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Abstract 

Background: Emerging evidence suggests the presence of neuroanatomical abnormalities in subjects with autism 
spectrum disorder (ASD). Identifying anatomical correlates could thus prove useful for the automated diagnosis of 
ASD. Radiomic analyses based on MRI texture features have shown a great potential for characterizing differences 
occurring from tissue heterogeneity, and for identifying abnormalities related to these differences. However, only 
a limited number of studies have investigated the link between image texture and ASD. This paper proposes the 
study of texture features based on grey level co-occurrence matrix (GLCM) as a means for characterizing differences 
between ASD and development control (DC) subjects. Our study uses 64 T1-weighted MRI scans acquired from two 
groups of subjects: 28 typical age range subjects 4–15 years old (14 ASD and 14 DC, age-matched), and 36 non-typi-
cal age range subjects 10–24 years old (20 ASD and 16 DC). GLCM matrices are computed from manually labeled hip-
pocampus and amygdala regions, and then encoded as texture features by applying 11 standard Haralick quantifier 
functions. Significance tests are performed to identify texture differences between ASD and DC subjects. An analysis 
using SVM and random forest classifiers is then carried out to find the most discriminative features, and use these 
features for classifying ASD from DC subjects.

Results: Preliminary results show that all 11 features derived from the hippocampus (typical and non-typical age) 
and 4 features extracted from the amygdala (non-typical age) have significantly different distributions in ASD subjects 
compared to DC subjects, with a significance of p < 0.05 following Holm–Bonferroni correction. Features derived from 
hippocampal regions also demonstrate high discriminative power for differentiating between ASD and DC subjects, 
with classifier accuracy of 67.85%, sensitivity of 62.50%, specificity of 71.42%, and the area under the ROC curve (AUC) 
of 76.80% for age-matched subjects with typical age range.

Conclusions: Results demonstrate the potential of hippocampal texture features as a biomarker for the diagnosis 
and characterization of ASD.
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Background
Autism spectrum disorder (ASD) is a complex devel-

opmental disability that appears during infancy, spe-

cifically the first 2–3 years of life [1, 2]. It is a spectrum 

disorder affecting about one in 300 children to vary-

ing degrees [3]. To this day, the exact causes of ASD are 

not fully understood, and it is believed that a combina-

tion of genetic and environmental factors are involved 

[4, 5]. Over the years, MRI has been a key technology 

for the in vivo study of ASD, facilitating the visualization 

of neuroanatomical structures related to this disorder, 

such as the hippocampus and amygdala. Image features, 

extracted from MRI data, have shown a great potential 

for the study of various neurological disorders like Alz-

heimer’s [6]. However, their application to the study of 
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ASD, and particularly for differentiating between ASD 

and development control (DC) subjects, remains limited.

Previous studies have shown a link between ASD and 

morphological characteristics measured from MRI. For 

instance, children with ASD exhibit an alteration of hip-

pocampal shape consistent with inward deformation 

of the subiculum [7]. Likewise, a connection has been 

reported between ASD and neuronal size abnormalities 

in medial temporal lobe structures, including the hip-

pocampus [8]. Studies have also investigated the relation-

ship between ASD and neuroanatomical regions other 

than the hippocampus, namely, the cerebral cortex, cer-

ebellum, amygdala, corpus callosum and caudate nucleus 

[9–11].

Nevertheless, there are striking inconsistencies in the 

evidence linking ASD to volumetric abnormalities in 

MRI [12]. Several studies suggest that autistic children 

between the age of 2 and 4 have a significantly larger 

brain compared to normally developing peers [13–15]. 

An increase in hippocampal volume, persisting to ado-

lescence, has also been reported in the literature [16]. 

However, other studies involving autistic adolescents and 

young adults showed no significant difference [17], or 

even a decrease in hippocampal volume [18]. Likewise, 

the orbitofrontal cortical thickness of ASD subjects was 

found to be enlarged in Ecker et al. [10], while decreased 

in other studies [11, 19]. Inconsistencies between these 

ASD studies suggest that the neuroanatomical correlates 

of this complex disorder are quite variable. �is vari-

ability may also arise due to differences in the mode (or 

equipment/site) of imaging data acquisition and analysis.

