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Abstract

A common approach in memory research is to isolate the function(s) of individual brain regions, such as the hippocampus,

without addressing how those regions interact with the larger network. To investigate the properties of the hippocampus

embedded within large-scale networks, we used functional magnetic resonance imaging and graph theory to characterize

complex hippocampal interactions during the active retrieval of vivid versus dim visual memories. The study yielded 4 main

findings. First, the right hippocampus displayed greater communication efficiency with the network (shorter path length) and

became a more convergent structure for information integration (higher centrality measures) for vivid than dim memories.

Second, vivid minus dim differences in our graph theory measures of interest were greater in magnitude for the right

hippocampus than for anyother region in the 90-region network. Moreover, the right hippocampus significantly reorganized its

set of direct connections fromdim tovividmemory retrieval. Finally, beyond the hippocampus, communication throughout the

whole-brain networkwasmore efficient (shorter global path length) for vivid than dimmemories. In sum, our findings illustrate

howmultivariate network analyses can be used to investigate the roles of specific regionswithin the large-scale network, while

also accounting for global network changes.
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Introduction

Although the vast majority of studies on the neural bases of

“episodic memory” (declarative memory for personally experi-

enced, context-specific events) have focused on the contributions

of specific brain regions, such as the hippocampus, it is generally

accepted that no single region can support episodic memory un-

less it interacts with other components of the large-scalememory

network. The properties of large-scale networks can be investi-

gated by applying multivariate analytic methods, such as graph

theory, to brain connectivity data collected from functional

magnetic resonance imaging (fMRI). Complex network analyses

using graph theory provide the means to reliably quantify

properties of brain networkswith a small number of neurobiologi-

cally meaningful measures that capture the interactions between

all brain regions simultaneously (Bullmore and Sporns 2009; Rubi-

nov and Sporns 2010). Yet, most complex network analyses have

focused on global measures of resting-state networks rather

than on the contributions of specific regions in task-related net-

works. The current large-scale network study provides a unique

contribution to this literature by focusing primarily on the role of

a specific brain region, the hippocampus,within the context of the

whole-brain network supporting vivid episodic memory retrieval.

The contributions of the hippocampus to episodic memory

have been the focus of thousands of lesion, electrophysiology,
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drug, and neuroimaging studies with both animals and humans.

Lesion studies have provided clear evidence for the devastating

effects of hippocampal damage on episodic memory, and func-

tional neuroimaging studies with healthy adults have reliably

shown greater hippocampal activity for successful than unsuc-

cessful episodic retrieval and for rich than impoverished episodic

memories (Eichenbaum et al. 2007; Skinner and Fernandes 2007;

Spaniol et al. 2009; Kim 2015). The hippocampus is hypothesized

to bind incoming information from different neocortical regions,

to store integrated event representations, and to allow access to

cortical memory traces during retrieval (Alvarez and Squire

1994; McClelland et al. 1995; Teyler and Rudy 2007; Danker and

Anderson 2010; Ritchey et al. 2013). During these processes, the

hippocampus is assumed to interact very closely not only with

regions storing representations but also with frontal, parietal,

cingulate, and basal ganglia regions involved in avariety of atten-

tion, control, working memory, and decision-making processes.

Consistent with these assumptions, functional neuroimaging

studies have shown that all these regions are coactivated with

the hippocampus during episodic encoding and retrieval tasks

(Cabeza and Nyberg 2000; Cabeza et al. 2008; Spaniol et al. 2009;

Rugg and Vilberg 2013; Kim 2013). Even though all these regions

are assumed to operate together as a complex large-scale net-

work, existing functional connectivity studies of episodic mem-

ory have typically focused only on the relationship between a

particular pair of regions, such as the interaction between the

hippocampus and the prefrontal cortex (e.g., Schott et al. 2013;

Wing et al. 2013). Only recently have researchers begun to use

task-related functional connectivity analyses to investigate

changes across larger sets of memory-related brain regions

(Schedlbauer et al. 2014; King et al. 2015).

A powerful approach for investigating the operation of large-

scale brain networks, such as the one supporting episodic mem-

ory, is to analyze functional connectivity data using multivariate

analytic methods, such as graph theory. Most large-scale net-

work analyses have provided valuable insights into the topology

of resting-state networks (e.g., Dosenbach et al. 2007; Hayasaka

and Laurienti 2010; Power et al. 2010; Vogel et al. 2013), but

those resting-state networks do not necessarily match network

architecture during specific cognitive tasks (e.g., Bassett et al.

2011; Moussa et al. 2011; Rzucidlo et al. 2013; Cao et al. 2014;

Meunier et al. 2014; Moussa et al. 2014; Stanley et al. 2014;

Braun et al. 2015). The topological properties of brain networks

do not remain static and fixed. Depending upon the demands

on the system, there are continuously changing patterns of func-

tional interactions between regions, circuits, and systems in the

brain (Sporns 2013). Furthermore, most of these large-scale net-

work analyses have focused on global network properties rather

than on the contributions of specific brain regions to the network,

and hence, their findings have been somewhat disconnected

from themain body of research on the functions of these regions.

To address these issues, we applied graph theory measures to

functional connectivity data during an episodicmemory retrieval

task, focusing in particular on how the contributions of the

hippocampus to the large-scale network are related to the vivid-

ness of visual memories.

The behavioral paradigm we investigated, which is depicted

in Figure 1, had 4 phases. First, participants encoded a series of

labeled scenes (e.g., barn, tunnel) by rating the representative-

ness of each photo. Second, participants underwent a resting-

state scan. Third, participants recalled the previously viewed

scenes in response to their labels, rating the vividness of their

memories (from 1 to 4). Finally, participants performed a

forced-choice scene recognition test outside the scanner, in

which they discriminated between each viewed scene and 3

similar distractors. Postscan recognition accuracyand confidence

increased with in-scan vividness ratings, indicating that these

ratings provide a validmeasure ofmemory quality. In the current

study, we focused on functional connectivity using graph theory

measures during scene recall in order to identify network dif-

ferences between “vivid memories” (ratings 3–4) and “dim

memories” (ratings 1–2).

