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The hippocampus and prefrontal cortex (PFC) have long been known to play a central

role in various behavioral and cognitive functions. More recently, electrophysiological and

functional imaging studies have begun to examine how interactions between the two

structures contribute to behavior during various tasks. At the same time, it has become

clear that hippocampal-prefrontal interactions are disrupted in psychiatric disease and

may contribute to their pathophysiology. These impairments have most frequently been

observed in schizophrenia, a disease that has long been associated with hippocampal

and prefrontal dysfunction. Studies in animal models of the illness have also begun to

relate disruptions in hippocampal-prefrontal interactions to the various risk factors and

pathophysiological mechanisms of the illness. The goal of this review is to summarize

what is known about the role of hippocampal-prefrontal interactions in normal brain

function and compare how these interactions are disrupted in schizophrenia patients

and animal models of the disease. Outstanding questions for future research on the role

of hippocampal-prefrontal interactions in both healthy brain function and disease states

are also discussed.

Keywords: hippocampus, prefrontal cortex, synchrony, functional connectivity, schizophrenia, animal models of

mental disorders

INTRODUCTION

The brain is organized into multiple areas with relatively specialized functions yet in order to
generate adaptive behavior, neural activity must be coordinated and integrated across distributed
brain regions (Varela et al., 2001; Bressler and Menon, 2010). The last decade has witnessed
important advances in our understanding of how such inter-areal interactions underlie various
behaviors and cognitive functions. Studies in both animals and human subjects have revealed
correlations in neural activity between brain regions that often change dynamically with
various task demands (Gregoriou et al., 2009; Harris and Gordon, 2015). Complementing these
neural activity-based measures are anatomical methods that allow the long-range projections
that might support such inter-areal interactions to be examined in the intact brain (Assaf
and Pasternak, 2008; Chung and Deisseroth, 2013). Optogenetic tools have also been used to
manipulate long-range projections and test their contributions to inter-areal interactions and
behavior (Tye and Deisseroth, 2012). Studies using the above methods have greatly advanced
our understanding of how the brain operates as a large-scale network to support diverse
sensory, cognitive and behavioral functions. At the same time, it has also become clear that a
breakdown in inter-regional coordination is likely an important pathophysiological mechanism
in various psychiatric diseases such as schizophrenia and autism, as well as in neurological disorders
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such as Parkinson’s and Alzheimer’s disease (Uhlhaas and Singer,
2006, 2012; Pettersson-Yeo et al., 2011). The detailed neural
circuit disruptions underlying these interaction abnormalities
and how they relate to the various risk factors for psychiatric
disease have also begun to be investigated in animal models
of psychiatric illness (Sigurdsson, 2015; Spellman and Gordon,
2015).

In recent years, interactions between the hippocampus and
prefrontal cortex (PFC) have emerged from animal studies
as playing a key role in various cognitive and behavioral
functions (Benchenane et al., 2011; Colgin, 2011; Harris
and Gordon, 2015). Disruptions in hippocampal-prefrontal
interactions have also been observed in psychiatric disease,
most notably schizophrenia (Tost et al., 2012; Godsil et al.,
2013) and have also been reported in animal models of
the illness (Sigurdsson, 2015). The goal of this review is to
summarize and discuss these findings in order to provide an
overview of the role of hippocampal-prefrontal interactions in
health and disease. We begin by discussing the anatomical and
functional organization of the hippocampus and PFC and their
anatomical interconnections. Because the studies discussed in
this review encompass rodents and primates, the comparative
aspects of the hippocampal-prefrontal circuit are also discussed.
The methods used to measure interactions between the
two structures are also briefly reviewed. We then review
findings from studies that have related hippocampal-prefrontal
interactions to specific cognitive functions in rodents, primates
and humans. The results of studies examining hippocampal-
prefrontal interactions in schizophrenia patients and animal
models of the illness then follows. Finally, we conclude
by discussing emerging themes in studies of hippocampal-
prefrontal interactions and outline outstanding questions for
future research.

ANATOMICAL ORGANIZATION OF THE
HIPPOCAMPUS, PREFRONTAL CORTEX
AND THEIR INTERCONNECTIONS

The hippocampus is a medial temporal lobe structure found
in all mammalian species that plays a key role in spatial
navigation as well as several forms of learning and memory
(Buzsáki andMoser, 2013; Eichenbaum and Cohen, 2014; Gruart
et al., 2015). A major source of its inputs comes from the
entorhinal cortex, which links the hippocampus with the rest
of the neocortex (Moser et al., 2010). The hippocampus is
organized into several subfields, including the dentate gyrus
(DG) and cornum ammonis areas 1 (CA1) and three (CA3). It
is also organized along a longitudinal axis which in primates,
including humans, extends from an anterior to a posterior pole.
In rodents, the longitudinal axis extends between the dorsal and
ventral poles of the hippocampus which are homologous with
the posterior and anterior poles, respectively, in the primate
(Fanselow and Dong, 2010; Strange et al., 2014). There is
compelling evidence that a gradient exists along the longitudinal
axis with respect to gene expression and anatomical connectivity,
as well as physiological and behavioral functions (Fanselow and
Dong, 2010; Strange et al., 2014). For example, the activity

of many hippocampal neurons in rodents (so-called ‘‘place
cells’’) represent the animal’s current location in its environment
and the precision of their spatial representation increases as
one moves from the ventral to the dorsal pole (Kjelstrup
et al., 2008). Lesion studies also suggest that the functions
classically associated with the hippocampus—the processing
of spatial information and memory—are largely subserved
by its dorsal subregion whereas the ventral hippocampus
(vHPC) is more involved in emotional and motivational
behaviors such as anxiety (Bannerman et al., 2004). This
functional dissociation is also reflected in the unique anatomical
connections of the dorsal and ventral poles to both afferent and
efferent structures (Fanselow and Dong, 2010; Strange et al.,
2014).

In contrast to the hippocampus, the PFC is a more
phylogenetically divergent structure. It is most prominent in
primates, especially humans, and is critical for higher-order
cognitive processes and emotional regulation. The primate
PFC is organized into several subregions but can be broadly
separated into a dorsolateral division that is involved in cognitive
functions such as executive control, attention and working
memory, and a ventromedial (or orbitomedial) division more
involved in emotional and motivational regulation (Koenigs
and Grafman, 2009; Fuster, 2015). In rodents the PFC can be
defined, like in primates, as the cortical region receiving its
main thalamic input from the mediodorsal thalamus (Uylings
and van Eden, 1990). The rodent PFC is typically divided into
medial, lateral and ventral subdivisions, each of which in turn
consist of several subregions (Uylings and van Eden, 1990;
Heidbreder and Groenewegen, 2003; Hoover and Vertes, 2007).
Lesion studies have shown the rodent medial PFC (mPFC) to
be involved in some of the cognitive functions attributed to
the primate PFC including working memory, attentional set-
shifting and the regulation of emotional responses (Vertes, 2006;
Kesner and Churchwell, 2011; Euston et al., 2012). There is
also evidence supporting a more general distinction between
the dorsal mPFC, which is involved in cognitive functions,
and the ventral mPFC which is more involved in emotional
behaviors (Heidbreder and Groenewegen, 2003). The majority
of rodent studies that will be discussed below have focused on
the dorsal mPFC. Based on the functional roles of different
mPFC subdivisions (as well as their anatomical connections) it
has been suggested that the rodent dorsal mPFC has features
of dorsolateral primate PFC whereas the ventral mPFC is more
similar to the primate orbitomedial PFC (Uylings and van
Eden, 1990; Condé et al., 1995; Hoover and Vertes, 2007;
Churchwell et al., 2010). Nevertheless, because of the unique
phylogenetic development of the PFC, it is difficult to draw
exact homologies between its subregions in rodents and primates
(Preuss, 1995).

Several direct and indirect anatomical pathways link the
hippocampus and the PFC (Figure 1). In both rodents and
primates, the PFC receives monosynaptic projections from the
hippocampus (Barbas and Blatt, 1995; Condé et al., 1995; Hoover
and Vertes, 2007). These projections originate almost exclusively
in the vHPC and primarily target the mPFC, with some
evidence suggesting stronger projections to ventral subregions
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FIGURE 1 | Direct and indirect connections between the prefrontal

cortex (PFC) and hippocampus and their functional roles. Schematic of

the direct and some of the indirect connections between the hippocampus

and PFC. Arrows indicate direction of the projections. Functional roles of these

projections are indicated in the text next to the arrows; for details and

supporting references, see main text. AC, anterior cingulate cortex; dHPC,

dorsal hippocampus; IL, infralimbic cortex; mPFC, medial prefrontal cortex;

NR, nucleus reuniens; PL, prelimbic cortex; vHPC, ventral hippocampus.

