
COMPUTER VISION, GRAPHICS, AND IMAGE PROCESSING 25, 331-347 (1984)

HIPS? A Unix*-Based image Processing System

MICHAEL S. LANDY, YOAV COHEN, AND GEORGE SPERLING

Human Information Processing Laboratoty, Psychology Department, New York University

Received January 13,1983; revised February 25,1983

A software system for image processing, HIPS, was developed for use in a UNIX environ-
ment. It includes a small set of subroutines which primarily deals with a standardized
descriptive image sequence header, and an ever-growing library of image transformation tools
in the form of UNIX “filters.” Programs have been developed for simple image transforma-
tions, filtering, convolution, Fourier and other transform processing, edge detection and line
drawing manipulation, simulation of digital compression and transmission, noise generation,
and image statistics computation. The system has the useful feature that images are self-docu-
menting to the extent that each image as stored in the system includes a history of the
transformations that have been applied to that image. Although it has been used primarily with
a Grinnell image processor, the bulk of the system is machine-independent. The system has
proven itself a highly flexible system, both as an interactive research tool, and for more
production-oriented tasks. It is both easy to use, and quickly adapted and extended to new
uses.

1. INTRODUCTION

There is currently rapid growth in the number of research labs involved in image
processing. In setting up such a facility, there is a seemingly inevitable period of time
during which hardware and software tools are developed in order to provide a
convenient and flexible research environment. In setting up our lab, we decided to
give some thought to the software environment before we embarked on our various
research projects. Our lab includes a variety of image-related tasks at any given time,
many of which are carried out by neophytes in computerized image processing. Our
problem was thus to provide an environment in which later development of software
image processing tools would be easy, and yet provide general flexible tools which
were easy to use. A wide variety of image processing related projects are now
ongoing, and using these tools we feel that the system has proven its flexibility.

The original project which prompted the construction of this image processing
facility was research into the bandwidth requirements for comprehensible yet
maximally compressed transmission of imagery of American Sign Language (ASL)
[l-3]. (ASL is a gesture language used for communication with and among the deaf.)
This research involves both an investigation of the relative importance of the various
visual features of ASL imagery, and a measurement of the ability of speakers of ASL
to comprehend imagery which has been modified along various parameters such as
pixel density, gray scale, spatial frequency content, applied image transformations,
and so on. Thus, a computing environment was needed in which sequences of images

*UNIX is a trademark of Bell Laboratories.
+HIPS stands for the Human Information Processing Laboratory’s Image Processing System.

331

0734-189X/84 $3.00
Copyr@t 0 1984 by Academic Press, Inc.

All rights of reproduction in any form reserved.

332 LANDY, COHEN, AND SPERLING

could be input into the computer, transformed in various ways in the spatial and
frequency domains, and eventually be presented to experimental subjects in order to
test for comprehensibility.

Once the development of this system was made known to other researchers and
computer users, it became apparent that any software tools might also be used by
several other local projects in the visual sciences. This made the need for a highly
flexible and yet easy-to-use system all the more pressing. We therefore decided to
expend some extra initial effort in order to provide such a working environment, and
we feel that the effort has been repaid handsomely.

2. ENVIRONMENT

The computing environment consists of a VAX 11/750 computer running the
Berkeley 4.1 version of the UNIX operating system. This is an operating system
designed for generality and portability, with very little hardware-specific code, and
thus provided impetus for the design of a software system which is equally portable
and non-device specific. The main image processing device is a Grirmell GMR 27-30
image processor (connected to the VAX via a DRll-B DMA interface), which
possesses the capability of storing and digitizing video frames into 256 gray levels
with a resolution of 480 x 512. It can also convert digital frames back to video, and
has a joystick, cursor, alphanumerics, etc. Other peripherals include dot matrix
printers (used for half-tone representation of images), film and video cassette
equipment, etc. Lastly, a slow-speed parallel interface (a DRll-C) is used to control
film and video equipment, and to allow the system to synchronize its image output
with the Grirmell’s vertical retrace.

The system we have developed is closely tied with the UNIX operating environ-
ment [4], and so a brief introduction to UNIX concepts is in order. The two most
important ideas here are those of afilter and a pipe. Standard utility programs in the
UNIX system are generally written as fairly simple transformations. The command
language is such that every program that is executed has an associated standard input
and standard output. Filters are programs that provide an easily described transform
of their standard input as their standard output. For example, a sorting routine
might take a list of unsorted items as its input, and yield a sorted set as its output.
The sorting parameters (such as type of ordering, keys, etc.) can be provided along
with the routine name when the command is entered. Thus, like an ordinary
electronic filter, a UNIX filter is merely a transformation of input to output. The
UNIX conventions for typing a command with parameters are

transform parameter, . . . parameter, < input > output.

Electronic filters can be cascaded in order to form more complex filtering
operations from simple primitive filters. This is also the case with UNIX filters. The
operation that provides this cascading is called the pipe facility, and in the command
language is symbolized as 1. Using a pipe-line allows one to automatically plug the
standard output of one filter into the input of the next. For example, the line

transform, (pipe-input 1 transform,] . . .] transform, > pipe-output

applies transform, to pipe-input, sends its output to transfotq, and so on, until

UNIX-BASED IMAGE PROCESSING 333

finally transform,‘s output is saved in the file pipe-output. The structure of filters and
pipes is used extensively in our image processing system.

