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A software system for image processing, HIPS, was developed for use in a UNIX environ- 
ment. It includes a small set of subroutines which primarily deals with a standardized 
descriptive image sequence header, and an ever-growing library of image transformation tools 
in the form of UNIX “filters.” Programs have been developed for simple image transforma- 
tions, filtering, convolution, Fourier and other transform processing, edge detection and line 
drawing manipulation, simulation of digital compression and transmission, noise generation, 
and image statistics computation. The system has the useful feature that images are self-docu- 
menting to the extent that each image as stored in the system includes a history of the 
transformations that have been applied to that image. Although it has been used primarily with 
a Grinnell image processor, the bulk of the system is machine-independent. The system has 
proven itself a highly flexible system, both as an interactive research tool, and for more 
production-oriented tasks. It is both easy to use, and quickly adapted and extended to new 
uses. 

1. INTRODUCTION 

There is currently rapid growth in the number of research labs involved in image 
processing. In setting up such a facility, there is a seemingly inevitable period of time 
during which hardware and software tools are developed in order to provide a 
convenient and flexible research environment. In setting up our lab, we decided to 
give some thought to the software environment before we embarked on our various 
research projects. Our lab includes a variety of image-related tasks at any given time, 
many of which are carried out by neophytes in computerized image processing. Our 
problem was thus to provide an environment in which later development of software 
image processing tools would be easy, and yet provide general flexible tools which 
were easy to use. A wide variety of image processing related projects are now 
ongoing, and using these tools we feel that the system has proven its flexibility. 

The original project which prompted the construction of this image processing 
facility was research into the bandwidth requirements for comprehensible yet 
maximally compressed transmission of imagery of American Sign Language (ASL) 
[l-3]. (ASL is a gesture language used for communication with and among the deaf.) 
This research involves both an investigation of the relative importance of the various 
visual features of ASL imagery, and a measurement of the ability of speakers of ASL 
to comprehend imagery which has been modified along various parameters such as 
pixel density, gray scale, spatial frequency content, applied image transformations, 
and so on. Thus, a computing environment was needed in which sequences of images 

*UNIX is a trademark of Bell Laboratories. 
+HIPS stands for the Human Information Processing Laboratory’s Image Processing System. 
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could be input into the computer, transformed in various ways in the spatial and 
frequency domains, and eventually be presented to experimental subjects in order to 
test for comprehensibility. 

Once the development of this system was made known to other researchers and 
computer users, it became apparent that any software tools might also be used by 
several other local projects in the visual sciences. This made the need for a highly 
flexible and yet easy-to-use system all the more pressing. We therefore decided to 
expend some extra initial effort in order to provide such a working environment, and 
we feel that the effort has been repaid handsomely. 

2. ENVIRONMENT 

The computing environment consists of a VAX 11/750 computer running the 
Berkeley 4.1 version of the UNIX operating system. This is an operating system 
designed for generality and portability, with very little hardware-specific code, and 
thus provided impetus for the design of a software system which is equally portable 
and non-device specific. The main image processing device is a Grirmell GMR 27-30 
image processor (connected to the VAX via a DRll-B DMA interface), which 
possesses the capability of storing and digitizing video frames into 256 gray levels 
with a resolution of 480 x 512. It can also convert digital frames back to video, and 
has a joystick, cursor, alphanumerics, etc. Other peripherals include dot matrix 
printers (used for half-tone representation of images), film and video cassette 
equipment, etc. Lastly, a slow-speed parallel interface (a DRll-C) is used to control 
film and video equipment, and to allow the system to synchronize its image output 
with the Grirmell’s vertical retrace. 

The system we have developed is closely tied with the UNIX operating environ- 
ment [4], and so a brief introduction to UNIX concepts is in order. The two most 
important ideas here are those of afilter and a pipe. Standard utility programs in the 
UNIX system are generally written as fairly simple transformations. The command 
language is such that every program that is executed has an associated standard input 
and standard output. Filters are programs that provide an easily described transform 
of their standard input as their standard output. For example, a sorting routine 
might take a list of unsorted items as its input, and yield a sorted set as its output. 
The sorting parameters (such as type of ordering, keys, etc.) can be provided along 
with the routine name when the command is entered. Thus, like an ordinary 
electronic filter, a UNIX filter is merely a transformation of input to output. The 
UNIX conventions for typing a command with parameters are 

transform parameter, . . . parameter, < input > output. 