We investigated 4main questions. First, “howdo complex pat-

terns of hippocampal interactions with the rest of the network

change for the retrieval of vivid versus dim memories?” To an-

swer this question, we measured vivid minus dim differences

in 4 nodal measures: path length, degree centrality, page rank

centrality, and leverage centrality. “Path length”measures the ef-

ficiencywithwhich information can flow between any 2 nodes in

the network and is computed as the average of the shortest paths

between a node and every other node in the network. Shorter

path lengths promote functional integration byallowing commu-

nication between any 2 network nodes with few intermediate

steps, thereby reducing the effects of noise and signal degrad-

ation (Rubinov and Sporns 2010; Sporns 2013). Centrality mea-

sures index the convergence and joint processing of distributed

information at central, influential nodes, and can be defined by

diverse criteria. “Degree centrality” identifies nodes with many

connections to other nodes in the network. “Page rank centrality”

identifies nodes that are connected to nodes that are themselves

central within the network. Finally, “leverage centrality” identifies

nodes that are connected to more nodes than their immediate

Figure 1. Figure 1 provides an overview of the experimental design. The same design was presented in Wing et al. (2015). (A) During encoding, pictures of scenes were

presented to participants with a descriptive label while participants judged image composition. (B) At retrieval, only the descriptive labels for previously encoded

scenes were presented. Participants rated how detailed (vivid) their memory was for the corresponding picture on a 4-point scale. (C) After the scan, all scenes from

encoding were presented in a forced-choice recognition task that included 3 similar scene exemplars. Participants chose the specific image they believed was

presented at encoding and then rated their confidence on a 4-point scale.
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neighbors. We predicted that the hippocampus would display a

shorter path length and become a more central, influential node

to support the convergence of information in facilitating vivid

memory retrieval, thereby confirming the assumption that hippo-

campal contributions to the episodic retrieval network have a sig-

nificant impact on retrieval success.

Second, “how do the changes in hippocampal network prop-

erties from dim to vivid memory retrieval compare to the

changes in other network nodes?” Even if there are stark shifts

in hippocampal network properties from dim to vivid memory

retrieval, it is possible that many other nodes in the network

are changing in more dramatic ways. To address this issue, we

computed the aforementioned 4 nodal measures for all nodes

in the network. Memory theories generally assume that the

hippocampus is a “bottleneck” or “convergence zone” in the epi-

sodic memory network because it integrates information from

several different brain regions, each with particular functions re-

lated to memory retrieval (Damasio 1989; Moll and Miikkulainen

1997; Mišic ́ et al. 2014). Thus, we predicted that when comparing

dim to vivid memories, the hippocampus would show the most

substantial changes in path length and centralitymeasures com-

pared with all other regions in the network. Several other graph

theory analyses of resting-sate connectivity data (Buckner et al.

2009; Tomasi and Volkow 2010) did not find the hippocampus

among the most central, influential network nodes, or among

the nodes occupying critical positions along shortest paths in

the network. It remains possible, however, that hippocampal

function in the context of larger networks is most sensitive to

memory differences that are observed within the same memory

task, rather than in resting-state networks. As such, we were in-

terested in investigating network properties capturing the “rela-

tive shift”—i.e., how the hippocampus relates to the rest of the

network—between dim to vivid memory retrieval.

Third, “to what extent does the hippocampus reorganize its

set of direct (first step) connections fromdim to vividmemory re-

trieval?” Even though shifts in multivariate hippocampal net-

work properties can only be explained in full by appealing to

the entire network architecture, one can askwhether those shifts

are better explained by (1) a substantial reorganization of con-

nectivity strengths for first step (direct) connections or (2) a sub-

stantial reorganization of connectivity patterns beyond first-step

connections (indirect connections). To investigate this question,

we calculated the extent towhich first-step connections reorgan-

ize themselves for each and every node between dim and vivid

retrieval networks using the novel “first-step reorganization”

measure. If, in fact, a network node exhibits a substantial change

infirst-step reorganization betweennetworks, we can reasonably

conclude that changes in its set of direct connections are at least

partly accounting for observed changes in path length, page rank

centrality, and leverage centrality. In contrast, if a network node

changes minimally in first-step reorganization between net-

works, then any observed significant changes in path length,

page rank centrality, and leverage centrality for that node are pri-

marily due to changes in indirect connectivity taking place else-

where in the network.

Finally, “do properties of the entire episodic retrieval network

change from dim to vivid memory retrieval, and are these

changes driven by the hippocampus?” As noted before, most

large-scale network analyses of functional neuroimaging data

have focused on global network measures rather than on the op-

eration of individual brain regions. Although these analyses

focus on the role of the hippocampus, we believe that investigat-

ing the network properties of this region alone is insufficient to

fully explain the neural basis of episodic memory. Even if our

predictions about the role of the hippocampuswithin the episod-

ic retrieval networks are confirmed, we assume that many other

regions contribute to memory vividness. Thus, to assess global

network changes in the efficiency with which information can

be integrated in the network, we calculated the normalized aver-

age path length for the entire brain network. We predicted that

the network as a whole would facilitate more efficient global

communication (shorter global path length) for vivid than dim

memory retrieval. And even after removing the hippocampus

from the network, we predicted that we would find significant

global network differences between vivid and dim memories in

the remaining nodes.

Methods

Participants

Twenty-two participants completed the experiment. One partici-

pant, who lacked functional data due to a technical error, was

excluded from these analyses. All analyses were performed

with the remaining 21 participants (12 female, age range: 18–30,

M = 23.5, standard deviation [SD] = 3.0). Participantswere healthy,

right-handed, fluent English speakers with normal or corrected-

to-normal vision. Written informed consent was obtained from

each participant in accordance with a protocol approved by the

Duke University Institutional Review Board.

Behavioral Methods

The behavioral paradigm is depicted in Figure 1. Before beginning

the scan, participants completed a short practice session so that

they were familiar with the instructions at each phase of the

study. The scan session contained 3 encoding runs, a resting-

state run, and 3 retrieval runs (analyses comparing spatial pat-

terns of activation across encoding and retrieval were reported

inWing et al. 2015). Stimuli consisted of the pictures of 96 name-

able outdoor and indoor scenes, and the corresponding verbal la-

bels (e.g., “island,” “concert hall”). During 3 encoding runs, each

scene and its label were presented for 4 s, and participants

rated how well the picture matched the label. During 3 retrieval

runs, each label was presented alone. Participants tried to recall

the corresponding picture in asmuch detail as possible and then

rated the amount of detail (vividness) in the image they gener-

ated from 1 (little or no detail) to 4 (highly detailed). For the pur-

pose of the present network analyses, trialswith responses of 1–2

were classified as “dimmemory” trials, and trials with responses

of 3–4 as “vivid memory” trials. During both encoding and re-

trieval, the 8-s intertrial intervals were filled by an active baseline

task in which participants made even/odd judgments in re-

sponse to randomly presented digits ranging from 1 to 9.

Immediately after exiting the scanner, participants com-

pleted a 4-alternative forced-choice recognition test assessing

memory for all 96 pictures. Each trial had 2 phases. First, the

target picture and 3 distractor pictures for the same label were

presented in different quadrants of the computer screen. Partici-

pants selected the picture they believed they saw in the scanner.

During the second phase of each recognition trial, participants

used a 4-point scale to rate how confident they were in the pre-

ceding recognition decision (1 = guess, 4 = very confident).

