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Hippocampal place-cell sequences depict
future paths to remembered goals
Brad E. Pfeiffer1 & David J. Foster1

Effective navigation requires planning extended routes to remembered goal locations. Hippocampal place cells have
been proposed to have a role in navigational planning, but direct evidence has been lacking. Here we show that before
goal-directed navigation in an open arena, the rat hippocampus generates brief sequences encoding spatial trajectories
strongly biased to progress from the subject’s current location to a known goal location. These sequences predict
immediate future behaviour, even in cases in which the specific combination of start and goal locations is novel. These
results indicate that hippocampal sequence events characterized previously in linearly constrained environments as
‘replay’ are also capable of supporting a goal-directed, trajectory-finding mechanism, which identifies important
places and relevant behavioural paths, at specific times when memory retrieval is required, and in a manner that could
be used to control subsequent navigational behaviour.

A fundamental purpose of memory lies in using previous experience
to inform current choices, directing behaviour towards reward and
away from negative consequences based on knowledge of prior out-
comes in similar situations. Goal-directed spatial navigation—planning
extended routes to remembered locations—requires both memory of
the goal location andknowledge of the intervening terrain todetermine
an efficient and safe path. The hippocampus has long been known to
have a critical role in spatialmemory1,2 andmemory for events3,4, and it
has been proposed that the hippocampusmay have a fundamental role
in calculating routes to goals, especially under conditions demanding
behavioural flexibility1,5–8. This proposal stems largely from the dis-
covery that excitatory neurons of the hippocampus show spatially
localized place responses during exploration1. However, it has been a
challenge to understand how individual place responses tied to the
current location might be informative about other locations that the
animal cares about, such as the remembered goal9, or the set of loca-
tions defining a route10,11.
Techniques to record simultaneously from multiple hippocampal

place cells12 have been used to show that place cells systematically
represent positions other than the current location. The early discov-
ery of phase precession of place-cell spikes relative to theta frequency
oscillations in the local field potential13 led to the hypothesis that place
cells fire in sequences within a theta cycle, and thus represent places
behind or ahead of the animal14–16. Theta sequences have since been
demonstrated experimentally across place-cell populations17. Also
during theta, place-cell activity seems to ‘sweep’ ahead of an animal
located at a choice point18, leading to the hypothesis that such activity
could support the evaluation of alternatives during decision making19.
A separate group of phenomena termed ‘replay’ has been found during
sleep20,21 and non-exploratory awake periods22, and is associated with
sharp-wave-ripple (SWR) events in the hippocampal local field poten-
tial (with the sole exception of replay during rapid eye movement
sleep20). In replay, simultaneously recorded populations of place cells
show reactivation of temporal sequences reflecting prior behavioural
trajectories up to 10-m long23. Although these forms of non-local
activity are now well established17,23–26, it has proven difficult to estab-
lish a predictive relationship between non-local place-cell activity and
behaviour18,26, because of the twofold technical problem of ensuring

adequate behavioural sampling of the environment while recording
from sufficient numbers of place cells. Thus it remains unknown
whether non-local place-cell activity can specify remembered goals,
or define specific routes that the animal will take.

Depiction of two-dimensional trajectories

We recorded from hippocampal neurons while rats performed a spa-
tial memory task, using the statistical power of an open-field design in
which the goal was one of 36 clearly separated locations within a
2m3 2m arena (Fig. 1a). We addressed the sampling problem by
combining random foraging and goal-directed behaviour, and by
implanting miniaturized lightweight microdrives supporting 40 inde-
pendently adjustable tetrodes, with 20 tetrodes targeted to each dorsal
hippocampal area CA1 (Supplementary Fig. 1), to record simul-
taneously from up to 250 hippocampal neurons with well-defined
place fields. Our task, incorporating elements from previous task
designs9,27–29, was composed of trials each consisting of two phases:
in phase one, the rat was required to forage to obtain reward (liquid
chocolate) in an unknown location (Random). In phase two, the rat
could obtain reward in a predictable reward location (Home). The
transition to the next phase or trial was automatic upon consum-
mation of the reward, and was not signalled to the animal. The task
incorporated several features. First, because the shortest routes in
phase one and two were matched, it was determined that animals
could remember Home, but could not detect Random locations,
because latencies and path lengths were significantly shorter for
Home-bound trajectories (Fig. 1b–d). Second, the Home location
was moved to a new location each day. Thus, animals were required
to learn a new goal location, demanding a flexible behavioural res-
ponse that was more likely to engage the hippocampus than a fixed
reference-memory response27,30,31. Third, for the first 19 trials of each
day, the Random locations were non-repeating. Hence during this
period, everyHome-bound trajectorywas always a novel combination
of current location and goal location. Thus, our task probed both
memory for the goal location and flexible planning of a novel route
to get there.
We implanted four well-trained rat subjects with the 40-tetrode

