possible transfers of control between basic
blocks. In an Esterel program, a control transfer can occur in two different ways:
first, each if statement introduces two arcs, one leading to the basic block that is
executed when the if test is true, and one leading to the basic block that is executed
when the if test is false. Second, each state in the Esterel program has one arc for
each input event in the automaton. Again following standard compiler terminology,
the arcs will be referred to as branches in the following.

For the purpose of Markov analysis, the basic blocks of the control flow graph
are referred to as mstates (for Markov states, not to be confused, at this point,
with the states of an Esterel automaton), and the branches as transitions. Markov
analysis requires that the probability of traversing each transition is known. In other
words, the probability of traversing each branch in the control flow graph must be
determined. This is called branch prediction.

In our design, branch prediction for protocol code can be performed at two dif-
ferent points in time. First, the writer of the building blocks defines the probabilities
for branches leading code sections for error handling and similar infrequent events.
However, for some branches the execution frequency depends on conditions that are

RR n°2748

24 C. Castelluccia , W. Dabbous

only known when the building block is used in a particular protocol configuration.
An example is the TCP protocol, where the authors of [Cla89] found that the branch
probabilities vary when the protocol is used by a client or by a server module in a
distributed application. In this case, the designer of the protocol library defines se-
veral different branch predictions, one for each case. Then, a configuration variable
is introduced with one value for each case. This variable can be set by the user of
the protocol library when configuring a particular protocol. In the example of the
TCP code, the variable can be set to the values "Server" or "Client". Such variable
is easily introduced by the means of keywords in the interface specification language.

The current version of the Esterel language does not allow to specify branch
probabilities. We therefore implemented an extension to the Esterel compiler that
allows specifying numerical probabilities for the input events of a module, and for
the two outcomes of an if statement in an Esterel action.

Using this model, the execution frequency of the different parts in a configuration
of protocol building blocks written in Esterel could work as follows. First, the 0C
code for the configuration is generated. Then the Oc code is split into basic blocks
and branches in the way described above, and the branch probabilities are written
into a transition matrix.

Let n be the number of basic blocks in control the flow graph, and let P(3,)
be the probability that control passes from basic block ¢ to basic block j. It can
then be shown [Tri82] that the number of times, V;, that each of the basic blocks is
visited can be calculated by solving the following system of n linear equations:

Vj =615 + ZVkP(k,j)
h=1

where 6;; =1 for < = j, and 0 otherwise.

4.1.2 HIPPCO Implementation

Applying this method directly on protocol code is not practical. In fact, the resulting
matrix can become rather large. The amount of computation can be significantly
reduced by making use of the Esterel code structure.

As described earlier, Esterel generates from a specification an automaton. This
automaton is composed of a set of Esterel states, which are internally coded as trees.
Therefore, there is no loop within a state. The execution probability of each state
basic block can be determined by the hierarchical approach described hereafter:

1. Compute the state execution probabilities by a Markov analysis using the
Esterel states as unit instead of the basic block (mstates = Esterel states)

INRIA

HIPPCO: A High Performance Protocol Code Optimizer 25

2. Compute the probabilities of the basic blocks within each Esterel state, by
multiplying the state probability with the probability of traversing each of the
branches going from the root to the corresponding basic block.

P(1,2)=0.7*0.5=0.35
State2

P(1,3)=0.7*0.5+0.3*0.2=0.4 State3

Statel

Figure 5: HIPPCO Markov Analysis

Once all the basic block probabilities have been computed, a heuristic should be
used to identify those belonging to the common path. This approach has the major
drawback that it requires the probability computations of all basic blocks, which is
quite computing-intensive.

Generally, we expect the common path to be composed of a set of contiguous
basic blocks. In fact, with the tree representation of the generated automaton, the
execution control flows are contiguous, there are no loops. Based on this observation,
we devise an algorithm that identifies the common path with a minimal amount of
computations. The contiguity constraint makes the algorithm more stable and less
sensitive to the branch prediction values. This algorithm has been implemented
within HIPPCO for common path identification and it is composed of four steps:

1. Computation of the Transition matriz: (with mstates = Esterel states)
In this step, the transition probilities P(z,j), which define the probabilities to
go from mstate; to mstate; are defined. The probability P(¢,j) is computed
by considering the tree representation of mstate; and selecting all the paths
B,ij (k =1 to M, where M*% is the number of paths in mstate;, leading to

RR n°2748

26

C. Castelluccia , W. Dabbous

mstate;). Eack path B,ij is a sequence of LZJ branches. Each of these branches
has a probability ¢/, (I =1 to L}!). P(7,7) is defined by:

Mmii LY

P(i,j) =Y (I 4

k=1 1=1

for ¢ and j going from 1 to N, where N is the number of states in the auto-
maton. We call S this set of states.

In the example of figure 5, P(1, 3) is computed as follows: there are two paths
leading to mstatez (M2 = 2). The first path has an execution probability of
0.35 (0.7*0.5) and the second of 0.06 (0.3%0.2). P(1,3) is then equal to the
sum of those two probabilities, thus 0.41.

. Computation of the state visit probabilities:

Once the transition Matrix, P, has been computed, the state visit probabilities
are computed, by solving the folloving system of linear equations:

N
Vi = b1 + Z Vi P(k,j)
k=1

for j =1to N, where N is the number of states in the automaton. In HIPPCO,
this is performed using a Gaussian algorithm. The result vector V' defines the
visit count of each state.
The probability PS; of visiting mstate; (= 1 to N), is then obtained by
computing:

N

PS;=Vi/ Y Vi
k=1

. Identification of the common states:

The state visit probabilities, P.S;, are then used to identify the common states
set C'SS, which is the set of the states that are the “most frequently” visited
of S. This identification is done with the following two-steps heuristic:

(a) mstate; is automatically added to the CSS if: PS; > SPT, where SPT
is the state probability threshold above which a state is considered a
“common” state. The value of this parameter has an impact on the size
of the resulting code: if the value of SPT increases, less states will be

INRIA

HIPPCO: A High Performance Protocol Code Optimizer 27

automatically selected as “common” states. In the present HIPPCO im-
plementation, SPT is set to 0.15 but this can dynamically be changed at
compilation time. Let N s be the total number of the those automatically
selected states.

(b) Let M ST be the minimum selection threshold i.e. the minimum fraction
of selected states (if the value of M ST increases, more states are added
to the CSS).M ST is set to 0.25 in the current HIPPCO implementation.
The second step of the heuristic is as follows:

add the mstate,, in CSS s.t. PSSy, = mazics—_css)PSi-

Consider the example of a four states-automaton with a state visit probability
vector V'={0.1,0.16,0.03,0.01}. The first step of the previous heuristic selects
automatically mstates, which has a visit probability of 0.16. However as 0.16 is
smaller than 0.25, the second step adds mstate; to the CSS. As PS1+ PSs >
M ST the algorithm stops. C'SS is therefore composed of mstate; and mstates.

4. Identification of the common branches:

The common branches of each state of CCS are then selected. This is per-
formed by going from the root to the leaves, for each state-tree of C'CS,
and cutting off all the branches with an execution probability smaller than
a “common path” threshold C'PT, commonly 0.5 in HIPPCO. The remaining
branches constitute the common branches. In figure 5, the common branches
of mstate; are shown by the thicker lines. The protocol common path is finally
identified by the union of all the common branches.

In the following two subsections (4.2 and 4.3), we detail the Instruction Count
optimizations that have been implemented in HIPPCO. Those optimizations that
were applied to the common path are classified into two groups: the Structural
Optimizations and the Code Optimizations.

4.2 Instruction Count Optimizations/ Structural Optimizations

In this subsection, we present the tree transformations performed by the structu-
ral optimizer. Some of those optimizations are These transformations improve the
common path performance by decreasing the average number of instructions. These
optimizations are applied to the control flow graph of the program. They are thus
independent of the target language.

RR n°2748

28 C. Castelluccia , W. Dabbous

As described in section 2.2.2, an Esterel state-tree is composed of cascaded in-
dependent subtrees. Each of those subtrees processes one of the possible automaton
inputs. If the automaton can receive I different inputs in state k, the tree of state k
would be composed of I cascaded subtrees.

The number of instructions per input event ¢ in state k is then the sum of two
components: Cr¥, the cost to reach the subtree corresponding to the input, and
C’pf, the cost to actually process the input event.

The different inputs have different probabilities PZI” . In fact, some events are
more frequent than others. Typically frames from the network occur more often
than the alarm signals. Therefore the average execution time of the state k can be
modeled by the following formula:

I
Caw= D B+ (Cri + Cp})
=1
or
I I
Couw= D P+ Crf+3 Pf«Cp;
=1 i=1
In the rest of this subsection, we propose a set of algorithms that reduce the
average number of instructions by reducing each of those two components. The In-
puts Rescheduling optimization reduces the first component. The Common Branches
Extension optimization reduces the second component. The Branches Pruning op-
timization reduces both of them.

4.2.1 Inputs Rescheduling

In this paragraph, we propose a transformation that optimizes the first component
{:1 Pl-k * Crik. This component can be rewritten as

k
])i * N’L * C'test

M~

=1

where N; is the rank of subtree 7 in the state tree. It can easily be demonstrated
that this sum is minimal when the subtrees corresponding to the most frequent
events are scheduling first in the tree, i.e. the subtrees are sorted in decreasing
event frequencies.

The Inputs Rescheduling optimization is based on this observation. It consists in
rescheduling the subtrees handling the most frequent input-events before the sub-
trees handling the less frequent input-events. Input events belonging to the common

INRIA

HIPPCO: A High Performance Protocol Code Optimizer 29

path would then be detected faster. The input frequencies are defined from the in-
formation provided by the protocol designer. Figure 6 illustrates this optimization.
Subtree A (i.e. handling the input event A) has an execution probability of 0.1, sub-
tree B of 0.4 and subtree C of 0.5. The Inputs Rescheduling optimization restructures
the initial tree, by rescheduling subtree C' at the root, followed by subtree B and
then subtree A.

A problem may appear when several inputs can activate the automaton simulta-
neously. The subtrees are not then completely independent. In this case, the partial
order between those inputs should be preserved in the optimized tree otherwise the
generated tree will not be equivalent to the initial one. However, the HIPPARCH
execution environment was designed, such that only one input at a time can activa-
ted the protocol automaton. The subtrees are then all independent in our case.

inputA .
0.1 inputC
’ 05

(a) Initial tree (b) Optimized tree

Figure 6: Inputs Rescheduling Optimization

4.2.2 Branches Pruning

In HIPPCO, the protocol designer can specify the probability of each input event
and of each specification test’s outcome. In some configurations, it may happen
that some tests’ outcomes are constant and that some inputs never occur. In this
situation, the processing relative to those tests and inputs is unnecessary.

The Branches Pruning optimization configures a general protocol specification
to a particular application. This optimization is performed in two steps:

RR n°2748

30 C. Castelluccia , W. Dabbous

1. all subtrees handling incoming events that are not possible for a given protocol
configuration are removed,

2. within a subtree all tests with constant outcomes are detected and replaced
by the predicted outcomes.

Figure 7 illustrates this optimization. Figure 7(a) displays the initial tree with the
inputs and test outcomes’ probabilities. Figure 7(b) shows the resulting tree when
the subtrees handling impossible events have been removed. In this example, input A
never occurs. Therefore the subtree handling input A is removed. The number of
instructions to execute before reaching the subtree B is reduced. The presence test
of input A is not performed anymore. Figure 7(c) shows the resulting tree when the
tests within a subtree and with constant outcomes are removed. In this example,
testl, is always correct. Testl is then replaced by its backward outcome as. This
reduces the proceesing cost of subtree B. In fact, by removing the unnecessary tests,
the number of instructions to execute is reduced.

