
Hippo: a System for Computing Consistent

Answers

to a Class of SQL Queries

Jan Chomicki1, Jerzy Marcinkowski2, and Slawomir Staworko1

1 Dept. Computer Science and Engineering, University at Buffalo
{chomicki,staworko}@cse.buffalo.edu

2 Instytut Informatyki, Wroclaw Uniwersity, Poland
Jerzy.Marcinkowski@ii.uni.wroc.pl

1 Motivation and Introduction

Integrity constraints express important properties of data, but the task of pre-
serving data consistency is becoming increasingly problematic with new database
applications. For example, in the case of integration of several data sources, even
if the sources are separately consistent, the integrated data can violate the in-
tegrity constraints. The traditional approach, removing the conflicting data, is
not a good option because the sources can be autonomous. Another scenario
is a long-running activity where consistency can be violated only temporarily
and future updates will restore it. Finally, data consistency may be neglected
because of efficiency or other reasons.

In [1] Arenas, Bertossi, and Chomicki have proposed a theoretical framework
for querying inconsistent databases. Consistent query answers are defined to be
those query answers that are true in every repair of a given database instance. A
repair is a consistent database instance obtained by changing the given instance
using a minimal set of insertions/deletions. Intuitively, consistent query answers
are independent of the way the inconsistencies in the data would be resolved.

This conservative definition of consistent answers has one shortcoming: the
number of repairs. Even for a single functional dependency, the number of repairs
can be exponential in the number of tuples in the database [3]. Nevertheless,
several practical mechanisms for the computation of consistent query answers
without computing all repairs have been developed (see [5] for a survey): query
rewriting [1], logic programs [2, 4, 9], and compact representations of repairs [6,
7]. The first is based on rewriting the input query Q into a query Q′ such that
the evaluation of Q′ returns the set of consistent answers to Q. This method
works only for SJD3 queries in the presence of universal binary constraints. The
second approach uses disjunctive logic programs to specify all repairs, and then
with the help of a disjunctive LP system [8] finds the consistent answers to a
given query. Although this approach is applicable to very general queries in the

3 When describing a query class, P stands for projection, S for selection, U for union,
J for cartesian product, and D for difference.



presence of universal constraints, the complexity of evaluating disjunctive logic
programs makes this method impractical for large databases.

2 The System Hippo

The system Hippo is an implementation of the third approach. All information
about integrity violations is stored in a conflict hypergraph. Every hyperedge
connects the tuples violating together an integrity constraint.

Using the conflict hypergraph, we can find if a given tuple belongs to the set
of consistent answers without constructing all repairs [6]. Because the conflict
hypergraph has polynomial size, this method has polynomial data complexity
and allows us to efficiently deal even with large databases [7]. Currently, our ap-
plication computes consistent answers to SJUD queries in the presence of denial
constraints (a class containing functional dependency constraints and exclusion
constraints). Allowing union in the query language is crucial for being able to
extract indefinite disjunctive information from an inconsistent database. Future
work includes the support for restricted foreign key constraints, universal tuple-
generating dependencies and full PSJUD4 queries. However, because computing
consistent query answers for SPJ queries is co-NP-data-complete [3, 6], polyno-
mial data complexity cannot be guaranteed once projection is allowed.

The whole system is implemented in Java as an RDBMS frontend. Hippo
works with any RDBMS that can execute SQL queries, and provides a JDBC
access interface (we use PostgreSQL). The data stored in the RDBMS needs not
be altered. The flow of data in Hippo is presented on Figure 1. Before processing
any input query, the system performs Conflict Detection and creates Conflict

Hypergraph for further usage. We are assuming that the number of conflicts is
small enough for the hypergraph to be stored in main memory. The only output
of this system is the Answer Set consisting of the consistent answers to the input
Query in the database instance DB with respect to a set of integrity constraints
IC.

The processing of the Query starts from Enveloping. As a result of this step
we get a query defining Candidates (candidate consistent query answers). This
query subsequently undergoes Evaluation by the RDBMS. For every tuple from
the set of candidates, the system uses Prover to check if the tuple is a consistent
answer to the Query. Depending on the result of this check, the tuple is either
added to the Answer Set or not.

For every tuple that Prover processes, several membership checks have typi-
cally to be performed. In the base version of the system this is done by simply
executing the appropriate membership queries on the database. This is a costly
procedure and it has a significant influence on the overall time performance of
the system. We have introduced several optimizations addressing this problem.
In general, by modifying the expression defining the envelope (the set of can-
didates) the optimizations allow us to answer the required membership checks

4 Currently, our application supports only those cases of projection that don’t intro-
duce existential quantifiers in the corresponding relational calculus query.



Query

Enveloping

Evaluation

Candidates

Prover

Answer Set

DB Conflict Detection

Conflict Hypergraph

IC

Fig. 1. Data flow in Hippo

without executing any queries on the database. Also, using an expression select-
ing a subset of the set of consistent query answers, we can significantly reduce
the number of tuples that have to be processed by Prover. A more detailed
description of those techniques can be found in [7].

3 Demonstration

The presentation of the Hippo system will consist of three parts. First, we will
demonstrate that using consistent query answers we can extract more informa-
tion from an inconsistent database than in the approach where the input query is
evaluated over the database from which the conflicting tuples have been removed.
Secondly, we will show the advantages of our method over competing approaches
by demonstrating the expressive power of supported queries and integrity con-
straints. And finally, we will compare the running times of our approach and
the query rewriting approach, showing that our approach is more efficient. For



every query being tested, we will also measure the execution time of this query
by the RDBMS backend (it corresponds to the approach when we ignore the
fact that the database is inconsistent). This will allow us to conclude that the
time overhead of our approach is acceptable.

References

1. M. Arenas, L. Bertossi, and J. Chomicki. Consistent Query Answers in Inconsistent
Databases. In ACM Symposium on Principles of Database Systems (PODS), pages
68–79, 1999.

2. M. Arenas, L. Bertossi, and J. Chomicki. Answer Sets for Consistent Query An-
swering in Inconsistent Databases. Theory and Practice of Logic Programming,
3(4–5):393–424, 2003.

3. M. Arenas, L. Bertossi, J. Chomicki, X. He, V. Raghavan, and J. Spinrad. Scalar
Aggregation in Inconsistent Databases. Theoretical Computer Science, 296(3):405–
434, 2003.

4. P. Barcelo and L. Bertossi. Logic Programs for Querying Inconsistent Databases.
In International Symposium on Practical Aspects of Declarative Languages (PADL),
pages 208–222. Springer-Verlag, LNCS 2562, 2003.

5. L. Bertossi and J. Chomicki. Query Answering in Inconsistent Databases. In
J. Chomicki, R. van der Meyden, and G. Saake, editors, Logics for Emerging Appli-
cations of Databases. Springer-Verlag, 2003.

6. J. Chomicki and J. Marcinkowski. Minimal-Change Integrity Maintenance Using
Tuple Deletions. Technical Report cs.DB/0212004, arXiv.org e-Print archive, De-
cember 2002. Under journal submission.

7. J. Chomicki, J. Marcinkowski, and S. Staworko. Computing Consistent Query An-
swers Using Conflict Hypergraphs. In preparation.

8. T. Eiter, W. Faber, N. Leone, and G. Pfeifer. Declarative Problem-Solving in DLV.
In J. Minker, editor, Logic-Based Artificial Intelligence, pages 79–103. Kluwer, 2000.

9. G. Greco, S. Greco, and E. Zumpano. A Logical Framework for Querying and
Repairing Inconsistent Databases. IEEE Transactions on Knowledge and Data En-
gineering, 15(6):1389–1408, 2003.