So far, studies have mostly focused on volumetric (or 

thickness) features derived from MRI images, and have 

not fully exploited the rich information captured by radi-

omic features. Radiomic analyses focus on the automated 

and high-throughput extraction of features from medi-

cal images, which captures subtle changes in regions of 

interest and quantifies patterns which might escape the 

human visual system [20]. In particular, the texture fea-

tures studied in such analyses provide an intuitive means 

for characterizing general image heterogeneity in MRI. 

�ey also offer a powerful way of detecting various dis-

eases, such as Alzheimer’s [6], glioblastoma [21] and 

colon cancer [22].

In a recent study, Chaddad et al. found significant tex-

ture differences between the MRI scans of ASD and DC 

subjects, occurring predominantly in the hippocampus 

[23]. �ese differences suggest that texture features could 

be used as biomarkers for ASD diagnosis, complemen-

tary to traditional morphological measurements like vol-

ume. Based on these recent findings, this work proposes 

using radiomic features, extracted from the hippocam-

pus and amygdala regions in MR images, to differentiate 

ASD from DC subjects. To our knowledge, this is the first 

study to use texture features effectively for this task.

We present an automatic processing pipeline based 

on texture feature extraction, region encoding and sub-

ject classification. Specifically, we investigate 11 different 

texture features derived from grey-level co-occurrence 

matrices (GLCM), which have been used success-

fully in previous studies [24–26]. GLCM features are 

extracted from segmented hippocampi and amygdala 

regions in MRI, these two neuroanatomical structures 

linked to memory formation and believed to play a role 

in ASD. For instance, the amygdala could be connected 

to socio-emotional impairments in ASD [27, 28]. �ese 

features are then employed within an analysis of vari-

ance (ANOVA) test, and used as inputs to support vector 

machine (SVM) and random forest models for identify-

ing dominant texture features that can reliably differenti-

ate between ASD and DC subjects.

Methods
�e flowchart of the proposed method, shown in Fig. 1, 

comprises three steps: (1) region labeling, (2) GLCM fea-

ture extraction and (3) ASD versus DC classification. �e 

data used in our study and these steps are discussed in 

following sub-sections.

Patient population and data acquisition

MRI images of 64 subjects were obtained from the pub-

licly available ABIDE I database [29, 30]. �is database 

consists of structural MRI provided by various medical 

and research sites around the world. Diagnosis of ASD 

was achieved using the Autism Diagnostic Observation 

Schedule (ADOS), the Autism Diagnostic Interview-

Revised (ADI-R), or both [31, 32]. �e imaging protocol 

used was whole-brain T1-WI scanning with a 3T MRI 

scanner. All volumetric images were acquired with a 

resolution of 1 mm3, for a total size of 256 × 256 × 256 

voxels [29, 30]. In accordance with Health Insurance 

Portability and Accountability (HIPAA) guidelines, all 

data are anonymized with no protected health informa-

tion included.

We considered the following two subject groups: (A) 

typical age range children, further divided into (A1) 

14 children with ASD (6 males, 8 females; median age 

12.87-year-old; range 4–15  years) and (A2) 14 children 

with DC (6 males, 8 females; median age 13.97 year-old; 

range 4–15  years), having similar range of demograph-

ics; (B) non-typical age range subjects, divided into B1) 

with 20 ASD subjects (17 males, 3 females; median age 

17 year-old; range 11–24 years) and (B2) 16 DC subjects 

(14 males, 2 females; median age 16.5  year-old; range 

10–23  years). �e 28 subjects in group A were selected 

from the University of Michigan (UM) site of the ABIDE 
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I database. �is enables us to have balanced data (ASD/

DC samples) and avoid inter-site variations resulting 

from differences in acquisition equipment or protocol. 

Within this group, the 6 males and 8 females with ASD 

were individually matched based on age with the 6 males 

and 8 females labeled as DC. �e 36 subjects in group B 

were taken from the University of Pittsburgh (Pitt) site, 

the remaining 27 subjects of this site ignored due to poor 

labelling quality (>2  mm error). Subjects in this unbal-

anced group (20 ASD vs 16 DC) were not age-matched, 

allowing us to evaluate the effect of this confound in our 

analysis. A detailed description of our study’s final sam-

ple is provided in Table 1.