This optimization is performed on the initial tree representation, before any code
size optimization is performed. It is performed everywhere, not only on the common
path.

4.2.3 Common Branches Extension

In order to reduce the code size of the generated code, the tree representation of
Esterel is transformed into a graph representation by HIPPCO [Cas95b]. However,
we may want not to perform this code size optimization is some cases e.g. on the
common path.

The Common Branches Extension optimization transforms the graph represen-
tation into a tree representation only on the common path. The generated common
path is then straightlined. This optimization reduces the number of instructions
on the common path (by removing the function calls overhead). It also improves
i-cache (instruction-cache) behavior by improving the code locality of the common
path.

The drawback of this optimization is that it increases the code size. However
since the common path is only a small part of the total code, the code size increase
is much smaller than the original Esterel code.

Figure 8 illustrates this optimization. In the initial tree, subtrees A, B, C and D
are coded by a reference to an intermediary subtree with appropriate parameters. In
the optimized tree, the subtree (or in general the parts of the subtrees) belonging to

INRIA

HIPPCO: A High Performance Protocol Code Optimizer 31

inputB inputB
60 40
al al
subtree A
subtree B
Testl <> a2 <>
inputB
<> a2 <>
<> <>
Testl <>
subtree B 100 0
a2

<> <>

(@) Initial Tree (b) Subtree Pruning (c) TestsPruning

Figure 7: Branch Pruning Optimization

the common path (thicker line) is extended. As a result, subtree A can be acceded
directly without indirection.

4.3 Instruction Counts Optimizations/ Code Optimizations
4.3.1 Inlining

Inlining consists of replacing a function call by a copy of the procedure body. Func-
tion inlining decreases execution time for two reasons: first, the overhead of the
function call (instructions that save the status of the caller on the call stack) di-
sappears. Second, by removing the function boundary, other optimizations can be
performed by the low-level compiler (develop impact on i-cache). The penalty of in-
lining is a code size increase. Inlining is generally not a trivial optimization because

RR n° 2748

32 C. Castelluccia , W. Dabbous

subtreeA

input A

subtreeA

<ty <w

subtreeB

inputD

<ay <ay

(a) Initial Tree (b) Common Branches Extension Opt.

Figure 8: Common Branches Extension Optimization

it involves a code size/ code speed tradeoff. Inlining the wrong functions might
have a bad impact on the i-cache performance and slow down program execution
speed. The issue of how function inlining can be automated has been addressed
several times in previous research [|. If code size is not a direct constraint, inlining
is beneficial in any of the following cases:

e the function is only called once,

e the size of the function is smaller or equal to the number of instructions requi-
red to call this function,

e the function is executed very often.

Our common/uncommon path approach makes the choice of functions to inline ea-
sier. In HIPPCO, in addition to the functions that comply to one of the two first
properties listed previously, all the functions that belong to the identified common
path are automatically inlined whatever their size in conformity to the third pro-

perty.

INRIA

HIPPCO: A High Performance Protocol Code Optimizer 33

4.4 Memory Stall Optimizations

In this section, we present the tree transformations, performed by the structural
optimizer, that reduce the memory stall cost. These transformations improve the
common path performance by increasing code locality.

4.4.1 Outlining

Protocol common path code sizes are usually smaller than i-cache (typically 8KB).
In this case, i-cache misses are not due the a large code size, but to a synchronization
problem. Two instructions generate a cache conflict (and therefore a miss) if their
addresses are spaced by a multiple of the cache size. Reducing the number of misses
can then be performed by restructuring the code blocks such that the most frequent
one will not conflict.

This scheduling problem is difficult to solve at the language level, because the
unit the cache handles, the cache block, is not defined at the user level. It seems
easier to solve this problem at the machine level by lower level compiler. However
the problem of identifying the block frequencies is not trivial at this level.

Outlining can be applied as a simple solution to this scheduling problem. It
compacts the frequently executed instructions and moves unfrequent code out of the
mainline of execution. The resulting code features a very spatially compact common
path which can entirely fit into the cache. Instruction blocks of the common path
do not interact anymore.

As explained in [MPO95], this optimization has its limits when it is performed
manually. Only conservative predictions can then be made. Performing this opti-
mization automatically, on customized protocols with more aggressive predictions,
will generate better results. HIPPCO identifies automatically the common path
and compacts it by coding all uncommon subtrees or branches as functions (in fact,
branches are outlined only if they are larger than the number of instructions that
is required to perform a function call). The remaining code, the common path, is
then very compact.

Figure 9 illustrates this optimization on a program tree. All uncommon branches
such as acty, acty, actyg and actg , which can be composed of a sequence of instruc-
tions, are replaced by a reference (function call) to separated subtrees refi(), refa(),
refs() and refs(). The effect on the i-cache performance is shown in figure 10. The
resulting tree is more compact and therefore has better icache behavior.

RR n°2748

34 C. Castelluccia , W. Dabbous

ref3()

actll actl0 actll ref4()
(@) Initial Tree (b) Outlined Tree

Figure 9: Outlining Optimization

(@) Initial Tree (b) Outlined Tree

Figure 10: i-cache layout

4.4.2 Test Outcomes’ Rescheduling

This optimization is based on two observations. The first is that basic blocks are
very often generated in the order of the corresponding source code lines. The second
is that the execution of the forward branch (else-branch) of a test requires a jump,

INRIA

HIPPCO: A High Performance Protocol Code Optimizer 35

whereas the code corresponding to the backward branch is streamlined. For example,
the compiled code of the C program:

if (test)
then actionl;
action2

will often be composed of the code of actionl with a conditional branch around
it to handle the action2 code. The code of action2 is only reachable via a jump
which break up the program pipeline. The execution of the forward branch leads to
inefficient cache utilization and to wasted cycles due to processor stalls, a penalty
which varies from a RISC processor to another.

The proposed optimization restructures the test nodes in the decision tree such
that the most frequently outcomes are on the left branch of the tree [PH90]. This
transformation is performed by considering all the program trees nodes (on the
common and uncommon path) and by reversing all the tests whose most frequent
outcomes are on the forward (else) branch. The test reverse operation is performed
by negating the test and interchanging the backward and forward branch.

Because we are using a tree representation, this optimization also increases the
i-cache utilization by structuring the code such that the common path is completely
separated from the uncommon path. The i-cache utilization is then maximum, i-
cache pollution is then minized. The benefit on the i-cache utilization is bigger
if this optimization is conjunctly executed with the Common Branches Extension
optimization, which ensures that the code on the common path is straighlined.

This optimization also increases program pipelining. In fact, as we described in
section 3.2, processors usually makes predictions on the tests’ outcome to increase
the pipelining gain. They usually predict that the forward branch is not taken. This
Rescheduling optimization increases the processor prediction correctness rate and
consequently the pipelining gain.

Figure 11 illustrates this optimization on the outlined tree of the previous section.
In the example, the most frequently outcome of input A is on its forward branch.
The transformation converts then input A into — input A and interchanges the
backward and forward branches. The same transformation is performed on the test
of input B. As a result of this transformation, all the tests along the common path
have their most frequently used outcome on the backward branch (left branch).

Figure 12 shows the impact of this optimization on the i-cache layout. All the
instructions of the common path (shaded) are contiguous in the memory layout.
The uncommon path (included the reference to the uncommon subtrees) is mapped
after it.

RR n°2748

36 C. Castelluccia , W. Dabbous

TJinputA

TinputB

inputC ref2()

T3

actll actl0 actll ref4()

(a) Initial Tree (b) Outcome Rescheduled and Outlined Tree

Figure 11: tree transformation

act4..
act10 act10
act9 act9
(a) Initial Tree (b) Outcome Rescheduled and Outlined Tree

Figure 12: i-cache layout

The corresponding code transformation is shown by figure 13 (the shaded parts
show the common path).

INRIA

HIPPCO: A High Performance Protocol Code Optimizer

37

if(inputA if(linputA)
Irgfnl%u;) act2;
elsgf if(linputB){
act2; act3;
if(inputB){ I;‘T(E%HC){
}refZ(), e?ctll;
se
iiteg; ref4();
if(inputC
'if(é?‘%ﬁ‘{ | ref3();
actll; }
} else
dse }refZ().
refa(); dse
dse refl();
ref3(); }
} }
}
(a) Outlined Code (b) Outcome Rescheduled Code

Figure 13: Code Transformation

4.4.3 State Functions Rescheduling

This optimization is very similar to the outlining optimization, but works at the
function level instead of the instruction level. HIPPCO generated code is composed
of several functions. Each of them implements one of the automaton states. Those
functions are scheduled in the same order in which they are defined by the automa-
ton. The function implementing state 1 is just before the function coding state 2,
which is just before the state 3 function and so on. This order is usually conserved
by the low-level compilers.

The State Functions Rescheduling optimization increases the code locality, by
rearranging, in the protocol code, those functions from the less to the most frequently
executed. As a result the most executed states are grouped and the program code
locality is improved. Better i-cache utilization is achieved.

The motivation for this optimization is then same than for the Outlining opti-
mization. If all the most frequently executed functions are spatially grouped, they
do not interact too much. The synchronization problem expressed in section 3.2 is
then minimized. The benefit of the proposed optimization is bigger if it is associated
with the Outlining optimization. In fact, in this case, the frequently executed state

RR n°2748

38 C. Castelluccia , W. Dabbous

functions are smaller, because all the uncommon subtrees have been outlined, and
have a larger probability to entirely fit in the instruction cache.

Also in general, the linker preserves the order in which the files are presented.
For example, if two files are linked together , the basic blocks of the first file are
ordered before the basic blocks of the second one in the final code. The order in
which the files are linked has therefore a direct impact on the program memory
layout and therefore on the i-cache performance.

To take advantage of this property, we schedule the most frequently visited state-
functions at the bottom of the protocol code, and link it with the application code
in the order: protocol-application. The memory gap between the protocol and the
application, source of i-cache pollution, is then minimized.

Figure 14 illustrates this optimization. State 1 and state 3, which are the most
frequently executed, are scheduled at the bottom of the program, increasing the
code locality. Also the i-cache pollution between the protocol and the application is
reduced by relocating state 4.

state?

stated

Q Qa
o8 o8

(a) Initial Code (b) Optimized Code

Figure 14: Memory Layout

INRIA

HIPPCO: A High Performance Protocol Code Optimizer 39

5 Evaluation

In this section, we present an evaluation of the optimization techniques that has been
described in the previous sections. The test case and the experimental environment
are first described, the results are then carefully analysed.

5.1 Test Case: A File Transfer Application

The experiments were performed with a file transfer application. This application is
composed of a client and a server. This application is very simple, it can be thought
off as a backup application: the client connects itself to a server to transmit a 4MB
file. The data-transfer is unidirectional: the server receives pure data and sends
pure acknowledgment packets.

This application uses the TCP protocol. The protocol implementations used for
our experiments were generated by HIPPCO with different levels of optimization.
A Dbrief description of the protocol specification is presented in the following section.

In order to evaluate the impact of our optimizations, we performed the same
experiment with a user level implementation of the BSD-TCP protocol that we
developed at INRIA. The comparison criteria that we adopted (instruction count,
i-cache miss rate, number of cycles per instruction and the code size) will be detailed
in the end of section 5.4.

In our experiments, no packet loss was generated. Thus, incoming packets follow
the header prediction path. This ensures that we are really measuring the perfor-
mance on the common paths of the different implementations.

