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Abstract. Genetic mapping of hippocampal shape, an under-explored
area, has strong potential as a neurodegeneration biomarker for AD and
MCI. This study investigates the genetic effects of top candidate sin-
gle nucleotide polymorphisms (SNPs) on hippocampal shape features as
quantitative traits (QTs) in a large cohort. FS+LDDMM was used to
segment hippocampal surfaces from MRI scans and shape features were
extracted after surface registration. Elastic net (EN) and sparse canonical
correlation analysis (SCCA) were proposed to examine SNP-QT associ-
ations, and compared with multiple regression (MR). Although similar
in power, EN yielded substantially fewer predictors than MR. Detailed
surface mapping of global and localized genetic effects were identified by
MR and EN to reveal multi-SNP-single-QT relationships, and by SCCA
to discover multi-SNP-multi-QT associations. Shape analysis identified
stronger SNP-QT correlations than volume analysis. Sparse multivariate
models have greater power to reveal complex SNP-QT relationships. Ge-
netic analysis of quantitative shape features has considerable potential
for enhancing mechanistic understanding of complex disorders like AD.

1 Introduction

Recent advances in brain imaging and high throughput genotyping techniques
enable new approaches to study the influence of genetic variation on brain struc-
ture and function. Existing imaging genetics studies employ summary statis-
tics (e.g., volume, thickness) [7] and detailed voxel-wise measures [8] as pheno-
types to discover genetic risk factors. Genetic mapping of hippocampal shape, an
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Table 1. Participant characteristics

Category HC MCI AD p-value

Gender (M/F) 91/75 184/103 68/61 0.041
Baseline Age (years; Mean±STD) 76.18±4.91 74.99±7.21 75.36±7.78 0.198
Education (years; Mean±STD) 16.20±2.63 15.71±2.98 15.07±3.04 < 0.005
Handedness (R/L) 155/11 260/27 121/8 0.411

under-explored area, has strong potential as a neurodegeneration biomarker for
Alzheimer’s disease (AD) and mild cognitive impairment (MCI). The present
study investigates genetic effects of top candidate single nucleotide polymor-
phisms (SNPs) on hippocampal shape features in a large cohort.

Massive univariate analyses are often used in imaging genetics [7,8], and can
quickly identify important associations between individual SNPs and imaging
quantitative traits (QTs). However, it treats SNPs and QTs as independent
units, and overlooks relationships in which multiple SNPs jointly effect multiple
QTs. In this work, two multivariate sparse models, the elastic net and sparse
canonical correlation analysis, are used to study genetic effects on hippocampal
shape and are expected to have greater power to reveal complex SNP-QT rela-
tionships. These models could enable discovery of a small set of relevant features
which may provide potential surrogate biomarkers for therapeutic trials.

2 Materials and Methods

Magnetic resonance imaging (MRI) and genotype data were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database [7]. ADNI is a
landmark investigation sponsored by the NIH and industrial partners designed
to collect longitudinal neuroimaging, biological and clinical information from
over 800 participants that will track the neural correlates of memory loss from
an early stage. Further information can be found at www.adni-info.org. 582 non-
Hispanic Caucasian participants (166 Healthy Control (HC), 287 MCI, 129 AD
participants) with segmented hippocampal data and quality controlled (QC)
genotype data were included in this study (Table 1).

Hippocampal Shape: Hippocampi were segmented from the baseline MRI
scans by applying probabilistic-based FreeSurfer and Large Deformation Diffeo-
morphic Metric Mapping (FS+LDDMM) [3]. This fully-automated segmenta-
tion pipeline first uses FreeSurfer subcortical labeling to provide information for
initialization, and then employs LDDMM to generate a diffeomorphic transfor-
mation so that anatomical structures can be mapped consistently and smoothly.
To remove size effect, total intracranial volume (ICV) was adjusted to a con-
stant (i.e., mean ICV of all HCs) and each hippocampus was scaled accordingly.
Rigid body transformation was then applied to register each hippocampus to a
template (defined as the mean of all HCs) in a least square fashion. Surface sig-
nals were extracted as the deformation along the surface normal direction of the
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template, and were adjusted for baseline age, gender, education, and handedness
using the regression weights derived from the HC participants (Table 1).

Candidate SNPs: The SNP data were genotyped using the Human 610-Quad
BeadChip (Illumina, Inc., San Diego, CA). We focused on top AD genetic risk
factors, including top 23 SNPs from the AlzGene database [1] as of 09/01/2010,
and a SNP from the TOMM40 gene adjacent to the APOE gene. The TOMM40
SNP was included because it was unclear whether the SNP played a unique role in
AD or served solely as an APOE marker. Four SNPs were excluded due to failed
imputation or quality check. Among the remaining 20 SNPs (Fig. 1(a)), 10 SNPs
were available from the ADNI data and 10 SNPs were successfully imputed using
MACH v1 [4] and IMPUTE v2 [6] software packages. The QC criteria for the
SNP data include (1) call rate check per subject and per SNP marker, (2) gender
check, (3) sibling pair identification, (4) the Hardy-Weinberg equilibrium test, (5)
marker removal by the minor allele frequency and (6) population stratification.
The selected 20 SNPs were numerically coded to test additive genetic effect, i.e.,
dose dependent effect of the minor allele.