Electronic filters can be cascaded in order to form more complex filtering 
operations from simple primitive filters. This is also the case with UNIX filters. The 
operation that provides this cascading is called the pipe facility, and in the command 
language is symbolized as 1. Using a pipe-line allows one to automatically plug the 
standard output of one filter into the input of the next. For example, the line 

transform, ( pipe-input 1 transform, ] . . . ] transform, > pipe-output 

applies transform, to pipe-input, sends its output to transfotq, and so on, until 
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finally transform,‘s output is saved in the file pipe-output. The structure of filters and 
pipes is used extensively in our image processing system. 

3. SYSTEM STRUCTURE 

General features. Taking our cue from the UNIX pipe and filter structure, we chose 
to program our image processing routines as filters. Thus, each program would 
perform only one type of transformation, and complex transformations would be 
built up, whenever possible, as pipelines of simpler transformations. This sort of 
implementation is natural given the UNIX operating system. The use of pipelines in 
image processing systems was demonstrated by Stevens and Hunt [5] as a means of 
greater efficiency given that the use of temporary files for the storage of intermediate 
results is avoided. 

When applying a filter to a sequence of frames, one has to specify a number of 
parameters. Generally, the parameters can be divided into two groups: those that 
describe the image sequence itself, and those that apply to the operation of the filter. 
For example, any filter needs to know the number of frames in its input sequence, 
but only the reduce filter needs to know how much to reduce an image. Thus, in 
order to ease our programming efforts, the image parameters were gathered together 
in a standardized image header which was then made an integral part of each image 
sequence as stored in the computer. 

The image header. The use of standardized image headers is by no means new to 
image processing. It was initially our intent to use an already defined header in our 
system in order for our images to be portable and easily transferred to other labs, 
but we found that other such headers were inadequate for our purposes. One such 
header is the NATO header [6], which is used for picture transmission by ARPA 
facilities, among others. Although it gives full description of pictures in pixel matrix 
format, it is rigid in that graphic data in other formats, such as vector representa- 
tions, cannot be represented. The NATO header also allows only fixed space for 
image sequence documentation, and is primarily intended as a format for magnetic 
tape storage of imagery. Other headers which are more geared for parameter passing 
include an extension of the NATO header called CVL [7], and the header used in the 
EIDES system [8]. 

Our design departs from this approach in allowing variable length textual descrip- 
tion of images, and allows more freedom in the documentation of picture sequences. 
Being of variable size, the header can be expanded with no limit. The rationale 
behind this approach is that in a research environment (as opposed to a production 
environment in which large volumes of pictures are processed), considerations of 
execution efficiency and data integrity are secondary to considerations of modular- 
ity, simple and effective documentation of image files, and easy software generation 
and maintenance. 

Our image header scheme provides two facilities: the automatic passing of image 
parameters through a transformation pipeline, and the ability to automatically 
document an image sequence integral to how the sequence is stored and manipu- 
lated. The image parameters in the header include: 

number of frames, 

number of rows, 

number of columns, 
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bits per pixel, 

bit packing (if filler is used to fill out bytes, or not), 

pixel format (byte, integer, floating point, complex, vector plot, histogram, 
quad-tree and hierarchical encoding,. . .). 

The descriptive information includes: 

originator’s name, 

sequence name, 

sequence date, 

sequence description (a text of arbitrary length), 

sequence history. 

The originator’s name, sequence name, and sequence date are all text fields of 
arbitrary length which can be used to describe the imagery from which this data was 
originally derived. The sequence description is also in free text format, and com- 
ments may be added to this description at any point. The sequence history is an 
interesting and useful feature. It contains an executable command string of all 
transformations that have been applied to this sequence, including the date and time 
they were run. For example, the following sequence history describes an image which 
was read in from the Grinnell, reduced by a factor of 4, cropped to 96 X 64 pixels, 
converted to floating point format, then linearly scaled back to byte format such that 
the lowest floating pixel maps to 0, and the highest to 255 (which is a cheap way of 
contrast enhancement): 

rframe “-D Thu Mar 18 16:17:46 1982” 1 

reduce 4 “-D Tue May 4 11:19:27 1982” 1 

extract 96 64 11 19 “-D Fri Sep 17 16:lO:lO 1982” 1 

btof “-D Fri Sep 17 17:01:59 1982” 1 

scale “-D Fri Sep 17 17:02:03 1982” 

(this string is actually an executable UNIX command string). The quoted parameters 
which begin with -D are dummy parameters which describe when the transformation 
was applied to this image, and are ignored by all programs. The \ at the end of each 
line is the UNIX method of saying that a command continues on the next input line. 
Thus, if the original image was still in the Grinnell’s image memory, the image 
described by this history could be regenerated by executing the history string as a 
UNIX command. 