(Rosene and Van Hoesen, 1977; Barbas and Blatt, 1995; Condé
et al., 1995; Hoover and Vertes, 2007). Electrically stimulating
the vHPC elicits short-latency excitatory synaptic responses in
the mPFC, indicative of a glutamatergic projection (Thierry
et al., 2000). A monosynaptic projection from the PFC to the
dorsal hippocampus (dHPC) has also been identified recently
in the mouse (Rajasethupathy et al., 2015). This projection
originates in the anterior cingulate (AC) subdivision of themPFC
and terminates in the CA1 and CA3 subfields of the dHPC.
In addition to these monosynaptic connections, bidirectional
interactions between the two structures could also be achieved via
several indirect routes. One possible relay is the nucleus reuniens
(NR) of the thalamus which is reciprocally connected to both the
dorsal and vHPC as well as the mPFC (Vertes, 2006; Cassel et al.,
2013). The lateral EC is also reciprocally connected with the PFC
as well as the hippocampus (Moser et al., 2010).

MEASURING
HIPPOCAMPAL-PREFRONTAL
INTERACTIONS

The anatomical connections between the hippocampus and the
PFC, reviewed in the previous section, enable the two structures
to interact and influence each other. Various approaches have
been used to examine hippocampal-prefrontal interactions in the
studies that will be discussed below and are worth reviewing
briefly before proceeding (also see Table 1). Generally speaking,
interactions between brain regions are measured by asking
whether fluctuations in their neuronal activity are correlated
in time. In animal studies, such correlations are typically

TABLE 1 | Overview of methods used to measure interactions between

brain regions.

Method Definition

Cell cross-correlations Measures the degree to which neurons in two

structures fire spikes at the same time

Phase locking Measures how the firing of neurons in one region

is modulated by the phase of LFP oscillations in

another region

Coherence Measures whether the phase relationship of LFP

oscillations in two structures is consistent over

time

Power correlations Measures whether fluctuations in the power of

LFP oscillations in two structures are correlated

over time

Functional connectivity Measures whether fluctuations in the fMRI BOLD

signal in two brain regions are correlated over

time

derived from electrophysiological recordings and are referred
to as measures of ‘‘neural synchrony’’. The most direct method
for measuring inter-areal synchrony is to compute the cross-
correlation of neuronal spike trains in two regions. This approach
has revealed that hippocampal and prefrontal neurons often
spike within a short time (∼100 ms) of each other (Jones
and Wilson, 2005a; Siapas et al., 2005). Furthermore, spikes
in prefrontal neurons can lead or lag behind spikes in the
hippocampus, revealing the directionality of influence between
the two regions (Siapas et al., 2005; Wierzynski et al., 2009).
Many prefrontal neurons are also modulated by the phase
of hippocampal theta oscillations, which are rhythmic 4–12
Hz fluctuations in the local field potential (LFP) that are
reliably observed in the hippocampus of behaving rodents
(Buzsáki, 2002). Prefrontal neurons tend to fire more at
certain phases of the theta oscillation, a phenomenon known
as ‘‘phase locking’’ (Hyman et al., 2005; Siapas et al., 2005;
Sigurdsson et al., 2010). Prefrontal neurons that are phase-
locked to hippocampal theta oscillations also tend to show
cross-correlations with hippocampal neurons, suggesting that
the two measures reflect the same underlying phenomenon
(Siapas et al., 2005). Interestingly, prefrontal neurons can be
phase-locked more strongly to either past or future phases
of hippocampal theta oscillations although on average phase-
locking to the past is stronger (Jones and Wilson, 2005a; Siapas
et al., 2005; Sigurdsson et al., 2010), perhaps reflecting the
direct monosynaptic influence of the hippocampus on the PFC.
Finally, hippocampal-prefrontal synchrony can be observed in
the ‘‘coherence’’ of LFPs recorded in the two structures, which
measures the consistency of their phase differences over time
(Jones and Wilson, 2005a; Sigurdsson et al., 2010), as well
as in correlated fluctuations in their amplitude, or ‘‘power
correlations’’ (Adhikari et al., 2010). LFPs reflect, in large
part, the synaptic currents (driven by both local and long-
range inputs) from neurons in the vicinity of the recording
electrode (Buzsáki et al., 2012). However, LFPs can also be
volume conducted from regions that are distant to the electrode.
This is an important caveat of measures of synchrony based
solely on LFPs, which should ideally be complemented by
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measures based on neuronal spiking (Buzsáki et al., 2012).
Measures of phase-locking, coherence and power correlations
can be obtained for different frequency bands. Because of the
prominence of theta (4–12 Hz) oscillations in the hippocampus,
hippocampal-prefrontal synchrony is frequently reported in this
range, but can also be seen at other frequencies, such as beta
(12–30 Hz) and gamma (30–80 Hz). It is worth noting that
although most studies have examined synchrony between the
PFC and the dHPC, synchrony with the vHPC is stronger
(Adhikari et al., 2010; O’Neill et al., 2013), likely reflecting
the monosynaptic prefrontal projections from this hippocampal
subregion.

Although hippocampal-prefrontal synchrony has mostly been
examined in rodents, it can also be observed in non-human
primates (Brincat and Miller, 2015) and humans (Axmacher
et al., 2008). However, for methodological reasons a more
common approach in human studies is to measure hippocampal-
prefrontal interactions using the blood oxygen-level-dependent
(BOLD) signal derived from functional magnetic resonance
imaging (fMRI). The most straightforward approach is to
correlate fluctuations in the BOLD signal across brain regions,
a measure commonly known as ‘‘functional connectivity’’.
More advanced analytical methods can also measure ‘‘effective
connectivity’’, which quantifies the causal influence of one
area over another, as well as how connectivity varies with
task variables (Fornito and Bullmore, 2012; Buckner et al.,
2013). Connectivity measures can take on both positive values
(i.e., reflecting positive correlations in the BOLD signal) as
well as negative values (reflecting anti-correlations). In subjects
at rest, positive connectivity is frequently observed among
anatomically connected regions and is thought to reflect the
‘‘intrinsic’’ connectivity of the brain (Buckner et al., 2013).
For example, the hippocampus shows positive functional
connectivity with the mPFC in humans (Vincent et al., 2006),
consistent with the anatomy. In contrast, negative connectivity
is thought to occur between functionally antagonistic brain
regions, although it may also reflect the particular analysis
methods used (Buckner et al., 2013). It is worth emphasizing
that functional connectivity measures neuronal correlations at
a vastly different timescale than electrophysiological measures
of neural synchrony. Because of the slow time course of
the BOLD signal, functional connectivity can only quantify
correlations occurring at frequencies below 0.1 Hz (Fox and
Raichle, 2007) whereas electrophysiological recordings typically
measure synchrony at frequencies between 1 and 100 Hz.
This point is important to keep in mind when comparing
human and animal studies and one which we will return to
later.

THE ROLE OF
HIPPOCAMPAL-PREFRONTAL
INTERACTIONS IN COGNITION AND
BEHAVIOR

As reviewed in the previous section, electrophysiological studies
have revealed that neural activity in the hippocampus and

PFC is often correlated or synchronized in time, indicative of
interactions between the two structures. What is the functional
role of these interactions? The answer to this question in part
lies in considering the individual functions of the hippocampus
and PFC and these are worth reviewing briefly, although a
comprehensive survey is beyond the scope of this review. As
mentioned previously, the hippocampus has primarily been
associated with spatial navigation as well as the formation and
storage of long-term memories (reviewed in Buzsáki and Moser,
2013; Eichenbaum and Cohen, 2014; Gruart et al., 2015). It has
also been suggested that the spatial and mnemonic functions are
manifestations of a more general role of the hippocampus in
representing the relationship between objects and events in both
space and time (Eichenbaum and Cohen, 2014). In addition to
these cognitive functions of the hippocampus, its ventral pole
plays a role in emotional behaviors such as fear and anxiety
(reviewed in Bannerman et al., 2004). The PFC has classically
been viewed as being involved in ‘‘executive’’ functions such as
decision making, working memory and attentional set shifting
(Miller and Cohen, 2001; Kesner and Churchwell, 2011; Fuster,
2015). It is also important for long-term memories (Euston et al.,
2012) as well as the regulation of emotional responses (Öngür
and Price, 2000; Heidbreder and Groenewegen, 2003; Koenigs
and Grafman, 2009), in particular fear and anxiety (Tovote et al.,
2015).