microdrive for electrophysiological recording. Large numbers of
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well-isolated units (Supplementary Fig. 2)32 were recorded simulta-
neously during behavioural sessions on two consecutive days (212 and
250 units active during exploration from rat 1 on experimental days 1
and 2, respectively; 166 and 193 units from rat 2 on days 1 and 2; 133
and 106 units from rat 3 on days 1 and 2; 103 and 175 units from rat 4
on days 1 and 2). The recorded units demonstrated position-specific
firing patterns (‘place fields’) that were distributed throughout the
environment (Supplementary Figs 3–5), and a memory-less, uniform
prior Bayesian decoding algorithm23 allowed us to estimate the spatial
location of the rat accurately from the recorded spike trains through-
out the experiment (Supplementary Fig. 6 andSupplementaryVideo1).
We identified candidate events as brief increases in population spiking
activity during periods of immobility while the rat performed the task
(Fig. 2a) and applied the decoding algorithm to the population spike
trains (Fig. 2b). During many candidate events, decoded position
revealed temporally compressed, two-dimensional trajectories across
the environment (Fig. 2c and Supplementary Video 2). We applied
length, duration and smoothness criteria to the decoded positions of
candidate events to define ‘trajectory events’ (see Methods). We found
between 144 and 373 trajectory events per session (between 25.3% and
43.9% of candidate events) with amean duration of 103.6ms, and path
lengths that ranged from 40.0 cm to 199.1 cm (Supplementary Fig. 7
and Supplementary Table 1). We tested the probability that trajectory
events could have occurred by chance, using two separateMonte-Carlo
shuffle methods which varied either cell identity or place field position

(see Methods). Zero (out of 2,028) trajectory events had a P-value
greater than 0.02 under either method, indicating that all trajectory
events were statistically significant events. Spectrogram analysis of
trajectory events strongly matched SWR events identified within the
same experimental sessions (Supplementary Fig. 8a). In addition, an
overwhelming majority of trajectory events were coincident with
SWR events (Supplementary Fig. 8b). Theta power, which is high
during exploration, was significantly decreased immediately before
and after trajectory events (Supplementary Fig. 8c). Collectively, these
data indicate that trajectory events are functionally similar to the SWR-
associated events previously reported on linear tracks as ‘replay’21–26.

Trajectory events over-represent the goal

To examine whether non-local spatial information present in traject-
ory events contributes to or is affected by acquisition or expression of
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Figure 1 | Behaviour in the open-field spatial memory task. a, Schema of
arena and room, rewardwells (circles), andHome location for days 1 and2 (D1,
cyan; D2, red). b, Per-trial latency to reach Home or Random well location for
rat 1 (R1) on D1. c, Mean latency and path length to reach Home or Random
well location across all rats for D1 and D2. P-values (Wilcoxon rank-sum test):
latency D1 5.53 10219, D2 9.73 10214; path D1 2.73 10219, D2 5.23 10216.
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latency 2.63 1022; path 9.13 1024.
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a spatial memory (the novel Home location), we divided the observed
trajectory events into those that were initiated while the rat was at the
Home location (‘home-events’) and those that were initiated while the
rat was elsewhere (‘away-events’). There was no difference in the rate
of occurrence of sharp-wave/ripple events or of trajectory events
between Home and Random locations (Supplementary Figs 9 and
10). As expected, home-events showed strong representation of the
Home location (Fig. 3a, c and Fig. 2c, top row), probably owing to
initiation bias, a tendency for hippocampal events to reflect a path that
begins at the rat’s current location22–24 (but see refs 25, 26). Strikingly,
we observed that away-events also showed an increased representa-
tion of the Home location (Fig. 3b, d and Supplementary Fig. 11), a
finding that cannot be explained through initiation bias. Consistent
with this observation, many away-events depicted a trajectory that
ended at Home (Fig. 2c, middle rows; Supplementary Videos 3–7).
Quantification confirmed that the Home location was significantly
over-represented in away-events relative to other locations on the

open field (Fig. 3e, left; Supplementary Fig. 12) and that away-events
were more likely to end their trajectories at the Home location than
any other region of the arena (Fig. 3e, centre).
Importantly, the region of increased representation changed

accordingly when the location of theHomewell wasmoved on experi-
mental day 2. The heightened representation of Home in away-events
was present even when the analysis was restricted to the first 19 trials,
when the specific Random–Home combinations were novel (Sup-
plementary Fig. 13). The increased representation of Home in
away-events was not a simple function of increased familiarity with
or time spent at the Home location, as other regions of the arena with
greater occupancy times did not show strong representations in tra-
jectory events (Fig. 3e, right). The overexpression of the Home loca-
tion in away-events could not be accounted for by either occupancy
time or the spatial distribution of place fields (Supplementary Figs 14
and 15). Further, when we restricted our analysis to vectorized tra-
jectories rather than entire posterior probabilities, the Home location
remained over-represented in away-events (Supplementary Fig. 16).
Thus, trajectory events in the hippocampus over-represent a known
goal location in a manner which cannot be explained solely by occu-
pancy time or place-field representation.