MRI Scanning and Image Preprocessing

Imaging data were collected using a 3 T GE scanner. Following a

localizer scan, functional images were acquired using a SENSE

spiral-in sequence (time repetition = 2000ms, time echo = 30 ms,

field of view = 24 cm, 34 oblique slices with voxel dimensions of
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3.75 × 3.75 × 3.8 mm). Functional datawere collected during 6 task

runs of equal length during the performance of the memory task

described above. A resting-state scan lasting for 5 minutes was

collected following the third run but was not used in the

current analyses. Stimuli were projected onto a mirror at the

back of the scanner bore, and responses were recorded using a

4-button fiber optic response box. Scanner noise was reduced

with ear plugs, and head motion was minimized with foam

pads. A high-resolution anatomical image (96 axial slices parallel

to the anterior commissure-posterior commissure plane with

voxel dimensions of 0.9 × 0.9 × 1.9 mm) was collected following

functional scanning. Our preprocessing procedure mirrored that

of Fornito et al. (2011), who have published data on a β series

derived network analysis. Briefly, using SPM8 software (www.fil.

ion.ucl.ac.uk/spm) and custom MATLAB scripts, all data were

high-pass filtered, motion corrected, and each individual’s brain

map was registered to standard MNI space.

Functional Brain Network Construction

To create episodic retrieval networks, we used a β time series

analysis (Rissman et al. 2004), which assumes that 2 regions are

functionally coupled during a task if the activity of both regions is

significantly correlated across trials (Fornito et al. 2011; Schedl-

bauer et al. 2014). Each β value reflected the fit shape of the hemo-

dynamic response evoked by a given trial during the retrieval

phase of the procedure. These observed β valueswere then sorted

in accordance with level of detail scores reported by participants

during each trial of the retrieval condition. β Values obtained dur-

ing trials for which participants reported high levels of detail with

which they could remember the specific picture (ratings of 3 and 4)

were concatenated to generate a β series for networks of vivid

memory retrieval; β values obtained during trials for which parti-

cipants reported low levels of detail with which they could

remember the specific picture (ratings of 1 and 2) were concate-

nated to generate a β series for dim memory retrieval.

Networks can be represented as graphs, which consist of a set

of nodes together with pairwise relationships between those

nodes (edges). In these functional brain networks, each node

represented a discrete brain region, and edges represented mea-

sured correlations betweenpairs of nodes. Tomeasure functional

connectivity among all regions simultaneously, the brain was

first parcellated into 90 discrete anatomical regions of interest

(45 ROIs in each hemisphere) defined in accordance with the

automated anatomical labeling (AAL) atlas (Tzourio-Mazoyer

et al. 2002). A commonly used nodal parcellation scheme in func-

tional brain network analyses is this AAL template (Stanley et al.

2013), which parcellates the cortex and subcortical structures by

identifying gyral and sulcal boundaries. Each anatomical ROI

from the atlas served as a network node. Pairwise Pearson corre-

lations between regional mean beta series were computed to

generate {90 × 90} functional connectivity matrices, or adjacency

matrices, with the correlation coefficients representing function-

al connectivity strength between nodes. These correlations be-

tween regional beta series reflected correlated variations in

evoked hemodynamic responses within vivid and dim retrieval

networks, respectively. The matrices were not thresholded, and

each complete matrix served as an undirected, weighted graph

(Rubinov and Sporns 2011). Adjacency matrices (averaged across

subjects for display purposes only) for dim and vivid memory re-

trieval conditions are presented in Figure 2.

Graph Theory Measures

Path Length

Path lengthmeasures the overall capacity for efficient information

transfer across a network. Fromeachweighted graph, 2 global net-

work measures were computed: weighted characteristic path

length ðLwnetÞ and the normalized weighted characteristic path

length (λ). Both Lwnet and λ were calculated individually for each

node and subsequently averaged over the entirety of the graph.

The path length values computed for each individual node ðLwi Þ

were also used in our analyses. The path length between nodes

vi and vj is defined as the sum of the edge lengths along the path

where each edge’s length is obtained by computing the reciprocal

of the edge weight 1=Wij, such that the weighted shortest path Lwij
between nodes vi and vj is the length of the shortest path between

the nodes. Lwnet is then computed by measuring the shortest path

lengths between all nodes in the network:

Lwnet ¼
1

1

NðN� 1Þ

XN

i¼1

XN

j≠i

1

Lwij

where N is the number of nodes in the network. The average Lwnet
reflects the global integration of a network. Short path lengths

Figure 2.Average (across subjects) adjacencymatrices derived from β series correlations are presented for dimand vivid retrieval conditions and split by hemisphere (right

and left). For ease of visualization, regions of interest are ordered in accordance with the procedure implemented by Salvador et al. (2005).
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ensure that informationquicklyandeasily spreads throughout the

network, making efficient distributed and parallel information

processing possible. Link lengths are inversely related to link

weights, as large weights typically represent strong associations

between nodes (Rubinov and Sporns 2010, 2011).

Normalized Path Length

In order to normalize the computed values of Lwnet for differences

in overall connection strength between vivid and dimmemories,

we randomly rewired each observed network. Network random-

ization was performed by randomly rewiring edges an average of

10 times for each full network. This randomization procedure

was accomplished a total of 100 times for each corresponding

real network, and the path lengths were computed for each ran-

dom network. Then, the mean path length was computed for all

100 networks, and the mean of the mean path length for the 100

networks was computed to serve as Lwrand in the calculation of λ:

λ ¼
Lwnet
Lwrand

Lwnet and λ provide summary statistics estimating global integra-

tion properties of an entire network. As such, these measures

should be used in conjunction with other measures that provide

further information regarding localized shifts in network

topology.

Degree Centrality

Degree centrality in weighted networks measures the overall

strength of a node’s connections in terms of the total summed

weights of their connections.

DCw
i ¼

X

N

j

wij

where wij represents the weighted adjacency matrix in which

wij > 0 if vi is connected to vj, and the value given to the link is

the weight of the connection. Nodes with a high-degree central-

ity directly interact with many other nodes in the network, are

likely to be highly influential over the behavior of the network,

and play a critical role in the flow of information or resources

throughout the network. While degree centrality often identifies

critical network elements, a highly essential node in the brain

network may not necessarily have ubiquitous connections to

other nodes in the network as assumed by degree centrality;

thus, degree centrality should be used in conjunction with

other centrality metrics to fully grasp the influence of a given

node in a network.

Page Rank Centrality

Page rank centrality, a variant of eigenvector centrality ideal for

small networks, is unique in that it considers the centrality of

the immediate neighbors of node vi in computing the centrality

of vi itself (van den Heuvel and Sporns 2013). Although eigen-

vector centrality has been used more widely in complex brain

network analyses, the distributions of centrality scores for page

rank centrality tend to follow a normal distribution unlike eigen-

vector centrality scores (Zuo et al. 2012), making page rank cen-

trality more amenable to standard statistical analyses. Much

like degree centrality, page rank centrality favors nodes strongly

connected withmany other network nodes. In contrast to degree

centrality, it favors nodes that are connected to nodes that are

themselves central within the network. Because of this recursive

property, page rank centrality captures information regarding

global features of the graph. Recent work has shown that page

rank centrality is able to identify certain brain regions that are

not as widely connected throughout the brain but are connected

with key hubs (Zuo et al. 2012). This allows those nodeswith high

page rank centrality to integrate information throughout the en-

tire network efficiently and effectively in relatively few steps.