Because it is always difficult to compare two different implementations of a same
protocol, we focused our analysis (at least for the instruction count) on the input
processing of the server side (receives pure data and send acknowledgements) of
our application and compared instructions by instructions those implementations to
make sure that the comparaisons were fair. This means that we took into account
the cost of the control part of the protocol and not of the execution enviroment.
This is similar to the approach adopted in [CJRS89].

5.2 The Protocol Specification

The protocol implementations used were automatically generated from an Esterel
specification. In this section, we give a brief overview of the specification of the
transport protocol and also of the customization choices that we made for the ex-
periments.

RR n°2748

40 C. Castelluccia , W. Dabbous

The protocol that has been specified is the data transfer part of TCP (we omit
the connection establishment and termination phases). In this section, we address
very briefly how the building blocks were designed and combined to generate the
required protocol. A more detailled description of this specification is presented in
[CD94].

Reusability and flexibility were our main design goals here. The building blocks
have been designed so that they are meaningful to the designers and so that changes
in the protocol specification only induce local changes in the architecture and the
code. We implemented this example incrementally in order to satisfy the modularity
property that we are aiming for. We started from a simple protocol and added
modules step by step until we accomplished all required functionalities. Following
the precepts of Object Oriented Programming we followed the rule one functionality-
one module. An overview of the whole system is shown in figure 15 . For clarity
purposes, only the principal modules have been described and displayed.

Our data-transfer protocol is structured in three main concurrent modules :

The Send Module: composed of two concurrent submodules:

e The User Input Handler module is a four states automaton. The first is the
initialization state and the last the absorbing state. In the second state, the
module is expecting data from the application. Whenever it receives some
data, it processes and copies them into an internal buffer. If the buffer is full,
it goes to the state 3, otherwise it broadcasts a Try-to-Snd signal and goes
back to state 2. In state 3, this module is waiting for an acknowledgement
packet. If this packet frees up some space in the buffer, the module goes back
to state 2, otherwise it stays in state 3. The module returns to state 1 when
a End_of Connection signal is received.

e The Emission Handler module transmits packets on the network. It is a
three states automaton. The first is the initialization state and the last the
absorbing state. In the second state, the module can get activated by several
signals, among them the try to send signal emitted by the previous module.
The module then tries to send packets by evaluating the congestion window
size, the silly window avoidance algorithm and the number of bytes waiting
to be sent. It may then send one or several packets. The Send Now input
forces the sending of a packet even though the regular sending criteria are not

INRIA

HIPPCO: A High Performance Protocol Code Optimizer 41

Application Output] | TIMERS | Application Input
SEND Module RECEIVE Module
Alarm Set_Alarm
X_on/ '
User_|nput X off Data Data
CONNECTION Module S
Input_Handler
Normg_Process
_Handler
Timer_Handler
Send_Now Shrink | Win
Nxt To Shd Acks| Header_Fredictor
= _Handler
Ack_Handler
Try|to_Snd
woto- Ack Ack
=<
Window_Handler <
Final | Adk
Packet-Valid
Nxt_To_Shd
RTT_Handler
Emission_Handler
Scan_Handler
Outgoing_Packet Incoming_Packet

Figure 15: Protocol Implementation Overview

satisfied (this is used to acknowledge data for example). If the module decides
to send packets, the checksum is performed* and the header is completed.

“In fact, the checksum calculation is a call to a void function, and the checksum verification

returns 99% of times true without any computing as data manipulation functions are not performed
as it will be detailed in the 5.3 subsection.

RR n° 2748

42 C. Castelluccia , W. Dabbous

The Receive Module: this module processes the incoming packets. It is itself
composed of several three states modules, which scan all incoming packets, check
their validity (checksum, length, ...) and broadcast all the header fields within the
specification. Then it delivers the packet to the application.

The Connection module: this module is composed of the following submo-
dules that are executed concurrently:

e The RTT Handleris a three states module that computes the round trip time
of the connection. When a packet is emitted, and if no other packet belonging
to this connection is in transit and we are not in a retransmission phase then a
timer is started. When this packet is acknowledged, the timer is stopped and
a new RTT value is computed.

o The Window_Handler is also a three states module which updates concur-
rently the congestion window and the send window (corresponding to an eva-
luation of the space left in the receiving buffer of the remote host). When an
acknowledgment signal is received (from the Acknowledgment Handler mo-
dule), the Window Handler increases the congestion window either linearly
or exponentially according to the slow-start algorithm, and the sending window
is either updated to the value of the Win field (emitted by the Scan_ Handler
module) or decreased by the number of bytes acknowledged. If a signal cor-
responding to a window shrink request (from the T@mer Handler module) is
received, the congestion window is set to 512 bytes (value of the Maximum
Segment Size).

e The Acknowledgment Handler: is a three states module which handles the
acknowledgment information received in the incoming packet. If the received
acknowledgment sequence number (which corresponds to the value of the next
sequence number the remote host is expecting to receive) is greater than the
latest byte sent or less than the last already acknowledged byte then it is
ignored, otherwise the acknowledged value is updated.

e The Ttmer Handler module manages the different timers. It is a five states
automaton. In the state 2, no packet is on transit and the retransmission
timer is not set. When a packet is sent on the network, the timer is set and
the module goes into state 3. In this state, two types of events may occur.
An acknowlegment signal or an Alarm signal. If an Acknowlegdment signal,
which acknowledges all transiting packets, is received the retransmission timer
is reset and the module goes into state 2. If an Alarm signal is received, the

INRIA

HIPPCO: A High Performance Protocol Code Optimizer 43

module goes to state 4, where it is waiting for the retransmission packet before
reseting the timer with a larger value.

All the modules just described have been implemented in Esterel and compiled
into an automaton.

5.3 The Customization Specification

As described in section 3.1, HIPPCO automatically configures the specification to
meet the application requirements. This configuration requires some kind of infor-
mation about the application behavior. Those informations are the:

o FEazternal Input Frequencies: an execution frequency is associated to each inco-
ming event that can activate the protocol

e Specification Test’s Probabilities: for all tests of the specification, a probability
of occurence is associated to each test’s outcome.

When default profiling is applied, those frequency variables have default values
set by the module designer. These default values correspond to the common case as
seen by the module designer i.e. without information on the specific application that
will use this module. An example is the default value for the result of the checksum
operation: predicting that the checksum of the incoming packet is almost always
valid is very reasonable (we set it to 99%).

These default values may be overwritten by the application designer if he has
more information on the application behavior. When application profiling is per-
formed, the values are derived from the specific application behavior. For example
in our test-case, the server side only receives pure data packet: the probability to
receive an acknowledgement packet is thus 0. Also since we want to optimize the
processing of in-sequence data packet, which fit in the reception buffer, we set the
probabilities of the tests’ outcomes corresponding to this path to high values. For
example the probability, in the reception module, that the sequence number is the
expected one is set to 99%. The probability that the reception buffer is not full and
has enough room to hold the incoming packet is also set to 99%.

More “aggressive” optimization may be performed in case of a spectalization of
an application profiled automaton. In this case, all branchs with zero probability
will simply be cut from the automaton. The resulting code is not fully functional
TCP. It has been specialized for the considered application.

Raw profiling corresponds to the case where precise values are very difficult to
predict by the designer. The specification test probabilities are set to 50 % and

RR n°2748

44 C. Castelluccia , W. Dabbous

external events are considered equiprobable. For example, in TCP, when a packet is
sent (and no packets are on transit), a timer is set. When this packet is acknowledged
the retransmission timer is reset. Predicting that each incoming acknowledgment
packet will reset or not the pending timer is not easy.

In this section, we present the prediction paramaters that have been choosen for
the profiling of the protocol at the server side. Those parameters have been used by
HIPPCO to generate the customized implementations according to figure 16.

We remind that the server sends an initial packet with the file it requests. The
client responds by sending the file in consecutive data packets. The server receives
those packets and acknowledges them.

(W0 D TCP Specification

Esterel
Front End
TCP Automaton
wver @
Custom|zat|on 0 e Cu(s:tléenqrz atlon
y
HI PPCO
8 5
@) @ @
Server Automaton Client Automaton

Figure 16: Protocol Customization

External Input Frequencies

Five input events can activated the protocol automaton:

e Alarm: is the input sent by an external timer to indicate that a timer has
expired. In our tests, we consider that the application is running on top of an
uncongested network, therefore the probability of packet loss is very low. The
Alarm input probability was then set to 2%.

INRIA

HIPPCO: A High Performance Protocol Code Optimizer 45

e Input Frame: is the input that contains incoming packets from the network.
This is the type of input that is the most common in our test-case. Its input
probability was set to 97%.

e User Input: is the input that contains data from the application. At the server
side, no data is ever received from the application. This input probability was
set to 0%.

e End Of Input: is the input that indicates that the application has no more
data to send. Since we expect no data from the application, its probability
was also set to 0%.

e (lose Connection: is the input that is sent when the application decides to
close the connection. This event only occurs once per connection. Its proba-
bility was set to 1%.

For comparaison purpose, at the client side, Alarm frequency was set to 2%, In-
put_ Frame to 45%, User_Input to 45%, End_ Of Input to 1% and finally Close_ -
Connection to 1%. The input execution frequency P; of input 7 is specified by
declaring the variable input name_Prob and setting it to F;. This has to be done
for each possible input as illustrated in figure 17-a.

Specification Test’s Frequencies

The identification of the common path also requires information on the outcomes’
probability of the different specification’s tests. Some of those are default probabi-
lities (e.g checksum) and others are application profiled values. The specification of
the Checksum module is presented in figure 17-b. The default assignment P = 0.99
indicates that the probability that the checksum is valid is 99%.

The implementation versions generated by HIPPCO are of four types:

e raw profiling versions: i.i.d probabilities are used for input events and test
outcomes

e default profiling versions: the default predictions made by the module designer
are used

e application profiling versions: the specific information on the application be-
havior is used

e specialized versions: the agressive optimizations described hereabove (e.g. branch
pruning) are applied.

RR n°2748

46 C. Castelluccia , W. Dabbous

* Server %/
int User_Input_Prob = 0.0 module CHECK SUM:
int Input_Frame_Prob = 097 loop
int End_Of_Input_Prob =00 if (TCPCksu(?Input_Frame) ==
int Close_Connection_Prob = 0.01 Get_Cksu(?I nput_Frame))

then B

/* Client */ P =0.99; .
int User_Input_Prob = 0.45 gmlft Frame_Valid;
int Input_Frame Prob = 045 end ! it
int Alarm_Prob = 0.02 e”d _Iawal
int End_Of_Input_Prob = 0.01 ena_foop
int Close_Connection_Prob = 0.01

(a) Input Frequency (b) Tests Outcomes Frequency

Figure 17: Protocol Profiling Specification

5.4 Experimental Setup

To validate the proposed optimizations, a set of experiments has been performed.
The primary goal of these experiments is to address the cost of running the gene-
rated protocols without the external overheads. To achieve this goal we removed
all the data manipulations of the generated protocols: the packets are not actually
checksummed, and they are never copied (pointers are used instead). In addition, we
designed our own execution environment. This environment minimizes the number
of context-switches, copies and memory allocations. In this environment, the proto-
col runs at the user-level and is directly linked with the application. The socket and
network layers were removed: the network and socket interface were replaced by a
buffer. A packet is sent by copying its pointers in this buffer. A packet is received by
getting its pointer from this buffer. No data copy or manipulation is performed. In
order to minimize the number of context-switches and the inter-process communi-
cation overheads, the server and the client were linked within a single Unix process
and they communicate via the internal buffer previously described as illustrated in
figure 18.

