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BACKGROUND AND PURPOSE: Alzheimer disease (AD) is a neurodegenerative disease characterized by
progressive dementia. The hippocampus is particularly vulnerable to damage at the very earliest stages
of AD. This article seeks to evaluate critical AD-associated regional changes in the hippocampus using
machine learning methods.

MATERIALS AND METHODS: High-resolution MR images were acquired from 19 patients with AD and
20 age- and sex-matched healthy control subjects. Regional changes of bilateral hippocampi were
characterized using computational anatomic mapping methods. A feature selection method for support
vector machine and leave-1-out cross-validation was introduced to determine regional shape differ-
ences that minimized the error rate in the datasets.

RESULTS: Patients with AD showed significant deformations in the CA1 region of bilateral hippocampi,
as well as the subiculum of the left hippocampus. There were also some changes in the CA2–4
subregions of the left hippocampus among patients with AD. Moreover, the left hippocampal surface
showed greater variations than the right compared with those in healthy control subjects. The
accuracies of leave-1-out cross-validation and 3-fold cross-validation experiments for assessing the
reliability of these subregions were more than 80% in bilateral hippocampi.

CONCLUSION: Subtle and spatially complex deformation patterns of hippocampus between patients
with AD and healthy control subjects can be detected by machine learning methods.

Alzheimer disease (AD) is a neurodegenerative disease
characterized by progressive dementia. Neurofibrillary

tangles and amyloid plaques in the brain of patients with AD
can be identified by histologic examination.1-3 These patho-
logic changes are typically associated with neuronal loss and
volume reductions. The hippocampus, part of the mesial tem-
poral lobe memory system,4 is particularly vulnerable to dam-
age at the very earliest stages of AD.3,5

MR imaging-driven volumetric studies have shown hip-
pocampal atrophy in mild cognitive impairment (MCI) and
AD.6-9 These volumetric measures proved to be more consis-
tent than currently used mental state examinations and clini-
cal rating scales.10 In addition, voxel-based morphometry
(VBM),11 as an automated unbiased analysis of the differences
in tissue concentration throughout the brain on structural MR
imaging scans, has been widely used in brain tissue loss studies
in AD.12-16 These VBM studies reported bilateral gray matter
loss in the hippocampus. However, the above 2 methods can-
not accurately detect regional abnormalities of the hippocam-
pal atrophy.

Many recent studies17-20 have focused on characterizing
regional abnormalities of hippocampal atrophy using compu-
tational anatomy mapping and statistical analysis methods.
These regional surface measures of the hippocampus can pro-

vide more subtle indexes compared with the volume and tissue
concentration differences in discriminating between patients
with AD and healthy control subjects. They were used not only
to distinguish subjects with very mild AD from nondemented
subjects18 but also to track the progression of AD in drug tri-
als.19 Usually, regional shape abnormalities of the hippocam-
pus are statistically analyzed by univariate methods based on
some previous hypotheses. However, statistical comparisons
using these approaches had limitations in identifying subtle
differences between 2 populations.21 Discriminative analysis
based on the classifier function can potentially be used to im-
prove understanding of detected differences between popula-
tions, as well as to identify possible dependencies in the fea-
tures.22,23 Therefore, the purpose of this study was to use machine
learning methods to characterize the hippocampal shape changes
in AD and to construct a classifier function that could differenti-
ate patients with AD from healthy control subjects.

Materials and Methods

Subjects
Subjects included 19 patients with AD and 20 healthy control sub-

jects. The age, sex, and education level were matched in the 2 groups.

The patients with AD were recruited after clinical diagnostic exami-

nations, whereas the control subjects were recruited from the local

community. Patients with AD were submitted to clinical, physical,

and neurologic examination, as well as a battery of neuropsychiatric

and laboratory tests. The examination results fulfilled all of the Na-

tional Institute of Neurologic and Communicative Disorders and

Stroke-Alzheimer’s Disease and Related Disorders Association work

group criteria.24 The cognitive status of each subject was evaluated

using the Mini-Mental State Examination.25 Subjects were excluded if

they presented with symptoms typically observed for other neuropsy-

chiatric disorders. All of the subjects were right-handed. Informed

consent was first acquired from each subject before the examination.