Mathematically, page rank centrality is defined as the stationary

distribution achieved by instantiating aMarkov chain on a graph,

meaning that the page rank centrality of vi is proportional to the

number of steps spent at vi as a result of that process (Ding et al.

2009). For ease of interpretation, page rank centrality in binary,

unweighted networks is standardly defined as

PRCi ¼ ð1� dÞ
1

N
þ d

X

k

i¼1

PRðpiÞ

LðpiÞ

where p1; p2;: : : pN are the nodes under consideration, PRðpiÞ is the

set of nodes that link to pi, LðpiÞ is the number of connections for

node pi, and d is the damping factor. This equation is easily gen-

eralizable to weighted graphs (Ding et al. 2009; Rubinov and

Sporns 2010). The page rank index is modified by the addition

of a damping factor, d, which specifies the fraction of time that

a random walker will transition to one of its neighboring nodes

in order to handle walking traps on graphs (Boldi et al. 2009). It

is standard for the damping value to be set at d = 0.85, the value

used in the present study. One limitation of the page rank cen-

trality measure is that it fails to account for the disparity in the

degree of a nodewith respect to its neighbors, which has import-

ant implications depending upon the network’s assortativity, or

the tendency for nodes to be connected to other nodes of a simi-

lar degree more often than would be expected by chance alone

(Joyce et al. 2010).We included in our analyses the recently devel-

oped measure of leverage centrality, which is able to overcome

this limitation inherent in the calculation of page rank centrality.

Leverage Centrality

Leverage centrality considers the degree of a node, vi, relative to

its neighbors by identifying nodes in the network that are con-

nected to more (or fewer) nodes than their immediate neighbors

(Joyce et al. 2010).

LCw
i ¼

1

ki

X

Ni

ki � kj
ki þ kj

where ki is the degree (summed strength) of node vi. Nodes with

high leverage centrality tend to be more connected to nodes of

lower degree, whereas nodes with low leverage centrality tend

to be more connected to nodes of higher degree. Lower leverage

centrality indicates that a node tends to be more connected to

nodes of a higher degree than itself; higher leverage centrality in-

dicates that a node tends to be more connected to nodes of a

lower degree than itself. Leverage centrality is unique from

other centrality measures in that it does not assume serial trans-

portation of information, but rather allows for parallel informa-

tion processing, which is fundamentally characteristic of

certain systems such as the brain.

Nodal Reorganization of First-Step Connections

The above nodal measures are dependent upon the entire set of

connections between all network nodes (with the exception of

degree centrality, which relies only on first-step connections).

That is, these functional brain networks are interdependent,

nonlinear systems. Even though stark shifts in nodal network

properties can only be explained in full by appealing to the entire
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network architecture, these shifts can only occur because of (1)

the reorganization of connectivity strengths for the set of first-

step (direct) connections and/or (2) the reorganization of con-

nectivity patterns beyond first-step connections (i.e., indirect

connections). Therefore, we sought to quantify the manner in

which a given node’s first-step connections reorganize via a

novel metric, first-step reorganization ðFSRw
i Þ. FSR

w
i is computed

by comparing the strength of each individual connection from

node vi in the dim retrieval networks to the strength of the

same “corresponding connection” in the vivid retrieval networks.

As such, this measure is conceptually and mathematically dis-

tinct from computing a change in degree centrality, because

changes in degree centrality are merely dependent upon the

value of the summed strength of connections for node vi for

each network. Formally, for the entire distribution of scores,

FSRwis calculated as

FSRw ¼ zscore �arctanh
Cov(Ai;BiÞ

σAi
σBi

� �� �

whereAi is the connectivity profile of node i in networkA, Bi is the

connectivity profile of node i in network B, and the connectivity

profile of node i is defined to be its distinct set of weighted con-

nections (i.e., the column in the adjacency matrix corresponding

to that particular node). A Fisher transformation (arctanh) was

implemented to render the distribution Gaussian, followed by a

z-scoring of that distribution. Due to the standardization of the

measure by means of z-scoring, the FSRw
i value of a given node

is always relative to the rest of the nodes in the network. Once

the FSRw
i value is obtained for each node, paired-sample t-tests

can be used to determine whether a node exhibits significant re-

organization of connections at the group level. Higher values of

FSRw
i indicate that the set of direct connections from node i ex-

hibit greater reorganization between networks; lower values of

FSRw
i indicate that the set of direct connections from node i ex-

hibit less reorganization between networks. If, in fact, a network

node exhibits a significant change in FSRw
i between networks, we

can reasonably conclude that changes in the set of direct connec-

tions are at least partly accounting for observed changes in path

length, page rank centrality and leverage centrality. In contrast, if

a network node changes minimally in FSRw
i between networks,

then any observed significant changes in path length, page

rank centrality, and leverage centrality for that node are primar-

ily due to changes in indirect connectivity elsewhere in the

network.

Statistical Testing

Behavioral Data Analyses

Paired-samples t-tests were used to confirm the validity of the

subjective in-scan memory ratings for the level of detail recol-

lected at retrieval by comparing those scores to the responses

for post-scan recognition and confidence ratings. Behavioral

data were analyzed using SPSS and R statistical software.

Network Data Analyses

Weused the permutation framework developed by Simpson et al.

(2013) in conjunction with the Jaccardized Czekanowski index

(Schubert 2013; Schubert and Telecs 2014) to assess significance

for differences in each graph theorymeasure at the hippocampus

between dim and vivid memory retrieval conditions. This same

permutation framework was also used to assess differences in

whole-brain network properties between dim and vivid memory

retrieval. This permutation procedure allows for comparing

groups of networks while accounting for the diverse topological

features inherent in each individual network. All P-values pre-

sented are uncorrected for multiple comparisons across mea-

sures. In assessing nodal changes in graph theory measures, it

is important to know not only which nodes showed significant

changes in network properties ðLwi ;DCw
i ;PRC

w
i andLCw

i Þ from

dim to vivid memory retrieval, identified with the permutation

test, but alsowhich nodes showed the largest changes in relation

to all other nodes in the network. To compare changes across

nodes, we z-scored each network metric within subjects, and

subsequently calculated the normalized difference between

vivid and dim retrieval for each metric separately. All group-

level statistics were formulated based upon this “nodal change

score”. All network data analyses were implemented using

standard and custom scripts in MATLAB.

Results

Below we report behavioral results and the results of network

analyses addressing our 4 questions concerning: (1) nodal

changes in the hippocampus, (2) nodal changes in the hippocam-

pus compared with other network nodes, (3) the extent to which

the hippocampus reorganizes its set of first-step connections,

and (4) global network changes.