Region labeling

Hippocampi and amygdala were labeled manually, in a 

blind fashion, by two independent expert radiologists 

with 5 and 7 years of experience. �e segmentation was 

performed slice by slice from sagittal images of T1-WI 

MRI scans, using the open source 3D Slicer 3.6 platform 

(http://www.slicer.org/). �e inter-rater reliability of 

the segmentation was measured using the Dice similar-

ity coefficient (DSC) [33] which evaluates the degree of 

correspondence between two labels (i.e., a labeling from 

the first expert compared to that of the second expert).

Figure  2 shows examples of hippocampal labels in 

ASD (Fig. 2a) and DC (Fig. 2b) subjects. �e histogram 

of normalized intensities derived from ASD and DC sub-

jects in group A are given in Fig.  2b. We see that these 

histograms are similar to one another and, therefore, that 

raw intensity values in the hippocampus are not reliable 

for differentiating between ASD and DC subjects. More 

informative features, such as those encoding texture, are 

thus necessary to the capture the subtle differences aris-

ing from ASD. Toward this goal, we used the segmenta-

tion masks of hippocampus and amygdala regions to 

extract texture features based on GLCM.

GLCM based texture features

Neighboring pixels are known to exhibit correlation 

in natural images. As proposed in the seminal work of 

Haralick in 1973 [34], local variations in an image cap-

tured by GLCMs can be used effectively to characterize 

the image’s texture. GLCMs are second-order statistics 

which estimate the properties of two or more pixel val-

ues occurring at specific locations relative to each other. 

Fig. 1 Workflow of the proposed model. Data derived from T1-weighted MRI [scans reproduced with permission from the International Neuroim-
aging Data-Sharing Initiative (INDI), under the creative commons license (https://creativecommons.org/licenses/by-nc-sa/3.0/)]; manual labeling 
of hippocampus and amygdala regions; extraction of GLCM-based texture features from hippocampus and amygdala regions; identification of 
discriminative features for classifying ASD and DC subjects

Table 1 Demographic and clinical characteristics of the study groups

* p value of age subjects

Subjects Study group n Sex (male/female) Age (years) p value* (male vs female) p value* (ASD vs DC)

Group A ASD 14 6/8 12.87 (4–15) 0.791 0.886

DC 14 6/8 13.97 (4–15) 0.811

Group B ASD 20 17/3 17.00 (11–24) 0.021 0.835

DC 16 14/2 16.50 (10–23) 0.013

http://www.slicer.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
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Specifically, GLCM entries correspond to the co-occur-

rence probability Pd,θ(i, j) of having intensities i and j in 

two pixels separated by a translation vector defined using 

direction θ and offset d (also known as distance) [11, 16–

19]. Given a 2D image I of size N × N, the co-occurrence 

matrix Pd,θ(i, j) can be defined element-wise as

where dx and dy are the translations along the x-axis 

and y-axis, corresponding to direction θ and offset d. A 

GLCM is thus a square matrix of size Ng, where Ng is 

the number of grey levels in the image. For 2D images, 

a total of 16 GLCMs are typically computed, each one 

corresponding to the combination of an offset d ∈ {1, 2, 

3, 4} and a direction θ ∈ {0°, 45°, 90°, 135°}. Note that 

directions {180°, 225°, 270°, 315°} are redundant because 

of the symmetry found in GLCM matrices: Pd,0° = PT
d,180°, 

Pd,45° = PT
d,225°, Pd,90° = PT

d,270°, Pd,135° = PT
d,315°, where the 

superscript ‘T’ denotes the transpose operation.