Table 1 depicts the demographic details of the subjects.
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Image Acquisition and Preprocessing
All of the MR imaging was carried out using a 1.5T MR scanner (Signa

1.5T Twinspeed; GE Healthcare, Milwaukee, Wis) equipped with

shielded magnetic field gradients of up to 40 mT/m. A standard head

coil was used for radio-frequency transmission and reception of the

nuclear MR signal intensity. Head motion was minimized with re-

straining foam pads supplied by the manufacturer. High-resolution

3D T1-weighted images (TR, 11.3 ms; TE, 4.2 ms; inversion time, 400

ms; flip angle, 15°; FOV, 24 � 24 cm; matrix,256 � 224; section

thickness, 1.8 mm; NEX, 2) were acquired by a spoiled gradient-re-

called sequence with axial volume excitation.

All of the images were preprocessed in 2 steps. Firstly, MRIcro

software (http://www.psychology.nottingham.ac.uk/staff/cr1/mricro

.html) was used to manually align the scans, which made the coronal

direction perpendicular to the long axis of the hippocampus (maxi-

mum anatomic delineation of the hippocampal formation). Before

manual delineation, each image was corrected for inhomogeneity in

the magnetic field.26

Hippocampal Delineation
The subjects were randomly divided into 2 groups. One rater blind to

the diagnosis and demographics of the subject population manually

traced the bilateral hippocampi in each group. Boundaries of the hip-

pocampus were drawn on coronal MR images in a plane perpendic-

ular to the long axis of the hippocampus according to a standard

neuroanatomic atlas of the hippocampus.27 The delineation of the

hippocampus included the cornu ammonis (CA), the subiculum, and

the dentate gyrus. Hippocampal contours were delineated in the con-

tiguous coronal brain sections. This process took approximately 1

hour per scan (including the left and right hippocampi). Anatomic

landmarks were labeled and linked in all 3 of the orthogonal viewing

planes using Iris software (http://www.cs.unc.edu/�gerig/). Bound-

aries were drawn on magnified images (�4) to allow subvoxel preci-

sion and faithful tracking of small-scale features.

To estimate the reliability of measures based on manual outlining,

2 raters traced the hippocampi on 6 randomly selected brain volumes.

Interrater correlation coefficient for hippocampal volume measures

was 0.92.

Surface-Based Mesh Modeling
To pinpoint hippocampal regional changes in morphology, we used a

simple but effective surface-based anatomic mesh modeling meth-

od28 that matched homologous hippocampal surface points between

individuals. A brief description of the method used is as follows: 1) 2

landmark points of maximal geodesic distance on the surface mesh of

the hippocampus were identified (referred to as the head and tail

landmarks, respectively); 2) isolatitude circles (shown in cyan in Fig

1A) and an axis (shown in white in Fig 1A) were obtained using a heat

conduction model; 3) the dateline (shown in pink in Fig 1A) was

constructed by connecting the points of origin of the isolatitude cir-

cles; 4) each isolatitude circle was parameterized from its origin point

using the normalized arc length (the blue-red hue scale indicating the

changes from the head to the tail of hippocampus in Fig 1B); 5) all of

the subjects were aligned in terms of the isolatitude circle area along

latitude direction29 to refine their correspondences (the 2 curves on

the left of Fig 1C show the area distribution of isolatitude circle from

head to tail; the red is the template, and the green is one subject before

transformation). The result after transformation is shown on the right

of Fig 1C. The template of the hippocampus was built by averaging the

hippocampal models across all of the subjects.