The image header can be modified in two ways. After an image filter has read an 
image header, it can simply assign new values to header parameters, or append text 
to the descriptive information. Also, an image filter exists, called adddesc, which 
allows one to update any or all of the documentary fields in the image header. For 
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example, the command 

adddesc - a “new descriptive information” -C input-sequence > output-sequence 

will add the string “new descriptive information” to the sequence description. 
A small library has been written which includes routines that manipulate image 

headers. Routines exist which read an image header from the standard input, update 
the description, update the history, and write the new header to the standard output. 

/= 
* logimg - takes log of Input Image. 
* Input image Is In byte format. output fmage is floating point, 
* usage: logimg cseq >oseq 
* to load: cc -0 logimg logimgc -Ihipl -Im 
‘/ 

#Include cstdlo.hb 
#Include chipI-format.hb 
#Include cmath.hl 
float logtabf2561: 

malntargcargv) 

char ‘argvtl: 

int factor.fr.f,r.c.b.i.j.k: 
char =ptc.*p: 
float val: 

struct header hd: 

read-header f8hd): 
iffhd.pixel-format != PFBYTE) f 

fprlntffstderr.‘loglmg: pixel format must be byte\n”): 
exhfl): 

1 
r = hd.rows: 
c = hdcols: 
hd.pixel-format = PFFLOAT: 
update-headert&hO.argc.argv): 
write-headerfbhd): 
if ffpic = (char *) caIIocfr*c.sizeoffcharH~ == 0) I 

fprlntffstderr.‘loglmg: can’t allocate core\n”); 
exit(l): 

) 
lor d=O:i~256:i++) 

logtabfll = logffdouble) ti+l)): 
for ff=O:fchd.num-frame:f++) f 

If fpreadtO,plc.r*c*slzeoftchar)) != r*c*sizeoffchar)) f 
fprlntffstderr.“logimg: error during read\n’): 
exit(l); 

p = pit: 
for fi=O:icr:i++) f 

for f)=O:jcc:j++) f 
val = logtabf*p++ 8 03771; 
writerl.8val.4~: 

return(O): 

FIG. 1. Logimg program 



336 LANDY, COHEN, AND SPERLING 

Programming a filter. The typical image transformation consists of the steps 

(1) interpret the command arguments, 

(2) read in the image header, 

(3) update the sequence history and other header parameters, 

(4) write the header, 

(5) read in, transform, and output the transformed image sequence. 

The actual implementation of this can be seen in the sample program in Fig. 1. This 
program, called logimg, will take any image with &bit byte-formatted pixels and 
yields a floating pixel image by taking the natural log of each pixel (plus 1, to avoid 
log(O)). The program includes several standard files, one of which describes the image 
header structure. After reading the input image’s header, a check is made that the 
image is truly in byte format. This particular filter outputs a floating image from an 
input byte image, leaving all other image parameters constant, therefore the entry in 
the image header describing the pixel format is changed to indicate floating point 
pixels, and the header is output. A lookup table is then computed for the logarithm, 
for efficiency’s sake. Lastly, the actual computation is performed, reading in a frame 
at a time, and outputting each new pixel as it is computed. The program is written in 
the language C [9], which is the standard language in use at UNIX installations, and 
bears a slight similarity to Pascal. 

4. SYSTEM OVERVIEW 

In this section we will describe the programs which are currently available in the 
system. As our research is ongoing, new tools are always being developed, and the 
list is thus merely a snapshot of the current state of affairs. Since the format of these 
programs is often much the same from one program to another, we have developed 
also a tool for developing image transformation programs (see calcpix, described 
under single pixel transformations). The functions in the system include peripheral 
interface, manipulation of headers, frame generation, frame-by-frame operations, 
simple frame transformations, single pixel transformations, format conversion, sta- 
tistics computation, filtering, convolution, transforms, edge enhancement and detec- 
tion and line drawing manipulation, a 3-dimensional vector plotting package, and 
digital transmission methods. The programs listed under peripheral interface are the 
only equipment-dependent programs in the system, making the system more easily 
transportable. A list of all currently available programs can be found in the 
Appendix. 

Peripheral Interface. Only a small number of programs actually deal with input 
and output of images to and from peripheral devices. It is here that any machine- 
dependent code is to be found, and it is these programs which would need to be 
changed in order to drive an alternative image processor. These include programs to 
read and write single frames from the Grinnell (rframe and wframe), erase the 
Grinnell (grerase), output sequences of frames as a video movie (movie and bmouie), 

output strings of characters to the Grinnell (grstring), output graphs to the Grinnell 
(grplot), and to digitize input from a video camera (tuc). 