Hippocampal-prefrontal interactions are likely to be
important during behaviors in which both structures are
involved and when their different functions need to be
coordinated. One example of such a behavior is spatial
working memory (SWM), which measures animals’ ability
to remember spatial locations in the short-term. In a typical
SWM task, animals must choose which arm of a maze to enter
during a ‘‘choice phase’’ based on their memory of which
arm they visited a short while ago during the ‘‘sample phase’’
(Dudchenko, 2004). Lesion studies have shown that SWM tasks
require the integrity of both the hippocampus and the PFC in
rodents (Yoon et al., 2008; Churchwell and Kesner, 2011; Kesner
and Churchwell, 2011) and a number of electrophysiological
studies have examined hippocampal-prefrontal interactions
during performance of such tasks. In a seminal study, Jones
and Wilson (2005a) recorded simultaneously from the two
structures in rats and observed increased hippocampal-
prefrontal synchrony in the choice phase (from phase-locking,
LFP coherence and cell pair cross-correlations) compared
to a task phase in which the overt behavior was the same
but no working memory was required (Figure 2A). The
increase in synchrony was restricted to the theta frequency
range and was absent when animals made a wrong choice,
further supporting its role in behavioral performance. These
findings were subsequently replicated and extended in several
studies (Hyman et al., 2010; Sigurdsson et al., 2010; O’Neill
et al., 2013; Spellman et al., 2015). Sigurdsson et al. (2010)
observed that hippocampal-prefrontal theta synchrony gradually
increased in mice during the learning of a SWM task in
parallel with improved behavioral performance, suggesting
that plasticity in this circuit might underlie task acquisition.
The increase in hippocampal-prefrontal synchrony during
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FIGURE 2 | Hippocampal-prefrontal interactions during spatial working memory (SWM). (A) Hippocampal-prefrontal synchrony during a SWM task. Left:

during “choice” trials, rats had to choose the arm on the same side as the one they left from (i.e., C1 when leaving from F1) whereas during “forced-turn” trials

animals were directed to enter one arm by closing off the other with a barrier. Working memory is therefore required in the center arm (dashed line) during choice

trials but not forced-turn trials. Simultaneous recordings from the dHPC and mPFC (middle) revealed stronger theta coherence between the two structures during

center arm runs in choice compared to forced-run trials (right). Adapted from Jones and Wilson (2005a). (B) Silencing ventral hippocampal inputs to the PFC impairs

SWM performance. Left: mice performed a SWM task where, in the “choice” phase, they had to choose the arm opposite to the one visited in the “sample” phase.

During task performance, ventral hippocampal inputs to the PFC were optogenetically silenced with light (middle) during different task phases. Performance in the

choice phase was only impaired when silencing was performed during the entire trial or in the sample phase (right). Adapted from Spellman et al. (2015).

(C) Hippocampal-prefrontal functional connectivity in human subjects during a virtual reality SWM task. Left: during the “training” phase subjects navigated a virtual

reality version of the radial arm maze and had to collect reward from six arms (yellow) while the other six were closed. During the “test” phase subjects had to enter

the previously closed arms to collect reward. Functional connectivity measured between the dorsolateral PFC and hippocampus (middle) was strongest during the

training phase (right). Adapted from Bähner et al. (2015).

the choice phase of a SWM task was also observed for both
the dorsal and ventral poles of the hippocampus (O’Neill
et al., 2013). In contrast to the increase in hippocampal-
prefrontal theta synchrony during the choice phase, Spellman
et al. (2015) observed increased gamma synchrony during
the sample phase, when animals presumably need to encode
to-be-remembered information. The increase in synchrony
was predictive of behavioral performance, suggesting that
hippocampal-prefrontal interactions in different frequency
bands might differentially support the encoding and retrieval or
maintenance of information in SWM tasks.

Hippocampal-prefrontal functional connectivity has
also been examined during working memory in human
subjects in several studies, all of which have focused on
connectivity with the dorsolateral PFC. In one notable
study subjects navigated a virtual reality version of the
radial arm maze, a SWM task that is commonly used in
rodents (Bähner et al., 2015; Figure 2C). The authors found

that hippocampal-prefrontal functional connectivity was
strongest during the sample phase of the task and that
the strength of connectivity correlated with SWM (but
not visual working memory) performance. The results of
Bähner et al. (2015) therefore suggest that the hippocampal-
prefrontal circuit is recruited during SWM in both rodents
and humans. Hippocampal-prefrontal interactions have
also been observed during working memory for other
stimulus domains. One noteworthy study recorded neural
activity directly from the hippocampus and PFC in a patient
undergoing surgery for epilepsy. The authors found that
during a facial working memory task, hippocampal-prefrontal
synchrony became stronger as the working memory load (the
number of to-be-remembered items) increased (Axmacher
et al., 2008). Other studies, using fMRI, have also observed
increased functional connectivity with increasing working
memory load, using either a working memory task for
faces (Rissman et al., 2008) or letters (Finn et al., 2010).
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However, decreases in hippocampal-prefrontal functional
connectivity have also been reported with increasing working
memory load (Meyer-Lindenberg et al., 2005; Axmacher et al.,
2008).

Whereas the studies discussed above provide correlative
evidence for the role of hippocampal-prefrontal interactions in
working memory they do not address their causal contribution
to behavioral performance. Early attempts to address this
question in rodents used so-called ‘‘disconnection lesions’’
in which the hippocampus is lesioned (or inactivated) in
one hemisphere and the PFC in the opposite hemisphere.
Because the connections between the two structures are
ipsilateral, such a lesion prevents communication between the
remaining hippocampus and PFC. Compared with lesions in
which both structures are lesioned on the same side (which
allows the two structures to communicate and typically does
not have a behavioral effect), disconnection lesions cause
impairments in SWM performance (Floresco et al., 1997;
Wang and Cai, 2006; Churchwell et al., 2010), consistent
with a role for hippocampal-prefrontal interactions in these
tasks. These findings have recently been extended and refined
using optogenetic methods. Spellman et al. (2015) expressed
the neuronal silencer Archaerhodopsin (Arch) in ventral
hippocampal neurons and used optical stimulation to silence
their synaptic terminals in the mPFC of mice performing
a SWM task. This approach made it possible to silence
hippocampal afferents with high temporal precision, allowing
the contribution of hippocampal-prefrontal interactions to
the different phases of the SWM task to be dissected.
Interestingly, silencing during the sample phase, but not
the choice phase, impaired working memory performance
(Figure 2B). Silencing of hippocampal-prefrontal inputs also
impaired gamma synchrony during the sample phase, as
well as the ability of prefrontal neurons to encode spatial
locations during this phase (Spellman et al., 2015). In contrast,
hippocampal-prefrontal theta synchrony, which was previously
shown to be enhanced during the ‘‘choice’’ phase of SWM tasks
(Jones and Wilson, 2005a; Sigurdsson et al., 2010) was not
affected by this manipulation.

It is important to note that hippocampal-prefrontal
interactions are also observed in spatial tasks that do not
explicitly require working memory. In the study of Benchenane
et al. (2010), rats had to switch between different rules in order to
obtain reward in a Y-maze. Hippocampal-prefrontal synchrony
was greatest at the choice point in the maze, in particular
following the acquisition of a new rule, and was accompanied
by the emergence of cell assemblies among PFC neurons.
Similarly, in rats performing a series of sequential decisions
in a ‘‘wagon-wheel’’ maze, coherence between hippocampus
and PFC (AC subdivision) in the low theta range (5–7 Hz)
was highest at choice points, which was also the time when
hippocampal and PFC neurons carried most information
about animals’ trajectories (Remondes and Wilson, 2013).
During a SWM task, hippocampal-prefrontal synchrony was
also highest as animals approached the decision point (Jones
and Wilson, 2005b). These results suggest that hippocampal-
prefrontal interactions may play a more general role in

decision-making based on spatial information (Yu and Frank,
2015).