To obtain GLCM features, we considered the seg-

mented regions corresponding to the hippocampus and 

(1)

Pd,θ
(

i, j
)

=

N
∑

x=1

N
∑

y=1

{

1, if I(x, y) = i and I
(

x + dx, y + dy
)

= j

0, otherwise

amygdala. Intensities within these regions were then 

equalized to 32 grey levels before computing the GLCM 

matrices. For every 2D slice containing the region of 

interest, we computed 4 GLCMs corresponding to off-

set d = 1 and directions θ ∈  {0°, 45°, 90°, 135°}. Follow-

ing this, a set of 11 textures features (or descriptors) was 

obtained for each GLCM by applying to these matrices 

the following quantifier functions: energy, entropy, corre-

lation, contrast, homogeneity, variance, sum-mean, clus-

ter shade, cluster tendency, maximum probability, and 

inverse variance. �ese standard functions are commonly 

used in radiomic analyses, and capture various proper-

ties of tissue heterogeneity [34–39]. �e final region rep-

resentations, composed of 11 features, are obtained by 

averaging features individually across the four GLCMs 

and all 2D slices containing the region. Figure 3b shows 

an example of four GLCMs derived from hippocampal 

regions (Fig. 3a).

For classification, the resulting features were further 

processed to have zero mean and unit variance (z-score 

normalization) [40]:

(2)xnorm =
x − x̄

σ

Fig. 2 Examples of hippocampus regions in ASD and DC subjects. a, b Examples of hippocampus segmentation masks for ASD and DC subjects 
(scans reproduced with permission from the International Neuroimaging Data-Sharing Initiative (INDI), under the creative commons license);  
c histogram of normalized intensities in MRI images of ASD and DC typical age range subjects; d dice similarity coefficient between the two expert 
labelings (left and right of hippocampus and amygdala regions, respectively)
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where x is the original feature value, x̄ the mean value of 

this feature, and σ its standard deviation.

Statistical analysis, classi�cation, and validation

An analysis of variance (ANOVA) was first performed on 

the features extracted from hippocampus and amygdala 

regions, to compare their distribution in ASD and DC 

subjects. To account for multiple comparisons (11 texture 

features = 11 tests), p values obtained from this test were 

corrected according to the Holm–Bonferroni method [41]. 

We considered texture features with p < 0.05 as significant, 

and selected those for classifying ASD versus DC subjects.

Support vector machine (SVM) models were used for 

the classification task [42]. Note that other classifiers, 

such as random forest, have also been tested. However, 

SVMs provided a superior performance with comparably 

fewer parameters to tune. For experiments, we consid-

ered radial based function (RBF) kernels with a width of 

ɣ = 1, and set the penalty parameter to C = 1.

Since the cohort was limited to 28 subjects in group 

A and 36 subjects in B, a leave-one-out cross-validation 

strategy was used to obtain a less biased estimate of clas-

sification error rates. We evaluated the classification per-

formance using the accuracy, sensitivity and specificity 

metrics according to the following equations:

(3)Accuracy =
TP + TN

TP + FP + TN + FN

(4)Sensitivity =
TP

TP + FN

(5)Specificity =
TN

TN + FP

where the true positive (TP) and the true negative (TN) 

rates are the numbers of correctly classified positive 

and negative examples. Correspondingly, the false posi-

tive (FP) and false negative (FN) rates are the number 

of positive and negative examples which are incorrectly 

classified. Note that we defined DC subjects as positive 

examples in our experiments.

�e performance of our classifier model was also meas-

ured using the confusion matrix and area under the ROC 

curve (AUC). To compute the latter, a 10-fold cross-vali-

dation was employed. Specifically, examples correspond-

ing to ASD and DC subjects were randomly divided into 

10 folds, each of them used in turn to compute the AUC 

on remaining samples. �e overall performance of the 

model was then measured as the average AUC obtained 

over all 10 folds [43].

Dominant features

Random forest classifiers provide an efficient way to 

measure feature importance [44]. During the induction 

phase, discriminative features are selected first when con-

structing decision trees. In particular, root nodes of deci-

sion trees represent the most group-informative features. 

Following this principle, we used the TreeBagger Matlab 

function to learn a random forest containing 1000 deci-

sion trees, for the task of differentiating between ASD 

and DC subjects. We then measured the importance of 

features as the frequency at which these features occur in 

the root node of a decision tree (0–1000 times). Note that 

feature importance was also measured as the increase in 

prediction error resulting from permuting features across 

out-of-bag examples, this strategy giving a similar feature 

ranking as the one based on root nodes.