3. SYSTEM STRUCTURE

General features. Taking our cue from the UNIX pipe and filter structure, we chose
to program our image processing routines as filters. Thus, each program would
perform only one type of transformation, and complex transformations would be
built up, whenever possible, as pipelines of simpler transformations. This sort of
implementation is natural given the UNIX operating system. The use of pipelines in
image processing systems was demonstrated by Stevens and Hunt [5] as a means of
greater efficiency given that the use of temporary files for the storage of intermediate
results is avoided.

When applying a filter to a sequence of frames, one has to specify a number of
parameters. Generally, the parameters can be divided into two groups: those that
describe the image sequence itself, and those that apply to the operation of the filter.
For example, any filter needs to know the number of frames in its input sequence,
but only the reduce filter needs to know how much to reduce an image. Thus, in
order to ease our programming efforts, the image parameters were gathered together
in a standardized image header which was then made an integral part of each image
sequence as stored in the computer.

The image header. The use of standardized image headers is by no means new to
image processing. It was initially our intent to use an already defined header in our
system in order for our images to be portable and easily transferred to other labs,
but we found that other such headers were inadequate for our purposes. One such
header is the NATO header [6], which is used for picture transmission by ARPA
facilities, among others. Although it gives full description of pictures in pixel matrix
format, it is rigid in that graphic data in other formats, such as vector representa-
tions, cannot be represented. The NATO header also allows only fixed space for
image sequence documentation, and is primarily intended as a format for magnetic
tape storage of imagery. Other headers which are more geared for parameter passing
include an extension of the NATO header called CVL [7], and the header used in the
EIDES system [8].

Our design departs from this approach in allowing variable length textual descrip-
tion of images, and allows more freedom in the documentation of picture sequences.
Being of variable size, the header can be expanded with no limit. The rationale
behind this approach is that in a research environment (as opposed to a production
environment in which large volumes of pictures are processed), considerations of
execution efficiency and data integrity are secondary to considerations of modular-
ity, simple and effective documentation of image files, and easy software generation
and maintenance.

Our image header scheme provides two facilities: the automatic passing of image
parameters through a transformation pipeline, and the ability to automatically
document an image sequence integral to how the sequence is stored and manipu-
lated. The image parameters in the header include:

number of frames,

number of rows,

number of columns,

334 LANDY, COHEN, AND SPERLING

bits per pixel,

bit packing (if filler is used to fill out bytes, or not),

pixel format (byte, integer, floating point, complex, vector plot, histogram,
quad-tree and hierarchical encoding,. . .).

The descriptive information includes:

originator’s name,

sequence name,

sequence date,

sequence description (a text of arbitrary length),

sequence history.

The originator’s name, sequence name, and sequence date are all text fields of
arbitrary length which can be used to describe the imagery from which this data was
originally derived. The sequence description is also in free text format, and com-
ments may be added to this description at any point. The sequence history is an
interesting and useful feature. It contains an executable command string of all
transformations that have been applied to this sequence, including the date and time
they were run. For example, the following sequence history describes an image which
was read in from the Grinnell, reduced by a factor of 4, cropped to 96 X 64 pixels,
converted to floating point format, then linearly scaled back to byte format such that
the lowest floating pixel maps to 0, and the highest to 255 (which is a cheap way of
contrast enhancement):

rframe “-D Thu Mar 18 16:17:46 1982” 1

reduce 4 “-D Tue May 4 11:19:27 1982” 1

extract 96 64 11 19 “-D Fri Sep 17 16:lO:lO 1982” 1

btof “-D Fri Sep 17 17:01:59 1982” 1

scale “-D Fri Sep 17 17:02:03 1982”

(this string is actually an executable UNIX command string). The quoted parameters
which begin with -D are dummy parameters which describe when the transformation
was applied to this image, and are ignored by all programs. The \ at the end of each
line is the UNIX method of saying that a command continues on the next input line.
Thus, if the original image was still in the Grinnell’s image memory, the image
described by this history could be regenerated by executing the history string as a
UNIX command.

The image header can be modified in two ways. After an image filter has read an
image header, it can simply assign new values to header parameters, or append text
to the descriptive information. Also, an image filter exists, called adddesc, which
allows one to update any or all of the documentary fields in the image header. For

UNIX-BASED IMAGE PROCESSING 335

example, the command

adddesc - a “new descriptive information” -C input-sequence > output-sequence

will add the string “new descriptive information” to the sequence description.
A small library has been written which includes routines that manipulate image

headers. Routines exist which read an image header from the standard input, update
the description, update the history, and write the new header to the standard output.

/=
* logimg - takes log of Input Image.
* Input image Is In byte format. output fmage is floating point,
* usage: logimg cseq >oseq
* to load: cc -0 logimg logimgc -Ihipl -Im
‘/

#Include cstdlo.hb
#Include chipI-format.hb
#Include cmath.hl
float logtabf2561:

malntargcargv)

char ‘argvtl:

int factor.fr.f,r.c.b.i.j.k:
char =ptc.*p:
float val:

struct header hd:

read-header f8hd):
iffhd.pixel-format != PFBYTE) f

fprlntffstderr.‘loglmg: pixel format must be byte\n”):
exhfl):

1
r = hd.rows:
c = hdcols:
hd.pixel-format = PFFLOAT:
update-headert&hO.argc.argv):
write-headerfbhd):
if ffpic = (char *) caIIocfr*c.sizeoffcharH~ == 0) I

fprlntffstderr.‘loglmg: can’t allocate core\n”);
exit(l):