Hippocampal-prefrontal interactions also likely play an
important role in long-term memory. A recent study in
monkeys performing a declarative memory task (paired-
associate learning) revealed hippocampal-prefrontal synchrony
that was specific to trial outcome: whereas theta synchrony
was seen following errors, synchrony in the alpha/beta range
(9–16 Hz) was observed following correct trials (Brincat
and Miller, 2015). Hippocampal-prefrontal interactions
during sleep have also been hypothesized to support the
consolidation of long-term memories and their transfer to the
neocortex. Consistent with this view, hippocampal-prefrontal
synchrony is observed in sleeping rats, with hippocampal
activity leading activity in the PFC (Wierzynski et al., 2009).
Patterns of neural activity in the PFC that occur during waking
experience are also ‘‘replayed’’ during subsequent sleep at
the same time as so-called ‘‘sharp-wave ripple’’ events in the
hippocampal LFP (Peyrache et al., 2009). Studies in both
humans and non-human primates furthermore suggest that
the PFC mediates the strategic retrieval of memories based
on behavioral context, by exerting top-down control over the
hippocampus and associated medial temporal lobe structures
(Simons and Spiers, 2003; Preston and Eichenbaum, 2013).
Further supporting this view is the recent identification of
a direct projection from PFC to the hippocampus which
optogenetic manipulations have shown are both necessary and
sufficient for retrieval of a spatial memory, as measured
using contextual fear responses (Rajasethupathy et al.,
2015).

In addition to the cognitive functions reviewed above,
hippocampal-prefrontal interactions are also involved in
motivational and emotional behaviors. Theta synchrony
between the PFC and the vHPC, but not the dHPC, increases
in anxiogenic environments such as the elevated plus maze
(Adhikari et al., 2010), consistent with the selective role of
the vHPC in emotional behavior (Bannerman et al., 2004).
Interestingly, ventral hippocampal-prefrontal synchrony is
strongest during periods of safety (i.e., in the closed arms
of the elevated plus maze), suggesting that it might play
a role in the inhibition of exploratory behavior. However,
another study found that silencing the vHPC increased the
firing of prefrontal pyramidal neurons (by decreasing firing
of interneurons) as well as the expression of conditioned fear
following extinction (Sotres-Bayon et al., 2012), suggesting
that the ventral hippocampal inputs to the PFC inhibit fear
responding. Furthermore, long-term synaptic plasticity at
ventral hippocampal inputs to the PFC is involved in the
extinction of fear responses (Hugues et al., 2006; Peters
et al., 2010). Finally, it is worth emphasizing that both the
hippocampus and PFC depend on their interactions with other
structures, notably the amygdala, to adaptively control fear
responses (Maren et al., 2013; Tovote et al., 2015). During
sleep following fear conditioning, synchrony between the
amygdala and both the hippocampus and PFC correlates
with the consolidation of fear memories (Popa et al., 2010).
Synchrony between the PFC and the amygdala is also associated
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with the successful inhibition of fear, suggesting top-down
control over fear responses (Lesting et al., 2013; Likhtik et al.,
2014).

HIPPOCAMPAL-PREFRONTAL
INTERACTIONS IN SCHIZOPHRENIA

The studies reviewed in the previous section demonstrate that
the hippocampal-prefrontal circuit plays an important role
in various cognitive and emotional functions. There is also
considerable evidence that this circuit is disrupted in psychiatric
illness (Godsil et al., 2013). Particular attention has been paid
to hippocampal-prefrontal interactions in schizophrenia, which
we will focus on in this review. Schizophrenia is a devastating
psychiatric illnesses that affects roughly one percent of the
population and typically emerges between 18 and 25 years
of age. The disease manifests itself in numerous symptoms
that are classified as either ‘‘positive’’ (hallucinations and
delusions, disorganized speech and behavior), or ‘‘negative’’
(flattened affect, social withdrawal, avolition and anhedonia).
In addition to positive and negative symptoms, patients
display cognitive deficits (including impaired attention, working
memory, executive function and verbal memory), which are
increasingly seen as critical for daily life functioning (Mesholam-
Gately et al., 2009). Although some of the symptoms (particularly
the positive ones) can be controlled with drug treatment there
exists no cure for schizophrenia and as a result the disease places
an enormous burden on patients, their families and society as
a whole. A detailed understanding of the causes of the illness is
therefore critical for the development of more effective treatment
strategies.

To date, a number of brain abnormalities have been
identified in schizophrenia patients, ranging from alterations in
the structure of neurons to abnormalities in neurotransmitter
signaling to disruptions in large-scale brain networks (Meyer-
Lindenberg, 2010; Volk and Lewis, 2010; Uhlhaas and Singer,
2012). The hippocampus is among one of the brain regions
whose dysfunction has consistently been implicated in the
pathophysiology of the disease. The volume of the hippocampus,
in particular its anterior pole, is decreased in patients and
it is also more metabolically active (Heckers and Konradi,
2010; Small et al., 2011). A recent study in individuals at risk
for developing schizophrenia found that the hypermetabolism
precedes the reduction in hippocampal volume and also predicts
transition to the illness (Schobel et al., 2013). Research in
animal models suggests that hyperactivity in the hippocampus
could be responsible for the increased dopamine release
observed in patients, which in turn is thought to cause
the positive symptoms of the disease (Lodge and Grace,
2009; Winton-Brown et al., 2014; Modinos et al., 2015).
fMRI studies have also revealed abnormal activation of the
hippocampus during memory tasks (Heckers and Konradi,
2010).

The PFC, in particular its dorsolateral subregion, underlies
many of the cognitive functions that are disrupted in
schizophrenia and has therefore been a major focus of research
into the pathophysiology of the disease (Minzenberg et al.,

2009; Barch and Ceaser, 2012). Postmortem studies have
revealed alterations in the structure and connectivity of both
excitatory and inhibitory neurons, including parvalbumin-
expressing (PV) interneurons, within the PFC of patients (Volk
and Lewis, 2010). Abnormalities in PV interneurons have
received a great deal of attention because of their role in the
generation of gamma oscillations (reviewed in Buzsáki and
Wang, 2012), which are disrupted in schizophrenia patients
and are believed to contribute to their cognitive impairments
(Uhlhaas and Singer, 2012). fMRI studies have also revealed
reduced activation of the dorsolateral PFC, among other brain
regions, during tasks requiring cognitive functions such as
working memory and executive control (Glahn et al., 2005;
Minzenberg et al., 2009; Barch and Ceaser, 2012). There is
also increasing evidence that functional connectivity between
the dorsolateral PFC and other brain regions, including the
hippocampus, is altered (Liang et al., 2006; Pettersson-Yeo et al.,
2011).

Early studies comparing the hippocampus and dorsolateral
PFC in schizophrenia patients suggested that connectivity
between them might be disrupted (Weinberger et al., 1992;
Fletcher, 1998; Heckers et al., 1998). Several subsequent studies
directly examined functional connectivity between the two
regions in patients performing working memory tasks. Meyer-
Lindenberg et al. (2005) found that the hippocampus and
dorsolateral PFC were uncoupled during an n-back working
memory task in healthy subjects but showed negative functional
connectivity (anticorrelation) in patients (Figure 3A). Similar
results were obtained by Rasetti et al. (2011), although here
hippocampal-prefrontal connectivity was positive in healthy
subjects but negative in patients. Henseler et al. (2010) also
observed reduced connectivity and found that patients with
weaker connectivity displayed worse performance on a verbal
working memory task as well as more severe disease symptoms.
A study measuring effective connectivity furthermore suggested
a decrease in the influence of the hippocampus over the PFC
in schizophrenia patients (Benetti et al., 2009). Reduced resting
state functional connectivity was also observed between the
hippocampus and the mPFC (Zhou et al., 2008). Notably, this
study also observed structural abnormalities in the fornix, the
fiber bundle that connects the hippocampus to neocortical areas,
including the PFC.