Beside the protocol implementation Proto(), HIPPCO generates for each auto-
maton input an API. Those APIs are implemented by macros, with two arguments:
the connection control block address and a pointer on the input value. They are
used to activate the protocol automaton. For example, the application sends data

INRIA

HIPPCO: A High Performance Protocol Code Optimizer 47

d to the connection ¢b by calling the macro User Input(pd, pcb), where pcb and pd
are pointers on cb and d. For the specification described in section 5.2, five APIs
have been defined: User Input(), Input Frame(), Alarm(), End_Of Input() and

Close_ Connection().

UNIX Process

\‘---a:\-gé::}‘\‘?:r‘:-'
Applicalion Client- Server- o
Protocol Protocol Application

'Send(Data_Packet) Send(Ack_Packet)

/ < e
= =

Input_Frame(Ack_Packet) Input_Frame(Data_Packet)

Transmission
Buffer

Figure 18: Execution Environment

This environment is executed in three steps:

1. At the client side, the application sends the data d by calling the protocol API
User_Input(pd, pcb). The protocol processes the data and possibly builds
some packets that are copied in the transmission buffer. The transmission

buffer simulates the network.

2. The server side is then activated. It checks whether some packets are in the
transmission buffer. If that is the case the corresponding packets are processed
by the protocol and the data are handed to the server-application. Acknow-
ledgement packets are possibly formed and copied in the transmission buffer.

3. The client then verified whether it has received some acknowlegment packets.
If that is the case, there are processed and some more data packets are possibly

formed.
Those three steps are repeated until no more data have to be send by the client-
application. A signal End_of Input is then sent to the protocol, which finishes to

send the data stored in its internal buffer.

RR n°2748

48 C. Castelluccia , W. Dabbous

This environment has been used to evaluate the effect of the different optimi-
zation techniques described in this document, on the protocol performance. Four
standard metrics have been used: the number of instructions executed, the i-cache
miss-rate and the pipeline behavior (the number of cycles per instruction) and the
code size. As described in section 3.2, the three first metrics are necessary to eva-
luate the execution time of the protocol. The fourth, the code size, is interesting to
study the effect of the speed optimizations on the code size.

The experimentations were performed on an Alpha 200 workstation. This works-
tation uses the 41466 Alpha CPU running at 166 MHz. The memory is composed
of a primary instruction-cache and data-cache of 8KB each, an unified 2MB second-
level cache and 64MB of main memory. All caches are direct-mapped and use 32B
cache-blocks.

The experimental results were obtained using the ATOM tools of DEC. ATOM
provides a rich set of tool building primitives that can be used to analyse a program
behavior. Basic tools such as tracing, instructions profiling and instruction and data
address tracing exist.

5.5 Analysis of the Results

In this section, we present and analyse the gain achieved by the different optimi-
zations proposed in section 4.2. We first analyse the generated automaton and the
results of the common path identification algorithms. We then analyse separatly the
gain achieved by each optimization on the instruction counts, the i-cache miss-rate
and the pipelining stalls. Although we do not present in this report the code size
optimization techniques implemented in HIPPCO in detail, we present some of these
these optimizations resutls in subsection 5.5.6.

5.5.1 The Generated Automaton

The Esterel compiler generates from the parallel specification a sequential automa-
ton. The maximum size of the automaton is the product of the size of all parallel
modules that composes it. The Esterel compiler reduces it to a minimal automaton
by removing all unreachable states. In our example, the maximum size of the au-
tomaton (if all the modules were completely independent) would be 4723920 states.
But because the modules are not completely independent, the Esterel compiler re-
duces it to 21 states.

HIPPCO reduces furthermore the number of states to 11. In fact, the Esterel
compiler generates sometimes intermediary states that are used to solve causality

INRIA

HIPPCO: A High Performance Protocol Code Optimizer 49

problem. Those states are sometimes identical to others. For example in our TCP
specification: they are just buffering states before exiting the automaton. HIPPCO
detects those identical states and removes them. The HIPPCO generated automaton
is presented in figure 19. In this figure, only the transitions that cause the automaton
to change state are shown.

0.0/ 0.003
@ 1.877/1.82 ack
/ >

alarm 0.0/ 0.000011

user_input&
no in_buff _S alarm
end_of i 0.0/ 51.96
(32)
end_of | input 0.0/0.14
usen\input&
no spaee in buff.
0.0/ 7.45
0.0/ 0.054 N_S: apacket with sequence number
al ack N_S issent

ack: apacket with an ack.
isreceived

Figure 19: Generated Automaton

This figure also displays the states frequencies obtained with the common path
identification algorithm. The frequencies are displayed in italic next to the corres-
ponding state. The first value indicates the state probability for the server auto-
maton, the second value indicates the state probability for the client automaton.
Those frequencies are compared with the raw and default situations. The results
are displayed in table 1.

The first column displays the states number as they are generated by the Esterel
compiler. The following rows, display the state probability values with raw, default,
server and client profiles.

It is interesting to observe that when prediction is used, some states are unrea-
chable (states 4, 5, 7, 8, 10, 13, 14 and 18 for the server). Those states are never

RR n° 2748

50

C. Castelluccia , W. Dabbous

state | raw | default | server profile | client profile

0 14.81 1.72 1.877 1.82

1 14.81 1.72 1.877 1.82

2 23.86 | 28.54 96.24 20.32
4 25.34 13.7 0.0 16.41
5 23.7 11.34 0.0 7.45

7 1.17 41.76 0.0 51.96
8 0.915 | 0.143 0.0 0.054
10 418 0.076 0.0 0.0002
13 0.048 | 0.217 0.0 0.14
14 0.118 0.75 0.0 0.003
18 | 0.0093 | 0.004 0.0 0.000011

Table 1: State Visit Probabilities (in%)

visited, because some event occurences (and therefore transitions) are impossible in
this case.

When specialization is performed at the server side, the number of states is
reduced to 3 and state 2 is the only common state. It implements the reception of
pure data and transmission of acknowledgments. For comparaison purpose, we also
present the states count for the client side. In this case, all the states are reachable
(because no prediction value have been set to zero), but some of them have a very
low execution probability (states 10, 14 et 18). Three states have a much higher
execution probability than the others: state 7 (51.96%), state 2 (20.32%) and state 4
(16.42%). State 7 corresponds to the state implementing the normal case: a packet
has been sent on the network, data from the application can be received, and the
retransmission timer is set. State 2 is very similar to state 7, but all data have been
acknowledged and the timer is reset. In state 4, the application do not send any more
data (the End_Of Input signal has been received), but the protocol keeps sending
the data present in its internal buffer. The other states implements uncommon cases:
internal buffer full, packet retransmission ,etc.

Also it is interesting to note that although the raw profiling (all predictions set
to 50%) gives pretty inacurrate results, the default profiling, which uses the default
prediction values, gives results that are pretty close to the one obtained with specific
application profiling. In fact, when the prediction default values are used, the states

INRIA

HIPPCO: A High Performance Protocol Code Optimizer 51

2, 4, and 7 are the most frequently visited states with a visit probability of 28.54%,
13.7% and 41.76%. When application profiling is performed at the client, state 2,
4 and 7 are also detected as the most frequently visited states with a probability
of 20.32%, 16.41% and 51.96%. At the server side, state 2 is identified as the most
frequently visited state with a probability of 96%.

Those results are important. They show that the common states identification
algorithm works also with very rough predictions. Application profiling, which pro-
vides more accurate predictions, generates more precise solutions.

When no prediction is used, a set of states, which are candidates to be frequently
visited are identified (states 0, 1, 2, 4, 5, 7, 8 and 10). When the prediction default
values are used, the results are more precise (states 2, 4, 5 and 7). And finally when
application profiling is performed, only the states corresponding to the application
are selected (states 2, 4 and 7 for the client and state 2 for the server).

In the following two subsections, we analyse the instruction count gain of the
proposed optimizations. The next subsection compares the performance of the fully
optimized HIPPCO implementation with the handcoded BSD TCP. The subsection
which comes after details the gain of each of the HIPPCO optimizations indepen-
dently.

5.5.2 General comparison: HIPPCO vs BSD

The number of instructions necessary to process an incoming packet (containing
pure data) and of sending pure acknowledgements for the different implementations
are presented in table 2 and plotted in figure 20. The first column gives the number
of instructions for the input processing, I., the second for the output processing,
O, and the third column, T, displays the average number of instructions per packet
processing. The values of the third column are obtained by dividing the total number
of instructions executed, by the number of protocol calls. Since usually in TCP, an
acknowledgement packet is sent after 2 incoming packets, we have approximatively:
T.=2xI.+0.)/2.

Those Instruction counts were measured for the BSD implementation (with and
without header prediction), for the initial Esterel code and finally for the code au-
tomatically generated and optimized by HIPPCO (with all optimizations enabled).
For the HIPPCO implementations, we consider here three cases: (1) the code ge-
nerated by HIPPCO when default profiling is used (HIPPCO), (2) the application
profiled implementation (Profiled HIPPCO) and (3) the version that has been spe-
cialized (Specialized HIPPCO). The difference between the profiled and specialized

RR n°2748

52 C. Castelluccia , W. Dabbous

I. (input) | O, (output) | T, (average)
BSD 186 422 397
BSD without head.pred. 508 422 716
Esterel (array coding) / / 2133
HIPPCO 166 168 220
Profiled HIPPCO 143 147 204
Specialized HIPPCO 139 142 193

Table 2: Average Number of instructions/call

1000 |

(1 output

BSD BSD Default Profiled Specialized
without with HIPPCO HIPPCO HIPPCO
header header

predictor predictor

Figure 20: Instruction Counts

versions is that the first one is still a fully functional implementation, whereas the
second one has been specialized for an unidirectional transfer.

There are several interesting observations from those results. The first one is
that the preconceived idea that Formal Description Techniques (FDT) tools ge-
nerates poor quality code seems to be also true for the original Esterel compiler
(approximatively seven times slower than the BSD implementation). The second
observation is that with the proper optimizations, automatically generated codes

INRIA

HIPPCO: A High Performance Protocol Code Optimizer 53

can be at least as fast and even faster (in term of instruction count) than handcoded
codes. In fact, the code generated by HIPPCO is faster than the BSD code whatever
specialization is performed or not. For the input processing, HIPPCO code without
specialization requires 20 (11%) less instructions than the BSD inplementation and
342 (67%) less instructions than the BSD without header prediction implementation.
Morever, HIPPCO code with specializartion is even faster. In this case, the input
processing requires 47 (25%)less instructions than the BSD inplementation and 369
(73%) less instructions than the BSD without header prediction implementation.

The third observation is that the BSD-header prediction is quite successfull in
speeding up the processing of input packet (it requires 2.73 times less instructions
than without header prediction). However the output processing stays poorly im-
plemented (an output prediction should maybe be implemented).

With default profiling information, the code generated by HIPPCO is slighty
faster than the BSD implementation. The code of HIPPCO requires in this case 11%
(20 instructions) less instructions because of its structure: each state is implemented
by a different function, some tests that are necessary for the BSD implementation
are not for the HIPPCO implementation. For example, testing that the current
state is TCP_ ESTABLISHED or that the protocol is not in a retransmitting state
is not necessary in HIPPCO, this is implicit. The function processing the incoming
packet is the one implementing the common state, which is by definition (or at least
in our test) the state in which the connection is established and no retransmission
is pending.

When application profiling is performed, the number of instructions is reduced
by 23% (43 instructions). This reduction is due to the optimizations which transform
the protocol structure in order to fit better that particular application.