)
lor d=O:i~256:i++)

logtabfll = logffdouble) ti+l)):
for ff=O:fchd.num-frame:f++) f

If fpreadtO,plc.r*c*slzeoftchar)) != r*c*sizeoffchar)) f
fprlntffstderr.“logimg: error during read\n’):
exit(l);

p = pit:
for fi=O:icr:i++) f

for f)=O:jcc:j++) f
val = logtabf*p++ 8 03771;
writerl.8val.4~:

return(O):

FIG. 1. Logimg program

336 LANDY, COHEN, AND SPERLING

Programming a filter. The typical image transformation consists of the steps

(1) interpret the command arguments,

(2) read in the image header,

(3) update the sequence history and other header parameters,

(4) write the header,

(5) read in, transform, and output the transformed image sequence.

The actual implementation of this can be seen in the sample program in Fig. 1. This
program, called logimg, will take any image with &bit byte-formatted pixels and
yields a floating pixel image by taking the natural log of each pixel (plus 1, to avoid
log(O)). The program includes several standard files, one of which describes the image
header structure. After reading the input image’s header, a check is made that the
image is truly in byte format. This particular filter outputs a floating image from an
input byte image, leaving all other image parameters constant, therefore the entry in
the image header describing the pixel format is changed to indicate floating point
pixels, and the header is output. A lookup table is then computed for the logarithm,
for efficiency’s sake. Lastly, the actual computation is performed, reading in a frame
at a time, and outputting each new pixel as it is computed. The program is written in
the language C [9], which is the standard language in use at UNIX installations, and
bears a slight similarity to Pascal.

4. SYSTEM OVERVIEW

In this section we will describe the programs which are currently available in the
system. As our research is ongoing, new tools are always being developed, and the
list is thus merely a snapshot of the current state of affairs. Since the format of these
programs is often much the same from one program to another, we have developed
also a tool for developing image transformation programs (see calcpix, described
under single pixel transformations). The functions in the system include peripheral
interface, manipulation of headers, frame generation, frame-by-frame operations,
simple frame transformations, single pixel transformations, format conversion, sta-
tistics computation, filtering, convolution, transforms, edge enhancement and detec-
tion and line drawing manipulation, a 3-dimensional vector plotting package, and
digital transmission methods. The programs listed under peripheral interface are the
only equipment-dependent programs in the system, making the system more easily
transportable. A list of all currently available programs can be found in the
Appendix.

Peripheral Interface. Only a small number of programs actually deal with input
and output of images to and from peripheral devices. It is here that any machine-
dependent code is to be found, and it is these programs which would need to be
changed in order to drive an alternative image processor. These include programs to
read and write single frames from the Grinnell (rframe and wframe), erase the
Grinnell (grerase), output sequences of frames as a video movie (movie and bmouie),

output strings of characters to the Grinnell (grstring), output graphs to the Grinnell
(grplot), and to digitize input from a video camera (tuc).

A number of routines exist which control film and video equipment in order to
allow sequence digitizing and sequence output to be fully automated. The output
lines of a slow-speed parallel interface (DRll-C) are connected to the equipment’s

UNIX-BASED IMAGE PROCESSING 337

remote control lines in order to effect this control. These programs can control a
video tape recorder (a Betamax: betacucnt, betacuew, betacurec, betapause, betaplay,
betastop), a video disk recorder (a Sony video motion analyzer: sonrfwd, sonyfidst,
sonyrec, sonyru, sonyrost), and a 16 mm film projector (a Lafayette motion analyzer:
subroutine pstep, which is used in program rseq). A fully automated sequence input
routine for conversion from film is also available (rseq).

Lastly, two routines exist which attempt to display images as halftones on an
Anadex dot-matrix printer by controlling individual dots. The first, prthlf, uses zero
to sixteen of the dots in a 4 X 4 grid with one possible overstrike in order to give 32
gray levels. The other, prtdth, uses the “dithering” technique [lo] to give up to 256
levels of gray.

Header manipulation. Three routines allow for the manipulation of image headers.
Seeheader outputs the header in a readable format, allowing one to examine image
documentation. An example of seeheader output is given in Fig. 2. Two other
utilities, grabheader and stripheader, allow one to separate headers from image
sequences, and vice versa. Lastly, adddesc can be used to update the informational
portions of the sequence header (the description, name, etc.).

Frame generation. Genframe and fgenfame can be used to generate homogeneous
fields with byte and floating pixels, respectively. Checkers generates checkerboard
patterns. Sinewave gratings can also be generated by creating a power spectrum with
genframe and pad, converting to complex with btof and ftoc, and then applying the
inverse Fourier transform inu. fourtr.