No over-representation of non-goals

We proposed that the over-representation of locations in trajectory
events was selective for behaviourally relevant locations. The task was
designed so that the previous Random well was never a correct beha-
vioural goal, and so we proposed in particular that the previous
Random well would not be over-represented in trajectory events.
To equalize comparison between away-events and home-events, we
rotated and scaled all home-events such that the distance and dir-
ection from the rat’s physical location at the time of each event to the
previously active Random location was the same across all home-
events (Fig. 4a). Similarly, we rotated and scaled all away-events
according to the direction and distance to the Home location (Fig. 4b),
and as a control we rotated and scaled all home-events according to the
direction and distance to the immediately future (but unknown and
not yet baited) Random well location. All rotated/scaled trajectory
events showed a strong representation of the rat’s physical location
(Fig. 4c–e) due to initiation bias. However, whereas the rotated/scaled
away-events showed a strong representation of the Home location
(Fig. 4d), rotated home-events showed little representation of the previ-
ously active (Fig. 4c) or immediately-to-be active (Fig. 4e) Random
locations. Indeed, we observed a significant decrease in the representa-
tion of the previous Random location in home-events compared to the
representation of the Home location in away-events (Fig. 4f). These
data show that hippocampal trajectory events reflect the demands of
the task by selectively over-representing the immediately relevantHome
location and not the irrelevant previous Random location.

Trajectory events reflect future behavioural path

The initiation and termination bias that we observed suggested that
away events depict the future trajectory to Home, indicative of a plan-
ning mechanism to guide behaviour. To test this hypothesis, we quan-
tified the correspondence between trajectory events and the behavioural
path in the immediate future, or immediate past (Fig. 5a, b and Sup-
plementary Fig. 17). We calculated the angular displacement between
trajectory and path at progressively increasing radii from the current
location (Fig. 5a, b). Away-events were strongly concentrated around
zero angular displacement assessed against the future path, and more
broadly distributed with respect to the past path (Fig. 5c), and this
difference was verified in terms of themean absolute angular displace-
ment for each event (Fig. 5d). Home events showed a weaker repre-
sentation of future path, and an apparent anti-correlation with past
path, which might have reflected the fact that the path back to the
previous Randomwell was never correct (Fig. 5e, f). Away-events were
significantly closer to the rat’s future path than were home-events
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(Fig. 5g), consistent with the goal-directed nature of Random-to-
Home navigation. We conducted two further analyses of path corres-
pondence, one based on the orientation of the depicted trajectory to a
locationoccupied 10 s in the future or thepast (Supplementary Fig. 18),
and one based on the spatial overlap between smoothed versions of
the trajectory and future or past path (Supplementary Fig. 19), with
matching results. Rats showed no bias to face the direction of their
immediately future path or theHomewell locationduring away-events
(Supplementary Fig. 20a, b). Furthermore, away-events were more
spatially correlated with the rat’s future path than with his current
heading (Supplementary Fig. 20d–g). Thus, the strong reflection of
the rat’s future path in away-events could not be trivially explained
as a representation of paths ‘in front’ of the rat, but rather suggested a
more precise path-finding mechanism.

A flexible planning mechanism

If trajectory events reflect behavioural planning generally, they might
also have depicted future behaviours when the animal did not proceed
immediately to the Home location. Indeed, away-events closely
matched the rat’s future path regardless of whether the rat’s future
path took it to theHome location or elsewhere in the arena (Fig. 6a, c).
For both cases, trajectories matched the future path more than the
past path (Fig. 6b, d). We proposed that if trajectory events reflected
an active process that could switch between goals, then before non-
Home-seeking behaviours, not only would the representation of the
non-Home-seeking path be enhanced, but the representation of
the Home well would be reduced. Indeed, we found reduced Home
representation innon-Home-seeking away-events compared toHome-
seeking away-events (Fig. 6e).
We finally proposed that a flexible planning mechanism should be

able to specify paths of novel importance (a novel combination of start
and end points) over familiar terrain. The animals’ behaviour showed
evidence of this ability over the first 19 trials of each day.We therefore
examined trajectory events during this period of each session. Away-
events during this novel period also bore a strong match to the rat’s
future path (Fig. 6f and Supplementary Videos 3–7), and were closer
to the rat’s future path than its past path (Fig. 6g).
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Discussion