When specialization is performed, the code generated is even faster (25% less
instructions that the BSD implementation). In this case, more aggressive predictions
are performed and some unnecessary tests and functionalities are removed from the
common path. For example, in our test, the server only receives pure data and
no acknowledgement, therefore branches which process the acknowledgement can
be removed from the server common path. The program tree is then smaller and
therefore faster. The BSD and HIPPCO header prediction codes are presented in
appendixes A and B.

The code to process outgoing acknowledgements is also faster in HIPPCO. The
gain compared to BSD is even larger, because the tcp_ ouput() function of the BSD
implementation does not use any prediction. In HIPPCO (when specialization is
performed), the code is specialized for the processing of acknowledgments, whereas

RR n°2748

54 C. Castelluccia , W. Dabbous

in the BSD code, the tcp output function is more general, because it should process
different kinds of outputs (data, acks, retransmission). Also in HIPPCO, the tree
representation of the common path generates straightlined code without jumps,
which is faster.

5.5.3 Optimizations Gain: Detailed Results

In this subsection, we analyse the gain of each optimization technique implemen-
ted in HIPPCO. In the presented results, we associate to each HIPPCO generated
implementation a name. KEach of thoses names is formed by the combination of
the HIPPCO options that has been used for that particular implementation. The
HIPPCO options refers to the different possible optimizations. Option O refers to
the Esterel tree sharing optimization, S to the code size optimization, E to the Com-
mon Branches Extension optimization, P to the function inlining and states pruning
(explained later) optimization, U to the Outlining optimization, T to the Branches
Pruning optimization, I to the Inputs Rescheduling optimization and finally® C to
the Tests’ Outcomes Rescheduling optimization. For example, the implementation
OSEP has been generated by HIPPCO with the options O, S, E and P enabled. The
O opimization already existed in Esterel. All other optimizations were implemented
within HIPPCO.

Table 3 presents the average number of instructions required by HIPPCO gene-
rated code with different levels of optimizations. This average number is computed
by dividing the total number of instructions required to process the 4MB by the
number of protocol function calls. The (weighted) average is computed according to
the T, formula defined in the previous section.

The highest gain factor is obtained by inlining the control of the protocol so that
we obtain a compiled code. This optimization reduces the number of instructions
by a factor of five. This results was expected. In fact, in the interpreted code, each
Esterel action is implemented by a function. A state is then defined by the set of
functions, which are called by the interpreter at the execution. Intereprted coding
is thus very slow, it requires one function call per elementary action. Inlining the
control reduces the number of function calls and therefore the number of instruc-
tions required. However, applying this optimization (already supported in Esterel)
resulted in a size explosion in our example. We used the Esterel (O) optimization
which reduces the code size by sharing identical subtrees in the automaton.

5More specific notation details will be given later.

INRIA

HIPPCO: A High Performance Protocol Code Optimizer 55

instructions
Esterel (interpreted code) 2133
Esterel (compiled code + O) 421
HIPPCO (0S) 165
HIPPCO (OSP) 423
HIPPCO (OSEP) 206
HIPPCO (OSEPU) 206
HIPPCO (OSEPUT) 195
HIPPCO (OSEPUTTI) 193
HIPPCO (OSEPUTI) raw
CPT > 0.5 219.5
CPT > 0.5 574

Table 3: Average Number of instructions per call

Adding the code size optimizations (OS) (not presented in this report) increases
the instruction counts by 44 instructions (10%). In fact, the code size optimizations
share identical trees, which introduces some indirections.

The third optimization (OSP), which inline all functions on the common paths,
reduces the number of instructions by 9% (42 instructions).

The fourth optimization (OSEP), which extends the branches on the common
path in order to generate straighlined code (i.e. without function calls), reduces the
number of instructions by 51% (from 423 to 206 instructions).

The fifth optimization (OSEPU) does not reduce the number of instructions.
This optimization outlines uncommon branches or in other words implements un-
common branches as function calls. It therefore does not affect the number of
instructions executed on the common path.

The sixth optimization (OSEPUT), which trims the branches of the tree with
an execution probability of zero, reduces the number of instructions by 5.4% (11
instructions).

And finally, the seventh optimization (OSEPUTTI), which reschedules the input
processing subtrees according to the probability of each input events reduces the
number of instructions by 1% (2 instructions). This corresponds to the rescheduling
of one test: instead of testing whether a End of connection is received and then
whether a packet is received, the reception of a packet (which has a higher probabi-

RR n°2748

56 C. Castelluccia , W. Dabbous

lity) is first tested, before the End_Of Connection presence. The gain achieved by
each optimization separately may be considered small, but the combination of all
of them leads to a gain of 91% or of 60% if we considered only the compiled code
versions of the protocol.

When raw profiling is performed, two cases can be considered. In the first one,
all branches with a probability equal or larger than 50 % are considered on the
common path (CPT > 0.5). In the second one, only the branches with an execution
probability strictly larger than 50 are considered on the common path (CPT > 0.5).
This is an important point specially when raw profiling is performed because a lot
of probability variables are set to 50%. In the first case the gain achieved is of 73%
(1559 instructions). It is equal to 88.8% (1894 instructions) in the second case. The
smaller the CPT (common path identification threshold) is, the better the average
code performance (in term of instruction number) will be and the larger the code
size will be. This is the classic code size/ code speed tradeoff problem.

5.5.4 I-cache Performance

In this section, we analyse the impact of the different optimization techniques on the
i-cache behavior. We compare the miss rate (misses/references) achieved with the
different optimizations. We also compare those results with the i-cache performance
of the BSD implementation.

We performed for each implementation four experiments. We measured the i-
cache behavior of the code composed of the protocol and the application. We then
measured the i-cache behavior of the protocol code only. This last experimentation is
performed to evaluate the i-cache behavior of the generated protocols, independently
of the running application. It gives a better evaluation of the optimizations impact
on the i-cache. Those two experiments have been repeated with caches of size 8KB
and 4KB to study the effect of the cache-size.

The results are presented in table 4 and 5. The column references refers to
the total number of memory accesses performed by the program. The colum misses
displays the number of memory misses (the instruction to be accessed is not in the
i-cache). And rate is the miss rate. It is equal to misses divided by references
expressed in percentage.

A first observation is that the miss rates measured with the protocol linked to the
application are in general larger than with the protocol alone. The first reason is that
in the first case, the code is larger and the memory conflicts are more frequent. The
second reason is that the proposed optimizations were only performed on the protocol
code and therefore some i-cache pollution is added by the application. However the

INRIA

HIPPCO: A High Performance Protocol Code Optimizer

57

8KB 4KB

references | misses | rate | reference | misses rate
BSD 1099521 | 73051 | 6.64 | 1087362 | 196130 18
Esterel (interpreted code) 323102 | 26620 8.2 323042 | 417341 | 12.91
Esterel (compiled code + O) 73044 | 10067 13 73044 | 16061 22
HIPPCO (OS) 121955 | 12565 | 10.3 121951 | 36676 30
HIPPCO (OSP) 105950 558 | 0.5 105950 8673 8.1
HIPPCO (OSEP) 66947 555 | 0.83 66947 6667 10
HIPPCO (OSEPU) 66972 571 | 0.85 66968 2690 4
HIPPCO (OSEPUCD) 66972 565 | 0.84 66972 688 1
HIPPCO (OSEPUCY) 66972 567 | 0.84 66968 4691 7
HIPPCO (OSEPUCDLT) 62948 2541 4 62948 2648 4.2
HIPPCO (OSEPUCIT 62942 552 | 0.87 62942 677 1
HIPPCO (OSEPUCDT,
raw profiling)
CPT > 0.5 70950 560 | 0.78 70956 679 | 0.95
CPT > 0.5 126955 4582 | 3.6 126954 | 26689 21

Table 4: I-cache behavior (application + protocol)

effect of the optimizations on the i-cache behavior are identical in those two cases,
they only differ by a scale factor. In this section, we only detail the results obtained
with the protocol code. The other results are presented for comparaison purposes.

An other observation is that the i-cache misses are higher, when the i-cache size
is smaller. This is an expected result. Ideally the i-cache miss rate converges to zero
when the i-cache is large enough to hold the entire program.

The code generated by the pure Esterel has a pretty high cache miss rate (3.4 and
8.1%), however this rate gets even larger when the protocol control flow is inlined
(26.11 and 32.6%). The reason is that the first case corresponds to an interpreted
version. The protocol code (text part) is small (10KB) and therefore generated less
conflicts. In the second case, the protocol code is very large (86 KB) and the number
of memory conflicts is larger.

With the code size optimization (OS), the i-cache miss rate drops drastically to
4 and 22%. The reason is that the code is smaller and more compact.

States Pruning [Cas95b| is a code size optimization removing all unreachable
states. When Inlining and States Pruning (OSP) optimizations are applied, the
i-cache miss rate goes down to 0.08 and 4.7%. This has mainly two explanations.

RR n°2748

58 C. Castelluccia , W. Dabbous
SKB 7KB
references | misses | rate | references | misses rate
BSD 197380 458 0.23 197433 | 33933 17.18
Esterel (interpreted code) 298280 | 10133 3.4 298280 | 24140 8.1
Esterel (compiled code + O) 93947 | 24538 | 26.11 93947 | 30663 32.6
HIPPCO (0S) 101048 4082 4 101048 | 23067 22
HIPPCO (OSP) 85043 68 | 0.08 85043 4067 4.7
HIPPCO (OSEP) 46044 63 0.13 46044 4059 8.8
HIPPCO (OSEPU) 46049 68 | 0.147 46049 68 | 0.147
HIPPCO (OSEPUCD) 46049 60 | 0.13 46049 60 0.13
HIPPCO (OSEPUCH) 46049 65 0.14 46049 65 | 0.1412
HIPPCO (OSEPUCDHT) 42029 40 | 0.095 42029 40 | 0.095
HIPPCO (OSEPUCIT) 42029 43 0.1 42029 44 0.1
HIPPCO (OSEPUCDT,
raw profiling)
CPT > 0.5 50049 61 | 0.12 50049 63 0.12
CPT > 0.5 98048 81 0.08 98048 | 16068 16

Table 5: I-cache behavior (protocol only)

The first one is that the code size is reduced from 33 to 7.12KB. The second one
is that the generated code is streamlined on the common path and therefore utilize
the i-cache more efficiently.

With the Common Branches Extension optimization (OSEP), the i-cache miss
rate increases, as expected, to 0.13 and 8.8%. The Common Branches Extension
optimization inlines all the subtrees that are encountred on the common path. The
miss rate increase is mainly due to the decrease of the number of instruction refe-
rences. The number of misses staying the same, the miss rate decreases.

By moving all the uncommon branches out of the mainstream code (OSEPU),
the miss rate decreases from 8.8% to 0.147% with a cache size of 4KB. The reasons
of this drastic improvement were given in section 3.2. The common path code is
more compact and fits entirely in the i-cache. The gain measured with a cache size
of 8KB is null. The main reason is that with all the performed optimizations, the
code size of the common path got so small that it entirely fits in the i-cache. The
effect of the Common Branches Ezxtension optimization is not visible anymore.

To study the effect of the Tests’ Outcomes Rescheduling, we performed two ex-
periments. In the first one (OSEPUC), we rescheduled all tests’ outcomes such

INRIA

HIPPCO: A High Performance Protocol Code Optimizer 59

that the most frequently outcomes correspond to the forward branches (we call it
forward rescheduling designated by Cf). In the second one (OSEPUCD), we did the
opposite: we rescheduled all tests’ outcomes such that the most frequently outcomes
correspond to the backward branches (we call it backward rescheduling designated
by Cb). The effects of the optimization are not perceptible with the experiments on
the protocol alone. At this level of the test, the protocol versions have been already
so well optimized that no optimization benefit can be noticed. Some improvements
were observed on the experiments with the application and a cache size of 4KB.
As we expected, when the forward rescheduling optimization is performed, the miss
rate decreases from 4% to 1%. With backward rescheduling, it increases to 7%.
The reasons of this effect are detailled in section 3.2. As a result of the forward
rescheduling optimization, all the tests along the common path have their most fre-
quently executed outcome on the forward branch and the common path is therefore
streamlined. With the backward rescheduling optimization, all the tests along the
common path have their most frequently used outcome on the backward branch
and the common path code is polluted by the uncommon branches (figure 12). The
miss-rate increases logically.