Frame-by-frame operations. Catframes can be used to concatenate single frames or
short sequences into longer image sequences. Subseq allows the user to extract

Original name:
Sequence name:
Number of frames:
Origlnal date:
Number of rows:
Number of columns:
Sits per pixel:
Bit packing:
Pixel format:

Nancy - Sentence 2
S.l.lP8.30.6

TOM61
96
6A
6
No
Bytes

Sequence history:

rseq ‘-D Thu Mar 16 16:17:46 1962’ I\
reduce 4 ‘-D Thu Mar 16 17:05:05 1962’ :\
extract 96 64 11 19 ‘-0 Fri Sep 17 16:lO:lO 1962” I
subseq 20 20 ‘-D Fri Sep 17 17:Ol:Xt 1962’ I\
btof ‘-0 Frl Sep 17 17:01:59 1982’ :\
scale ‘-0 Fri Sep 17 17:02:03 1962’ A
mask -f 261 “-D Fri Sep 17 17:04:45 1962’ :\
thresh 6 ‘-0 Fri Sep 17 17:04:46 1962’ :\

fw ‘-0 Fri Sep 17 17:04:49 1962’

Sequence descriphon:

One frame was taken from the original sequence.
II was reduced. cropped, contrast enhanced.
Then it was convolved with a mask whtch approximates a
Laplaclan operator. thresholded so that 6% of the pixels
become white. and then negated so that the drawing
appears as black-on-whhe.

FIG. 2. Sample seeheader output.

338 LANDY, COHEN, AND SPERLING

subsequences from a given sequence (including skipping frames). Repfrume simulates
the use of frame repetition or frame interpolation (by pixel averaging) as a means of
image compression. A sequence of images can be compressed into one averaged
image with strobe. Two sequences can be compared, yielding a sequence of differ-
ences between frames with difieq. Lastly, a sequence consisting of differences
between successive frames in a single sequence can be created with autodif.

Simple frame transformations. The routines reduce, enlarge, reflect, rotate180, and
pictranspose do exactly what their names imply. An image sequence can be inserted
in a fixed gray-level background with pad. A sequence of smaller subpictures can be
extracted from a sequence using extract. Lastly, the frames of a sequence can be
multiplied pixel by pixel by a given fixed frame using mul. This last program can
provide a means of generalized filtering if performed in the Fourier transform
domain.

Single pixel transformations. The routine neg produces a photographic negative,
converting black to white and vice versa. Shiftpix, powerpix, and stretchpix allow one
to shift the gray scale in various ways. L.ogimg takes the natural log of an image.
Thresh thresholds an image sequence, yielding an image which consists entirely of
black and white pixels.

In an image processing lab, writing simple single-pixel-oriented transformations is
a fairly rote process, and such transformations are often needed for special one-
time-only purposes. The program calcpix allows the user to create a new filter which
can transform a sequence of byte-formatted frames where a user-supplied series of C
statements are applied to each pixel in the images. Variables are supplied so that the
user can refer to neighboring pixels, the row and column number, use local variables,
call C subroutines, and so on. For example, the line

calcpix “if (ipix > 50 && ipix < 100) opix = 255; else opix = 0” < in > out

will transform the sequence “in” into a black and white image where pixels which
ranged from 51 to 99 in the input image become white (255), and all others become
black (0). The resulting sequence is stored in file “out.” Culcpix also leaves a copy of
the specially tailored filter in the user’s directory, which can then be applied to other
images.

Pixel format conversion. Btof converts byte images to floating format, and ftoc
converts floating images to complex format. Bpack and bunpack convert byte images
to and from bit-packed one-bit-per-pixel images, respectively. Scale takes a floating
image, and linearly scales the gray scale such that the smallest pixel value maps to 0,
and the largest to 255, yielding a byte formatted image. The simple pipeline “btof 1
scale” thus provides a means of linearly stretching image contrast.

Image statistics. The mean and variance of pixels in a given image are computed
by frumeuur. Two programs perform entropy calculations. Pixentropy computes first
and second order entropy on byte-formatted imagery. Entropy computes the entropy
of sub-blocks in a sequence of single bit-per-pixel imagery (i.e., black and white
imagery), including three-dimensional sub-blocks. Two programs compute image
gray-level histograms, histo and disphist. Histo computes the gray-level histogram of
an image or sequence, creating a new sequence complete with an image header in
which the pixel format denotes that this image is in histogram format. Disphist
displays such histograms, creating an image sequence in byte format which can then

UNIX-BASED IMAGE PROCESSING 339

be displayed on the Grimrell or printed. The output of histo, on the other hand, may
be used by programs which need the values of the histograms (such as thresholding
and contrast enhancement programs).

Image noise. Bit reversal noise can be added to a sequence with noise, and
Gaussian noise with gnoise. Fgnoise is a faster, less accurate version of gnoise.

Filtering, convolution, transforms, edge enhancement, and edge detection. Several
programs and library functions exist for transform domain processing. Library
subroutines ft, fltn, and &2d perform fast Fourier transforms, and dctld and
dctinvld perform the two-dimensional discrete cosine transform. Fourtr and
inv. fourtr transform image sequences to and from the spatial frequency domain. In
that domain, highpass, lowpass, and bandpass may be employed to perform filtering,
where the filters are characterized as ideal, exponential, or Butterworth, and by their
slopes and cutoff frequencies. Dog can be used to filter images with Gaussian filters,
or the difference of two Gaussians of different variance (a “dog” filter, used as an
approximation of the Laplacian of a Gaussian). Fourtr3d applies a three-dimensional
Fourier transform to a sequence of images, where time is the third dimension.
Walshtr and inv.walshtr apply the forward and back Walsh transforms [ll] to an
image sequence.

