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The influence of chronic ethanol intoxication on the terminal vascularization of

particular hippocampal fields and layers was investigated in different age groups

of rats. Thirty-six male Wistar rats aged 6 weeks were used in the study. For

twelve months 24 of them drank only 25% ethanol — 12 starting at 6-week-

-age and 12 at 3-month-age. The control group of 12 rats drank only water. As

an effect of long-term ethanol exposure on hippocampal capillaries we observed

the increase in the terminal vessel diameter and the decrease in microvascular

length, surface, and volume densities. These changes varied between different

age groups and between particular hippocampal regions. The observed age and

regional differentiation of ethanol-related microvascular changes did not corre-

late well with the damaging effects of alcohol on corresponding neuronal ele-

ments, which emphasizes the very complicated pathogenesis of ethanol-induced

injuries.
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INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION
Long-term ethanol consumption, among many oth-

er negative consequences, affects also the structure

and function of the central nervous system. Many of

these ethanol-related morphological injuries of the

brain are reported in the hippocampus.

Hippocampus of mammals (including humans)

is extremely vulnerable to the influence of alcohol

and other toxic substances [23,26,31]. The generat-

ed changes are different in particular hippocampal

regions [15,18,20,21,24] and the observed reactions

can differentiate between various species [12,22],

races [27,28], or sexes [10,30]. There are also many

reports concerning the age-related differences in the

hippocampal impairments induced by some patho-

logical factors [4,7,25].

Chronic ethanol intoxication affects all the hip-

pocampal components in various ways. The most

often performed studies concern the impairments

of neurons, their processes and terminals; only a few

refer to the ethanol-related changes in hippocam-

pal terminal vessels [18,35]. Considering the gener-

al influence of alcohol on the vascular system of the

brain and the blood-brain barrier permeability [9,16],

it seems that much greater emphasis should be put

on this problem.

The purpose of the presented study was to in-

vestigate, by means of morphometrical methods, the

influence of chronic ethanol intoxication on the ter-

minal vascularization of particular hippocampal fields

and layers in different age groups of rats.

MAMAMAMAMATERIAL AND METHODSTERIAL AND METHODSTERIAL AND METHODSTERIAL AND METHODSTERIAL AND METHODS
Studies were performed on 36 male Wistar rats aged

6 weeks. For twelve months 24 of them drank only

25% ethanol — 12 starting at 6-week-age (young

ethanol group — YEG) and 12 at 3-month-age (adult

ethanol group — AEG). The control group of 12 rats
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(CG) drank only water. All the animals were provid-

ed with free access to food — granulated chow

Bacutil. At the end of the experiment Nembutal an-

esthesia was used and the tissues were fixed by tran-

scardial perfusion with 4% paraformaldehyde and

1% glutaraldehyde with 0.3% CaCl2 in 0.05M phos-

phate buffer, pH 7.4.

The paraformaldehyde-fixed brains were dissect-

ed into 1-mm-thick coronal slabs. The one taken at

the optic chiasma level (Bregma 3.8 mm) was cho-

sen, from which 6 specimens (3 from each hemi-

sphere), representing all the studied hippocampal

regions, were taken with the needle (Fig.1). These

specimens were postfixed with buffered OsO4 and,

after dehydration, embedded in Epon 812.

To confirm that the specimens had been taken

from the required area, brain slabs from which the

needle specimens had been obtained were embed-

ded in paraffin and sections cut from them were

stained with hematoxylin and eosin. The visible holes

in these sections enabled us to eliminate the incor-

rectly taken specimens.

The semiautomatic morphometrical analysis was

carried out with the PICTOVAL projection microscope,

IBM PC 386 computer, and WANG digitizer A1 by

means of software designed in our Laboratory. The

analysis was performed at a final magnification of

900x (objective 20x, ocular 10x, plus projection post-

magnification) on the semi-thin sections (1.5-mm-

thick), stained with toluidine blue.