Overall Strategy: For comparative analysis, multiple regression models were
fit using all 20 SNPs to predict the hippocampal volume (mean of left and right,
covaried for age, gender, education, handedness and ICV) and, in addition, the
surface signal at each location or vertex on the hippocampal surface. The elastic
net regression was then applied to identify a small set of relevant SNPs for
each surface location. Finally, sparse canonical correlation analysis was used to
examine more complex relationships between SNP sets and surface regions.

Multiple Regression: Under the additive model, the surface signals are linearly
related to the number of minor alleles. This implies, assuming no interactions
between SNPs, the multiple regression model Si,j = β0,j + β1,jSNPi,1 + · · · +
β20SNPi,20 + εi,j , where Si,j is the surface signal at vertex j for subject i. The
model utility F test was used to test the null hypothesis of no relationship
between Sj and the 20 SNPs for the j = 1, . . . , 13222 vertices. Gaussian random
field theory (RFT) methods [13], implemented in SurfStat [12], were used to
ensure the family-wise error rate did not exceed 0.05. While this procedure can
detect any linear relationship between Sj and the SNPs this flexibility comes at
the cost of reduced power to detect a relationship between a specific SNP and
Sj . Sparse regression methods, which seek to accurately predict the response
variable using a minimal number of predictors, address this and other regression
shortcomings by integrating variable selection and model estimation.

Elastic Net Regression: The ability of sparse regression methods to detect
and model genetic relationships was investigated by estimating the above model
at each hippocampal location using elastic net (EN). EN produces sparse solu-
tions by adding a coefficient magnitude penalty to the least squares objective
function [14]. More specifically, the EN coefficient estimates minimize the pe-
nalized least squares objective function ElNetj(β0, β1, ..., β20) =

∑n
i=1(Si,j −

Ŝi,j)2 + λPα(β1, . . . , β20), in which Ŝi,j = β0,j + β1,jSNPi,1 + · · · + β20,jSNPi,20
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and the penalty P̂α(β1, . . . , β20) = α
∑20

k=1 |βk| + (1 − α)
∑20

k=1 β2
k is a convex

combination of the L1 lasso and L2 ridge penalties. This objective function has
two parameters: λ controls the amount of shrinkage; and α adjusts the trade-off
between lasso and ridge to capitalize on their strengths and minimize their weak-
nesses. The preceding regression analysis was duplicated using the Glmnet [2,9]
implementation of EN with α = 0.5 and λ chosen using 10-fold cross-validation.

Sparse Canonical Correlation Analysis: The surface signals represent sam-
ples of a smooth function defined on the hippocampus. Methods which capital-
ize on the resulting correlation between surface signals at neighboring vertices
by modeling the joint relationship between multiple surface signals and SNPs
should provide increased power to detect any relationships present [10]. To inves-
tigate this possibility for linear relationships, sparse canonical correlation anal-
ysis (SCCA) was used. Let Xi = (SNPi,1, SNPi,2, . . . , SNPi,20)′ be the vector
of the 20 SNPs for subject i and Yi = (Si,1, Si,2, . . . , Si,m)′ be the vector con-
sisting of the surface signals at the m = 13, 222 vertices. Canonical correlation
analysis (CCA) produces linear combinations (canonical variates) Uj = A′

jY and
Vj = B′

jX, j = 1, . . . , 20, such that the correlation between Uj and Vj is maxi-
mized subject to orthogonality constraints. Two major weaknesses of CCA are
that it requires the number of observations n to exceed the combined dimension
of Y and X (here 13,242) and that it produces nonsparse Aj and Bj which are
difficult to interpret. The SCCA method employed here ameliorates these weak-
nesses using the penalized matrix decomposition approach [11]. This method
maximizes the correlation between U and V subject to the coefficient vector con-
straints P1(A) ≤ c1 and P2(B) ≤ c2. Here the L1 penalty P (A) =

∑p
k=1 |A(k)|

was used for both P1 and P2. Values for c1 and c2 were chosen using Witten and
Tibshirani’s permutation tuning procedure. The SCCA analyses were computed
using the R package PMA (Penalized Multivariate Analysis v.1.0.7.1).

3 Results

In the volumetric analysis of 20 SNPs, only APOE SNP (rs429358) has a signif-
icant (p ≤ 0.0004) effect on the hippocampal volume. The Pearson correlation
coefficient between the APOE SNP and hippocampal volume was -0.159.

Fig. 2(a) shows the map of F-statistics of multiple regression (MR). Regions
with F ≥ 3.0 and spatial extent ≥ 2.4 resels have a random field theory adjusted
p-value ≤ 0.05. Fig. 2(b) shows the mean of the absolute residuals (fitted errors)
over all subjects. The residual map of elastic net (EN) is almost identical to
Fig. 2(b), showing similar predictive power between EN and MR.