Convolution of byte-formatted image sequences with fixed masks is performed
with the program mask (the comparable function for floating pixel images is carried
out by fmask). The program is actually capable of performing several convolutions
at each pixel, and combines these results at each pixel with a specified function, such
as maximum mask output, sum of mask outputs, sum of absolute value of mask
outputs, and so on. The set of masks and function are specified in a mask descriptor
file, and a large number of descriptors are available in a library, including most
mask-oriented edge enhancement algorithms, such as those of Prewitt [12]. Roberts
[13], Sobel (in [14]), Kirsch [15], Abdou [16], Kasvand [17], Eberlein and Weszka
[18], and Robinson [19], and Laplacian approximations (Prewitt [12]). For single
mask outputs, the convolution is precisely equivalent to a linear filter, and the
program maskseq will convert the mask description into an image so that the power
spectrum of the corresponding filter can be computed by fourtr. Recently, Marr and
Hildreth [20] suggested an edge-detection scheme wherein zero crossings are located
in an image which has been filtered by a Laplacian. In our system, the zero crossing
computation is carried out by zc.

Other nonlinear filters include median and extremum [21] which replace pixels
with the median and closest extremum value, respectively, in a given neighborhood
around the pixel. Discedge applies the discrete edge-fitting procedure of Shaw [22] to
an image sequence. Discedge applies the same algorithm to a series of overlapping
neighborhoods, and gives for each pixel, the thresholded output of each of those
applications at that point. Another edge-fitting algorithm described by Abdou [16] is
available (abdou).

We have also been working on methods for transforming edge-detected images
into line drawings. So far, two programs have been developed along these lines.
Bclean is intended to aid in noise cleaning of binary imagery. It deletes white pixels
(in white-on-black images) which are in 8-connected components of extent smaller
than a user-specified size (e.g., it can remove isolated pixels). Thin can both thin an
image, resulting in the same 8-connected groups which are generally thinned to
one-pixel breadth, and then categorize the pixels as to being endpoints, branch

340 LANDY, COHEN, AND SPERLING

points, isolated points, and so on, in a manner similar to that described by Sakai
et al. [23]. Lastly, thicken can take thinned images and increase their “contrast” by
thickening the remaining pixels to two-pixel width lines, or more, yielding an image
which is sometimes more visually acceptable.

30 plotting package. Programs to generate and manipulate three-dimensional
graphs were added to the image processing system in order to be able to generate
synthetic line drawings. In addition, edge-detection and boundary-following schemes
can result in point and vector representations, so this package is useful in our line
drawing research. The plotting package employs a special image format and allows
one to manipulate graphs in space and over time.

There are two programs that generate simple graphs: gpoly generates polygons
(including points and lines), and gcube generates cubes. Three families of programs,
each consisting of three programs, manipulate graphs in space and over time. The
g-family (programs gmag, gshift, and grot) scale, translate and rotate graphs,
respectively; they all apply a fixed transformation to the coordinates of the input
graph. The t-family (programs tmag, tshift, trot) “stretch” a graph over time. Tshift,
for example, will create a specified number of new frames, each consisting of the
original graph shifted by a constant distance relative to the preceding frame. Thus,
the result of applying tshift to a frame is a dynamic sequence which depicts
movement of the objects at a constant velocity. The third family, the u-programs
(programs ushift and urot), manipulate the coordinate system in a specified number
of frames of the input sequence, corresponding to shifts in the viewer’s reference
frame.

In addition to these three families, pstrobe collapses a graphic sequence into a
single frame; psubseq allows extraction of a sub-sequence from an input sequence,
and gsync synchronizes several sequences, i.e., combines several dynamic “graphic
worlds” into one. Polar projection of a graph, with a specified focal point, can be
created by uiew. Graphic sequences are obtained from images in pixel-by-pixel point
representation with pixto3d, and 3D graphs can be converted to the standard plot
format of UNIX (in which 2D graphs are represented) by plot3tou. The numerical
representation of the graphs can be inspected by the user via the seeplot program.

Digital transmission methods. Several programs exist which compress sequences
using traditional digital transmission schemes. Berkeley UNIX already provides an
adaptive Huffman coding [24] program called compact. In addition, the image
processing system now includes bier-r and bier-t (hierarchical coding), dpcm-r and
dpcm-t (DPCM encoding [ll]), and btc (block truncation coding [25]). Compression
of binary (i.e., one bit per pixel) images using hierarchical coding into quad-trees [26]
is accomplished with quad, and the inverse transformation with quad-r.

5. USING THE SYSTEM

As we have mentioned, one of the strong points of the system is its flexibility and
ease of use as an image processing research tool. In order to give some feel for the
flavor of the system, this section will attempt to give some idea of a typical use of the
system.

Let us assume that we have a film of a sentence in American Sign Language,
which is to say, imagery of a frontal view of someone gesturing for a period of about
three seconds. Furthermore, assume that the intent is to come up with a new image,
derived from the original, which is more of a line drawing and yet, for speakers of

UNIX-BASED IMAGE PROCESSING 341

ASL, preserves the information inherent in the gestures. This, of course, is not an
arbitrary example, but comes from one of the lines of research being followed in our
lab [3]. The plan of action will involve reading the sequence into the computer,
applying a variety of operators to the image, and previewing the results on a video
monitor.

In order to read in the sequence, the film projector is set up to project the
sequence under computer control, and a video camera is focused on the image and
connected to the Grinnell. Note that this requires that the film projector be capable
of showing single frames for extended periods: we use a film motion analyzer for this
purpose. The Grinnell is initialized, and instructed to begin digitizing the input from
the camera by typing

grerase; tvc.