As the first step of this analysis, the diameter of

each vessel was calculated as the widest distance

between the vessel walls perpendicular to the long-

est diameter of the vessel profile. Only the vessels

<10 mm in diameter were included in the study. Next

the cross-sectional area of the parts of the hippoc-

ampal regions visible in the section, and the area

and circumference of the 11,755 found terminal ves-

sels’ profiles were evaluated.

As a morphological manifestation of the blood

supply we examined the surface density (SV) of the

terminal vessels — expressing the surface of the

blood-brain exchange, and the volume density (VV)

— showing the capacity of the terminal vessels in

the studied brain region. These parameters depend

on the vessel size (represented here by their diame-

ter) and length density (LV) — representing the total

length of the terminal vessels in the unit of tissue

volume. The following formulas were used [34]:
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Figure 1. The analyzed hippocampal regions. Abrreviations: 1 — CA1 sector, polymorphic layer; 2 — CA1 sector, pyramidal layer;
3 — CA1 sector, molecular layer; 4 — CA3 sector, polymorphic layer; 5 — CA3 sector, pyramidal layer; 6 — CA3 sector, molecular layer;
7 — CA4 sector, pyramidal layer; 8 — dentate gyrus, molecular layer; 9 — dentate gyrus, granular layer; 10 — dentate gyrus, polymor-
phic layer. Circles marked the places from which the needle specimens were taken.
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where: n — number of the terminal vessels’ profiles;

A — area of the visible in the section part of the

analyzed hippocampal region; i — consecutive num-

ber of analyzed profile; bi — circumference of the

profile i; ai — area of the profile i.

Statistical significance was verified by means of:

t-test or modified t-test according to the F-test re-

sults of analysis of variance, Fisher-Pitman and Wil-

coxon tests, Fisher randomization test for indepen-

dent matched samples, and sign test. The accepted

significance level a = 0.05.

All numbers in the paper represent mean values

± SD.

RESULRESULRESULRESULRESULTSTSTSTSTS
Statistical evaluation of the differences between in-

dividual rats as well as differences between the left

and the right brain hemispheres showed that speci-

mens within each of the studied groups of animals

constituted a homogeneous population.

Sector CA1

The terminal vessels in the pyramidal layer were sig-

nificantly bigger in YEG in comparison to AEG and

CG (Fig. 2A). The length density was statistically lower

in both ethanol groups (Fig. 2B), but surface and

volume densities only in AEG (Fig. 2C,D).

Figure 2. Parameters of the terminal vessels. CA1 sector, pyramidal layer. A) terminal vessel diameter. B) length density. C) surface den-
sity. D) volume density.
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The morphometrical parameters of the terminal

vessels in the polymorphic and molecular layers were

similar for all groups of rats, except the vessel diam-

eter, which in the molecular layer was significantly

bigger in YEG (Fig. 3).

Sector CA3

The morphometrical parameters of the terminal ves-

sels in the pyramidal and polymorphic layers were

similar in all groups of rats.

In the molecular layer the terminal vessels were

significantly bigger in both ethanol groups of ani-

mals in comparison to the control one (Fig. 4A). On

the other hand the length density was statistically

lower in these two groups (Fig. 4B), but the surface

and the volume density only in AEG (Fig. 4C,D).

Sector CA4

The morphometrical parameters of the terminal ves-

sels in this sector did not statistically differentiate

between particular groups of rats.

Dentate gyrus

The terminal vessels in the granular layer were sig-

nificantly bigger in both ethanol groups of animals

in comparison to the control one (Fig. 5A). On the

other hand the length and the surface density were

statistically lower in these groups (Fig. 5B,C), but the

volume density only in AEG (Fig. 5D).

The morphometrical parameters of the terminal

vessels in the polymorphic and molecular layers were

not statistically different for the particular groups of

rats. The one exception was the vessel diameter,

Figure 3. Parameters of the terminal vessels. CA1 sector, molecular layer. A) terminal vessel diameter. B) length density. C) surface density.
D) volume density.
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which in the polymorphic layer was significantly big-

ger in YEG (Fig. 6).