A number of routines exist which control film and video equipment in order to 
allow sequence digitizing and sequence output to be fully automated. The output 
lines of a slow-speed parallel interface (DRll-C) are connected to the equipment’s 
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remote control lines in order to effect this control. These programs can control a 
video tape recorder (a Betamax: betacucnt, betacuew, betacurec, betapause, betaplay, 
betastop), a video disk recorder (a Sony video motion analyzer: sonrfwd, sonyfidst, 
sonyrec, sonyru, sonyrost), and a 16 mm film projector (a Lafayette motion analyzer: 
subroutine pstep, which is used in program rseq). A fully automated sequence input 
routine for conversion from film is also available (rseq). 

Lastly, two routines exist which attempt to display images as halftones on an 
Anadex dot-matrix printer by controlling individual dots. The first, prthlf, uses zero 
to sixteen of the dots in a 4 X 4 grid with one possible overstrike in order to give 32 
gray levels. The other, prtdth, uses the “dithering” technique [lo] to give up to 256 
levels of gray. 

Header manipulation. Three routines allow for the manipulation of image headers. 
Seeheader outputs the header in a readable format, allowing one to examine image 
documentation. An example of seeheader output is given in Fig. 2. Two other 
utilities, grabheader and stripheader, allow one to separate headers from image 
sequences, and vice versa. Lastly, adddesc can be used to update the informational 
portions of the sequence header (the description, name, etc.). 

Frame generation. Genframe and fgenfame can be used to generate homogeneous 
fields with byte and floating pixels, respectively. Checkers generates checkerboard 
patterns. Sinewave gratings can also be generated by creating a power spectrum with 
genframe and pad, converting to complex with btof and ftoc, and then applying the 
inverse Fourier transform inu. fourtr. 

Frame-by-frame operations. Catframes can be used to concatenate single frames or 
short sequences into longer image sequences. Subseq allows the user to extract 

Original name: 
Sequence name: 
Number of frames: 
Origlnal date: 
Number of rows: 
Number of columns: 
Sits per pixel: 
Bit packing: 
Pixel format: 

Nancy - Sentence 2 
S.l.lP8.30.6 

TOM61 
96 
6A 
6 
No 
Bytes 

Sequence history: 

rseq ‘-D Thu Mar 16 16:17:46 1962’ I\ 
reduce 4 ‘-D Thu Mar 16 17:05:05 1962’ :\ 
extract 96 64 11 19 ‘-0 Fri Sep 17 16:lO:lO 1962” I 
subseq 20 20 ‘-D Fri Sep 17 17:Ol:Xt 1962’ I\ 
btof ‘-0 Frl Sep 17 17:01:59 1982’ :\ 
scale ‘-0 Fri Sep 17 17:02:03 1962’ A 
mask -f 261 “-D Fri Sep 17 17:04:45 1962’ :\ 
thresh 6 ‘-0 Fri Sep 17 17:04:46 1962’ :\ 

fw ‘-0 Fri Sep 17 17:04:49 1962’ 

Sequence descriphon: 

One frame was taken from the original sequence. 
II was reduced. cropped, contrast enhanced. 
Then it was convolved with a mask whtch approximates a 
Laplaclan operator. thresholded so that 6% of the pixels 
become white. and then negated so that the drawing 
appears as black-on-whhe. 

FIG. 2. Sample seeheader output. 
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subsequences from a given sequence (including skipping frames). Repfrume simulates 
the use of frame repetition or frame interpolation (by pixel averaging) as a means of 
image compression. A sequence of images can be compressed into one averaged 
image with strobe. Two sequences can be compared, yielding a sequence of differ- 
ences between frames with difieq. Lastly, a sequence consisting of differences 
between successive frames in a single sequence can be created with autodif. 

Simple frame transformations. The routines reduce, enlarge, reflect, rotate180, and 
pictranspose do exactly what their names imply. An image sequence can be inserted 
in a fixed gray-level background with pad. A sequence of smaller subpictures can be 
extracted from a sequence using extract. Lastly, the frames of a sequence can be 
multiplied pixel by pixel by a given fixed frame using mul. This last program can 
provide a means of generalized filtering if performed in the Fourier transform 
domain. 