At this point, the first film image will appear on the video monitor, and the
equipment can be adjusted for best resolution. A single frame can now be stored by

typing

rframe >fframe; grerase.

The screen erase also stops digitization. Now one can try various combinations of
extract piped to wfrume, in order to best crop the image to include only the required
information. The image will also be reduced in size in order to save space. This
allows us to show sequences at real-time speed by loading the entire sequence into
computer memory and outputting to the Grinnell as quickly as possible (synchro-
nized with the video vertical sync pulses). Once the proper cropping and reduction
have been determined, the sequence may be read in by typing

grerase; tvc

rseq 120 -1 “ASL sent. 1”] reduce 4) extract 96 64 20 12 > seq.

This will read in 120 frames of film, and reduce and crop it to 96 X 64 pixels per
image. The sequence may be previewed by typing

grerase; movie < seq.

At this point, it is time to play with various image operators in order to gauge their
effects. Since filtering, convohttion, and other such operators tend to be time
consuming, it is often best to examine a single frame at first, and then apply the
operator that appears to be the most useful to the entire sequence. Hence, we pull
out a frame from the middle of the sequence:

subseq 60 < seq > frame60.

The simplest types of operators involve convolution of the image with a small
number of masks, and then applying some function (such as the sum, sum of
squares, maximum, etc.) to the output of these masks. All of these functions are
incorporated into the musk program, which takes as an argument a description file
(or built-in description) of a sequence of masks and function choice. The output of

342 LANDY, COHEN, AND SPERLING

the mask program can then be thresholded, yielding a purely black and white image.
For example,

mask -f 14 < frame60] thresh 10 1 wframe

will display the effects of a 2 x 2 Roberts edge-detection technique, thresholded
such that approximately ten percent of the pixels are classified as edge (i.e., above
threshold). By repeating the command with different values for the -f parameter,
other convolution techniques may be tried. We have found that approximations to
the Laplacian have a good appearance, and several mask approximations can be
called up in the above manner. In addition, a program exists which computes the
difference of two Gaussians of unequal variance as applied to the image, which
constitutes a good approximation to the Laplacian of an image convolved with a
Gaussian (see Marr and Hildreth [20]), and can be computed more quickly. Thus,

dog .6 7 < frame60] thresh 10] wframe

will apply a difference of Gaussians as approximated by a seven-pixel wide mask,
where the standard deviation of the narrower Gaussian is 0.6 pixels, and of the wider
Gaussian is 0.6 * 1.6 or 0.96 pixels (the ratio of 1.6 is the default), and then threshold
the enhanced image, yielding a binary picture.

After trying several other techniques, such as abdou, discedge, and so on, let us
assume that the difference of Gaussians appeared to be the most promising. The next
step is to apply the same transform to the entire sequence. Thus,

dog .6 7 < seq] thresh 10 (neg] bpack > threshseq

will store the binary sequence in bit-packed form. The sequence was photographi-
cally negated because edge pictures often look more pleasing to the eye as black-on-
white rather than the opposite. The bit-packing increases the efficiency of storage
and of real-time display. The new sequence may now be viewed by typing

bmovie -=c threshseq.

A sequence of frames from the movie may be printed for posterity by typing

subseq 0 120 10 -C threshseq) bunpack] prthlf) lcat.

The subseq yields every tenth frame of the sequence, the buupack converts it back to
byte-format, the prthlf formats it for printing, and lcut sends it to the printer. Lastly,
if at some future time you wish to see how threshseq was generated, type

seeheader < threshseq

which would yield something similar to Fig. 2.
Several features of the system can be noted from this foray into the use of the

system. Note that most programs require no parameters to govern their operation;
most of the needed parameters are obtained from the image header. Other parame-
ters are often derived from useful defaults (such as movie and wframe, which output
their images centered in the video screen, unless otherwise instructed). Image filters

UNIX-BASED IMAGE PROCESSING 343

can be combined easily in a variety of ways given the UNIX pipeline facility, and as
noted in [5], this saves on needless hassle and an explosion of unneeded temporary
files, in addition to being more time-efficient. For more production-oriented tasks,
such as applying the same set of transformations to a large series of image
sequences, the programming language-like features of the UNIX command language
combined with the image processing filters allow for a fully automated process of
image production and processing.

6. CONCLUSIONS

The system we have described, HIPS, has been used for over a year, and has
proven itself to be both easy to use and flexible. Programming new image filters is a
very easy task, and allows us to continually develop new tools as needed without
spending the bulk of our time progr amming. The ability to compound primitive
image transformations through the use of pipes allows the user to quickly examine
the capabilities of each transform under various conditions and applied to various
originals. This makes preliminary research in the area of image processing an
interactive process, and quite enjoyable. Combined with automatic control of film
and video equipment, and the use of command language scripts (another UNIX
feature), the automatic generation of tapes and films of images and image sequences
is also an easy task. Finally, the automatic documentation of images is enormously
helpful as the number of images saved in the computer increases (and your average
user, the authors included, loses track of what is what).

The development of this software is an ongoing task, and new tools are continu-
ally being developed. The work was performed by people interested in using the
tools, rather than for development of a distributable package. Thus, the software is
not utterly complete. Several programs do not handle all the pixel formats that they
might. For example, neg can negate byte, bit-packed, and floating point, but not
complex images. These sorts of features, along with the addition of obviously useful
tools, are added as needed.