Hippocampal-prefrontal interactions have also been
examined in healthy individuals that are at increased risk
for developing schizophrenia based either on psychological
assessment or from having a sibling with the disease. These
studies have found hippocampal-prefrontal interactions in
at-risk individuals to be either similar to patients (Benetti
et al., 2009) or intermediate between patients and controls
(Rasetti et al., 2011; Figure 3B). The fact that siblings of
schizophrenia patients show abnormal hippocampal-prefrontal
interactions suggests a genetic contribution. Recently, genome-
wide association studies have identified several common
single-nucleotide polymorphisms (SNPs) that are associated
with increased risk for developing schizophrenia (Harrison,
2015) and the impact of these SNPs on brain function has now
been examined in several studies (Gurung and Prata, 2015).
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FIGURE 3 | Hippocampal-prefrontal interactions in schizophrenia patients and at-risk individuals. (A) Hippocampal-prefrontal functional connectivity during

working memory in schizophrenia. Bottom left: connectivity of the dorsolateral PFC with the hippocampus (cutout above) during performance of an n-back task.

During a control condition (0-back), connectivity was negative in controls and patients. However, during the working memory condition (2-back) connectivity was

absent in controls but persisted in patients. Voxels highlighted in blue indicate regions showing negative functional connectivity with the hippocampus. Adapted from

Meyer-Lindenberg et al. (2005). (B) Connectivity between the hippocampus and PFC in schizophrenia patients, their unaffected siblings and control subjects. Note

that the connectivity in siblings is intermediate between that of patients and controls. Adapted from Rasetti et al. (2011). (C) Hippocampal-prefrontal connectivity in

carriers of a schizophrenia risk allele in the gene ZNF804A. Connectivity between the right dorsolateral PFC and left hippocampus (gray bars) increases with the

number of risk allelels (A). Also shown is connectivity with the contralateral PFC (red bars). Adapted from Esslinger et al. (2009).

One well-studied SNP occurs in the ZNF804A gene that encodes
for a zinc finger protein which acts as a transcription factor,
although its exact function is not well understood (O’Donovan
et al., 2008). Several studies have found that hippocampal-
prefrontal functional connectivity during working memory
increases with the number of ZNF804A risk alleles carried by an
individual (Figure 3C; Esslinger et al., 2009; Rasetti et al., 2011;
Paulus et al., 2013; Cousijn et al., 2015). This effect, however,
appears to be state-dependent since it is not seen during other
tasks (Esslinger et al., 2011). Interestingly, theta oscillations,
which are important for hippocampal-prefrontal synchrony
(Colgin, 2011), are also decreased in carriers of the risk allele
(Cousijn et al., 2015). A schizophrenia-associated SNP in the
gene coding for the alpha 1C subunit of the L-type voltage-gated
calcium channel (CACNA1C) is also associated with increased
hippocampal-prefrontal connectivity (Paulus et al., 2014).
Finally, an SNP in the gene coding for microRNA 137 (MIR137)
was associated with weaker negative functional connectivity
between the hippocampus and PFC at rest (Liu et al., 2014).

HIPPOCAMPAL-PREFRONTAL
INTERACTIONS IN ANIMAL MODELS OF
SCHIZOPHRENIA

In addition to patient studies, animalmodels of schizophrenia are
likely to play an important complementary role in elucidating the
underlying pathophysiology of the illness. Given the complexity
and diversity of schizophrenia symptoms, it is unrealistic to
expect such models to capture the disease in its entirety and
any model will inevitably be a partial one. Animal models
of schizophrenia differ in their ‘‘construct validity’’, that is
how well they model the known causes and risk factors of
the illness (Nestler and Hyman, 2010). Mouse models carrying
genetic risk factors, especially ones associated with a large
increase in disease risk, can be considered to have good
construct validity. Animals can also be exposed to some
of the environmental risk factors for the disease. Putative
pathophysiological mechanisms based on known abnormalities
in patients (f.ex. an increase or a decrease in the function of
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certain neurotransmitter receptors) can be recreated in animal
models and they can also be used to study the consequences
of neurodevelopmental perturbations. In all animal models the
effects of these manipulations on brain structure, brain function
and behavior can be experimentally assessed; importantly, they
allow the use of invasive methods that can examine neural
circuit function in much greater detail than is possible in
patient studies (Sigurdsson, 2015). Typically, animal models
of schizophrenia display abnormalities that resemble some
of the manifestations of the illness in humans, what is
often referred to as ‘‘face validity’’ (Nestler and Hyman,
2010). Although animal models cannot display symptoms like
hallucinations and delusions, they can exhibit some of the so-
called ‘‘endophenotypes’’ of the disease: abnormalities that are
reliably found in schizophrenia patients although they are not
part of the diagnostic criteria of the illness (Amann et al., 2010).
For example, schizophrenia patients show impaired ‘‘prepulse
inhibition’’ (PPI), a measure of sensorimotor gating, that is
also seen in many animal models of the illness (Powell et al.,
2012). Deficits in cognitive functions such as working memory
can also be revealed in animal models (Arguello and Gogos,
2010). Endophenotypes can also encompass abnormalities in
brain structure (e.g., enlarged ventricles) or function, including
disruptions in inter-areal interactions (Tost et al., 2012; Rosen
et al., 2015).

Because of their central role in schizophrenia
pathophysiology, many of the studies that have examined brain
function in animal models have focused on the hippocampus
and the PFC and revealed abnormalities in synaptic plasticity,
inhibitory transmission and neural synchrony in the two regions
(Crabtree and Gogos, 2014; Rosen et al., 2015; Sigurdsson, 2015).
Impaired hippocampal-prefrontal synchrony has also been
observed in many different models. This was first demonstrated
in a genetic mouse model of the 22q11.2 microdeletion,
which is associated with a 30-fold increase in the risk for
developing schizophrenia (Karayiorgou et al., 2010).Df(16)A+/−

mice, which lack the critical genes affected by the 22q11.2
microdeletion, display several behavioral deficits, including
impairments in working memory (Stark et al., 2008; Drew
et al., 2011). To examine what neural circuit abnormalities
could contribute to these working memory deficits, Sigurdsson
et al. (2010) recorded from the hippocampus and PFC of
Df(16)A+/− mice while they performed a SWM task. Reduced
phase locking of prefrontal neurons to hippocampal theta
oscillations was observed in these mice, as well as reduced
LFP coherence between the two structures (Figure 4A).
Importantly, theta synchrony within either the hippocampus
or the PFC was not affected, suggesting a selective disruption
of long-range synchrony. The synchrony deficits were also
correlated with the working memory impairments: theta
synchrony prior to training predicted the number of trials
needed to learn the working memory task and also developed
more slowly in the Df(16)A+/− mice during learning of the
task.

Subsequent studies have replicated and extended these
findings in different genetic models. One of the outstanding
questions of the Sigurdsson et al. (2010) study is which of

the roughly 30 genes affected by the 22q11.2 microdeletion
is responsible for the hippocampal-prefrontal synchrony
impairment. Recently, Mukai et al. (2015) have addressed this by
examining mice with a deletion in a single 22q11.2 gene, Zdhhc8.
These mice also showed deficits in hippocampal-prefrontal
synchrony, which were correlated with their working memory
impairments. Another important finding in this study was that
in Zdhhc8 mice the projections of ventral hippocampal neurons
formed fewer branches within the PFC, suggesting a possible
anatomical basis for the synchrony deficits. Variants in the
gene coding for Neuregulin 1 (NRG1) have also been strongly
associated with increased risk for schizophrenia (Harrison and
Law, 2006). NRG1 is a signaling molecule that binds to the
ErbB4 receptor and is important for neural development (Mei
and Nave, 2014). Interestingly, the ErbB4 receptor is found
almost exclusively on parvalbumin-positive (PV) interneurons
(Fazzari et al., 2010), which have consistently been implicated
in the pathophysiology of schizophrenia (Volk and Lewis,
2010). In mice lacking the ErbB4 receptor on PV interneurons
hippocampal-prefrontal synchrony is reduced, and local gamma
synchrony within the two structures is increased (Figure 4B; Del
Pino et al., 2013). Another genetic mutation that has received
a great deal of attention occurs in the gene Disrupted-in-
Schizophrenia 1 (DISC1) and was found to co-segregate with
psychiatric illness including schizophrenia, bipolar disorder
and depression in a large Scottish family (St Clair et al.,
1990; Millar et al., 2000). Although its function is not well
understood, the DISC1 protein appears to play a role in neural
development and several animal models have been developed
to understand the functional consequences of mutations within
the DISC1 gene (Brandon and Sawa, 2011). In one of these
models, in which mice overexpress the mutated DISC1 gene,
hippocampal-prefrontal synchrony was found to be normal
(Sauer et al., 2015). Interestingly, these mice did not show
working memory deficits but instead displayed a behavioral
phenotype more consistent with depression. However, another
study using the same model found deficits in synaptic plasticity
at ventral hippocampal inputs to the PFC in vitro (Dawson et al.,
2015).