Each hippocampal surface mesh was constructed as a regular

parametric grid (200 � 400 surface points) by matching 2 landmarks

and a dateline so that homologous grid points from different hip-

pocampal surfaces had correspondences. The matching procedures

made it possible to statistically analyze the measurements at corre-

sponding surface locations among different subjects.

Surface-Based Measures
We applied one surface-based measure23 to characterize local changes

in the hippocampal surface. To reduce computational complexity, we

resampled each hippocampus surface mesh (200 � 400 grids) as m �

n patches by combining the neighboring (200/m) � (400/n) grids into

1 grid. The final results (as shown in the Results section) were ob-

tained by selecting the different parameters m and n. Each surface

Table 1: Demographics and clinical findings

Variable
AD

(n � 19)
Controls
(n � 20) P

Sex, F/M 9/10 10/10 �.95*
Age, mean � SD 72.6 � 6.9 70.7 � 6.4 .38†
Education, mean � SD 11.3 � 4.0 10.9 � 4.5 .76†
MMSE score, mean � SD 18.9 � 3.9 29.5 � 0.9 �.0001†

Note:—MMSE indicates Mini-Mental State Examination; AD, Alzheimer disease; F,
female; M, male.
* The P value was obtained by Pearson �2 2-tailed test, with continuity correction for n �
5.
† The P value was obtained by a 2-sample 2-tailed t test.

Fig 1. The steps of parameterization and correspondence of hippocampus.

A, Hippocampus shape characters; H and T represent the head and tail landmarks,
respectively; the cyan shows isolatitude circles; the pink shows the extracted dateline.

B, The parameterized mesh; the blue-red hue scale indicates the changes from the head to
the tail of hippocampus.

C, The alignment in terms of the isolatitude circle areas along latitude direction. The 2
curves on the left show the area distribution of isolatitude circles from head to tail; the red
is the template and the green is 1 subject before transformation. The results after
transformation are shown at the right.
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mesh was normalized by setting the head landmark as the origin in a

3D coordinate system. We then averaged the coordinates of the cor-

responding vertices of the individual hippocampal mesh to construct

the mean surface mesh. We represented each patch by a single sum-

mary feature as shown in the following equation23:

fij �
¥k�P� j��� jk � �� k�

�Nk	Ak

¥k�P� j�	Ak

where fij was computed for the jth patch in the ith subject, P(j) was a

set of the mesh grids belonging to the jth patch, xk and Nk were the

position and approximate unit normal of the kth mesh grid in the

mean shape, and 	Ak was the area element, computed as one fourth of

the summarized area of all meshes that were adjacent to the kth mesh

grid in the mean shape. This measure reflected the average inward or

outward deformation of each patch with respect to the mean mesh.

Feature Selection for Support Vector Machine
The identification of distinguishing shape features in the hippocam-

pal surface is important and has tremendous practical applications. In

this part of the study, we selected the most critical features from the

surface-based measures by the method described below.

The feature selection process included 2 steps. In the first step,

feature ranking, features were ranked according to the weight magni-

tude of each feature in the trained linear support vector machine

(SVM), which was based on the recursive feature elimination (RFE)

criterion.30 In each iteration, the feature of the lowest rank (ie, asso-

ciated with the smallest weight) was identified and removed. Then the

SVM was trained again based on the remaining features; in this way,

another least important feature was identified and removed. This pro-

cess was repeated until all of the features had been used.

The second step was feature selection. The above-ranked features

were selected by leave-1-out cross-validation (LOOCV).31 In each

leave-1-out cycle, 1 subject was removed from the dataset and used as

the test sample. The feature selection was an iterative process, and the

criteria were that features were added individually from the top of the

rank-ordered list to validate the test sample until the local minimum

error rate on the training data was achieved. That is, the feature selec-

tion would stop when the error rate was no longer decreasing. The

final feature subset was obtained by collecting all of the features se-

lected in the LOOCV.