Fig. 3 GLCM computation. a Labeling of the hippocampus region in red (scans reproduced with permission from the International Neuroimaging 
Data-Sharing Initiative (INDI), under the creative commons license); b example of GLCMs corresponding to one offset and four different directions
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Randomness (permutation) test

Randomness testing is used to quantify the p values of 

individual features and feature combinations [45]. An 

empirical null distribution is generated from multiple 

trials, in which subject labels are randomly permu-

tated, thus rendering them information-less regarding 

the data (i.e. the null hypothesis). Significance p values 

for individual features are then calculated by integrat-

ing the tails of the null distribution, based on classi-

fication accuracy using true (non-randomized) labels. 

Addressing the group-wise significance is also impor-

tant, as a number of features may appear significant 

due to random chance, particularly in a calculation 

involving high numbers of features. Techniques such 

as Bonferroni correction can be overly penalizing, a 

common alternative is to compute the false discovery 

rate [46]. In this work, we control the family-wise error 

rate using the Holm–Bonferroni procedure, which is 

known to be uniformly more powerful than Bonferroni 

correction.

Results
Demographic information (i.e., gender and age) of ASD 

and DC subjects is provided in Table 1. Except for across-

gender age differences in group B, no statistically sig-

nificant differences in age were found between male and 

female subjects or between ASD and DC subjects. �e 

age bias in group B could be related to the fact that girls 

are less likely than boys to meet diagnostic criteria for 

ASD [47, 48]. �e inter-rater reliability of manual seg-

mentation labels is reported in Fig. 2d, showing an aver-

age Dice overlap (DSC) above 85% for the hippocampus 

(left and right), and over 75% for the amygdala (left and 

right). �is confirms the quality of manual labels, in par-

ticular for hippocampal regions.

Feature di�erence testing

Table 2 gives the average and standard deviation (StDev) 

of the 11 texture features extracted from the hippocam-

pal and amygdala regions of ASD and DC subjects in the 

two test groups (i.e., groups A and B). We see significant 

Table 2 Summary (average ±  StDev) of  texture features extracted from  hippocampal and  amygdala regions of  ASD 

and DC patients, with corresponding p values

Features Group A Group B p value

ASD DC ASD DC Group A Group B

Hippocampus

Energy 0.990 ± 0.0021 0.992 ± 0.0025 0.599 ± 0.079 0.626 ± 0.049 3.03 × 10−6 4.21 × 10−4

Entropy 0.022 ± 0.0044 0.018 ± 0.0053 0.089 ± 0.0019 0.026 ± 0.003 6.96 × 10−6 8.2 × 10−4

Correlation 0.488 ± 0.0972 0.584 ± 0.2263 0.735 ± 0.022 0.741 ± 0.015 0.014 0.02

Contrast 0.858 ± 0.1167 0.716 ± 0.1527 1.483 ± 0.492 1.565 ± 0.560 5.24 × 10−8 7.31 × 10−6

Homogeneity 0.997 ± 0.0006 0.998 ± 0.0007 0.898 ± 0.024 0.905 ± 0.015 2.31 × 10−5 8.5 × 10−3

Variance 2.696 ± 0.5259 2.089 ± 0.6217 9.837 ± 3.311 10.666 ± 4.018 1.31 × 10−6 7.51 × 10−3

Sum-mean 1.108 ± 0.0215 1.083 ± 0.0260 3.625 ± 0.463 3.602 ± 0.457 1.76 × 10−6 8.2 × 10−3

Cluster shade 476.318 ± 99.8276 369.168 ± 111.025 50.099 ± 21.728 59.828 ± 25.645 2.34 × 10−6 4.8 × 10−4

Cluster tendency 23,825.94 ± 5306.88 18,606.34 ± 5536.42 409.330 ± 209.082 507.268 ± 255.621 2.74 × 10−6 7.12 × 10−5

Max. probability 0.995 ± 0.001 0.996 ± 0.0012 0.766 ± 0.057 0.786 ± 0.032 3.03 × 10−6 5.71 × 10−6

Inverse variance 0.002 ± 0.0004 0.001 ± 0.0004 0.320 ± 0.04 0.407 ± 0.049 9.64 × 10−8 4.54 × 10−6