Single pixel transformations. The routine neg produces a photographic negative, 
converting black to white and vice versa. Shiftpix, powerpix, and stretchpix allow one 
to shift the gray scale in various ways. L.ogimg takes the natural log of an image. 
Thresh thresholds an image sequence, yielding an image which consists entirely of 
black and white pixels. 

In an image processing lab, writing simple single-pixel-oriented transformations is 
a fairly rote process, and such transformations are often needed for special one- 
time-only purposes. The program calcpix allows the user to create a new filter which 
can transform a sequence of byte-formatted frames where a user-supplied series of C 
statements are applied to each pixel in the images. Variables are supplied so that the 
user can refer to neighboring pixels, the row and column number, use local variables, 
call C subroutines, and so on. For example, the line 

calcpix “if (ipix > 50 && ipix < 100) opix = 255; else opix = 0” < in > out 

will transform the sequence “in” into a black and white image where pixels which 
ranged from 51 to 99 in the input image become white (255), and all others become 
black (0). The resulting sequence is stored in file “out.” Culcpix also leaves a copy of 
the specially tailored filter in the user’s directory, which can then be applied to other 
images. 

Pixel format conversion. Btof converts byte images to floating format, and ftoc 
converts floating images to complex format. Bpack and bunpack convert byte images 
to and from bit-packed one-bit-per-pixel images, respectively. Scale takes a floating 
image, and linearly scales the gray scale such that the smallest pixel value maps to 0, 
and the largest to 255, yielding a byte formatted image. The simple pipeline “btof 1 
scale” thus provides a means of linearly stretching image contrast. 

Image statistics. The mean and variance of pixels in a given image are computed 
by frumeuur. Two programs perform entropy calculations. Pixentropy computes first 
and second order entropy on byte-formatted imagery. Entropy computes the entropy 
of sub-blocks in a sequence of single bit-per-pixel imagery (i.e., black and white 
imagery), including three-dimensional sub-blocks. Two programs compute image 
gray-level histograms, histo and disphist. Histo computes the gray-level histogram of 
an image or sequence, creating a new sequence complete with an image header in 
which the pixel format denotes that this image is in histogram format. Disphist 
displays such histograms, creating an image sequence in byte format which can then 
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be displayed on the Grimrell or printed. The output of histo, on the other hand, may 
be used by programs which need the values of the histograms (such as thresholding 
and contrast enhancement programs). 

Image noise. Bit reversal noise can be added to a sequence with noise, and 
Gaussian noise with gnoise. Fgnoise is a faster, less accurate version of gnoise. 

Filtering, convolution, transforms, edge enhancement, and edge detection. Several 
programs and library functions exist for transform domain processing. Library 
subroutines ft, fltn, and &2d perform fast Fourier transforms, and dctld and 
dctinvld perform the two-dimensional discrete cosine transform. Fourtr and 
inv. fourtr transform image sequences to and from the spatial frequency domain. In 
that domain, highpass, lowpass, and bandpass may be employed to perform filtering, 
where the filters are characterized as ideal, exponential, or Butterworth, and by their 
slopes and cutoff frequencies. Dog can be used to filter images with Gaussian filters, 
or the difference of two Gaussians of different variance (a “dog” filter, used as an 
approximation of the Laplacian of a Gaussian). Fourtr3d applies a three-dimensional 
Fourier transform to a sequence of images, where time is the third dimension. 
Walshtr and inv.walshtr apply the forward and back Walsh transforms [ll] to an 
image sequence. 

Convolution of byte-formatted image sequences with fixed masks is performed 
with the program mask (the comparable function for floating pixel images is carried 
out by fmask). The program is actually capable of performing several convolutions 
at each pixel, and combines these results at each pixel with a specified function, such 
as maximum mask output, sum of mask outputs, sum of absolute value of mask 
outputs, and so on. The set of masks and function are specified in a mask descriptor 
file, and a large number of descriptors are available in a library, including most 
mask-oriented edge enhancement algorithms, such as those of Prewitt [12]. Roberts 
[13], Sobel (in [14]), Kirsch [15], Abdou [16], Kasvand [17], Eberlein and Weszka 
[18], and Robinson [19], and Laplacian approximations (Prewitt [12]). For single 
mask outputs, the convolution is precisely equivalent to a linear filter, and the 
program maskseq will convert the mask description into an image so that the power 
spectrum of the corresponding filter can be computed by fourtr. Recently, Marr and 
Hildreth [20] suggested an edge-detection scheme wherein zero crossings are located 
in an image which has been filtered by a Laplacian. In our system, the zero crossing 
computation is carried out by zc. 