The Branches Pruning (OSEPUCDT) optimization has a small effect on the i-
cache performance. With this optimization, the miss rate decreases from 0.13% to
0.095%. This improvement is mainly due to the reduction of instructions on the
common path. The number of references and therefore of misses is smaller.

The effect of the States’ Functions Rescheduling optimization is very small in
our example. After the States Pruning optimization is performed only two states
are left. This gives small optimization opportinuties. Therefore to evaluate the
performances of this optimization, we disabled the States Pruning optimization and
compare the results obtained before and after the States’ Functions Rescheduling
optimization (table 6). The miss rate decreases from 3.8% to 0.87% with a cache
size of 8KB, and from 7% to 4% with a cache size of 4KB. The number of memory
references is identical in all cases. The gain is achieved by a reduction of misses due
to less cache pollution in conformity with the explanations of section 3.2.

Some measures were also performed with raw profiling. As a lot of prediction
values are equal to 50%, the optimizations performed quite differently according to
the Common Branch identification threshold (CPT). With CPT = 0.5, the detected
common path is larger and the impact of the optimizations is bigger. The miss rate
is equal to 0.12% which is very close to the results obtained when specialization was
performed (the best result was 0.095%). With CPT 0.51, the code size is smaller,

RR n°2748

60 C. Castelluccia , W. Dabbous

8KB 4KB
references | misses | rate | references | misses | rate
OSEPU 66980 2572 | 3.8 66980 4691 7
OSEPU+ state 66980 563 | 0.87 66980 2698 4
functions rescheduling

Table 6: I-cache behavior without the States Pruning optimization (application +
protocol)

but the performances obtained are not very good. The miss rate is equal to 0.08%
with a cache of 8KB and increases to 16% with a cache of 4KB.

Some observations can be made from those results. The first one is that the
code size of a program does not have a direct impact on its i-cache behavior. Its
structure is much more important, as illustrated with the case C PT=0.5. The second
observation is that as far as optimization is concerned, a conservative approach,
which tends to optimize more code than necessary, generates better results than
an aggressive approach. Also the presented i-cache optimization techniques are not
very sensitive to the precision of the common path detection. Good results were also
achieved with only rough predictions.

The performances obtained with HIPPCO were then compared to those of the
BSD implementation. The miss rate of the BSD code is equal to 0.23% with a
cache of 8KB and increases to 17.18% with a cache of 4KB. The miss rate of the
code HIPPCO with specialization is equal to 0.1 (cache of 8KB or 4KB) which is
respectively 2.3 and 171.8 times better than the BSD implementation. When raw
profiling is performed, the miss rate of the HIPPCO code is 0.08% and 16%, which
is still respectively 2.875 and 1.4375 times better than the BSD implementation.

There are several reasons that explain the relatively poor i-cache behavior of
the BSD implementation. The first one is that although the code of the BSD input
procedure has been fully optimized, the output procedure has not. An other rea-
son is that the BSD implementation is composed of several functions (tcp input,
tcp _output, tcp timer, ...) which interact. For example, when a packet is recei-
ved, the tcp input function is called which possibly calls the tcp output function
to send a acknowledgement. This increases the i-cache pollution. In HIPPCO, the
code of all protocols is integrated within one procedure. This structures gives more

INRIA

HIPPCO: A High Performance Protocol Code Optimizer 61

opportinuties to generate straightlined code and gives more control on the i-cache
behavior.

5.5.5 Pipelining Performance

In this section, we analyse the impact of the different optimizations on the pipelining
performances. The results are presented in the table 7. The first column presents the
different implementations used in this experiment. The second column displays the
total number of instructions executed, the third column the total number of cycles
necessary and the fifth the number of memory stalls. The fourth column display the
CPlIs, which is computed by dividing the total number of cycles by the total number
of instructions.

instructions | cycles | CPI | stalls
BSD 777 1665554 2137925 | 1.28 | 795843
Esterel (interpreted code) 1086706 1653029 | 1.52 | 757405
Esterel (compiled code +O) 572351 745414 | 1.3 | 314128
HIPPCO (0OS) 661352 875418 | 1.32 | 362125
HIPPCO (OSP) 589325 786390 | 1.33 | 337119
HIPPCO (OSEP) 412327 510380 | 1.24 | 204113
HIPPCO (OSEPU) 412352 510434 | 1.24 | 204143
HIPPCO (OSEPCb) 411326 506387 | 1.23 | 198120
HIPPCO (OSEPCH) 412325 512379 | 1.24 | 204113
HIPPCO (OSEPUCD) 411351 506436 | 1.23 | 198140
HIPPCO (OSEPUCY) 412354 512434 | 1.24 | 204143
HIPPCO (OSEPUCDHT) 402198 493249 | 1.23 | 187077
HIPPCO (OSEPUCT) 403202 498248 | 1.24 | 202078
HIPPCO (OSEPUCDT, raw profiling)
CPT > 0.5 653360 876443 | 1.34 | 354145
CPT > 0.5 439364 542431 | 1.23 | 202137

Table 7: Pipelining Behavior (protocol only)

The CPI, which is the average number of cycles per instruction, decreases from
1.52 to 1.3, when the original Esterel code (interpreted array coding) is compiled
(inlined). This result was expected. In fact, in the array coding implementation,
all Esterel actions are implemented as a function called by the protocol engine.

RR n°2748

62 C. Castelluccia , W. Dabbous

Therefore the number of function calls is much higher. Function calls increases the
number of memory stalls because the branch PC value has to be computed before the
following instructions can be executed. In fact, as it has been explained in section 3.2,
all instructions are broken into five stages (fetch, decode, ezecute, memory-accessand
write-results), which are usually pipelined. The first stage, fetches the instruction to
be executed but also increases the PC by 4. This new PC is used to fetch, in the next
cycle, the following instruction. This pipelining works fine if the current instruction
does not modify the PC. When the current instruction modifies the PC to jump
somewhere in the code (which is what happens when a function call is performed),
the PC of the next instruction can not be evaluate before the current instruction is
decoded and executed. This generates three memory stalls.

When the function is inlined, no jump is performed. The instructions to execute
are straightlined and no stall is generated. The figure 21 shows the pipelining before
and after the inlining has been performed.

cycles Jool g+l | J¥2 | jH3 | j+4 | j#5 | j46 | j#T | j48 | j+9

Branch instruction IF ID | EX |MEM| WB

Instruction i+1 stall |stall | stall | stall| | | ID | EX |MEM| WB

(a) Before Inlining

cycles Joop gl | J*2 | jH3 | j+4 | jH5 | j46 | jHT | j48 | j+9

Instruction i IF | ID | EX MEM| WB

Instruction i+1 sall | IF | ID | EX MEM| wWB

(b) After Inlining

Figure 21: Pipelining

INRIA

HIPPCO: A High Performance Protocol Code Optimizer 63

When the Common Branches Extension optimization is used, the CPI goes down
to 1.24. With this optimization, all common branches are inlined and the common
path is coded as a tree. This CPI decrease is then also explained by the reduction
of function calls.

When the Tests’ Outcomes Rescheduling optimization is performed the CPI de-
creases to 1.23. This optimization increases pipelining performance by scheduling
the most frequently executed outcomes of each test such the predictions made by
the processor turn out to be correct on the critical path (section 3.2).

When raw profiling is performed, the CPI differs according to the CPT. When
CPT is set to 50%, the common path is overestimated and the CPI is equal to the
CPI obtained when specialization is performed, thus 1.23. When CPT is set to
50.1%, the common path is under-estimated and the CPI increases to 1.34.

The CPI of the BSD implementation is equal to 1.28, which is 4% larger than
the HIPPCO CPI. The primary reason is that the BSD implementation is composed
of several functions (tcp input(), tcp_output(), tcp timer(),...) which interact,
whereas the common path of the HIPPCO code is implemented within one single
function.

5.5.6 Code Size: HIPPCO vs BSD

In the section, we analyse the code size of the different automatically generated
implementations. Those results, which are presented in table 9, are compared with
the sizes of BSD and Esterel implementations.

The code size of the BSD implementation® has been computed by adding up the
size of the different object files composing the BSD TCP protocol (tcp_input.o,
tcp_output.o, tcp_timer.o, tcp_subr.o and tcp _xsum.o). The connection esta-
blishment and termination phases have not been specified yet in the Esterel version
of TCP. Therefore to make the code size comparaison fair, we removed from the
BSD version all the pieces of code related to the connection establishement and ter-
mination. We then measured its size with and without the header prediction code.
The results were respectivelly 10.304 KB and 9.92 KB.

The second set of results related to the Esterel codes. The Esterel compiler can
generate three different types of implementations.

1. Interpreted Coding: The generated program is composed of an automaton
engine and a set of lists. Each of those lists describes the sequence of actions

8By BSD implementation, we mean a version of the BSD Kernel code that we ported at the user
level.

RR n° 2748

64

C. Castelluccia , W. Dabbous

‘ ‘ text ‘ data ‘
BSD 10.304 0.144
BSD (without header prediction) 9.92 0.144
Esterel (interpreted coding) 8.2 155
Esterel (boolean coding) 21.6 1.1
Esterel (compiled coding) 1772 /
Esterel (compiled coding + O) 45.7 0.5
HIPPCO Application Profiled
OSEPUCh 33.2 (17) | 0.248
HIPPCO Default Profiled
OSEPUCh 38.4 (24.84) | 0.2
HIPPCO Specialized
OSEPUCHT 21.376 (12.66) | 0.2
OSPT 3.54 (5.8) 0.2
HIPPCO Raw Profiled
0S 32.4 (13) 0.2
OSEPUCD 60 (32) 0.5

Table 8: Code Size (KB)

to perform per state. As expected, the size of the text part is small (8.2KB),
but its data part is very large (155KB).

. Boolean Coding: The generated program is a list of boolean equations, which

results determine the actions to perform. This code size is 21.6KB.

. Compiled Coding: The generated code is a program, whose instructions are

inlined. The size of the inlined generated code is so large that we were not
able to compile with the same level of optimization (09). For comparaison
purpose, we compile it without any gcc optimization and obtain an object file
with a text part of 1.772MB. This huge code size is explained by the tree
representation of Esterel, which generates a lot of code duplication.

Esterel features some optimisations that identify indentical subtrees and share

their coding in order to minimize code duplication. Those optimisations (O)
reduced the code size to 45.7KB.

INRIA

HIPPCO: A High Performance Protocol Code Optimizer 65

HIPPCO features some additional optimisations to reduce furthermore the code
size. Those optimisations, which are not presented in this report, are referred as “S”
and “N”. At the time the experiments were performed the last optimisation (N) was
not implemented. We therefore present the code size of the implementations without
this optimisation enabled. For comparaison purpose, we displays in parentheses the
code size obtained when this optimisation is on. This optimisation only affect the
uncommon path. It should not affect the code speed performance. On the contrary,
we expect better i-cache performance.