Amygdala

Energy 0.434 ± 0.039 0.422 ± 0.036 0.443 ± 0.043 0.417 ± 0.039 0.317 0.064

Entropy 0.472 ± 0.096 0.473 ± 0.081 0.475 ± 0.112 0.486 ± 0.09 0.985 0.741

Correlation 0.723 ± 0.016 0.728 ± 0.014 0.733 ± 0.021 0.745 ± 0.011 0.389 0.040

Contrast 3.181 ± 0.566 3.366 ± 0.265 2.824 ± 0.459 3.001 ± 0.417 0.235 0.239

Homogeneity 0.855 ± 0.014 0.855 ± 0.011 0.857 ± 0.014 0.859 ± 0.011 0.984 0.602

Variance 19.830 ± 3.414 21.421 ± 1.961 18.433 ± 3.289 20.595 ± 2.854 0.107 0.046

Sum-mean 5.141 ± 0.466 5.357 ± 0.373 4.974 ± 0.503 5.338 ± 0.407 0.141 0.025

Cluster shade 77.687 ± 16.401 80.996 ± 7.505 72.273 ± 13.411 73.692 ± 17.258 0.461 0.783

Cluster tendency 817.399 ± 201.952 884.467 ± 80.220 729.620 ± 166 804.451 ± 181.051 0.220 0.205

Max. probability 0.640 ± 0.035 0.628 ± 0.033 0.649 ± 0.039 0.621 ± 0.038 0.314 0.034

Inverse variance 2.717 ± 0.465 2.878 ± 0.201 2.420 ± 0.380 2.578 ± 0.352 0.207 0.209
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differences (p value <0.05 following Holm–Bonfer-

roni correction) between ASD and DC subjects, in both 

groups, for all features derived from the hippocampus 

region. For textures in the amygdala region, 4 texture fea-

tures (correlation, variance, sum-mean, and maximum 

probability) showed a significant difference between 

the ASD and DC subjects of group B. �ese observa-

tions suggest that textures in both the hippocampus and 

amygdala regions are relevant to ASD, although features 

derived from the hippocampus may have a greater poten-

tial for differentiating between ASD and DC subjects.

Subject classi�cation

For the classification of typical age range subjects (28 

subjects, group A), texture features extracted from the 

hippocampus yielded a mean accuracy of 67.85%, sensi-

tivity of 64.28% and specificity of 71.42% (Table 3). In the 

case of non-typical age range subjects (36 subjects, group 

B), a lower sensitivity of 62.50% was obtained, however 

the classifier accuracy and specificity increased to 75 and 

85%, respectively. By contrast, features derived from the 

amygdala showed no discriminative power, in both typi-

cal and non-typical development groups, with accuracy 

near 50% (the expected accuracy of a random classifier is 

50% for a balanced set of examples).

Table  4 gives the confusion matrix, summarizing the 

rates of correct and incorrect SVM classification for ASD 

and DC subjects. Using hippocampus texture features, 

a correct classification was achieved for 10/14 ASD and 

9/14 DC typical age range subjects, compared to 17/20 

ASD and 10/16 DC non-typical age range subjects. �is 

difference in accuracy may be due, in part, to the class 

imbalance in group B (20 ASD vs 16 DC). Compared to 

hippocampus, amygdala texture features lead to lower 

classification rates for ASD and DC subjects, in both 

groups A and B.

Figure  4 shows the mean ROC curves and AUC values 

obtained by the SVM model for classifying typical and non-

typical age range subjects, using texture features from the 

hippocampus (black curves) and amygdala (red curves) 

regions. Once again, it can be seen that features derived 

from the hippocampus lead to a better performance than 

those extracted from the amygdala, with a mean AUC of 

76.80 and 80.06% compared to 58.09 and 60.04%, respec-

tively for typical and non-typical age range subjects. Results 

of the randomness test are reported in Table 5. As expected, 

the null distribution of classification accuracy peaks around 

50% for hippocampus and amygdala features, in both sub-

ject groups. �is confirms that the results obtained with 

the proposed texture features are not due to chance.