We have demonstrated that hippocampal SWR-associated trajectory
events predict immediate future navigational behaviour. This finding
follows a succession of results8 reporting that SWR-associated
sequences occur robustly during the awake state22–26, that sequences
are not always facsimiles of previous behavioural episodes22–24,26,33 and
can even depict novel combinations of previous experiences26, and
that sequences can be selective to the extent of not always reporting
themost recent experience26, or even necessarily experiences from the
current environment25. Moreover, disruption studies using electrical
stimulation contingent on SWR detection have revealed a role for
sleep SWRs in learning34,35, and a specific role for awake SWRs in
workingmemory but not referencememory36, which accords with the
flexibility of trajectory events in response to a daily changing goal
location27,30,31. Regarding our observation of stronger prediction before
goal-finding than random foraging, it is likely that during the latter
behaviour, an animal repeatedly makes online changes to his planned
navigational trajectory, which would reduce its initial predictability.
This strategic variability may be reflected in the over-dispersion of
place-cell firing rates during random foraging28,37. Regarding themecha-
nism generating trajectory events, low-level mechanisms might have
contributed, such as the spatial distributions of place cells’ firing rates,
although these did not account for the precise depiction of the goal
location. Alternatively, it is equally possible that the spatial distri-
butions of firing rates emerged as a consequence of the trajectory
events. Simple models of encoding routes via direct experience cannot
easily explain either the trial-by-trial switching of trajectory events
between different goals (Home-seeking versus non-Home-seeking),
or the trajectory events corresponding to novel Random–Home
combinations6,38,39, although the incorporation of contextual coding
for the goal might account for some of this functionality5,40. It remains
unknown whether trajectory events can reflect the calculation of opti-
mal paths in more challenging navigational tasks that incorporate
barriers to movement41,42. Finally, we might speculate on how the
planning function of trajectory events operates. Trajectory depiction
by place cells before behaviour might support a plasticity mechanism

that reinforces the particular path, in a way that can be accessed locally
during behaviour43. For example, trajectory events might drive associ-
ations between places en route and estimates of value19,31,44,45 or chosen
action44,46 that could be accessed subsequently by local place-cell
activation during goal-directed behaviour, perhaps in combination
with a local look-ahead mechanism such as theta sequences.
In summary, our data reveal a flexible, goal-directedmechanism for

the manipulation of previously acquired memories, in which beha-
vioural trajectories to a remembered goal are depicted in the brain
immediately before movement. Such findings address longstanding
questions about the role of place cells in navigational learning and
planning, as well as broader questions regarding the recall and use of
stored memory. In particular, trajectory events relate to hippocampal
function in multiple conceptual contexts: as a cognitive map in which
routes to goals might be explored flexibly before behaviour1, as an
episodic memory system engaging in what has been termed ‘mental
time travel’47, and as a substrate for the recall of imaginary events48,49.
These conceptualizations reflect a continuity with earlier speculations
on animals’ capacities for inference50. Trajectory events offer a new
experimental model for the study of these varied functions.

METHODS SUMMARY
Amicrodrive array containing 40 independently adjustable, gold-plated tetrodes
aimed at area CA1 of dorsal hippocampus (20 tetrodes per hemisphere; 4.00mm
posterior and 2.85mm lateral to bregma) was implanted in four rat subjects. Final
tetrode placement and unit recording were as previously described22.

Position information was binned into 2-cm bins. Tuning curves were calcu-
lated as the smoothed histogram of firing activity normalized by the time spent
per bin. Population events were defined as peaks in a smoothed spike density
histogram greater than the mean1 3 standard deviations, bounded by crossings
of the mean.

Probability-based decoding of position information from spike trains was
performed as previously described23, using a time window of 20ms. Each can-
didate event was truncated to the longest sequence of time frames in which the
peak posterior probability was less than 20 cm from that of the previous frame.
Events with fewer than 10 steps in the final sequence or a start-to-end distance less
than 40 cm were eliminated from further analysis.

Full Methods and any associated references are available in the online version of
the paper.

Received 28 September 2012; accepted 21 March 2013.

Published online 17 April 2013.

1. O’Keefe, J. & Nadel, L. The Hippocampus As A Cognitive Map. (Clarendon, 1978).
2. Morris, R.G., Garrud,P., Rawlins, J.N.&O’Keefe, J. Placenavigation impaired in rats

with hippocampal lesions. Nature 297, 681–683 (1982).
3. Scoville, W. B. & Milner, B. Loss of recent memory after bilateral hippocampal

lesions. J. Neurol. Neurosurg. Psychiatry 20, 11–21 (1957).
4. Olton, D. S. & Samuelson, R. J. Remembrance of places past: spatial memory in

rats. J. Exp. Psychol. Anim. Behav. Process. 2, 97–116 (1976).
5. Levy, W. B. A sequence predicting CA3 is a flexible associator that learns and uses

context to solve hippocampal-like tasks. Hippocampus 6, 579–590 (1996).
6. Redish, A. D. & Touretzky, D. S. The role of the hippocampus in solving the Morris

water maze. Neural Comput. 10, 73–111 (1998).
7. Koene, R. A., Gorchetchnikov, A., Cannon, R. C. & Hasselmo, M. E. Modeling goal-

directed spatial navigation in the rat based on physiological data from the
hippocampal formation. Neural Netw. 16, 577–584 (2003).