Behavioral Results

During the image recall task in the scanner, participants distrib-

uted their responses across the 4 vividness ratings (mean propor-

tion of responses for ratings 1–4 were 19.9%, 22.6%, 28.8%, and

28.7%, respectively). Confirming the validity of these ratings,

the results of the postscan forced-choice scan scene recogni-

tion test showed that accuracy was significantly greater (t20= 4.20,

P < 0.001) for vivid (M = 82.3%; SD = 1.2%) vs. dim (M = 72.0%;

SD = 1.4%) memory retrieval. Furthermore, when considering

only successfully recognized old scenes (hits), recognition confi-

dence was reliably higher (t20 = 7.85, P < 0.001) for vivid memories

(ratings 3–4, M = 3.64, SD = 0.12) than for dim memories (ratings

1–2; M = 3.14, SD = 0.34).

Effects of Hippocampal Network Properties on Memory
Vividness

The purpose of our first questionwas to investigate how complex

patterns of hippocampal interactions with the rest of the net-

work change from dim to vivid memory retrieval. To answer

this question, we directly compared vivid versus dim memories

using the permutation procedure developed by Simpson et al.

(2013) in conjunction with the Jaccardized Czekanowski Index

(Schubert 2013; Schubert and Telecs 2014) for the 4 nodal mea-

sures of interest at the hippocampus: path length, degree central-

ity, page rank centrality, and leverage centrality. Consistent with

our prediction, all 4 measures showed significant differences be-

tween vivid and dim memories for the hippocampus. Possibly

due to the visual nature of the stimuli, all of these effects were

significant in the right but not in the left hippocampus (see

Table 1 for a summaryof results). (1) Path lengthwas significantly

shorter for vivid than dimmemories (P = 0.0002), which we inter-

pret as a greater capacity for more efficient communication be-

tween the right hippocampus and the rest of the network

supporting vivid remembering. (2) Degree centrality was greater

for vivid than dim memories (P = 0.00009), suggesting that stron-

ger right hippocampal interactions with the rest of the network

promote vivid remembering. (3) Page rank centrality was also

685Brain Networks and Memory Retrieval Geib et al. |

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
e
rc

o
r/a

rtic
le

/2
7
/1

/6
8
0
/3

0
5
6
2
2
7
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



higher for vivid than dimmemories (P = 0.013), indicating that the

right hippocampus is connected to more central, influential

nodes for enhancingmemory vividness. (4) Finally, leverage cen-

trality was lower for vivid than dim memories (P = 0.0029), sug-

gesting that the right hippocampus is connected with nodes of

higher degree than itself promoting vividness in episodic mem-

ories. Given that the degree centrality of the right hippocampus

significantly increased from dim to vivid memory retrieval and

the right hippocampus still became more connected with

nodes of a higher degree than itself for vivid memory retrieval,

this indicates that the right hippocampus substantially strength-

ens its connections with the more central, influential nodes in

the network to support memory vividness. In sum, all nodal

measures investigated support the idea that nodal changes in

the right, but not necessarily the left, hippocampus are especially

important in supporting vivid remembering. However, the per-

mutation did not reveal any significant dissociation for dim or

vivid retrieval between the right and left hippocampus for any

graph theory measure (all P’s > 0.11). Because degree centrality

is themost fundamental graph theorymeasure, Figure 3 displays

the change in the degree centrality for all nodes exhibiting higher

degree centrality during vivid than dim memory retrieval in

standard brain space.

We then sought to determinewhether univariatemeasures of

retrieval vividness in the right or left hippocampus correlated

(across subjects) with our 4 graph theory measures of interest

(path length, degree centrality, page rank centrality, and leverage

centrality). Initial group-level effect paired-samples t-tests on

parameter estimates of vivid versus dim memory retrieval

yielded significant retrieval vividness effects (vivid > dim) for

both the left and right hippocampal nodes (left: t(20) = 4.82, P <

0.0001; right: t(20) = 5.04, P < 0.0001). However, across subjects,

univariate measures of activity within the vivid and dim condi-

tions were not significantly correlated with graph theory metrics

computed on the corresponding vivid and dimnetworks, norwas

the vivid > dim univariate difference correlated with the corre-

sponding difference between dim and vivid retrieval for any

graph theory measures (all P’s > 0.25).

Effects of Hippocampal Network Properties on Memory
Vividness Compared with Other Network Nodes

Our second question addressed how themagnitude anddirection

of hippocampal nodal changes supporting episodic memory viv-

idness is related to observed changes in all other network nodes.

Despite significant shifts in hippocampal network properties

from dim to vivid memory retrieval, it is possible that properties

of other network nodes are more closely tracking differences in

memory vividness. To address this question, we (1) calculated

the same 4 graph theory measures of interest (path length, de-

gree centrality, page rank centrality, and leverage centrality) for

each of the 90 nodes in the network and computed the nodal

change score; (2) averaged these nodal change scores across par-

ticipants and z-scored the result to determine which nodes ex-

hibited the greatest changes in our 4 measures of interest in

support of memory vividness.

Consistent with our predictions, the hippocampus (right) ex-

hibited the greatest magnitude change of any network node for

supporting vivid episodic remembering. From dim to vividmem-

ory retrieval, the right hippocampus exhibited the largest de-

crease in path length and leverage centrality as well as the

largest increase in degree and page rank centrality compared

with all other network nodes (see Fig. 4). These results demon-

strate for the first time that changes in the topological properties

of the right hippocampus more closely track visual episodic re-

trieval performance than any other regions in the brain.

Although we predicted that the hippocampus would display

stark shifts in network properties as a function of memory vivid-

ness, we did not expect this region to necessarily be among the

most central, influential nodes in the network independent

from the shift in memory performance. In keeping with this

idea, if instead of ranking themagnitude of the changes between

vivid and dim conditions, we rank the absolute value of nodal

measures within one of these conditions, such as the vivid con-

dition, then the hippocampus is not among the subset of nodes

with shortest path length, highest degree centrality, highest

page rank centrality, or lowest leverage centrality. In the vivid

condition, for example, the right hippocampus ranked 68th for

path length, 67th for degree centrality, 67th for page rank central-

ity, and 61st for leverage centrality. That is, for vivid memories,

the right hippocampus actually displayed a higher path length,

lower degree centrality, lower page rank centrality, and higher le-

verage centrality than the average node in the network for each

of these respective measures. Perhaps more surprisingly, for

the dim memory condition, the right hippocampus had some

of the lowest rankings in path length (85th), degree centrality

(86th), page rank centrality (89th), and leverage centrality (88th).

That is, the right hippocampus was among the select subset of

nodeswith the highest path length, lowest degree centrality, low-

est page rank centrality, and highest leverage centrality for dim

retrieval. Prior work has used degree centrality and page rank

centrality to identify the most central nodes, or hubs, in brain

networks. See Supplementary Materials for a ranking of the

most central nodes in dim and vivid retrieval networks, respect-

ively, as opposed to the shift in topological properties between

conditions.