When those two optimisations are applied (without any code speed optimisa-

tion), the size of a fully functional TCP implementation is 13 KB.
This code is quite small but pretty slow.In order to get a program with a better
size/speed tradeoff, profiling information may be used by the compiler. The perfor-
mance of the generated code is then greatly improved at the cost of a small code
size increase. With application specific profiling information, we obtain a code of
33.2KB (17 KB with the “N” optimisation on). Whe default profiling information
is used, a code with a size of 24.8 KB (38.35 KB) is generated. Application specific
profiling data refer to profiling data that are specific to the application. There-
fore the profiling data at the server side is different than the profiling data at the
client side. Default profiling data refers to profiling data that are specific to a given
protocol module. The profiling data is then identical at the server and client side.
The relatively small code size difference between the application profiled and default
profiled implementations is explained by TCP protocol symetry; its profiling data
at the server and client side are very similar.

When specialisation is performed (i.e. the generated protocol is not completely
TCP functional), the size of generated code is smaller. In fact in this case, all
unvisited branches and states are prunned. The code size goes down to 21.376 KB
(12.66 KB).

The smaller code size is achieved, when specialisation is performed and no code
speed optimisations are applied. The code size can then be reduced down to 3.54 KB
(5.8 KB).

When the optimizations are performed with raw profiling (all probabilities are
set to 50%), the size of the generated code is equal to 60 KB (32 KB). In this case,
the common states are identified from the program structure: the common path is
the set of states that are the most frequently refered. This is what is called static
analysis in the litterature [Hos95, WMGH94|. This approach is not very satisfactory
for protocol code. In fact, in those codes, all states have transitions that lead to
the states processing the errors. As a result, the states processing the errors could

RR n°2748

66 C. Castelluccia , W. Dabbous

be identified as the common path! A conservative approach is preferable: profiling
data should only be used if they really correspondant to the environment; however,
as we have seen, those profiling data do not have to be very accurate.

The code size of the BSD implementation seems to be optimum. Code sharing
is maximum, and sometimes at the expense of the program performance. With
HIPPCO, we showed that we could generate programs with very good performance
and still with raisonable code size. The code size of the TCP generated code varied
from 3.5 to 24.84KB, according to the importance of the size and speed constraints.

5.5.7 Code Size Optimizations: Detailed Analysis

In this section, we present the code size of the generated implementations with the
different levels of optimisations. The goal is to study the effect of the code speed
optimisations on the protocol code size.

text data

HIPPCO (0OS) 32.4 (13) 0.57
HIPPCO (OSP) 31.1 (13.2) | 0.536
HIPPCO (OSEP) 32.8 (16.1) | 0.536
HIPPCO (OSEPR) 32.5 (15.9) | 0.536
HIPPCO (OSEPRO) 33.264 (17) | 0.536
HIPPCO (OSEPROT) 5.56 (7.9) | 0.424
HIPPCO (OSEPROT 1IR) | (7.9) 5.56 | 0.424

Table 9: Code Size (KB)

The HIPPCO code size optimization [Cas95b], which is an improvement of the
Esterel optimization, brings the code size down to 32.4 KB (60% improvement).

With the Common Branches Extension optimization, the code size increases
logically to 32.8 KB. The code size increase is about 1.7 KB. This optimization
inlines function calls on the common paths and therefore duplicates some parts of
the code.

The Tests Outcome Rescheduling optimisation, which switchs the branches of the
tests according to their execution probabilities does not affect the size of the code.

INRIA

HIPPCO: A High Performance Protocol Code Optimizer 67

The Qutlining optimization increases the code size of 0.7 KB. This optimisation
replaces straighlined code of the uncommon path, by functions. The size increase
corresponds to the function overheads.

The Branches and States Pruning optimization which cuts off unreachable branches
and states of the tree reduces the code size to 5.56 KB. The code decreases drastically
when the prediction optimizations are used. In fact, it goes down to 21.3 KB, just
by removing unreachable branches.

The Input Rescheduling optimization, which just reorganizes the inputs’ subtrees,
does not affect the size of the code.

6 Conclusions and Future Works

The main contribution of this report is to demonstrate that FDT techniques can
be used to generate efficient protocol implementations. It consequently proves the
viability of the HIPPARCH project.

In this paper, we present HIPPCO, a protocol code optimizer, which automati-
cally generates highly optimized protocol implementations. HIPPCO is part of the
HIPPARCH compiler. It features a set of optimizations that reduces the protocol
instruction counts and improve its i-cache and pipelining behaviors.

Experiments with the TCP protocol are reported. It is shown that the HIPPCO
automatically generated TCP implementation performs better than the BSD TCP
in terms of the number of instructions to process an incoming packet. This difference
is due to the code structure. The automatic approach restructures the whole pro-
gram toward better performance, whereas the manual implementation is a modified
version of an initial naive implementation. Generating a manual implementation
with comparable performance would require a lot of time and effort. Also, the emer-
geance of configurable communication systems makes the manual code optimization
very difficult and even difficult.

Protocol code optimization is mainly performed by improving the performance
of the common path, which is composed of the most frequently executed instructions.
In the case of a communication system, this common path crosses the communica-
tion stack layers. Identifying and coding the common path through the different
layers make the manual approach very unpractical. With the HIPPARCH compiler,
the implementations are fully integrated. The module abstraction of the specifica-
tion disappears completely in the generated automaton. The identification and the
coding of the critical path accross the modules is therefore considerably facilitated.
In the longer term, we envisage to integrate the application within the communi-

RR n°2748

68 C. Castelluccia , W. Dabbous

cation automaton. That would make the automatic approach even more attractive
and performant.

The code speed performance results presented in this report are very encouraging.
The code sizes obtained with HIPPCO, although considerably smaller than those
obtained with the Esterel compiler, are still larger than the handcoded codes. More
effort should be spent in devising more efficient code size reduction algorithms. Our
final goal is to converge to the TCP-BSD code size. Early experiments seem to
demonstrate that this code size reduction can only be performed at the expense of
the code speed performance.

7 Acknowledgements

The work presented in this report is the result of the work performed by Claude
Castelluccia for his Phd research. This work initiated about two years ago. Colla-
borations and discussions were numerous. It is therefore impossible to acknowledge
all the people which help us in this work.

However the authors would like to thank Christian Huitema and Phillip Hoschka
for their valuable comments. Phillip Hoschka collaborated to the work presented in
section 4.1.1.

The work presented in section 5 was initiated at the University of Arizona,
while one of the authors (Claude Castelluccia) was visiting the Computer Science
Department last summer (May-June). The authors would like to thank to members
of the CS department of UofA and particulary Sean O’Malley for its collaboration
and valuable comments, and David Mosberger for its advices on the performance
measurement tools.

A BSD-TCP header prediction

/*
* Copyright (c) 1982, 1986, 1988, 1990 Regents of the University of California.* All rights reserved.
*

*

* Q(#)tcp_input.c 7.25 (Berkeley) 6/30/90
*/
if (tp->t_state == TCPS_CLOSED)
return(0) ;
len = 1g;

INRIA

HIPPCO: A High Performance Protocol Code Optimizer

69

tcpip->ti_len = len - tcpip_size + sizeof (struct tcphdr);

#ifndef NO_CHECKSUM
xsum = TCP_xsum_init (tcpip, 0);

if (len > tcpip_size)
xsum += in_cksum(data_pt[socket_fd].pointer, len-tcpip_size);
#endif

xsuml = TCP_xsum_final (xsum);

if (tepip->ti_sum !'= (short16) xsumil)

printf("received checksum : %x expected checksum : %x tcpip length : %d\n",

tcpip->ti_sum, (short16) xsuml, len);

off = tcpip->ti_off << 2;
if (off < sizeof (struct tcphdr) || off > 1lg)

printf("tcpu_input: incoherence in off !\n");
goto drop;

tiflags = tcpip->ti_flags;

/*
* Convert TCP protocol specific fields to host format.
*/
tcpip->ti_seq = ntohl((unsigned int)tcpip->ti_seq);
tcpip->ti_ack = ntohl((unsigned int)tcpip->ti_ack);
tepip->ti_win = ntohs(tcpip->ti_win);

1]

~
*

Header prediction: check for the two common cases
of a uni-directional data xfer. If the packet has
no control flags, is in-sequence, the window didn’t
change and we’re not retramsnittting, it’s a
canditate. If the length is zero and the ack moved
forward, we’re the sender side of the xfer. Just
free the data acked & wake any higher level process
that was blocked waitung for space. If the length
is non-zero and the ack didn’t move, we’re the
receiver side. If we’re getting packets in-order
(the reassembly queu is empty), add the data to

the in buffer and note that we need a delayed ack.

*OX X K X X X X OF X ¥ ¥

*
~

if (tp->t_state == TCPS_ESTABLISHED &&
(tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URGITH_ACK)) == TH_ACK &&
tcpip->ti_seq == tp->rcv_nxt &&
tepip->ti_win && tcpip->ti_win == tp->snd_wnd &&
tp->snd_nxt == tp->snd_max)
{
if ((1g - tcpip_size) == 0) {
if (SEQ_GT (tcpip->ti_ack, tp->snd_una) &&
SEQ_LEQ(tcpip->ti_ack, tp->snd_max) &&
tp->snd_cwnd >= tp->snd_wnd) {

RR n°2748

70

C. Castelluccia , W. Dabbous

/*
* This is a pure ack for outstanding data.
*/
if (tp->t_rtt && SEQ_GT(tcpip->ti_ack, tp->t_rtseq)){
tp->time_send = 0;
tcp_xmit_timer(tp);
}
acked = tcpip->ti_ack - tp->snd_una;
buff_out_ptr->nbeltq -=acked;
buff_out_ptr->nbeltsnd -= acked;
buff_out_ptr->una = (buff_out_ptr->una + acked)MAX_BUF;
tp->snd_una = tcpip->ti_ack;
/*
* If all outstanding data are acked, stop
retransmit timer, otherwise restart timer
using current (possibly backed-off) value.
If data are ready to send, let tcp_output
decide between more output or persist.

* X X ¥

*/
if (tp->snd_una == tp->snd_max)
tp->t_timer [TCPT_REXMT] = O;
else if (tp->t_timer [TCPT_PERSIST] == 0)
tp->t_timer [TCPT_REXMT] = tp->t_rxtcur;
return;
¥
}
else if (tcpip->ti_ack == tp->snd_una &&
tp->seg_next == (struct tcpiphdr *)tp &&
(1g - tcpip.size) <= (MAX_BUF-buff_in[socket_fd]->nbeltq))

/*
* This is a pure, in-sequence data packet
* with nothing on the reassembly queue and
* we have enough buffer space to take it.
*/
tp->rcv_nxt += (lg - tcpip_size);
/*
* Drop TCP and IP headers the add data
* to in buffer.
*/
data_pt[socket_fd].length = 1lg - tcpip_size;
tp->t_flags |= TF_DELACK;
tp->time_ack = 1;