However, the predictors selected by EN are much more sparse than those of
MR (see Fig. 1(a-c)). Combining Fig. 1(c) with (a) and (b), we can extract the
coefficient map for a specific SNP and examine localized genetic effects on the
surface. Shown in Fig. 1(d-g) are examples of the APOE and TOMM40 SNPs,
which elucidate the benefit of sparsity achieved in EN compared to MR. While
MR indicates a global effect on the surface (f,g), EN identifies localized regional
effects (d,e) and yields useful information for biomarker discovery.
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Fig. 1. (a-c) Heat maps of regression coefficients for elastic net (a) and multiple regres-
sion (b), where the hippocampal surface location (bottom row in (a,b)) is color-coded
and mapped in (c). (d-e) Surface map of genetic effects of the APOE and TOMM40
SNPs estimated by elastic net (d,e) and multiple regression (f,g).
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Fig. 2. (a) F-map of multiple regression. (b) Mean of absolution residuals.

Fig. 3. (a-b) Weights of canonical vectors ordered by descending correlations between
surface signals (a) and SNPs (b). (c-e) Surface maps of the top three canonical vectors:
the first three rows in (a) are mapped onto the surface.

Fig. 3 shows the results of SCCA. Weights of 20 canonical vectors for vertex-
based surface signals (a) and SNPs (b) were color-coded as heatmaps. The top
three rows in (a) were mapped onto the hippocampal surface and shown in (c-e),
respectively. In (a-b), canonical vector pairs (i.e., corresponding rows in (a-b))
were ordered by descending correlation between surface signals and SNPs; and
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the correlation coefficients of all 20 pairs ranged from 0.26 to 0.17 in descending
order. This clearly demonstrated the increased power of shape analysis, since
the strongest correlation between each of 20 SNPs and hippocampal volume in
our volumetric analysis was between the APOE SNP and hippocampal volume
with a magnitude of 0.159. This was corroborated by the fact that the maximum
absolute correlation between the surface signal and APOE SNP was 0.20 among
all vertices and was 0.19 among the vertices with F ≥ 3.0.

In addition, the parameters for SCCA were automatically tuned by 100 per-
mutations to increase the sparsity and smoothness. As a result, the identified
surface locations, correlated with each SNP were more sparse than those for the
same SNP from EN (see Fig. 3(a-b) vs Fig. 1(a)). Interestingly, the sparsity was
maximized for SNPs, since each canonical SNP vector selected exactly one SNP
(Fig. 3(b)), yielding a simple model easy to interpret (i.e., multi-SNP-multi-
location associations became single-SNP-multi-location ones).

Fig. 3(c-d) show surface regions related with the APOE SNP (rs429358) at
different correlation levels. The correlated vertices in Fig. 3(c-d) have non-zero
weights as in Fig. 1(d,f), but they are localized to smaller regions in Fig. 3(c-
d). Fig. 3(e) shows surface regions related with the TOMM40 SNP (rs2075650).
All vertices with non-zero weights in Fig. 3(e) also have non-zero weights in
Fig. 1(e,g). However, compared to Fig. 1(e,g), vertices with non-zero weights in
Fig. 3(e) are highly sparse and spatially localized to smaller areas. These two
types of patterns are complimentary: the associations derived from EN are multi-
SNP-single-location, while those found in SCCA are single-SNP-multi-location.

Five-fold cross-validation of SCCA yielded equally sparse SNP-QT patterns.
The most consistent canonical component identified in all five trials is similar to
the top finding using the entire data: the genetic vector contains only APOE, and
the phenotype vector shows a pattern like Fig. 3(c). Training and testing corre-
lation coefficients are 0.279±0.017 (mean ± SD) and 0.175±0.068, respectively,
while the magnitudes of correlation coefficients between APOE and hippocampal
volume in the same data are 0.159 ± 0.012 and 0.163 ± 0.056, respectively.

4 Discussion

Detailed surface mappings of localized genetic effects were identified from our
hippocampal shape analysis. Different from existing massive univariate analy-
ses [7,8], this study is among the first to simultaneously use multiple response
variables with multiple predictors for analyzing real neurogenomic data [5,10]
and may be the first for studying genetic influences on hippocampal morphom-
etry using this paradigm. In our analyses, we combined two promising sparse
multivariate models with a typical morphometric method. Investigation of other
statistical models (e.g., [10]) and surface metrics, coupled with pathway analyses,
will be important future topics to potentially yield new discoveries. As the best
known AD genetic risk factor, APOE was the most prominent signal in all of
our analyses, which to some extent validated the efficacy of our methods. Repli-
cation in independent large samples will be important to confirm the imaging
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genetic findings. Genetic analysis of quantitative shape features has considerable
potential for examining disease mechanisms from a novel perspective that can
inform selection of imaging biomarkers for early detection and therapeutic trials.
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