Table 1 Summary of medians and P-values obtained using the permutation framework for each network measure at the right hippocampus and
for the entire brain network

Network measures Dim memory Vivid memory P-value

Right hippocampus

Path length Lwi 2.517 1.959 0.0002***

Degree centrality DCw
i 15.216 22.477 0.00009***

Page rank centrality PRCw
i 0.0094 0.0108 0.013*

Leverage centrality LCw
i 1.119 0.712 0.0029**

Global measures

Path length Lwnet 2.062 1.887 0.015*

Normalized path length λ 1.045 1.022 0.0001***

*P < 0.05, **P < 0.01, ***P < 0.001.
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Figure 3. The change in (z-scored) degree centrality values are presented for all nodes that shift in a positive direction (i.e., nodes that exhibit higher degree centrality for

vivid compared with dim retrieval) in standard brain space.

Figure 4. Figure 4 provides a summary of how potential memory-related network nodes change between dim and vivid retrieval with respect to the 4 nodal measures of

interest: path length, degree centrality, page rank centrality, and leverage centrality. Only nodes for which each measure changes in the same direction as the

hippocampus are included, because only changes in those directions result in a node more efficiently communicating with the rest of the network and becoming

more central or influential in the network. The signs of the z-scored values for path length and leverage centrality were flipped on the figure, such that higher

z-scores for path length and leverage centrality represent shorter path lengths and lower leverage centrality, respectively. The largest shifts in the entire network for

each of these 4 nodal measures occur for the right hippocampus. Furthermore, while changes in page rank centrality and degree centrality appear to be inversely

related to changes in path length and leverage centrality, respectively, this is not a mathematical certainty, as each measure characterizes unique features of the

network in accordance with different criteria.
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These results suggest that when participants were unable to

vividly recollect the previously encoded scene, the right hippo-

campus did not participate in efficient information transfer

with other nodes across the network, interacted with relatively

few other nodes in the network, and did not connect with other

central, influential nodes in the network. Collectively, these re-

sults suggest that the right hippocampus was not sufficiently in-

volved in integrative processes in the case of dim memories but

became sufficiently involved in integrative processes to support

the recollection of vivid memories. The fact that the hippocam-

pus displayed the greatest magnitude shift for each graph theory

measure from dim to vivid retrieval but was not among the sub-

set of nodes with lowest path length, highest degree centrality,

highest page rank centrality, or lowest leverage centrality at ei-

ther dim or vivid retrieval, separately, emphasizes the import-

ance of examining shifts in nodal properties between dim and

vivid memory retrieval as opposed to the absolute ranking of a

node within each network separately.

Effects of Hippocampal First-Step Connection
Reorganization on Memory Vividness

The purpose of our third question was to determine the extent

to which the hippocampus reorganizes its set of first step (direct)

connections from dim to vivid memory retrieval. To answer this

question, we created a novel measure, called first-step reorgan-

ization ðFSRw
i Þ. FSR

w
i is computed by comparing the strength of

each individual connection from node vi in the dim retrieval con-

dition to the strength of the same corresponding connection in

the vivid retrieval condition. In addition to significant changes

in each graph theorymeasure, the right hippocampus also exhib-

ited a significant reorganization of first-step connections be-

tween dim and vivid memory retrieval, t(20) = 3.33, P = 0.003.

Because the right hippocampus exhibited such a change in

FSRw
i between dim and vivid retrieval conditions, we can reason-

ably conclude that this substantial reorganization of direct con-

nections is at least partly responsible for observed changes in

path length, page rank centrality and leverage centrality. Thus,

the observed changes in path length, page rank centrality, and le-

verage centrality are not merely due to changes in connectivity

elsewhere in the network that do not directly involve interactions

with the right hippocampus. The extent to which a node reorga-

nizes its set of connectionswas not trivially related to anyof the 4

nodal measures of interest displayed for each node in Figure 4.

Quantitatively, none of the 4 nodal measures of interest in dim

or vivid retrieval conditions separately or the change in these

measures from dim to vivid retrieval was significantly correlated

with FSRw
i (all P’s > 0.15, uncorrected).

To further investigate how the right hippocampus reorga-

nizes its set of first-step connections, we computed the average

change in connectivity strength between the right hippocampus

and every other network node from dim to vivid memory re-

trieval. As illustrated by Figure 5, the right hippocampus exhib-

ited substantial increases in average connectivity strength with

nodes commonly assumed to be functionally connected with

the hippocampus during successful and/or vivid episodic re-

trieval, such as occipital regions supposed to store visual mem-

ory traces and frontal regions supposed to mediate retrieval

control operations (Rugg and Vilberg 2013; Schedlbauer et al.

2014; King et al. 2015).

Extra-Hippocampal Global Network Effects on Memory
Vividness

Whereas our first 3 questions were about the topological pro-

perties of the hippocampus, our last question concerned the

Figure 5. Figure 5 provides a summary of the t-values associatedwith the average change in connectivity strength between the right hippocampus and the set of potential

memory-related nodes fromdim to vividmemory retrieval (*P < 0.05, **P < 0.01). Only nodes forwhich the right hippocampus exhibited increased connectivity fromdim to

vivid retrieval are presented in the figure. The right hippocampus exhibited the largest magnitude increases in its connectivity strength with inferior frontal regions

thought to mediate retrieval control, caudate, inferior lateral temporal regions thought to be critical for visual memory, and occipital regions thought to store visual

memory information. This demonstrates that the right hippocampus was, in fact, communicating more strongly with the select subset of regions thought to be highly

involved in episodic memory for visual stimuli. It is important to note that this figure is meant only to show which nodes the right hippocampus tends to become more

connectedwith for vividmemory retrieval (i.e., whichnodes contributedmore than others to the increase inhippocampal degree centrality); as such,we didnot correct for

multiple comparisons.
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capacity for effective information integration in the entire brain

network. More specifically, are there global changes in path

length from dim to vivid memory retrieval, and do those global

changes persist even after removing the right hippocampus

from the networks? To answer these questions, we computed

the vivid–dim difference in path length across the entire brain

network ðLwnetÞ. Using the permutation framework developed by

Simpson et al. (2013) in conjunction with the Jaccardized Czeka-

nowski index (Schubert 2013; Schubert and Telecs 2014), we

found a significant difference in Lwnet between vivid and dim

memory retrieval conditions, such that the path length in the en-

tire brain network was shorter for vivid than dim memory re-

trieval (see Table 1). We then normalized Lwnet by dividing by

Lwrand to obtain values of lambda (λ) for vivid anddim retrieval con-

ditions, respectively. Even after normalizing the path length

across networks, the permutation revealed that the vivid re-

trieval networks demonstrated a greater capacity for efficient

communication across the entirety of the network (see Table 1).

Even after removing both hippocampi from the network and re-

calculating the global path length, the permutation revealed

that the global path length was shorter for vivid than dim re-

trieval (P < 0.05). Furthermore, after removing both hippocampi

from the network, recalculating the global path length, and nor-

malizing the global path length, the permutation revealed that

the normalized global path length was still shorter for the vivid

retrieval condition than dim retrieval condition (P < 0.001). This

demonstrates that significant changes in path length for the

hippocampi are not exclusively responsible for driving the aver-

age global change in path length from dim to vivid retrieval.