Feature importance

Figure 5 gives the relative importance of features derived 

from the hippocampus and amygdala regions, in subject 

groups A and B, as measured by the number random for-

est trees having these features as root node. For the hip-

pocampus, we find that the correlation, cluster tendency, 

cluster shade, contrast, inverse variance, and sum-mean 

features are the most dominant, with 100 or more root 

node occurrences in both groups A and B. All other fea-

tures have less than 100 occurrences. Moreover, it can be 

seen that the feature ranking is consistent across subject 

groups, with correlation being the most informative fea-

ture in the two groups. In contrast, the importance of 

features extracted from the amygdala varies more signifi-

cantly from group A to group B. �is supports the results 

of our previous analyses, which found texture in the 

amygdala to be less relevant than that of the hippocam-

pus for identifying ASD subjects.

Discussion
Radiomic features, and particulary those encoding tex-

ture, enable the quantification of voxel (or pixels) inter-

relationships, describing characteristics of underlying 

Table 3 Performance metrics (%) of  classi�cation 

between ASD and DC

n number of subjects

Subjects Brain region Accuracy Sensitivity Speci�city

Group A (n = 28) Hippocampus 67.85 64.28 71.42

Amygdala 52.00 43.75 60.00

Group B (n = 36) Hippocampus 75.00 62.50 85.00

Amygdala 50.00 18.75 75.00

Table 4 Summary of confusion matrix

n number of subjects

Subjects Hippocampus Amygdala

Group A (n = 28) Group B (n = 36) Group A (n = 28) Group B (n = 36)

ASD (14) DC (14) ASD (20) DC (16) ASD (14) DC (14) ASD (20) DC (16)

ASD 10 4 17 3 12 8 15 5

DC 5 9 6 10 9 7 13 3
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tissues that may be invisible to the human visual system 

[49]. For example, texture features can help segment 

lesions in glioblastoma multiforme [50]. Likewise, abnor-

mal textures in the corpus callosum and thalamus were 

found to be associated with Alzheimer’s disease [51]. 

Abnormal texture patterns in the pons, midbrain, dentate 

nucleus, globus pallidus, and corona radiata can also be 

observed in subjects with Parkinson’s disease [52]. How-

ever, the link between texture in neuroanatomical regions 

and ASD has so far been unclear.

In this study, GLCM-based texture features derived 

from the hippocampus (11 features) and amygdala (11 

features) regions were used for differentiating between 

ASD and DC subjects. Note that the gender differences in 

the untypical age group (i.e. group B) could be related to 

pathophysiological reason and almost the ASD is approx-

imately 3–4 times more prevalent in boys than girls [53]. 

�e first analysis, using ANOVA, found 11 hippocampi 

(groups A and B) and 4 amygdalae (group B) features that 

were significantly different in ASD subjects compared to 

DC subjects (Table  2). Various studies in the literature 

have reported abnormal brain development curves for 

ASD subjects, which may lead to volumetric differences 

in structures like the hippocampus [16, 54]. It is possible 

that this abnormal development affects the underlying 

substrate, thereby leading to the observed differences in 

texture.

Our classification analysis based on SVM showed a 

higher performance (accuracy and AUC) of texture fea-

tures from the hippocampus than those derived from 

the amygdala, with a mean accuracy of 67.85% and mean 

Fig. 4 ASD versus DC classification performance. Mean receiver operating characteristic (ROC) curve and AUC obtained by the SVM using the tex-
ture features derived from hippocampus (black curves) and amygdala (red curves) regions in typical (group A) and non-typical (group B) age range 
subjects

Table 5 Summary of permutation test

StDev standard deviation

Brain regions Subjects Average ± StDev Median

Hippocampus Group A 48.10 ± 12.78 50.00

Group B 52.00 ± 8.50 51.11

Amygdala Group A 49.90 ± 9.62 51.20

Group B 51.34 ± 6.32 50.36
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AUC of 76.80% in the 28 typical age range subjects, where 

ASD and DC subjects were matched based on age (Fig. 4; 

Table 3). �is suggests that hippocampus texture features 

could be used effectively as biomarkers for detecting 

ASD. In particular, our feature importance analysis based 

on random forests indicated hippocampus GLCM corre-

lation to be the most discriminative feature for differenti-

ating between ASD and DC subjects (Fig. 5). �is feature 

measures the linear dependency of grey levels between 

neighboring pixels, and is related to region heterogene-

ity (e.g., correlation is 0 for a completely uniform region).