Environmental events can also significantly increase risk
for schizophrenia (McDonald and Murray, 2000). One well-
established example is viral infection during pregnancy, which
increases risk for schizophrenia in the offspring (Canetta
and Brown, 2012). Activation of the mother’s immune
system appears to be the responsible causal factor which
has led to the use of maternal immune activation (MIA)
as a model of environmental risk for schizophrenia (Shi
et al., 2003; Dickerson and Bilkey, 2013). In the offspring
of MIA-treated rats, hippocampal-prefrontal synchrony was
found to be impaired and the synchrony deficits correlated
with impairments in PPI (Figure 4C; Dickerson et al.,
2010). In a follow-up study, the synchrony impairment
was found to occur selectively between the PFC and the
dorsal, but not the ventral, hippocampus (Dickerson et al.,
2014). Theta synchrony deficits in MIA animals could also
be ameliorated by the administration of the antipsychotic
clozapine (Dickerson et al., 2012). To examine how this
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FIGURE 4 | Hippocampal-prefrontal interactions in animal models of schizophrenia. A reduction in hippocampal-prefrontal synchrony is seen across

different animal models of schizophrenia representing diverse risk factors and pathophysiological mechanisms. (A) Decreased hippocampal-prefrontal local field

potential (LFP) coherence in Df(16)A+/− mice, which model the human 22q11.2 microdeletion, during a SWM task (Sigurdsson et al., 2010). (B) Decreased

hippocampal-prefrontal theta coherence in mice lacking the ErbB4 receptor on parvalbumin interneurons (Lhx6-Cre; Erbb4F/F; Del Pino et al., 2013). (C) Decreased

hippocampal-prefrontal LFP coherence in offspring of maternal immune activation (MIA)-treated rats (Dickerson et al., 2010). (D) Reduced cross-correlation between

hippocampal-prefrontal cell pairs in offspring of methylazoxymethanol acetate (MAM)-treated rats, a neurodevelopmental model of schizophrenia, during slow-wave

sleep (Phillips et al., 2012).

environmental risk factor interacts with genetic risk factors,
Hartung et al. (2014) exposed mice carrying a mutation in
the DISC1 gene to MIA. Interestingly, this caused a disruption
in hippocampal-prefrontal synchrony during early development
(postnatal day 8–10) whereas exposure to only one of the
two risk factors did not have an effect, consistent with a role
for gene-environment interactions in the pathophysiology of
schizophrenia.

Multiple lines of evidence indicate that schizophrenia
is a neurodevelopmental disorder (Lewis and Levitt, 2002).
Several animal models of schizophrenia have therefore been
developed to examine the consequences of neurodevelopmental
perturbations on brain function and behavior in the adult.
Two widely used models involve administering the mitotoxin
methylazoxymethanol acetate (MAM) during gestation (Moore
et al., 2006) or lesioning the vHPC in neonatal animals
(NVHL; Lipska et al., 1993). Neither the MAM nor the NVHL
model reflect known developmental perturbations that have
been associated with schizophrenia. However, in both models
behavioral and neural abnormalities, including deficits in PPI
and working memory, emerge in adulthood, mirroring the onset
of symptoms in humans (Lodge and Grace, 2009; O’Donnell,
2012). These models can therefore help to illuminate how

neurodevelopmental perturbations leading to schizophrenia-
like symptoms in adulthood affect the functioning of neural
circuits. Impaired hippocampal-prefrontal interactions are seen
in both these models. Phillips et al. (2012) recorded from
the hippocampus and PFC in MAM animals during sleep
and found reduced hippocampal-prefrontal synchrony both
in measures of LFP coherence as well as in the cross-
correlations of neurons recorded in both structures (Figure 4D).
These results are interesting in light of the fact that sleep
abnormalities are observed in schizophrenia patients (Gardner
et al., 2014) and that oscillations during sleep are important
for memory consolidation. Lee et al. (2012) recorded from
the hippocampus and PFC of adult NVHL rats during a
spatial task that required animals to pay attention to distal
cues while ignoring local cues in their environment. Intra-
hippocampal synchrony was greater during performance on this
task and was reduced in NVHL animals together with impaired
behavioral performance. Hippocampal-prefrontal synchrony,
although not modulated by the task, was also reduced.
Notably, the effect of NVHL on synchrony and behavior could
be prevented if animals received cognitive training during
adolescence, an intriguing result with potential therapeutic
implications.
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Antagonists of the N-methyl-D-aspartate receptor (NMDAR)
such as ketamine can induce symptoms reminiscent of
schizophrenia in healthy individuals and are frequently used as
a pharmacological model of the disease in both humans and
animals (Javitt and Zukin, 1991; Frohlich and van Horn, 2014).
A recent study found that ketamine increased hippocampal-
prefrontal functional connectivity measured using fMRI in
anesthetized rats (Gass et al., 2014). A follow-up study by
the same group replicated this result and furthermore showed
that ketamine had the same effect in healthy human subjects
(Grimm et al., 2015). Although there were methodological
differences between the rat and human experiments (rats were
anesthetized whereas human subjects were awake and also
received a lower dose of ketamine) the results are notable for
the fact that measures of hippocampal-prefrontal interactions
could be directly compared between species, which is usually not
possible (an issue discussed further below).

EMERGING THEMES AND OUTSTANDING
QUESTIONS FOR FUTURE RESEARCH

How Do Hippocampal-Prefrontal
Interactions Support Cognition and
Behavior?
The studies reviewed above demonstrate that hippocampal-
prefrontal interactions are observed during a variety of
behavioral and cognitive tasks and are dynamically modulated
by task demands. Lesion studies and optogenetic manipulations
furthermore suggest that these interactions are necessary
for behavioral performance in some tasks. Yet exactly how
hippocampal-prefrontal interactions support cognition and
behavior is not fully understood and an important goal of future
studies will be to deepen our understanding in this respect. This
is not only an important goal in its own right but may also aid
in understanding the consequences of dysfunctional interactions
in psychiatric illness and animal disease models. One possibility
is that hippocampal-prefrontal interactions, and perhaps inter-
areal interactions in general, support behavior by allowing
information to be relayed between brain regions. Consistent
with this, several studies have found that the degree to which
prefrontal neurons are phase-locked to hippocampal oscillations
is predictive of their response properties. For example, prefrontal
neurons that were phase-locked to theta oscillations in the dHPC
were more likely to predict animals’ upcoming choice in a T-
maze working memory task than cells that were not phase-
locked (Fujisawa and Buzsáki, 2011; see also Hyman et al.,
2011; Remondes and Wilson, 2013). Another study found that
phase-locking to ventral, but not dorsal, hippocampal theta
oscillations was associated with stronger anxiety-related firing
patterns (Adhikari et al., 2011). One interpretation of these
findings is that neurons’ firing properties are influenced by the
inputs (direct or indirect) that they receive from other brain
regions, which in turn is reflected in their synchronization
to neural activity in those regions. Consistent with this idea,
silencing ventral hippocampal inputs to PFC abolishes the goal-
specific firing of PFC neurons in the sample phase of a SWM

task, as well as their phase locking to ventral hippocampal
gamma (but not theta) oscillations (Spellman et al., 2015). This
suggests that ventral hippocampal inputs transmit—perhaps via
hippocampal-prefrontal gamma synchrony—spatial information
to the PFC that might help it to encode previously visited
locations. In future studies, similar approaches could help reveal
what kinds of information are conveyed by hippocampal inputs
during other behaviors, for example anxiety. Also important
will be to better understand how the PFC influences activity
in the hippocampus, which has been relatively less well
studied. Inactivation studies suggest that the PFC modulates
the activity of hippocampal place cells during memory-guided
tasks (Navawongse and Eichenbaum, 2013) which could be
mediated by direct projections from PFC to hippocampus
(Rajasethupathy et al., 2015). Interestingly, these projections
preferentially target highly connected neurons (or ‘‘hubs’’) within
the hippocampal network that emerge following learning and
may be critical for memory retrieval (Rajasethupathy et al.,
2015).