Validation of the Selected Features
To assess the reliability of selected features, 2 cross-validation exper-

iments were performed on the surface-based measures of the hip-

pocampi of patients with AD and healthy control subjects. One ex-

periment was performed using LOOCV. In each step, 1 subject was

removed from the dataset, the remaining subjects were trained to

select the optimal features by SVM RFE and LOOCV, and then the

selected features were used to construct an effective classifier to test

the subject who had been removed. In this way, the classification

accuracy was obtained. The flow chart of this experiment is shown in

Fig 2, and the numbers inside of the parentheses are the sample

indexes.

The other experiment was to assess the reliability of selected fea-

tures by using 3-fold cross-validation. The dataset was randomly di-

vided into 3 disjointed subsets of equal size. Features were selected in

2 of these subsets by SVM RFE and LOOCV methods. Then the re-

maining subset (called the “validation set”) was used to estimate the

predictive error of the trained classifier by using the selected features.

This process was repeated 100 times. Each time, 1 subset was left out

for testing, and the other 2 subsets were trained. The classification

accuracy by 3-fold cross-validation experiment was obtained to aver-

age the predictive correct rates of 100 experiments.

Results
In the experiment, SVM RFE and LOOCV were used to iden-
tify the distinguishing shape features in the hippocampal sur-
faces of subjects with AD and healthy control subjects. These
features were then used to construct an effective classifier. In
the study, we adopted the linear SVM as the classifier for train-
ing and testing.

Distinguished Feature Selection Using Classification
between Groups
The classification accuracies by the LOOCV experiment are
shown in Table 2. The classification accuracies of the left hip-

Fig 2. The flow chart of LOOCV experiment; the numbers inside of the parentheses are the sample indexes.
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pocampus were more than 90%, and those of the right hip-
pocampus were more than 80%.

The classification accuracies by the 3-fold cross-validation
experiment were all more than 80%. At the same time, the
95% confidence intervals on the cross-validation accuracy
were estimated. The detailed results are shown in Table 2.

Effects of Different Patch Sizes on the Results
To test the effects of selecting different hippocampus surface
patch sizes on the classification accuracies between patients
with AD and healthy control subjects, we resampled the hip-
pocampus surface into 50 � 100, 25 � 50, and 20 � 40
patches. The results are shown in Table 2. When selecting all of
the features to construct the classifier, we found that the clas-
sification results demonstrated no distinct changes by using
different patch sizes.

Effects of Different Strategies for Constructing the
Effective Classifiers
After feature selection, we adopted different strategies to con-
struct the effective classifiers. One strategy was to use all of the
features appearing in subsets to construct the classifier. The
classification results are marked with an asterisk in Table 2.
The other strategy was to only select those features in subsets
with repeatability greater than or equal to 2–5. The experi-
mental results are shown in Fig 3. The horizontal axis repre-
sents the repeatability of the selected features, and the vertical
axis represents the LOOCV accuracy of the corresponding re-
peatability. From this figure, the higher accuracy can be
achieved by choosing the optimal number of features.

Visualization of the Selected Shape Features from the
Hippocampal Surface
Figure 4 provides an illustration for visualizing selected sur-
face features by LOOCV when the patch size is 50 � 100. We
divided the surface of the hippocampus into 3 zones (ie, LZ,
SZ, and IMZ) according to the standard neuroanatomic atlas
of the hippocampus,27 which was similar to the methods of
these hippocampus-related studies.18,20 LZ represents the lat-
eral zone of the hippocampal surface and approximates the
CA1 subfield. SZ represents the superior zone approximating
the combined CA2, CA3, and CA4 subfields and the gyrus
dentatus, and IMZ represents the inferior-medial zone ap-
proximating the subiculum. Boundaries between the 3 zones
of the hippocampal surface are drawn in black, and all 3 of the
zones are labeled. The white subregions in the figure indicate
that there are no differences in the hippocampal surface be-
tween patients with AD and healthy control subjects. The col-
ors from purple to red indicate the higher repeatability of fea-
tures in subsets. Here we suggest that the higher repeatability
of features implicates the more significant features in differen-
tiating 2 groups. The highest repeatability in our experiment
was 39. The results showed that most of the distinct surface
features were located in the CA1 and subiculum of the left
hippocampus in AD. Relatively fewer surface features were
found in the right hippocampus. However, those features that