Our findings on the non-difference of amygdala tex-

ture features between ASD and DC subjects (group A) 

are consistent with previous studies showing no signifi-

cance difference in amygdala volume between ASD and 

DC subjects [55]. Although other studies have reported 

an enlarged amygdala in ASD subjects [16, 56, 57], the 

differences observed for non-typical age range subjects 

(group B) could be due to the age bias from using non-

matched ASD and DC subjects.

Our proposed approach differs from traditional 

techniques, which mostly rely on morphological and 

Hippocampus

Amygdala

Group A Group B

Group A Group B

Fig. 5 Dominant feature identification. (First row) Hippocampus-derived features; (second row) amygdala-derived features. Each bar represents the 
occurrence number of a feature in decision-tree root nodes (from 0 to 1000). Group A (left) and group B (right) contains typical and non-typical age 
range subjects, respectively
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volumetric characteristics [16–18]. Research suggests 

that the white matter in young children with ASD may 

be abnormally homogeneous, and this may reflect poor 

organization or differentiation of pathways in the tem-

poral lobe [58]. Another study using multimodality neu-

roimaging (e.g. structural MRI, diffusion tensor imaging 

and proton magnetic resonance spectroscopy) found 

that ASD subjects had alterations in cortical thickness, 

white matter connectivity, as well as neurochemical con-

centration, demonstrating the potential of multimodal 

imaging as a more informative method to identify ASD 

[59].

Moreover, a recent study demonstrated that the 

differences between ASD and DC may depend on 

acquisition site. �is study suggested applying a signif-

icance-weighted principal component analysis (PCA) 

technique to reduce the undesired intensity variance, 

thereby increasing the statistical power in detecting the 

differences between ASD and DC groups [60]. Using this 

technique, Broca’s area and temporal-parietal junction 

were found to be significantly different. However, the 

classifier accuracy between ASD and DC was not suf-

ficient to classify diagnostic groups. Nevertheless, this 

study motivated our decision of using data from a sin-

gle site, instead of all available sites, to avoid introducing 

cross-site intensity variance in our analysis of texture. 

Other studies have argued that MRI techniques are too 

spatiotemporally limited to appreciate the synaptic or 

neuronal-level abnormalities that may be at the of disor-

ders like ASD [61]. Our work suggests that MRI texture, 

which stem from tissue heterogeneity, could capture 

these abnormalities at a higher scale and, thus, be used 

for understanding ASD. A broader investigation involv-

ing more subjects would however be required to clarify 

the nature of texture differences and their impact on 

ASD.

Our study has several limitations worth of mention. 

�e number of subjects (i.e., 64) is relatively low, espe-

cially in the case of ASD where most subjects are at a 

developing age. In the proposed methodology, age bias 

was addressed by matching ASD and DC subjects. How-

ever, the primary goal of this study was to assess the 

feasibility of using texture features derived from neuro-

anatomical region for discriminating between the ASD 

and DC subjects. Furthermore, this study was limited 

to T1-WI MRI data only. Additional information could 

be gained by considering the texture features computed 

from different, complementary MRI sequences, such as 

T1-WI pre- and post-contrast, T2-WI, or FLAIR. Moreo-

ver, employing more advanced methods for segment-

ing brain regions and classification, for instance based 

on deep learning, could potentially increase the perfor-

mance of our approach.

Conclusions
�is paper presented a radiomic approach using GLCM 

texture features derived from hippocampal and amygdala 

regions to characterize differences between ASD and devel-

opment control subjects. Our preliminary results show the 

potential of these features as a biomarker to aid clinicians 

in the diagnostic of ASD. Texture features derived from the 

hippocampus, and particularly GLCM correlation, were 

found to have significant discriminative power for differen-

tiating between ASD and control subjects. Future work can 

include a validation of the proposed approach on a larger 

subject cohort, and using additional imaging modalities.
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