Other nonlinear filters include median and extremum [21] which replace pixels 
with the median and closest extremum value, respectively, in a given neighborhood 
around the pixel. Discedge applies the discrete edge-fitting procedure of Shaw [22] to 
an image sequence. Discedge applies the same algorithm to a series of overlapping 
neighborhoods, and gives for each pixel, the thresholded output of each of those 
applications at that point. Another edge-fitting algorithm described by Abdou [16] is 
available (abdou). 

We have also been working on methods for transforming edge-detected images 
into line drawings. So far, two programs have been developed along these lines. 
Bclean is intended to aid in noise cleaning of binary imagery. It deletes white pixels 
(in white-on-black images) which are in 8-connected components of extent smaller 
than a user-specified size (e.g., it can remove isolated pixels). Thin can both thin an 
image, resulting in the same 8-connected groups which are generally thinned to 
one-pixel breadth, and then categorize the pixels as to being endpoints, branch 
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points, isolated points, and so on, in a manner similar to that described by Sakai 
et al. [23]. Lastly, thicken can take thinned images and increase their “contrast” by 
thickening the remaining pixels to two-pixel width lines, or more, yielding an image 
which is sometimes more visually acceptable. 

30 plotting package. Programs to generate and manipulate three-dimensional 
graphs were added to the image processing system in order to be able to generate 
synthetic line drawings. In addition, edge-detection and boundary-following schemes 
can result in point and vector representations, so this package is useful in our line 
drawing research. The plotting package employs a special image format and allows 
one to manipulate graphs in space and over time. 

There are two programs that generate simple graphs: gpoly generates polygons 
(including points and lines), and gcube generates cubes. Three families of programs, 
each consisting of three programs, manipulate graphs in space and over time. The 
g-family (programs gmag, gshift, and grot) scale, translate and rotate graphs, 
respectively; they all apply a fixed transformation to the coordinates of the input 
graph. The t-family (programs tmag, tshift, trot) “stretch” a graph over time. Tshift, 
for example, will create a specified number of new frames, each consisting of the 
original graph shifted by a constant distance relative to the preceding frame. Thus, 
the result of applying tshift to a frame is a dynamic sequence which depicts 
movement of the objects at a constant velocity. The third family, the u-programs 
(programs ushift and urot), manipulate the coordinate system in a specified number 
of frames of the input sequence, corresponding to shifts in the viewer’s reference 
frame. 

In addition to these three families, pstrobe collapses a graphic sequence into a 
single frame; psubseq allows extraction of a sub-sequence from an input sequence, 
and gsync synchronizes several sequences, i.e., combines several dynamic “graphic 
worlds” into one. Polar projection of a graph, with a specified focal point, can be 
created by uiew. Graphic sequences are obtained from images in pixel-by-pixel point 
representation with pixto3d, and 3D graphs can be converted to the standard plot 
format of UNIX (in which 2D graphs are represented) by plot3tou. The numerical 
representation of the graphs can be inspected by the user via the seeplot program. 

Digital transmission methods. Several programs exist which compress sequences 
using traditional digital transmission schemes. Berkeley UNIX already provides an 
adaptive Huffman coding [24] program called compact. In addition, the image 
processing system now includes bier-r and bier-t (hierarchical coding), dpcm-r and 
dpcm-t (DPCM encoding [ll]), and btc (block truncation coding [25]). Compression 
of binary (i.e., one bit per pixel) images using hierarchical coding into quad-trees [26] 
is accomplished with quad, and the inverse transformation with quad-r. 

5. USING THE SYSTEM 

As we have mentioned, one of the strong points of the system is its flexibility and 
ease of use as an image processing research tool. In order to give some feel for the 
flavor of the system, this section will attempt to give some idea of a typical use of the 
system. 

Let us assume that we have a film of a sentence in American Sign Language, 
which is to say, imagery of a frontal view of someone gesturing for a period of about 
three seconds. Furthermore, assume that the intent is to come up with a new image, 
derived from the original, which is more of a line drawing and yet, for speakers of 
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ASL, preserves the information inherent in the gestures. This, of course, is not an 
arbitrary example, but comes from one of the lines of research being followed in our 
lab [3]. The plan of action will involve reading the sequence into the computer, 
applying a variety of operators to the image, and previewing the results on a video 
monitor. 

In order to read in the sequence, the film projector is set up to project the 
sequence under computer control, and a video camera is focused on the image and 
connected to the Grinnell. Note that this requires that the film projector be capable 
of showing single frames for extended periods: we use a film motion analyzer for this 
purpose. The Grinnell is initialized, and instructed to begin digitizing the input from 
the camera by typing 

grerase; tvc. 