Table 2: Cross-validation accuracies in the experiment

Patch
Size Side

Leave-1-Out
Cross-Validation

Accuracy, %*

3-Fold
Cross-Validation

Accuracy*
50 � 100 Right 84.6 83.4% (81.8%–84.9%)†

Left 94.9 84.5% (81.2%–87.9%)†
25 � 50 Right 84.6 81.6% (79.8%–83.4%)†

Left 94.9 89.6% (87.1%–92.1%)†
20 � 40 Right 84.6 82.6% (80.7%–84.6%)†

Left 94.9 89.3% (86.8%–91.9%)†

Note:—* All of the features appearing in subsets are selected to construct the classifier.
† The 95% confidence intervals of classification accuracy by 100 times cross-validation
experiments.

Fig 3. LOOCV accuracy when selecting different repeatability of features to construct the
classifier. The horizontal axis represents different repeatability of features, and the vertical
axis represents the corresponding LOOCV accuracy. The different colors, respectively,
represent the left and right hippocampi and different patch sizes. L represents the left
hemisphere, and R represents the right hemisphere. The numbers behind L or R represent
the patch sizes: 800 represents 20 � 40; 1250 represents 25 � 50; and 5000 represents
50 � 100.

Fig 4. Visualization of selected surface features by LOOCV experiment when the patch size
is 50 � 100 in patients with AD compared with healthy control subjects. The first row
shows the left and right hippocampi from the top view, whereas the second row shows
them from the bottom view. Boundaries between the 3 zones of the hippocampal surface
(ie, LZ, SZ, and IMZ) are drawn in black. LZ represents the lateral zone of the hippocampal
surface, and approximates the CA1 subfield. SZ represents the superior zone approximating
the combined CA2, CA3, and CA4 subfields and the gyrus dentatus, and IMZ represents the
inferior-medial zone approximating the subiculum. All 3 zones are labeled. The white
subregions represent no differences in the hippocampal surfaces between patients with AD
and healthy control subjects. The significance of features is measured by the repeatability
in the subsets. The more significant features are shaded on the purple-red hue scale shown
in the third row. The purple represents lower significance, and the red represents higher
significance.
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were observed in the right hippocampus tended to occur pri-
marily in the CA1 subfield. There were also some changes in
the CA2 to CA4 region of the left hippocampus in patients
with AD compared with healthy control subjects.

Discussion
The main purpose of this study was to present an integrated
method for identifying specific subregions of the hippocam-
pus that were prone to structural changes, significant for dis-
criminating between patients with AD and healthy control
subjects, and to build effective classifiers based on the regional
changes. This was accomplished by characterizing surface de-
formations using surface-based measures based on the param-
eterization of each hippocampus. A feature selection method
based on SVM RFE and LOOCV was used to identify critical
changes in the 2 subject groups, that is, patients with AD ver-
sus healthy control subjects. These changes were used to con-
struct effective classifiers to assess the reliability of the selected
features. Using this method, high classification accuracies (Ta-
ble 2) were obtained for the left and right hippocampi using 2
cross-validation experiments. Subregions of the hippocampus
where shape changes are prominent between patients with AD
and healthy control subjects are highlighted in Fig 4. Our ap-
proach was generally applicable to shape-based analysis and
classification of other brain structures.