8. Foster, D. J. & Knierim, J. J. Sequence learning and the role of the hippocampus in
rodent navigation. Curr. Opin. Neurobiol. 22, 294–300 (2012).

9. Hok, V. et al. Goal-related activity in hippocampal place cells. J. Neurosci. 27,
472–482 (2007).

10. Wood, E. R., Dudchenko, P. A., Robitsek, R. J. & Eichenbaum, H. Hippocampal
neurons encode information about different types ofmemory episodes occurring
in the same location. Neuron 27, 623–633 (2000).

11. Ferbinteanu, J. & Shapiro, M. L. Prospective and retrospective memory coding in
the hippocampus. Neuron 40, 1227–1239 (2003).

12. Wilson, M. A. & McNaughton, B. L. Dynamics of the hippocampal ensemble code
for space. Science 261, 1055–1058 (1993).

13. O’Keefe, J.&Recce,M. L.Phase relationshipbetweenhippocampalplaceunits and
the EEG theta rhythm. Hippocampus 3, 317–330 (1993).

14. Muller, R. U. & Kubie, J. L. The firing of hippocampal place cells predicts the future
position of freely moving rats. J. Neurosci. 9, 4101–4110 (1989).

15. Skaggs, W. E., McNaughton, B. L., Wilson, M. A. & Barnes, C. A. Theta phase
precession in hippocampal neuronal populations and the compression of
temporal sequences. Hippocampus 6, 149–172 (1996).

 T
H

** 

9
8
9
 

0.08 

0 5
8
8
 

 N
H

H
o

m
e

re
p

re
s
e
n
ta

ti
o

n
 

25 

0 

Future path 
does not go Home 

Angular displacement 
0 

C
ro

s
s
in

g
s
 (
%

) 

25 

0 

Away-events 
past path 

Angular displacement 
0 

N
H

-P
P

 
N

H
-F

P
 

*** 

9
8
9
 

0 9
8
9
 C

ro
s
s
in

g
s
 (
%

) 

Angular displacement 

25 

0 
0 

Future path

goes to Home
a 

25 

0 

Away-events
future path

Angular displacement 
0 

Away-events 

First 19 trials 

f 

A
b

s
. 

d
is

p
la

c
e
m

e
n
t 

A
b

s
. 

D
is

p
la

c
e
m

e
n
t 

A
1
9
-P

P
 

A
1
9
-F

P
 

*** 

6
5
3
 

0 6
5
3
 

/2 

d e 

g 

T
H

-P
P

T
H

-F
P

*** 

5
8
8
 

0 5
8
8
 

π/2 π/2 

A
b

s
. 

d
is

p
la

c
e
m

e
n
t 

b c 

π–ππ–π

π–π π–π

Figure 6 | Goal switching and flexibility in trajectory events. a, b, As Fig. 5c
(left) and 5d, for away-events preceding behaviour ending at or crossing
Home (future path, TH-FP; past path, TH-PP). c, d, As a, b, for away-events
preceding behaviours directed elsewhere (future path, NH-FP; past path,
NH-PP). e, Mean posterior probability representation of Home for same
division of away-events (to Home, TH; not to Home, NH). f, g, As Fig. 5c, d,
for away-events from the first 19 trials of each session (future path, A19-FP;
past path, A19-PP). P-values (Wilcoxon rank-sum test): 4.963 10222 (b);
1.123 10213 (d); 9.603 1023 (e);

ARTICLE RESEARCH

0 0 M O N T H 2 0 1 3 | V O L 0 0 0 | N A T U R E | 5

Macmillan Publishers Limited. All rights reserved©2013

www.nature.com/doifinder/10.1038/nature12112
www.nature.com/doifinder/10.1038/nature12112


16. Jensen, O. & Lisman, J. E. Hippocampal CA3 region predictsmemory sequences:
accounting for the phase precession of place cells. Learn. Mem.3,279–287 (1996).

17. Foster, D. J. & Wilson, M. A. Hippocampal theta sequences. Hippocampus 17,
1093–1099 (2007).

18. Johnson, A. & Redish, A. D. Neural ensembles in CA3 transiently encode paths
forward of the animal at a decision point. J. Neurosci. 27, 12176–12189 (2007).

19. Johnson, A., van der Meer, M. A. & Redish, A. D. Integrating hippocampus and
striatum in decision-making. Curr. Opin. Neurobiol. 17, 692–697 (2007).

20. Louie, K. & Wilson, M. A. Temporally structured replay of awake hippocampal
ensemble activity during rapid eyemovement sleep.Neuron29,145–156 (2001).

21. Lee, A. K. & Wilson, M. A. Memory of sequential experience in the hippocampus
during slow wave sleep. Neuron 36, 1183–1194 (2002).