Ultimately, hippocampal-prefrontal interactions need to be
understood in terms of their contribution to behavior. As
the study of Spellman et al. (2015) elegantly demonstrates,
optogenetic methods are now poised to address this question
in a temporally and pathway-specific (and potentially cell-
specific) manner. Although this study shows that direct inputs
from the hippocampus to the PFC are required during the
‘‘sample’’ phase of a SWM task, it remains unclear which
inputs are necessary during the ‘‘choice’’ phase of these tasks.
Given that the choice phase is associated with enhanced
theta synchrony, which is not affected by silencing of direct
hippocampal inputs, it could rely more on indirect inputs (see
below). Also important will be to examine the causal contribution
of hippocampal-prefrontal interactions to other cognitive and
behavioral functions such as anxiety (Adhikari et al., 2010) and
memory consolidation (Wierzynski et al., 2009). The different
roles of the dorsal and ventral poles of the hippocampus
will need to be explored as well as whether different cell
populations in the two structures support synchrony during
different behavioral tasks. Hippocampal-prefrontal interactions
should also be examined in the broader context of other
brain networks. For example, slow oscillations in the ventral
tegmental area coordinate the activity of both hippocampus and
PFC during working memory (Fujisawa and Buzsáki, 2011).
Entorhinal inputs to the hippocampus are also necessary for
SWM (Yamamoto et al., 2014) and both the hippocampus
and the PFC cooperate with the amygdala to control fear and
anxiety (Popa et al., 2010; Lesting et al., 2013; Likhtik et al.,
2014). An integrative view of how the hippocampal-prefrontal
circuit operates within these larger networks will therefore be
required.

Finally, it will be important to better understand the
mechanisms underlying hippocampal-prefrontal interactions.
As already discussed, inter-areal synchrony is often observed
in the form of coordinated oscillations in different brain
regions. However, although the mechanisms underlying these
oscillations have in some cases been elucidated (Buzsáki,
2002; Buzsáki and Wang, 2012), their inter-areal coordination
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is less well understood. Do they reflect the monosynaptic
influence of one brain area on another, or indirect polysynaptic
pathways or perhaps the mutual influence of a third region
on the other two? In agreement with the first possibility,
optogenetically silencing the projections from the vHPC
to the PFC reduces gamma synchrony between the two
regions (Spellman et al., 2015). Similarly, genetic silencing of
monosynaptic inputs from the entorhinal cortex to the CA1
region of the hippocampus reduces gamma synchrony between
them (Yamamoto et al., 2014). These results suggest that
gamma synchrony reflects the strength of synaptic drive from
direct afferent inputs. However, it is also noteworthy that in
both of the aforementioned studies, synchrony in the theta
frequency range was unaffected. This could mean that inter-
areal theta synchrony requires additional brain regions that
act as relay stations or provide common input. For example,
the medial septum provides rhythmic theta-frequency input
to both the entorhinal cortex and the hippocampus (Buzsáki,
2002) and thus likely contributes to theta synchrony between
them. Pharmacological inactivation of the vHPC suggests that
it is important for synchronizing theta oscillations in the PFC
and the dHPC (O’Neill et al., 2013). Other structures that
are connected with both the hippocampus and the PFC and
could mediate synchrony between them, as already mentioned,
include the NR of the thalamus (Vertes, 2006; Cassel et al.,
2013) and the lateral entorhinal cortex (Moser et al., 2010).
Notably, inactivating the NR causes impairments in SWM
(Layfield et al., 2015). Whether inactivating these structures
disrupts hippocampal-prefrontal synchrony will be an important
question for future studies. Understanding the mechanisms
underlying hippocampal-prefrontal synchrony will be especially
important for interpreting synchrony deficits in animal disease
models.

How Do Disrupted Hippocampal-Prefrontal
Interactions Contribute to Psychiatric
Disease?
Altered hippocampal-prefrontal connectivity has been
consistently observed in studies of both schizophrenia patients
and individuals at risk for the disease, making it a strong
candidate as an ‘‘intermediate phenotype’’ between the causes
of the disease and its symptoms (Meyer-Lindenberg and
Weinberger, 2006; Tost et al., 2012). Yet exactly how this
abnormality manifests itself is not always consistent across
studies. Most studies in patients have found a reduction
in positive functional connectivity (e.g., Zhou et al., 2008),
but some studies have found increased negative functional
connectivity (i.e., anti-correlated activity) between hippocampus
and PFC (e.g., Meyer-Lindenberg et al., 2005). Studies in at-risk
individuals, in particular those carrying genetic risk variants,
have also found that hippocampal-prefrontal connectivity
increases with the number of risk alleles (e.g., Esslinger
et al., 2009). Differences in experimental conditions across
studies could contribute to these discrepancies. Notably,
Esslinger et al. (2011) found increased negative connectivity
in at-risk individuals during performance of the n-back

working memory task but not during an emotion recognition
task, suggesting that functional connectivity deficits can
be task-specific. An important complementary approach
should therefore be to measure functional connectivity in
subjects at rest (e.g., Zhou et al., 2008), which could facilitate
comparisons across different studies. Deficits in resting state
functional connectivity, which is more reflective of the brain’s
intrinsic anatomical connectivity (Buckner et al., 2013),
could also be more directly related to structural connectivity
deficits seen in schizophrenia patients (Pettersson-Yeo et al.,
2011).

Another important outstanding question is how alterations
in hippocampal-prefrontal connectivity contribute to the
symptoms of schizophrenia. Some of the studies reviewed
here have reported a correlation between hippocampal-
prefrontal connectivity and disease symptoms as well as
cognitive performance (Henseler et al., 2010). Abnormal
connectivity between frontal and temporal lobes has also
been found to correlate with hallucinations in schizophrenia
patients (Lawrie et al., 2002). Nevertheless, the relationship
between connectivity impairments and disease symptoms or
cognitive deficits remains underexplored and will require more
attention in future studies. A better understanding of the role
of hippocampal-prefrontal interactions in the healthy brain, as
discussed above, will likely be essential in formulating specific
disease-relevant hypotheses. It will also be important to consider
that abnormal hippocampal-prefrontal interactions likely
contribute to psychiatric illnesses other than schizophrenia.
Given the role of the hippocampal-prefrontal circuit in fear
and anxiety, as discussed above, it is not surprising that
abnormalities in this circuit are beginning to be revealed in
anxiety and mood disorders (Godsil et al., 2013; Genzel et al.,
2015; Li et al., 2015). It is also interesting to note that many
of the SNPs that disrupt hippocampal-prefrontal connectivity
increase the risk not only for schizophrenia but also other
psychiatric diseases such as bipolar disorder (Gurung and
Prata, 2015; Harrison, 2015). The hippocampal-prefrontal
circuit is also vulnerable to stress, which is a common risk
factor for many psychiatric disorders (Godsil et al., 2013).
Disrupted hippocampal-prefrontal interactions may therefore be
a fundamental deficit underlying multiple psychiatric diseases,
although exactly how they contribute to their psychopathology
remains to be determined.

The hippocampal-prefrontal circuit has begun to be
investigated in animal models of schizophrenia and the results
have been in general agreement with those of patient studies
in revealing disrupted interactions between the two structures.
Nevertheless, there are discrepancies between these two lines
of research that make direct comparisons difficult and which
future studies should attempt to address. One notable difference
is that studies in animal models have examined connectivity
with the mPFC whereas patient studies have focused almost
exclusively on the dorsolateral PFC, which plays a key role in the
cognitive functions that are disrupted in the disease. Although
the rodent mPFC subserves some of the same cognitive functions
as the primate dorsolateral PFC some of its subregions also
bear a strong resemblance to the mPFC of primates both in
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terms of behavior and anatomy (Condé et al., 1995; Öngür
and Price, 2000). Notably, both the rodent and primate mPFC
receives direct synaptic input from the ventral (or anterior)
hippocampus (Rosene and Van Hoesen, 1977; Barbas and
Blatt, 1995; Hoover and Vertes, 2007). In human subjects at
rest, the hippocampus is positively correlated with the mPFC,
consistent with the anatomy (Vincent et al., 2006). Examining
hippocampal-mPFC coupling in more detail in patients (e.g.,
Zhou et al., 2008) will therefore be important in future studies.
Also important will be to examine connectivity under similar
behavioral conditions in patients and animal models. Many
of the cognitive tasks used in patient studies, such as the n-
back task, are difficult to replicate in animals although virtual
reality versions of spatial tasks used in rodents can be used to
study hippocampal-prefrontal interactions in humans (Bähner
et al., 2015). Resting state measurements in patients could
also be more directly compared with similar measurements
made in animal models. Further strategies to reconcile patient
and animal model studies will be discussed in the following
section.