Pathologic Implications of the Selected Features
As shown in Fig 4, the most significant deformations in pa-
tients with AD were located in the CA1 region of bilateral
hippocampi, as well as in the subiculum of the left hippocam-
pus. These results were consistent with previous neuropatho-
logic findings.32-36 Given that AD is a progressive disease, AD-
mediated neuronal impairments appear in a hierarchical
formation.33 Hippocampal degeneration within the CA1 sub-
field and subiculum appeared to be more severe compared
with other components of the hippocampal formation in the
early stages of AD.33-36 The main pyramidal cell layers of the
hippocampus are the CA1– 4 regions (primarily CA1 and
CA3) and the dentate gyrus. The perforant path is the major
input to the hippocampus. The axons of the perforant path
arise principally in layers II and III of the entorhinal cortex,
with minor contributions from the deeper layers IV and V.
Axons from layers II/IV project to the granule cells of the den-
tate gyrus and pyramidal cells of the CA3 region, whereas
those from layers III/V project to the pyramidal cells of the
CA1 and the subiculum. Pathologic findings37-40 in patients
with AD suggested that severe degeneration of the perforant
pathway was a characteristic feature of AD. Our results show-
ing the significant changes in the hippocampal surface were a
probable consequence of this phenomenon.

Reliability of These Selected Shape Features
We assessed the reliability of these selected shape features us-
ing the permutation test. For each cross-validation experi-
ment, we randomly selected some features from all of the fea-
tures to construct a classifier to evaluate the classification
accuracy between patients with AD and healthy control sub-
jects. This process was repeated 10,000 times. We observed
that in each experiment the percentage that the classification
accuracies were greater than our experimental results was less

than 5%. In other words, all of the P values in our cross-
validation experiments were less than .05. This result indicated
that our findings of the between-group differences in the
shape features of the hippocampus were statistically
significant.

Comparison with Related Work
Methodology. Recently, increasing attention has focused

on characterizing AD-related changes in the hippocampus us-
ing computational approaches. One popular method was to
analyze the gray matter concentration of the hippocampus
using VBM. Busatto et al13 found gray matter abnormalities
over the entire extension of the temporal lobe in AD. How-
ever, Frisoni et al14 found that more regional changes corre-
sponded with all parts of the left and right hippocampi. A
second method6-9 was to investigate the hippocampal volume
changes in AD using the region of interest method. Good et
al15 compared the VBM results with region of interest mea-
surements of temporal lobe structures and found that region
of interest analyses appeared more sensitive to volume loss in
the amygdalae, whereas VBM analyses appeared more sensi-
tive to right middle temporal gyrus and regional hippocampal
volume loss in patients with AD. Similarly, Testa et al41 com-
pared the accuracy of VBM and region of interest– based hip-
pocampal volumetry and suggested that VBM was more accu-
rate, but the combination of both methods provided the
highest accuracy for detection of hippocampal atrophy in pa-
tients with AD. A third method used the surface modeling
methods to map hippocampal shape abnormality in AD. Such
a surface-based method17,19,20,42,43 allows us to detect more
subtle changes in the hippocampus in comparison with the
VBM and region of interest– based methods. Using a 3D para-
metric mesh model, Thompson et al17 found that the hip-
pocampal atrophic rates were faster in patients with AD than
in the control subjects. Csernansky et al19,20 used the high-
dimensional brain mapping methods to detect an AD-specific
pattern in the hippocampus that was not found through the
volume methods. In this study, we used surface modeling to
characterize the hippocampal shape changes in AD. Com-
pared with previous surface modeling approaches, our
method provided a more specific hippocampal shape model-
ing, because it was particularly designed to banana-like ob-
jects, which might reduce the complexity of shape modeling.
Our results also suggested that patients with AD showed sig-
nificant deformations in the CA1 of bilateral hippocampi, as
well as the subiculum of the left hippocampus (Fig 4), which
were consistent with previous structural neuroimaging stud-
ies.18,20 In addition, in the present study, we used machine
learning methods to find the abnormal subregions of the hip-
pocampus in AD. The classification methods over the univar-
iate statistical methods applied in previous AD-related hip-
pocampal shape studies17,18 are that the discriminative
analysis based on the classifier function can detect subtle dif-
ferences between populations. The result of the analysis is a
classifier function that can be used for assigning new examples
and making a map over the original features indicating the
extent to which each feature participates in estimating the la-
bel for any given example.22 In this study, we did not provide
direct comparisons on the sensitivity of these surface-based
methods applied in the present study and previous studies,
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because they involved different parameter selections and sta-
tistical analysis approaches.