At this point, the first film image will appear on the video monitor, and the 
equipment can be adjusted for best resolution. A single frame can now be stored by 

typing 

rframe >fframe; grerase. 

The screen erase also stops digitization. Now one can try various combinations of 
extract piped to wfrume, in order to best crop the image to include only the required 
information. The image will also be reduced in size in order to save space. This 
allows us to show sequences at real-time speed by loading the entire sequence into 
computer memory and outputting to the Grinnell as quickly as possible (synchro- 
nized with the video vertical sync pulses). Once the proper cropping and reduction 
have been determined, the sequence may be read in by typing 

grerase; tvc 

rseq 120 -1 “ASL sent. 1” ] reduce 4 ) extract 96 64 20 12 > seq. 

This will read in 120 frames of film, and reduce and crop it to 96 X 64 pixels per 
image. The sequence may be previewed by typing 

grerase; movie < seq. 

At this point, it is time to play with various image operators in order to gauge their 
effects. Since filtering, convohttion, and other such operators tend to be time 
consuming, it is often best to examine a single frame at first, and then apply the 
operator that appears to be the most useful to the entire sequence. Hence, we pull 
out a frame from the middle of the sequence: 

subseq 60 < seq > frame60. 

The simplest types of operators involve convolution of the image with a small 
number of masks, and then applying some function (such as the sum, sum of 
squares, maximum, etc.) to the output of these masks. All of these functions are 
incorporated into the musk program, which takes as an argument a description file 
(or built-in description) of a sequence of masks and function choice. The output of 
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the mask program can then be thresholded, yielding a purely black and white image. 
For example, 

mask -f 14 < frame60 ] thresh 10 1 wframe 

will display the effects of a 2 x 2 Roberts edge-detection technique, thresholded 
such that approximately ten percent of the pixels are classified as edge (i.e., above 
threshold). By repeating the command with different values for the -f parameter, 
other convolution techniques may be tried. We have found that approximations to 
the Laplacian have a good appearance, and several mask approximations can be 
called up in the above manner. In addition, a program exists which computes the 
difference of two Gaussians of unequal variance as applied to the image, which 
constitutes a good approximation to the Laplacian of an image convolved with a 
Gaussian (see Marr and Hildreth [20]), and can be computed more quickly. Thus, 

dog .6 7 < frame60 ] thresh 10 ] wframe 

will apply a difference of Gaussians as approximated by a seven-pixel wide mask, 
where the standard deviation of the narrower Gaussian is 0.6 pixels, and of the wider 
Gaussian is 0.6 * 1.6 or 0.96 pixels (the ratio of 1.6 is the default), and then threshold 
the enhanced image, yielding a binary picture. 

After trying several other techniques, such as abdou, discedge, and so on, let us 
assume that the difference of Gaussians appeared to be the most promising. The next 
step is to apply the same transform to the entire sequence. Thus, 

dog .6 7 < seq ] thresh 10 ( neg ] bpack > threshseq 

will store the binary sequence in bit-packed form. The sequence was photographi- 
cally negated because edge pictures often look more pleasing to the eye as black-on- 
white rather than the opposite. The bit-packing increases the efficiency of storage 
and of real-time display. The new sequence may now be viewed by typing 

bmovie -=c threshseq. 

A sequence of frames from the movie may be printed for posterity by typing 

subseq 0 120 10 -C threshseq ) bunpack ] prthlf ) lcat. 

The subseq yields every tenth frame of the sequence, the buupack converts it back to 
byte-format, the prthlf formats it for printing, and lcut sends it to the printer. Lastly, 
if at some future time you wish to see how threshseq was generated, type 

seeheader < threshseq 

which would yield something similar to Fig. 2. 
Several features of the system can be noted from this foray into the use of the 

system. Note that most programs require no parameters to govern their operation; 
most of the needed parameters are obtained from the image header. Other parame- 
ters are often derived from useful defaults (such as movie and wframe, which output 
their images centered in the video screen, unless otherwise instructed). Image filters 
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can be combined easily in a variety of ways given the UNIX pipeline facility, and as 
noted in [5], this saves on needless hassle and an explosion of unneeded temporary 
files, in addition to being more time-efficient. For more production-oriented tasks, 
such as applying the same set of transformations to a large series of image 
sequences, the programming language-like features of the UNIX command language 
combined with the image processing filters allow for a fully automated process of 
image production and processing. 