We regard the flexibility of the system as its main virtue. For example, we are
considering extending the system to be able to handle images which are not in pixel
matrix representation. One step in that direction was accomplished when the
hierarchical coding programs were written simply by adding format codes for that
case. All programs check for the pixel format that they can handle, and so needless
confusion is easily avoided. We are now considering extensions of the plotting
package, and various schemes which produce line drawings from binary pictures.

APPENDIX

The following programs are available as of the time of this writing:

Program Synopsis

abdou Edge-fitting technique [16].
adddesc Add descriptive information to an image header.
autodiff Generate differences between successive frames.
bandpass Parameter&d bandpass filtering.
bclean Clean binary images.
betacucnt Control the Betamax.

344 LANDY, COHEN, AND SPERLING

Program Synopsis

betacuew
betacurec
betapause
betaplay
bmovie
bpack
btc
btof
bunpack
CdcpiX

catframes
checkers
diffseq
discedge
discedge
disphist
dispwbasis

dog
dpcmr

dpcmt

enlarge
entropy
extract
extremum
fgenframe
fgnoise
fmask
fourtr
fourtr3d
framevar

ftoc
gcube
genframe

.ww
gnoise

gpoly
grabheader
grerase

.wt
grstring
gshift
bier-r

bier-t

highpass
histo
inv.fourtr
inv.walshtr

lo&-%
lowpass
mask
maskseq
median
movie
mul

nef4
noise

Control the Betamax.
I,
I,
,,

Display a binary sequence.
Pack a sequence as one bit per pixel, bit packed format.
Block truncation coding [25].
Convert byte to floating point format.
Unpack from bit packed to byte format.
Create new image filters.
Concatenate separately stored frames into a sequence.
Generate a checkerboard pattern.
Difference of two image sequences.
Edge-fitting technique [22].
Overlapping neighborhoods of discedge.
Display a histogram.
Display the Walsh transform basis functions.
Apply a Gaussian filter or difference of Gaussian filters.
Dpcm encoding receiver.

Dpcm encoding transmitter.

Enlarge an image.
Compute image sub-block entropy on l-bit-per-pixel imagery.
Crop an image sequence.
Nonlinear filter for edge sharpening.
Generate a homogeneous floating point image.
Add Gaussian noise (fast version).
Floating point image convolution.
Fourier transform.
Fourier transform in three dimensions (including time).
Image statistics.
Convert floating to complex.
Generate a vector plot of a cube.
Generate a homogeneous byte-formatted image.
Globally scale a vector plot.
Add Gaussian noise.
Generate a vector plot of a polygon.
Pull the header from an image.
&se the Grinner screen.
Globally rotate a vector plot.
Write text on the Grinnell.
Globally translate a vector plot.
Hierarchical coding receiver.

Hierarchical coding transmitter.

Parameterized highpass filtering.
Compute an image gray-level histogram.
Inverse Fourier transform.
Inverse Walsh transform.
Take the natural log of an image.
Parameterized lowpass filtering.
Image convolution.
Convert a mask to an image.
Nonlinear filter for image smoothing.
Display an image sequence in real time.
Multiply a sequence by a fixed frame.
Negate an image.
Bit reversal noise.

UNIX-BASED IMAGE PROCESSING

Program Synopsis

345

pad
pictranspose
pixentropy
pixto3d
plot3tov
powerpix
prtdth
prthlf
pstrobe
psubseq
quad
quad-r
reduce
reflect
repframe
rframe
rotate180
rseq
scale
seeheader
seeplot
shiftpix
sonyfwd
sonyfwdst
sonyrec
sonyrv
sonyrvst
stretchpix
stripheader
strobe
subseq
thicken
thin
thresh
tmag
trot
tshift
tvc
view
vrot
vshift
walshtr
wframe
zc

Pad an image with a homogeneous background.
Transpose an image.
Compute entropy of an image.
Convert a byte image to vector plot format.
Convert vector plot image to Unix plot format.
Stretch contrast with a power function.
Print halftone using a dither matrix.
Print halftone using dot density.
Collapses a sequence of vector images to a single image.
Extracts a subsequence from a sequence of vector plot images.
Hierarchical coding compression.
Hierarchical coding receiver.
Reduce an image using pixel averaging.
Reflect an image.
Simulate compression using frame repetition.
Read a frame from the Grinnell.
Rotate an image 180”.
Read in a sequence from film.
Linearly scale a floating image to fit in byte format.
Print out image header information in a readable format.
Inspect the numerical representation of a vector plot,
Binary shift pixel values.
Control the Sony motion analyzer,
I,
I,
,I
I,

Stretch pixel contrast.
Strip the header from a sequence.
Collapse a sequence to a single frame by averaging.
Extract a subsequence from an image sequence.
Thicken a thinned binary image.
Thin a binary image and categorize the remaining pixels.
Apply a threshold to an image.
Scale a vector plot over time.
Rotate a vector plot over time.
Translate a vector plot over time.
Start the Grinnell digitizer.
Compute polar perspective for a vector plot.
Rotate the viewer coordinates in a vector plot over time.
Translate the viewer coordinates in a vector plot over time.
Forward Walsh transform.
Write a frame on the Grinnell.
Compute zero crossings.