DISCUSSION
The studies of the circulatory system and its reac-

tivity have been usually performed in order to esti-

mate the blood-tissue exchange. Investigators have

been looking for changes in vessel structure or den-

sity. In rat hippocampus they have found among

others age-related vascular impairments, with sig-

nificant improvement after various pharmacologi-

cal treatments [2,8,32,33]. Reduced density of ter-

minal vascularization was observed in the hippoc-

ampus of people with Alzheimer’s disease [11]. The

different terminal vessel vulnerability for ischemia

or hypoxia was reported in particular hippocampal

regions [6,14,29].

The presented results showed that also chronic

ethanol intoxication had caused several changes in

terminal vascularization of different layers of CA1 and

CA3 hippocampal sectors and dentate gyrus. We

observed a decrease in the microvascular length den-

sity and an increase in the vessel size. The interrela-

tion between these two parameters was crucial for

the level of the blood-brain exchange reduction, il-

lustrated morphometrically by the decrease in the

surface and volume densities of the terminal vascu-

larization. Corresponding results were reported also

in the other age group of rats — pups [18], showing

the decrease in the density of the terminal vessels in

Figure 4. Parameters of the terminal vessels. CA3 sector, molecular layer. A) terminal vessel diameter. B) length density. C) surface density.
D) volume density.
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dentate gyrus and their size increase in the hippoc-

ampus proper as an effect of ethanol intoxication.

The pathogenesis of the alcohol-related decrease

in the terminal vessel length density could be ex-

plained by the direct influence of the ethanol on the

terminal vessels. Considering however that natural

capillary losses or increasing tissue demand are usu-

ally met by the development of new capillaries [3,19]

an indirect effect seemed to be possible as well. The

decrease in the terminal vascularization density would

result in that case from the injury of angiogenesis

mechanisms by chronic ethanol intoxication.

The increase demonstrated above in the termi-

nal vessel size seemed to be the compensatory re-

sponse of the organism, neutralizing the losses of

the capillaries in order to prevent the decrease in

the blood-brain exchange. However the specificity

of the blood-brain barrier limited the size of termi-

nal vessels and 7–10 mm was usually admitted as the

maximal diameter of brain capillaries [5,13]. There-

fore such compensation for bigger vascular losses

could be insufficient, resulting in the deficiency of

blood-brain exchange.

The decrease in the morphometrical parameters

illustrating the blood-brain exchange was significant-

ly smaller in YEG than AEG, suggesting better plas-

ticity of capillaries in younger animals. Our results

suggested that between the sixth week and the third

Figure 5. Parameters of the terminal vessels. Dentate gyrus, granular layer. A) terminal vessel diameter. B) length density. C) surface density.
D) volume density.
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month of life there was a modification of this plas-

ticity, noticeable even after the one-year-period of

ethanol intoxication.

The effect presented here of long-term ethanol

exposure on brain capillaries varied between differ-

ent age groups as well as between particular hip-

pocampal regions. Moreover, this age and regional

differentiation of observed changes did not corre-

late well with the damaging effects of alcohol on

corresponding neuronal elements [4,20,27]. There-

fore it would be rather difficult to assume direct con-

nections between the terminal vascularization im-

pairment and the neuronal death caused by chronic

ethanol intoxication. These discrepancies between

the vascular and the cellular damage in the hippoc-

ampus bring into relief the very complicated patho-

genesis of ethanol-induced injuries.

Our experimental model did not allow us to draw

conclusions regarding the functional consequences

of the long-term effects of alcohol on brain microvas-

culature. This question remains interesting — espe-

cially considering the existing relationship between

alcohol consumption and stroke [1,16,17]. To solve

such problems a great deal of fundamental data have

to be accumulated using many various methods,

among them also morphometry.

Figure 6. Parameters of the terminal vessels. Dentate gyrus, polymorphic layer. A) terminal vessel diameter. B) length density.
C) surface density. D) volume density.
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