What can We Learn from Animal Models
about Disruptions in
Hippocampal-Prefrontal Interactions?
The studies reviewed here show that disrupted hippocampal-
prefrontal interactions are commonly observed across different
animal models of schizophrenia. In contrast to the somewhat
variable nature of impairments in schizophrenia patients,
reduced synchrony between the two structures has consistently
been observed in animal models. This impairment has been
observed under a variety of behavioral conditions (anesthesia,
sleep, wakefulness and during cognitive tasks) and using a
number of different analytical methods (cross-correlations,
spike-LFP phase-locking and LFP coherence). The results of
these studies, together with the evidence from studies in patients
and at-risk individuals reviewed here, lend further support to the
notion that disrupted hippocampal-prefrontal interactions may
be a fundamental pathophysiological mechanism underlying
schizophrenia. Going beyond the results of patient studies,
studies in animal models have related disrupted hippocampal-
prefrontal interactions to a number of risk factors (both genetic
and environmental) and pathophysiological mechanisms of
the illness and demonstrated synchrony impairments at the
cellular level. However, it is also important to point out that
although most studies have focused on the hippocampus and
PFC, disrupted interactions are also observed between other
structures in animal models (reviewed in Sigurdsson, 2015),
as well as in schizophrenia patients (Pettersson-Yeo et al.,
2011).

An important next step will be to use animal models to
understand the exact mechanisms that lead to disruptions
in hippocampal-prefrontal interactions. The diverse array of
manipulations used in the different animal models reviewed
here (i.e., genetic, environmental, neurodevelopmental) raises
the question whether they all ultimately converge on a common
causal mechanism to disrupt hippocampal-prefrontal synchrony.

In this respect, it is interesting to note that many of the genetic
risk factors for schizophrenia affect genes that play important
roles in neural development, including the development and
plasticity of synaptic connections. It is therefore tempting to
speculate that disruptions in long-range synaptic connections
between the hippocampus and PFC might be responsible for
impairments in hippocampal-prefrontal synchrony. Supporting
this possibility is the recent study by Mukai et al. (2015)
demonstrating abnormalities in the projections of hippocampal
neurons to the PFC in Zdhhc8-deficient mice. Whether
similar anatomical impairments are found in other models
displaying reduced hippocampal-prefrontal synchrony remains
to be determined. Relating synchrony deficits to anatomical
impairments is an important step towards understanding their
possible molecular mechanisms, which can lead to potential
targets for novel treatments. Notably, Mukai et al. (2015)
were able to show that the structural deficits in hippocampal-
prefrontal projections in Zdhhc8-deficient mice were due to
abnormalities in protein regulation that, when reversed, could
rescue the structural deficits. Whether similar manipulations can
also rescue the deficits in synchrony is an interesting question for
future research.

How disrupted hippocampal-prefrontal synchrony affects
cognition and behavior in animal models of schizophrenia
needs to be better understood. Consistent with its role in
working memory, as reviewed above, deficits in hippocampal-
prefrontal synchrony have been found to correlate with the
degree of working memory impairments in some animal models
(Sigurdsson et al., 2010; Mukai et al., 2015). Correlations with
impairments in PPI have also been observed (Dickerson et al.,
2010). Whether hippocampal-prefrontal synchrony deficits are
associated with other impairments seen in animal models,
for example in attentional set-shifting or long-term memory,
will need to be investigated. Interestingly, some studies have
reported selective impairments in synchrony between the PFC
and either the dorsal (Dickerson et al., 2014) or the ventral
(Mukai et al., 2015) hippocampus. Given that the dorsal and
ventral poles have different behavioral functions (Bannerman
et al., 2004) it is worth asking whether deficits in their
synchronization with the PFC have differential effects on
behavior. It will also be important to go beyond correlative results
and establish causal relationships between synchrony deficits
and behavioral impairments. Rescuing behavioral impairments
by reversing hippocampal-prefrontal synchrony deficits, perhaps
by targeting relevant molecular mechanisms (e.g., Mukai et al.,
2015), would constitute powerful evidence in this respect.
Reproducing synchrony deficits in healthy animals, for example
using optogenetic manipulations (e.g., Spellman et al., 2015), will
also be an important complementary strategy.

Another important goal of future research should be to
better integrate findings from animal models and patient studies.
Although both kinds of studies have revealed disruptions in
hippocampal-prefrontal interactions, their results are not always
directly comparable, as already discussed. In addition to the
reasons already mentioned is the fact that the methods used
to measure interactions in animal models and patients differ
considerably. In both situations, interactions are quantified by
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correlating fluctuations in neural activity in the hippocampus
and PFC; however, these fluctuations occur on a timescale of
milliseconds when measured electrophysiologically in animal
models whereas in fMRI measurements in patients they occur
at a timescale of tens of seconds (Fox and Raichle, 2007).
Because of this difference in timescales, it is far from clear how
measures of functional connectivity in patients relate tomeasures
of neural synchrony in animal models. One way to address
this could be to use measures from electrophysiological data
that better correspond with the fMRI BOLD signal. This signal
is known to closely correlate with the power of local gamma
oscillations (Shmuel and Leopold, 2008) and the amplitude of
these oscillations fluctuates with a slow time course similar
to that of the BOLD signal. Correlations in gamma power
fluctuations across brain regions can therefore provide a measure
of functional connectivity similar to that obtained using fMRI
(Schölvinck et al., 2010) and could be applied to animal models
in the future. Another approach could be to measure functional
connectivity in animal models using fMRI. This approach has
already begun to be used (e.g., Grimm et al., 2015) although to
date it has been restricted to anesthetized animals. Combining
fMRI with simultaneous electrophysiological measurements
(Logothetis et al., 2001) could prove especially fruitful for
relating neural synchrony to functional connectivity. Finally,
the discovery of SNPs reliably associated with schizophrenia
(Harrison, 2015) should make it easier to examine the impact of
genetic risk variants in both humans and animal models.

CONCLUDING SUMMARY

Considerable progress has been made in delineating the
functions of different brain regions yet how their activity is
coordinated and integrated to produce adaptive behavior is
less well understood. The studies reviewed here have provided
insights into how interactions between two specific brain
regions, the hippocampus and PFC, contribute to various aspects
of cognition and behavior. Electrophysiological studies have
revealed how hippocampal-prefrontal interactions are mediated

by synchronized neural activity in the two regions, and how these
interactions are dynamically modulated by behavioral demands.
Lesion studies and optogenetic manipulations have furthermore
demonstrated the causal relevance of hippocampal-prefrontal
interactions to behavior. Collectively, these findings have
implicated hippocampal-prefrontal interactions in cognitive
processes such as SWM as well as emotional behaviors such
as fear and anxiety. Studies have also begun to reveal how
these interactions influence neural representations and activity
patterns in the two regions, which should be an important focus
of future research. In addition to being involved in normal brain
function, there is also evidence that hippocampal-prefrontal
interactions are disrupted in psychiatric illness. This has been
most consistently demonstrated for schizophrenia, which we
have focused on in this review, although similar deficits may
be found in other psychiatric diseases as well. Studies in animal
models of schizophrenia have demonstrated that hippocampal-
prefrontal interactions can be disrupted by specific risk factors
and pathophysiological mechanisms of the disease and have
also begun to uncover the cellular and circuit mechanisms
underlying these impairments. However, although disruptions in
hippocampal-prefrontal interactions likely contribute to deficits
in cognition, it is not yet clear how they might lead to disease
symptoms. A deeper understanding of the pathophysiological
significance of these disturbances will likely require further
knowledge of how hippocampal-prefrontal interactions operate
in the healthy brain.
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