22. Foster, D. J. & Wilson, M. A. Reverse replay of behavioural sequences in
hippocampal place cells during the awake state. Nature 440, 680–683 (2006).

23. Davidson, T. J., Kloosterman, F. & Wilson, M. A. Hippocampal replay of extended
experience. Neuron 63, 497–507 (2009).

24. Diba, K. & Buzsaki, G. Forward and reverse hippocampal place-cell sequences
during ripples. Nature Neurosci. 10, 1241–1242 (2007).

25. Karlsson, M. P. & Frank, L. M. Awake replay of remote experiences in the
hippocampus. Nature Neurosci. 12, 913–918 (2009).

26. Gupta, A. S., van der Meer, M. A., Touretzky, D. S. & Redish, A. D. Hippocampal
replay is not a simple function of experience. Neuron 65, 695–705 (2010).

27. Steele, R. J. & Morris, R. G. Delay-dependent impairment of a matching-to-place
task with chronic and intrahippocampal infusion of the NMDA-antagonist D-AP5.
Hippocampus 9, 118–136 (1999).

28. Olypher, A. V., Lansky, P. & Fenton, A. A. Properties of the extra-positional signal in
hippocampal place cell discharge derived from the overdispersion in location-
specific firing. Neuroscience 111, 553–566 (2002).

29. Kentros, C. G., Agnihotri, N. T., Streater, S., Hawkins, R. D. & Kandel, E. R. Increased
attention to spatial context increases bothplace field stability and spatialmemory.
Neuron 42, 283–295 (2004).

30. Eichenbaum, H., Otto, T. & Cohen, N. J. The hippocampus–what does it do? Behav.
Neural Biol. 57, 2–36 (1992).

31. Foster, D. J., Morris, R. G. & Dayan, P. A model of hippocampally dependent
navigation, using the temporal difference learning rule. Hippocampus 10, 1–16
(2000).

32. Schmitzer-Torbert, N., Jackson, J., Henze, D., Harris, K. & Redish, A. D. Quantitative
measures of cluster quality for use in extracellular recordings. Neuroscience 131,
1–11 (2005).

33. Csicsvari, J., O’Neill, J., Allen, K. & Senior, T. Place-selective firing contributes to the
reverse-order reactivationofCA1pyramidal cells during sharpwaves inopen-field
exploration. Eur. J. Neurosci. 26, 704–716 (2007).

34. Girardeau, G., Benchenane, K., Wiener, S. I., Buzsaki, G. & Zugaro, M. B. Selective
suppression of hippocampal ripples impairs spatialmemory.NatureNeurosci.12,
1222–1223 (2009).

35. Ego-Stengel, V. & Wilson, M. A. Disruption of ripple-associated hippocampal
activity during rest impairs spatial learning in the rat. Hippocampus 20, 1–10
(2010).

36. Jadhav, S. P., Kemere, C., German, P. W. & Frank, L. M. Awake hippocampal sharp-
wave ripples support spatial memory. Science 336, 1454–1458 (2012).

37. Jackson, J. & Redish, A. D. Network dynamics of hippocampal cell-assemblies
resemblemultiple spatialmapswithin single tasks.Hippocampus17, 1209–1229
(2007).
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METHODS
Behaviour and data acquisition. All procedures were approved by the Johns
Hopkins University Animal Care and Use Committee and followed US National
Institutes of Health animal use guidelines. Behavioural training and in-session
recording took place from late afternoon to early evening (rats were housed on a
standard, non-inverted, 12-h light cycle).

Adult male Long-Evans rats (10–20weeks old, 450–550 g) were handled daily
and food-restricted to 85–90% of their free-feeding weight and then trained to
traverse a 1.8-m linear track to receive a liquid chocolate-flavoured reward (200ml,
Carnation) at either end. Rats were trained for the briefer of 20min or 20 complete
laps once per day for at least 10 consecutive days. Linear track training occurred in
a room separate and visually distinct from the recording room.

After a rat achieved criterion performance on the linear track (three con-
secutive days with 20 laps in under 20min), training on the open field was
initiated in a 2m3 2m black arena with 30-cm-high walls and 36 identical,
evenly spaced, 1.5-cm-diameter, 3-mm-deep conical reward delivery wells
embedded into the floor such that the rim of each well was level with the floor
(Fig. 1a). Each well was attached to a tubing system that ran beneath the environ-
ment, which allowed any well to be independently and soundlessly filled or
emptied by the experimenter via a hand-held syringe. During the filling of a well,
no obvious visible or audible cue was available to the rat signifying that a well had
been filled. When active, wells were filled with 300ml of chocolate milk. Open-
field training took place in the recording room with all room and environmental
cues positioned as they would be during the eventual in-session recording.