The following subroutines are available as of the time of this writing:

Subroutine Synopsis

dct Discrete cosine transform.
fft Fast Fourier transform.
ffwt Fast Walsh transform (floating point).
fwt Fast Walsh transform (integer).
init-header Initialize an image header.

pw Step the film projector.

346 LANDY, COHEN, AND SPERLING

Subroutine Synopsis

read-header
update-desc
update-header
write-header

Read an image header from the standard input.
Add information to the sequence description.
Update the sequence history.
Write an image header to the standard output.

ACKNOWLEDGMENTS

The preparation of this article and the work on image processing of American
Sign Language was supported by the National Science Foundation, Science and
Technology to Aid the Handicapped, Grant PFR-80171189. M. Pave1 provided the
technical expertise needed to coordinate the many facets of the system and made
helpful comments on the manuscript. We wish to acknowledge the assistance of
Thomas Riedl and Robert Picardi, and also 0. R. Mitchell, who made available his
computer programs for block truncation coding.

REFERENCES

1. G. Sperling, Bandwidth requirements for video transmission of American Sign Language and finger
spelling, Science 210, 1980, 797-799.

2. G. Sperling, Video transmission of American Sign Language and finger spelling: Present and
projected bandwidth requirements, IEEE Trans. Comm. COM-29,1981, 1993-2002.

3. G. Sperling, M. Pavel, Y. Cohen, M. Landy, and B. Schwartz, Image processing in perception and
cognition, in Physical and Biological Processing of Images; Rank Prize Funds International
Symposium at the Royal Society of London (0. J. Braddick and A. C. Sleigh, Eds.), Springer,
Berlin, 1982.

4. D. M. Ritchie and K. Thompson, The UNIX time-sharing system, Be/l System Tech. J. 57, 1978,
1905-1929.

5. W. R. Stevens and B. R. Hunt, Software pipelines in image processing, Comput. Graphics and Image

Process. 20, 1982, 90-95.
6. J. S. Dehne, The NATO RSG-4/SGIP tape format, in Proceedings of the Workshop on Standards for

Image Pattern Recognition, National Bureau of Standards Special Publication 500-8, Washington
D.C., 1977.

7. R. L. Kirby, R. Smith, P. Dondes, S. Ranade, L. Kitchen, and F. Blonder, Interfaces, Subroutines,
and Programs for Grinnell GMR-27 Display Processor, University of Maryland Computer
Science Technical Report TR-810,1979.

8. H. Tamura, Image database management for pattern information processing studies, in Pictorial

Information Systems (S. K. Chang and K. S. Fu, Eds.), Lecture Notes in Computer Science, Vol.
80, pp. 198-227, Springer-Verlag, New York, 1980.

9. B. W. Kemighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Englewood Cliffs,
N.J., 1978.

10. J. F. Jan&, C. N. Judice, and W. H. Ninke, A survey of techniques for the display of continuous tone
pictures on bilevel displays, Comput. Graphics and Image Process. 5, 1976, 13-40.

11. R. C. Gonzalez and P. Win& Digital Image Processing, Addison-Wesley, Reading, Mass., 1977.
12. J. M. S. Prewitt, Object enhancement and extraction, in Picture Processing and Psychopictorics (B. S.

Lipkin and A. Rosenfeld, Eds.), pp. 75-149, Academic Press, New York, 1970.
13. L. G. Roberts, Machine perception of three-dimensional solids, in Optical and Electrooptical Informa-

tion Processing (J. T. Tippett et al., Eds.), pp. 159-197, MIT Press, Cambridge, Mass., 1965.
14. R. 0. Duda and P. E. Hart, Pattern Classification and Scene Analysis, Wiley, New York, 1973.
15. R. Kirsch, Computer determination of the constituent structure of biological images, Comput.

Biomed. Res. 4, 1971, 315-328.
16. I. Abdou, Methods of Edge Detection, University of Southern California, Image Processing Institute

Report, No. 830, 1978.
17. T. Kasvand, Iterative edge detection, Comput. Graphics and Image Process. 4, 1975, 279-286.

UNIX-BASED IMAGE PROCESSING 347

18. R. B. Eberlein and J. S. We&a, Mixtures of Derivative Operators as Edge Detectors, Compur.

Graphics and Image Process. 4, 1975, 180-183.
19. G. S. Robinson, Edge Detection by Compass Gradient Masks, Cotnput. Graphics and Image Process.

6,1977,492-501.
20. D. Marr and E. Hildreth, Theory of Edge Detection, MIT Artificial Intelligence Lab. Memo, No. 518,

1979.
21. J. M. Lester, J. F. Bremier, and W. D. Selles, Local transforms for biomedical image analysis,

Comput. Graphics and Image Process. 13, 1980, 17-30.
22. G. B. Shaw, Local and regional edge detectors: Some comparisons, Compur. Graphics and Image

Process. 9, 1979, 135-149.
23. T. Sakai, M. Nagao, and H. Matsushima, Extraction of invariant picture sub-structures by computer,

Comput. Graphics and Image Process. 1, 1972, 81-96.
24. D. A. Huffman, A method for the construction of minimum redundancy codes, Proc. IRE 40, 1952,

1098-1101.
25. 0. R. Mitchell and E. J. Delp, Multilevel graphics representation using block truncation coding, Proc.

IEEE 68,1980, 868-873.
26. M. Shneier, Two hierarchical linear feature representations: Edge pyramids and edge quadtrees,

Comput. Graphics and Image Process. 17, 1981, 211-224.