}

B HIPPCO automatically generated code

/* input processing */

INRIA

HIPPCO: A High Performance Protocol Code Optimizer

71

if (cb->A_Packet_has_been_received) {
if ((0==(tcpip->th_sum))) {
cb->0ff = (tcpip->th_off) << 2;
if (((cb->off>=20)&&(cb->0ff<= cb->Packet_Size))) {
cb->I_flag = (tcpip->th_flag);
if (' ((cb->I_flag&TH_SYN) | |!(cb->I_flag&TH_ACK))) {
if (1 ((cb->I_flag&TH_FIN) || (cb->I_flag&TH_URG))) {
if (! (cb->I_flag&TH_RST)) {
cb->I_win = ntons(tcpip->th_win);
cb->I_line_size = (cb->Packet_Size - 20);
if ((cb->ack_now==1)) {
/* an ack. needs to be send */
/* the following code send an ack and keep processing
/* the incoming packet */
cb->ack_now = 0;
cb->_N_S =(((cb->_N_S)>(cb->_?SEG_ACK))?(cb->_N_S) : (cb->_?SEG_ACK)) ;
cb->_window_allow =(cb->_?Win- (cb->_N_S-cb->_?SEG_ACK));
cb->_left_data =(cb->_?N_U-cb->_N_S);
cb->len = (((cb->window_allow)<(cb->left_data))?(cb->window_allow):(cb->left_data));
cb->idle = (cb->7SEG_ACK'!'=cb->Snd_Max) ;
cb->win = 40000;
cb->flag = TH_ACK;
cb->7len = cb->len;
cb->7SEG_SEQ = ntohl(tcpip->th_seq);
(cb->?I_line = tcpip->msg) ;
cb->?I_line_size = cb->I_line_size;
cb->Rcv_Wnd = (((40000)> ((cb->Rcv_Adv-cb->N_R)))?(40000) :
((cb->Rcv_Adv-cb->N_R)));
cb->todropB = (((0)>((cb->N_R-cb->?SEG_SEQ)))?(0): ((cb->N_R-cb->?SEG_SEQ)));
cb->SEG_SEQ_adj = (cb->7?SEG_SEQ+cb->todropB);
cb->todropE = (((0)>(((cb->?SEG_SEQ+cb->7I_line_size) - (cb->N_R+cb->Recv_Wnd))))?(0) :\
(cb->7SEG_SEQ+cb->?I_line_size) - (cb->N_R+cb->Rcv_Wnd))));
if (!((cb->todropE!=0) || (cb->todropB!=0))) {
cb->I_line_size_adj = cb->7I_line_size;
if (((cb->SEG_SEQ_adj==cb->N_R)&&(cb->Reassembly_Q_Empty==1))) {
len_msg_out = cb->_I_line_size_adj;
cb->_N_R = (cb->_N_R + c¢b->_I_line_size_adj);
cb->_7?N_R = cb->_N_R;
cb->adv = (cb->win-(cb->Rcv_Adv-cb->?N_R));
if (! (cb->I_win!=cb->Snd_Wnd)) {
if (! ((cb->win<(40000/4))&&(cb->win<512))) {
cb->win = ((((((cb->win)<(65535))7(cb->win): (65535)))>(
(cb->Rcv_Adv-cb->?N_R)))? ((((ecb->win)<(65535))?(cb->win) : (65535))):(
(cb->Rev_Adv-cb->7N_R)));
cb->Rcv_Adv = ((((cb->?N_R+cb->win))>(cb->Rcv_Adv))?((cb->?N_R+cb->win)) : (Rcv_Adv));
cb->?Rcv_Adv = cb->Rcv_Adv;

if (! ((cb->left_data==cb->len)&&(cb->7End_0f_Input==1))) {
frame_out = &(packet->frame);

frame_out->th_seq = (unsigned int)cb->N_S;
frame_out->th_ack = (unsigned int)cb->?N_R;
frame_out->th_win = cb->win;

frame_out->th_flag = cb->flag;

RR n° 2748

72

C. Castelluccia , W. Dabbous

frame_out->th_off = 1 ; frame_out->th_urp = 0 ;
frame_out->th_off = (20>>2);
start = (cb->N_S-(cb->N_S/40000) *40000) ;
frame_out->th_sum = 0 ;
frame_out->th_sum = 0;
packet->size = 20;
*nbpkting += 1;
cb->?len = cb->len;
return 2;
¥
return out10();
}
return out5();
¥
return out4();
¥
return out3();
¥
return out7();
}
return out2();
}
/* this is a pure data and no ack. needs to be send */
cb->ack_now = 1;
cb->?SEG_SEQ = ntohl(tcpip->th_seq);
(cb->7I_line)=((tcpip->msg)));
cb->?I_line_size = cb->I_line_size;

cb->Rcv_Wnd = (((40000)>((cb->Rcv_Adv-cb->N_R)))?(40000) : ((cb->Rcv_Adv-cb->N_R)));
cb->todropB = (((0)>((cb->N_R-cb->?SEG_SEQ)))?(0) : ((cb->N_R-cb->?SEG_SEQ)));

cb->SEG_SEQ_adj = (cb->7SEG_SEQ+cb->todropB) ;

cb->todropE = (((0)>(((cb->?SEG_SEQ+cb->?I_line_size)-(cb->N_R+cb->Rev_Wnd))))7(0):\
(((cb->7SEG_SEQ+cb->?I_line_size)-(cb->N_R+cb->Rcv_Wnd))));

if (! ((cb->todropE!=0) || (cb->todropB!=0))) {
cb->I_line_size_adj = cb->7I_line_size;
cb->Rcv_Adv = cb->?Rcv_Adv;

if (((cb->SEG_SEQ_adj==cb->N_R)&&(cb->Reassembly _Q_Empty==1))) {

len_msg_out = cb->_I_line_size_adj;

cb->_N_R = (cb->_N_R +

cb->_7N_R = cb->_N_R;

if (! (cb->I_win'!=cb->Snd_Wnd)) {

if (1 ((cb->I_flag&0x01) || (cb->I_flag&0x20))) {
return 2;

}

cb->_I_line_size_adj);

return out10();

¥
return out9();
}
return out11();
}
return out8();
¥
return outi();

}

INRIA

HIPPCO: A High Performance Protocol Code Optimizer 73

return out0();

}
return 2;
}

return 2;

¥

if (cb->_V5) {
return outi12();

}

return O;

}

References

[A. 95] A. Ghosh and J. Crowcroft. Some lessons learned from various alf and
ilp applications. In Proceedings of HIPPARCH’95, Sydney, Australia,
December 1995.

[AMPI1] C. André, J.P. Marmorat, and J.P. Paris. Execution machines for este-
rel. In European Control Conference, Grenoble, July 1991.

[AP92] Mark B. Abbott and Larry L. Peterson. Automated integration of com-
munication protocol layers. Technical Report TR 92-24, Department of
Computer Science, University of Arizona, December 1992.

[BD95] Torsten Braun and Christophe Diot. Protocol implementation using
integrated layer processing. In SIGCOMM, September 1995.

[BdS91] Frédéric Boussinot and Robert de Simone. The ESTEREL language.
Technical Report 1487, INRIA U.R. Sophia-Antipolis, July 1991.

[BG89] Gérard Berry and Georges Gonthier. Incremental development of an
HDLC protocol in esterel. Technical Report 1031, INRIA U.R. Sophia-
Antipolis, May 1989.

[BSS92] Donald F. Box, Douglas C. Schmidt, and Tatsuya Suda. ADAPTIVE
- an object-oriented framework for flexible and adaptive communica-
tion protocols. In Proceedings of the Fourth IFIP Conference on High
Performance Networking, December 1992.

[C. 95] C. Diot and I. Chrisment and A. Richards. Application Level Framing

RR n°2748

and Automated Implementation. In Proceedings of HPN’95, Palma,
Spain, September 1995.

74

C. Castelluccia , W. Dabbous

[Cas95al

[Cas95D]

[CCD+94]

[CDY4]

[CHO5]

[CHTO1]

[CIRSSY]

[CT90]

[DH92|

[Fel93]

[GC90]

Claude Castelluccia. Automating header prediction. In Ist Annual
Workshop on Compiler Support For System Software, 1995.

Claude Castelluccia. Code speed /size tradeoffs in protocol design. 1995.
In preparation.

C. Castelluccia, I. Chrisment, W. Dabbous, C. Diot, C. Huitema, E. Sie-
gel, and R. De Simone. Tailored protocol development using esterel.
Technical Report 2374, INRIA U.R. Sophia-Antipolis, Octobre 1994.

Claude Castelluccia and Walid Dabbous. Modular communication sub-
system implementation using a synchronous approach. In Useniz High-
Speed Networking, August 1994.

Claude Castelluccia and Phillip Hoschka. A compiler-based approach
to protocol optimization. In High Performance Communication Sub-
system, August 1995.

K. D. Cooper, M. W. Hall, and L. Torczon. An experiment with inline
substitution. In Software-Practice and Experience, June 1991.

David D. Clark, Van Jacobson, John Romkey, and Howard Salwen. An
analysis of tcp processing overhead. In IEEE Communications Maga-
zine, June 1989.

David D. Clark and David L. Tennenhouse. Architectural considera-
tions for a new generation of protocols. In Proceedings of the ACM Sym-
postum on Communications Architectures and Protocols, pages 200-208,
September 1990.

Jack W. Davidson and Anne M. Holler. Subprogram inlining: A study
of its effects on program execution time. In IEEE Transactions on
Software Engineering, February 1992.

David C. Feldmeier. A survey of high performance protocol implemen-
tation techniques. Technical report, Bellcore, February 1993.

R. Gupta and C. Chi. Improving instruction cacge behaviour by redu-
cing cache pollution. In Proceedings of the Supercomputing Conference,

November 1990.

INRIA

HIPPCO: A High Performance Protocol Code Optimizer 75

[GPSV1]

[HH93]

[Hos95]

[HPYO]

[McF89]

[MPO95]

[NLSS]

[OPY1]

[PH90|

[RAS90]

[SKP94]

RR n°2748

Per Gunningberg, Craig Partridge, Teet Sirotkin, and Bjorn Victor.
Delayed evaluation of gigabit protocols. In Proceedings of the Second
Mult:G Workshop, June 1991.

Philipp Hoschka and Christian Huitema. Control flow analysis for au-
tomatic fast path implementation. In Second Workshop on High Per-
formance Communication Subsystems, 1993.

Philipp Hoschka. Optimisation automatique dans un compilateur de
talon de communication. Technical Report Phd Thesis, INRIA Sophia-
Antipolis, July 1995.

J. L. Hennesy and D. D. Patterson. Computer Architecture: A Quan-
titative Approach. Morgan Kaufmann, 1990.

Scott McFarling. Program optimization for instruction caches. In
Third International Conference on Architectural Support for Program-
ming Languages and Operating Systems, April 1989.

David Mosberger, Larry L. Peterson, and Sean O’Malley. Protocol
latency: MIPS and reality. Technical Report TR 95-02, Department of
Computer Science, University of Arizona, January 1995.

Hutchinson N. and Peterson L. Design of the x-kernel. In Proceedings of
the ACM Symposium on Communications Architectures and Protocols,
pages 65-75, August 1988.

S. W. O’'Malley and L. L. Peterson. A highly layered architecture for
high-speed networks. In Protocols for High-Speed Networks II IFIP,
1991.

K. Pettis and R. C. Hansen. Profile guided code positioning. In Procee-
dings of the ACM SIGPLAN’90 Conference on Programmang Language
Design and Implementation, June 1990.

V. Roy and R. de Simone. Auto and autograph. In Proceedings of
Workshop on Computer Aided Verification, June 1990.

Steven E. Speer, Rajiv Kumar, and Craig Partridge. Improving unix
kernel performance using profile based optimization. In Winter Useniz
1994, 1994.

76 C. Castelluccia , W. Dabbous

[Smi92] A. J. Smith. Cache memories. In Computing Surveys, August 1992.

[WMGH94]| T. Wagner, V. Maverick, S. Graham, and M. Harrison. Accurate static
estimators for program optimization. In ACM SIGPLAN Conference

on Programming Language Design and Implementation, pages 85,96,
1994.

INRIA

/<

Unité de recherche INRIA Lorraine, Technopdle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unitée de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unitée de recherche INRIA Rhone-Alpes, 46 avenue Félix Viallet, 38031 GRENOBLE Cedex 1
Unité derecherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
ISSN 0249-6399