Open-field training proceeded in four stages. First, each rat underwent one 30-
min-long session per day for 2 days in which every available well was filled (and
immediately refilled following consumption) and food crumbs were scattered
throughout the arena to encourage initial exploration. This was the only stage
of training in which non-liquid food was present in the arena. In the second stage
of training (3 days), each 30-min-long session beganwith four filled wells, one per
quadrant of the arena. When the reward in one quadrant was consumed, another
random well in that quadrant was filled, but only after the rat had left the quad-
rant and consumed reward from another quadrant. In the third stage (3 days), the
final experimental procedure (see below)was begun except that on the interleaved
Random trials, two randomly selected wells were filled to make the task easier to
complete.When one Randomwell was discovered and consumed, the secondwas
immediately emptied and the Home well was filled. Finally, on the fourth stage,
the rats were trained on the final experimental protocol for the lesser of thirty
minutes or for 30 trials until they reached criterion performance (30 trials in less
than 30min for three consecutive days). Every session began by placing the rat in
one corner of the arena and then allowing free exploration.

In the final experimental protocol, the Home well was initially filled and was
the only filled well in the arena at the start of the session. Once the rat discovered
and consumed the Home well reward, a randomly selected well was filled. Only
after the rat discovered and consumed the Random well reward was the Home
well again filled. A trial consisted of the rat leaving theHome location, discovering
and consuming the reward at a Random well and then returning to the Home
location and consuming the reward there. At no point in the trainingwere the rats
provided with any cue informing them when the Home or a Random well was
filled (filling occurred during or immediately after consumption at the prior well).
Instead, the rats learned to return to the Home well location without cue after
consuming the reward at a filled Random well and to begin searching for a
Random well immediately after consuming the reward at Home. The Home well
location changed every session, but was constant throughout the session. The
location of the Home well on the recording days had never previously been
experienced by the rats as a Home well location, although they had sporadically
received reward in those locations as Random wells in previous sessions.

After a rat achieved criterion performance on the task, it was surgically
implanted with amicrodrive array (25–30 g) containing 40 independently adjust-
able, gold-plated tetrodes aimed at area CA1 of dorsal hippocampus (20 tetrodes
in each hemisphere; 4.00mm posterior and 2.85mm lateral to bregma).
Following surgical implantation, tetrodes were slowly lowered into the CA1
pyramidal layer over the course of 7–10 days. Final tetrode placement and unit
recording were as previously described22. Each tetrode consisted of a twisted
bundle of four 17.8mm platinum/10% iridium wires (Neuralynx), and each wire
was electroplated with gold to an impedance of,150MV before surgery. A bone
screw firmly attached to the skull served as ground. During the first 4 or 5 days
following implantation, the rat was not re-exposed to the experimental arena.
After this recovery time, while tetrodes were still being advanced to the hip-
pocampus, the rat was trained once per day on the final experimental protocol
for the lesser of 30min or 30 trials to familiarize it with navigating the arena with
the microdrive and attached wires.

All data were collected using a Neuralynx data acquisition system and an
overhead video system that recorded continuously at 60Hz. The rat’s position
and head direction were determined via two distinctly coloured, head-mounted
LEDs. Analogue neural signals were digitized at 32,556Hz. Spike threshold cross-
ings (50 mV) were recorded at 32,556Hz. Continuous local field potential data
were digitally filtered between 0.1 and 500Hz and recorded at 3,255.6Hz. The
beginning and end of reward consumption were manually determined from the
captured video data.

Cluster analysis. Individual units were identified by manual clustering based on
spike waveform peak amplitudes using custom software (xclust2, M. A. Wilson).
Only well-isolated units were included in the analysis. Modified Lratio values

32

were calculated for each cluster to confirm cluster quality using the peak ampli-
tude of each waveform as the feature set. Briefly, the Lratio value of cluster C is
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where ns is the total number of spikes recorded on the tetrode throughout the

experiment, i 6[C is the set of spikeswhich are notmembers of clusterC,D2
i,C is the
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df
is the cumulative

distribution function of the x2 distribution with df5 4. We modified the original
equation for Lratio to allow for comparison between tetrodes with different num-
bers of spikes and between experiments of varying time spans. As the original
equation is a sum, even well-isolated clusters will necessarily have larger Lratio
values for particularly long experimental sessions or if they occur on tetrodes with
large numbers of spikes. Thus, we normalized the sum by the total number of
spikes recorded on the tetrode.

Clustered units that may correspond to putative inhibitory neurons were
excluded on the basis of spike width and mean firing rate. To ensure accurate
decoding of hippocampal events, only rats in which we obtained at least 100
simultaneously recorded place units were used for subsequent analysis.

Decoding spatial location. Position was binned (2 cm) and position tuning
curves (place fields) were calculated as the smoothed (Gaussian kernel, standard
deviation of 4 cm) histogram of firing activity normalized by the time spent per
bin. Only periods of time when the rat wasmoving faster than 5 cm s21were used
to determine place fields. Units were considered to have a place field if the unit
was classified as excitatory and the peak of the tuning curve was .1Hz.