While the hippocampus (right)maintained the largestmagni-

tude change in path length of any network node, the fact that the

network as a whole exhibited a shorter average path length dur-

ing vivid retrieval (even after removing the hippocampi from the

network) suggests that many other nodes exhibited a lower path

length at vivid retrieval as opposed to dim retrieval. In fact, Fig-

ure 4 shows which other nodes, previously identified as involved

in memory-related processes in activation (Spaniol et al. 2009;

Kim 2015) and connectivity analyses (Schedlbauer et al. 2014;

King et al. 2015), tended to exhibit shorter path lengths at vivid re-

trieval as opposed to dim retrieval relative to each other. Interest-

ingly, these tend to be the same nodes identified in Figure 5 that

significantly increase in connectivity strength with the hippo-

campus to support vivid memory retrieval.

General Discussion

The purpose of this study was to investigate properties of the

large-scale network underlying episodic memory by using

graph theory measures, focusing in particular on the contribu-

tion of the hippocampus in supporting patterns of connectivity

underlying vivid memories for visual scenes. The study yielded

4 main findings. First, when recollecting vivid compared with

dim memories, the hippocampus displayed greater efficiency in

communication with the rest of the network (shorter path

length), connected more strongly with the rest of the network

(greater degree centrality), preferentially connected with the

most central nodes in the network (higher page rank centrality),

and still connected with nodes of a higher degree than itself

(lower leverage centrality). Second, among all 90 nodes in the net-

work, nodal changes in the right hippocampus made the largest

contributions to visual memory vividness. Third, the stark shifts

in hippocampal network propertieswere at least partly due to the

fact that the hippocampus massively reorganizes its set of direct

connections to support vivid memory retrieval. Finally, beyond

the hippocampus, the brain network as a whole displayed a

greater capacity for efficient communication throughout the net-

work (shorter global path length) to facilitate vivid memory re-

trieval. This shift in the functional profile of the hippocampus

to support vivid memory retrieval provides novel insight into

why the hippocampus is a critical brain area for episodicmemory

processes. These 4 main findings are discussed in separate sec-

tions below.

Right Hippocampal Network Interactions Significantly
Impact Memory Vividness

While episodic memory is subserved by complex neural interac-

tions and the continuous exchange of information between cir-

cuits distributed across several brain regions, the hippocampus

in particular stands out as the critical structure for the encoding,

storage, and retrieval of such memories (Battaglia et al. 2011;

Watrous and Ekstrom, 2015). Determining how the hippocampus

supports the unique demands of retrieving experienced events

from memory is fundamental to understanding the biological

basis of episodicmemory. Although lesion studies have provided

clear evidence for the destructive effects of hippocampal damage

on episodic memory and prior functional neuroimaging studies

of healthy adults have demonstrated greater hippocampal acti-

vations for successful than unsuccessful episodic memories

(Eichenbaum et al. 2007; Skinner and Fernandes 2007; Spaniol

et al. 2009; Rugg et al. 2012), these methods have not character-

ized how the hippocampus dynamically interacts (directly or in-

directly) with other relevant brain regions during intact episodic

memory retrieval. Given that the human hippocampus is

thought to provide the vital integrative link that receives relevant

sensory information during encoding and ultimately facilitates

memory retrieval via reactivation of memory traces with input

from frontal regions mediating retrieval control operations

(Alvarez and Squire 1994; McClelland et al. 1995; Teyler and

Rudy 2007; Danker and Anderson 2010; Ritchey et al. 2013), un-

derstanding the role of the hippocampus in the large-scale epi-

sodic memory network is critical for understanding the neural

basis of memory. While this prior work has provided evidence

for the importance of the hippocampus to episodic memory,

our results provide a unifying framework showing that the direct

and indirect connections between the hippocampus and all other

network nodes contribute to stark changes in the complexity of

the system to support vivid episodic memory retrieval.

The information processing properties of the hippocampus

have traditionally been studied at the more microscopic, local

level with a focus on information flow and plasticity exclusively

within the hippocampal formation (Battaglia et al. 2011).Watrous

and Ekstrom (2015) recently proposed that both cell assembly

firing patterns and global patterns of brain oscillatory activity

within hippocampal–neocortical networks form the basis of a

memory. Our results also suggest the hippocampus is critical

for information processing at the more macroscopic level of the

entire functional brain network to facilitate vivid visual memory

retrieval, building on and extending considerable work regarding

the role of hippocampal–cortical projections related to memory

processes (McIntosh et al. 1997; Rolls 2000; Ranganath et al.

2005; Takahashi et al. 2008; Bai et al. 2009; McCormick et al.

2010; Sadeh et al. 2011; Ritchey et al. 2013; Schott et al. 2013;

Robin et al. 2015). The integration of information from diverse

functional domains at a more macroscopic level may serve as a

key feature enabling the hippocampus to support not only the

vivid retrieval of episodic memories, but also their translation

into more complex, adaptive behaviors.
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Several recent studies have extended existing task-based

functional connectivity analyses ofmemory retrieval by identify-

ing changes in bivariate connections (King et al. 2015) or basic

graph theory measures (Schedlbauer et al. 2014) between small

subsets of a priori selected, memory-related brain regions. Of

particular relevance to the current study, Schedlbauer et al.

(2014) demonstrated that several areas within the medial tem-

poral (including the hippocampus), frontal and parietal lobes ex-

hibited significantly greater connectivity with several other brain

regions and weremore often along shortest paths in the network

during successful retrieval, underscoring the importance of inte-

grative processes in supporting memory. However, there may be

differences in multivariate graph theory measures between

small networks comprised of a small proportion of brain space

and larger-scale networks that include all cortical and subcortical

regions (Stanley et al. 2013). To the best of our knowledge, no exist-

ing whole-brain network analyses during active memory retrieval

have been reported in the literature. Our study also extends this

prior work by using more data-driven analysis methods, utilizing

multiplemultivariate graph theorymeasures to better assess inte-

grative properties in the networks, and creating an innovative new

measure to aid in understanding why these shifts in multivariate

graph theory measures were observed.

Network Measures for the Right Hippocampus Tracked
Memory Vividness More Than any Other Brain Region

When separate brain networks were constructed in accordance

withmeasuredperformance during the retrieval of visual scenes,

the topological properties of the right hippocampus shiftedmore

than anyother node in the network between vivid and dimmem-

ory retrieval. The right hippocampus exhibited a greater capacity

for efficient communication with the rest of the network (shorter

path length), communicated more strongly with directly con-

nected nodes (higher degree centrality), interacted with more

central nodes (higher page rank centrality), and preferentially

strengthened connectionswithmore connected nodes than itself

(lower leverage centrality). In other words, compared with all

other brain areas, the hippocampus was the brain region where

improvements in the capacity for efficient communication and

integration of disparate informationmost closely tracked reports

of memory vividness.