Results. In our study, significant deformations in AD were
located in the CA1 and subiculum of the left hippocampus and
the CA1 of the right hippocampus. There were also some
changes in the CA2– 4 subregions of the left hippocampus in
AD. These results were consistent with those found in the lit-
erature.18,20 Wang et al18 found that inward deformation of
the hippocampal surface in the proximity of the CA1 subfield
and subiculum can be used to distinguish subjects with very
mild AD from nondemented subjects. Similarly, Csernansky
et al20 suggested that inward deformation of the lateral zone of
the left hippocampal surface was an early predictor of the on-
set of AD in nondemented elderly subjects. In addition, as
shown in Table 2, the selected shape features of the left hip-
pocampus in different experiments obtain higher classifica-
tion accuracies than those of the right hippocampus. Our re-
sults clearly showed that in discriminating patients with AD
from healthy control subjects, an assessment of the left hip-
pocampus proved more effective than of the right. Previous
studies have alluded to this differential atrophy between the
left and right hippocampi.44,45 In these studies, it was reported
that bilateral hippocampal atrophy occurred to a greater ex-
tent on the left side than on the right, as evidenced in patients
with AD. Moreover, several VBM studies,16,46 sulcal-warping
studies,47,48 and single-photon emission CT and positron-
emission tomography studies49,50 supported a laterality trend
of the atrophic process and left more than right hemispheric
involvement in AD.

Limitations of the Present Method
Some limitations of the study need to be emphasized. First, the
subjects with AD were not categorized clinically as early stage
or advanced stage for this experiment. At this point, it should
be emphasized that there is a need to detect AD as early as
possible. In the near future, the methods presented in this
article could potentially be applied to discriminate patients
with MCI or mild AD from healthy control subjects. Second,
because of the limited spatial resolution of MR imaging in our
study, the segmented gray matter in the images may have con-
tained some subcortical white matter, leading to potential
contamination with respect to measurements of the hip-
pocampus. A higher magnetic field scanner should be adopted
to acquire higher spatial resolution images. Finally, a shape
analysis approach for evaluating the hippocampus may not be
regarded as the only tool necessary for discriminating between
patients with AD and healthy control subjects. A combination
of various quantitative MR techniques that measure the ana-
tomic, biochemical, microstructural, functional, and blood
flow changes may provide useful markers for early diagnosis of
AD. In addition, Kantarci and Jack51 suggested that these ap-
proaches of directly imaging the pathologic substrate would
need to undergo a validation process with longitudinal studies
to prove their usefulness as surrogate markers in AD. In the
future, our method will be validated by tracking the progres-
sion of patients with MCI. The combination of the valuable
biomarkers and the results of our hippocampal shape analysis
are expected to form a more effective computer-aided diag-
nostic tool for AD.

Conclusion
In this article we presented an integrated method for finding
subregions of the hippocampus that were significant for dis-
criminating between patients with AD and healthy control
subjects and building effective classifiers based on these re-
gional changes. The major advantage of the machine learning
methods compared with the univariate method was that it
could detect subtle and spatially complex deformation pat-
terns of the hippocampus in patients with AD compared with
healthy control subjects. The results were objective and reli-
able, because the methods were validated by permutation test,
and the findings were consistent with previous studies.

In summary, the shape analysis methods presented in the
article provided a useful tool for detecting regional differences
of the subcortical structures. These methods can also be ap-
plied to other neuropsychiatric diseases.
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