A memoryless probability-based decoding algorithm23was used to estimate the
rat’s position throughout the experiment based on the unit position tuning curves
and the spike trains. Briefly, the probability of the animal’s position (pos) acrossM
total position bins given a time window (t) containing neural spiking (spikes) is
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and fi(pos) is the position tuning curve of the i-th unit, assuming independent rates
and Poisson firing statistics for all N units and a uniform prior over position. A
time window of 250ms was used to estimate the rat’s position on a behavioural
timescale. A time window of 20ms was used to estimate position during candi-
date population events.

Sequential event analysis.Ahistogram (1-ms bins) of all clustered units for times
when the rat’s velocity was less than 5 cm s21 was smoothed (Gaussian kernel,
standard deviation of 10ms). Population events were defined as peaks in the
smoothed histogram greater than the mean1 3 standard deviations. Start and
end boundaries for each population event were defined as the points where the
smoothed histogram crossed the mean. To prevent estimation artefacts, the time
window boundaries for each candidate event were adjusted inward (if necessary)
to ensure that the first and last estimation bins contained a minimum of 2 spikes.
Candidate events in which fewer than 10% of the clustered units participated or
with boundaries less than 50ms or greater than 2,000ms apart were excluded
from analysis.

For each candidate event, the rat’s position was estimated using the probabil-
ity-based decoding algorithm described above with a 20-ms time window,
advanced in 5-ms increments throughout the putative event. Following position
estimation, each candidate replay event was truncated to the longest sequence of
time frames with peak posterior probability less than 20 cm from that of the
previous frame. Candidate events with fewer than 10 steps in the final sequence
or a start-to-end distance less than 40 cm were eliminated from future ana-
lysis. The remaining candidate events were categorized as ‘trajectory events’.
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For trajectory event quantification, the posterior probabilities for every time
frame of each trajectory event were summed across time. For comparison
between away-events and home-events, these sums were normalized for the
number of time-frames in each event. For all analyses requiring per-well quan-
tification, the arena was subdivided by drawing an imaginary line equidistant
between each well, resulting in 36 regions, each encompassing an approximately
333 33 cm area (Supplementary Fig. 4). Quantification for all event trajectory
analysis in which the rat’s location was not specifically examined did not include
the area within 15 cm of the rat’s physical location at the time of the event to
avoid initiation bias.
For all trajectory events, a Monte-Carlo P-value was calculated using two

shuffle methods: randomly shuffling cell identity and randomly shuffling each
cell’s place field in both the x and y dimensions. The P-value was calculated as
(n1 1)/(r1 1), where n is the number of shuffles that met the criteria to be
classified as a trajectory event and r is the total number of shuffles. 5,000 shuffles
were used for both methods. All candidate events that met our criteria to be
classified as trajectory events had a P-value less than 0.02 for both shufflemethods.
To quantify the precise spatial correlation between trajectory events and the

rat’s future/past path, each trajectory event was transformed into a vector of the
peak posterior probabilities for each time frame of the event. Using the rat’s
physical location at the time of the event as the centre, concentric rings were
drawn around the rat with radial increments of 2 cm, starting with a radius of
15 cm. For each ring, the first crossing for the event vector and the rat’s future or
past path were determined and the angular displacement (theminor arc along the

ring’s circumference, normalized by the ring’s radius) was calculated between
these points. This value was compared to that obtained from 2,000 randomly
selected events (chosen from across all sessions) which were spatially relocated so
that the rat’s physical location at the time of the random event matched the rat’s
physical location at the time of the trajectory event to generate a Monte-Carlo
P-value.
Local field potential analysis. For each tetrode, one representative electrode was
selected and the local field potential signal was analysed. To examine SWRs, the
local field potential was band-pass filtered between 150 and 250Hz, and the
absolute value of the Hilbert transform of this filtered signal was then smoothed
(Gaussian kernel, s.d.5 12.5ms). This processed signal was averaged across all
tetrodes and ripple events were identified as local peaks with an amplitude greater
than 3 s.d. above themean, using only periodswhen the rat’s velocitywas less than
5 cm s21. The start and end boundaries for each event were defined as the point
when the signal crossed the mean. For theta-band power analysis, the raw local
field potential trace was band-pass filtered between 4 and 12Hz and the absolute
value of the Hilbert transform of the filtered signal was calculated. The z-score
theta power for each electrode was determined for every time point of the 60Hz
position data and for 100–200ms before and after each identified trajectory event.
For power spectral density analysis, 100ms non-overlapping temporal bins were
used to compute the spectrograms. A z-score was calculated for each frequency
band across the entire behavioural session. The SWR or trajectory event triggered
spectrograms use the peak of the ripple power or the peak of the spike density,
respectively, as time zero.
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