These findings provide novel insight into existing memory

theories that identify the hippocampus as a “bottleneck” or “con-

vergence zone” at which information from distributed brain re-

gions is processed and integrated to facilitate memory retrieval

(Damasio 1989; Moll and Miikkulainen 1997; Mišic ́ et al. 2014).

Though it is widely assumed that the hippocampus operates as

a convergence zone during the encoding and retrieval of episodic

memories, the lack of an adequate, multivariate analytic meth-

odology has stymied progress on properly investigating this

idea in healthy, living humans. With the explosion of interest

in large-scale complex network analyses coupled with recent ad-

vances in statistical physics that have produced relevant graph

theorymeasures, we now have the requisitemeasures for identi-

fying brain regions that facilitate the convergence and joint pro-

cessing of specialized information from distributed brain regions

while participants actively engage in memory-related tasks. The

ability to identify the hippocampus as the network node that ad-

justs its integrative properties the most in accordance with the

vividness of retrieved memories provides novel evidence for

the hippocampus as a convergence zone in the brain. Future

studies using high-resolution fMRI and manual ROI tracing

might be able to investigate whether episodic memory for object

features involves other convergence zones besides the hippo-

campus, such as perirhinal cortex (Bussey et al. 2005; Mclelland

et al. 2014; Ryan et al. 2012).

Despite the assumption that the hippocampus occupies

a convergence zone in the brain, graph theory analyses of struc-

tural (Hagmann et al. 2008; van den Heuvel et al. 2012; Gong et al.

2009) and functional (Buckner et al. 2009; Tomasi and Volkow

2010) whole-brain networks “at rest” in humans have consistent-

ly demonstrated that the hippocampus is not topologically cen-

tral in brain network. The hippocampus has not been identified

as among the most highly connected network nodes, nor has it

been shown to occupy a critical position along shortest paths in

the network. Similarly, we found that the hippocampus was not

among the most highly connected, influential network nodes in

vivid or dim retrieval networks taken separately. This does not

imply, however, that the hippocampus should not be considered

a convergence zone in these episodic networks; it is the “relative

change” in network properties at the hippocampus in accordance

with memory performance that provide insight into the integra-

tive functions of the hippocampus formemory retrieval. Interest-

ingly, the most central nodes in the network identified for

dim and vivid retrieval separately were not among the nodes

that exhibited the largest shifts in degree and page rank central-

ity between dim and vivid retrieval conditions (Fig. 4 and see

Supplementary Materials). A more general implication of this

finding is that to investigate the properties of brain regionswithin

large-scale memory networks, it is necessary to focus on func-

tional connectivity patterns associated with memory perform-

ance. This typically requires the use of event-related fMRI and

the construction of separate connectivity matrices for trials

that differ in behavioral performance.

Hippocampal First-Step Connections Substantially
Reorganize to Support Vivid Memory Retrieval

Even though observed shifts in network properties of the right

hippocampus can only be explained in full by appealing to the

entire network architecture, those shifts are at least partly due

to a substantial reorganization of connectivity strengths for the

set of first-step (direct) connections. Because the right hippocam-

pus exhibited a substantial reorganization of its direct connec-

tions between dim and vivid retrieval, we can reasonably

conclude that this substantial reorganization is at least partly re-

sponsible for observed changes in path length, page rank central-

ity and leverage centrality. Thus, the changes in these measures

are not merely due to changes in connectivity elsewhere in the

network that do not directly involve interactions with the right

hippocampus. The finding that the hippocampus drastically re-

organized its set of direct connections from dim to vivid retrieval

provides complementary support for the idea that this region can

alter its connectivity profile to operate as a convergence zone

during successful episodic memory.

To acquire more specific information about how the right

hippocampus reorganizes its set of first-step connections, we

identified the magnitude and direction of changes in connectiv-

ity strength between the right hippocampus and every other net-

work node from dim to vivid memory retrieval. The right

hippocampus exhibited significant increases in connectivity

strength with nodes commonly assumed to directly interact

with the hippocampus during vivid episodic retrieval, such as oc-

cipito-temporal regions supposed to store visual memory traces

and frontal regions supposed to mediate retrieval control opera-

tions (see Fig. 5). This finding is consistent with recent work from

King et al. (2015), who have demonstrated that the hippocampus
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shows increased direct connectivitywithmany diffuse, function-

ally distinct brain regions for recollecting picture–word pairs. Re-

latedly, the stark reorganization in first-step connections to the

right hippocampus suggests that the significant overall increase

in connectivity strength (degree centrality) of the right hippo-

campus from dim to vivid memory retrieval is not due to a rela-

tively even strengthening of all hippocampal connections.

Instead, there is substantial variability in the magnitude of con-

nectivity strength shifts between corresponding connections

during vivid vs. dim memories.

Extra-Hippocampal Global Network Changes Support
Vivid Memory Retrieval

Beyond the hippocampal structures, studieswith brain-damaged

patients and more traditional functional activation analyses in

healthy adults have demonstrated that numerous other brain re-

gions are critically important for episodic memory retrieval, in-

cluding: posterior parietal regions, precuneus, prefrontal cortex,

thalamus, retrosplenial and posterior cingulate regions, occipi-

to-temporal regions, and other medial temporal lobe structures

(Cabeza and Nyberg 2000; Wagner et al. 2005; Cabeza et al. 2008;

Spaniol et al. 2009; Huijbers et al. 2011; Rugg and Vilberg 2013).

Importantly, the prefrontal cortex, precuneus, visual cortex, thal-

amus, posterior parietal regions, and other medial temporal lobe

structures (in addition to the hippocampus) have been identified

as densely interconnected during successful episodic memory

retrieval (Preston and Eichenbaum 2013; Staresina et al. 2013;

Schedlbauer et al. 2014). These results collectively emphasize

the idea that a dense, interconnected, interdependent network

of disparate brain regions, each with a particular function, facil-

itates episodic memory retrieval. Although the hippocampus

may be necessary for vivid, rich episodic memory retrieval, its

proper functioning in the network is likely not sufficient. Thus,

it is reasonable to hypothesize that more global integrative prop-

erties of the network are predictive of vivid memories of recently

encoded events. Supporting this hypothesis, our results demon-

strated that the network as a whole exhibited a greater capacity

for effective information integration supporting vivid memory

retrieval. Even after removing the right hippocampus from the

networks, vivid retrieval networks still exhibited a greater cap-

acity for efficient information integration.

Conclusions

In sum, the results obtained in this study demonstrate that the

manner inwhich the network as awhole efficiently integrates in-

formation and the specific role of the right hippocampus in inte-

grating information changes significantly between vivid and dim

retrieval of recently encoded scenes. Our results, therefore, pro-

vide a new perspective on the neural basis of episodic memory,

capturing the importance of optimal integration in the large-

scale network as a whole and among critically important net-

work nodes embedded within the network in generating vivid,

detailed episodic memories.

Supplementary Material

Supplementary material can be found at: http://www.cercor.

oxfordjournals.org/online.
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