6. CONCLUSIONS 

The system we have described, HIPS, has been used for over a year, and has 
proven itself to be both easy to use and flexible. Programming new image filters is a 
very easy task, and allows us to continually develop new tools as needed without 
spending the bulk of our time progr amming. The ability to compound primitive 
image transformations through the use of pipes allows the user to quickly examine 
the capabilities of each transform under various conditions and applied to various 
originals. This makes preliminary research in the area of image processing an 
interactive process, and quite enjoyable. Combined with automatic control of film 
and video equipment, and the use of command language scripts (another UNIX 
feature), the automatic generation of tapes and films of images and image sequences 
is also an easy task. Finally, the automatic documentation of images is enormously 
helpful as the number of images saved in the computer increases (and your average 
user, the authors included, loses track of what is what). 

The development of this software is an ongoing task, and new tools are continu- 
ally being developed. The work was performed by people interested in using the 
tools, rather than for development of a distributable package. Thus, the software is 
not utterly complete. Several programs do not handle all the pixel formats that they 
might. For example, neg can negate byte, bit-packed, and floating point, but not 
complex images. These sorts of features, along with the addition of obviously useful 
tools, are added as needed. 

We regard the flexibility of the system as its main virtue. For example, we are 
considering extending the system to be able to handle images which are not in pixel 
matrix representation. One step in that direction was accomplished when the 
hierarchical coding programs were written simply by adding format codes for that 
case. All programs check for the pixel format that they can handle, and so needless 
confusion is easily avoided. We are now considering extensions of the plotting 
package, and various schemes which produce line drawings from binary pictures. 

APPENDIX 

The following programs are available as of the time of this writing: 

Program Synopsis 

abdou Edge-fitting technique [16]. 
adddesc Add descriptive information to an image header. 
autodiff Generate differences between successive frames. 
bandpass Parameter&d bandpass filtering. 
bclean Clean binary images. 
betacucnt Control the Betamax. 
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Program Synopsis 

betacuew 
betacurec 
betapause 
betaplay 
bmovie 
bpack 
btc 
btof 
bunpack 
CdcpiX 

catframes 
checkers 
diffseq 
discedge 
discedge 
disphist 
dispwbasis 

dog 
dpcmr 

dpcmt 

enlarge 
entropy 
extract 
extremum 
fgenframe 
fgnoise 
fmask 
fourtr 
fourtr3d 
framevar 

ftoc 
gcube 
genframe 

.ww 
gnoise 

gpoly 
grabheader 
grerase 

.wt 
grstring 
gshift 
bier-r 

bier-t 

highpass 
histo 
inv.fourtr 
inv.walshtr 

lo&-% 
lowpass 
mask 
maskseq 
median 
movie 
mul 

nef4 
noise 

Control the Betamax. 
I, 
I, 
,, 

Display a binary sequence. 
Pack a sequence as one bit per pixel, bit packed format. 
Block truncation coding [25]. 
Convert byte to floating point format. 
Unpack from bit packed to byte format. 
Create new image filters. 
Concatenate separately stored frames into a sequence. 
Generate a checkerboard pattern. 
Difference of two image sequences. 
Edge-fitting technique [22]. 
Overlapping neighborhoods of discedge. 
Display a histogram. 
Display the Walsh transform basis functions. 
Apply a Gaussian filter or difference of Gaussian filters. 
Dpcm encoding receiver. 

Dpcm encoding transmitter. 

Enlarge an image. 
Compute image sub-block entropy on l-bit-per-pixel imagery. 
Crop an image sequence. 
Nonlinear filter for edge sharpening. 
Generate a homogeneous floating point image. 
Add Gaussian noise (fast version). 
Floating point image convolution. 
Fourier transform. 
Fourier transform in three dimensions (including time). 
Image statistics. 
Convert floating to complex. 
Generate a vector plot of a cube. 
Generate a homogeneous byte-formatted image. 
Globally scale a vector plot. 
Add Gaussian noise. 
Generate a vector plot of a polygon. 
Pull the header from an image. 
&se the Grinner screen. 
Globally rotate a vector plot. 
Write text on the Grinnell. 
Globally translate a vector plot. 
Hierarchical coding receiver. 

Hierarchical coding transmitter. 

Parameterized highpass filtering. 
Compute an image gray-level histogram. 
Inverse Fourier transform. 
Inverse Walsh transform. 
Take the natural log of an image. 
Parameterized lowpass filtering. 
Image convolution. 
Convert a mask to an image. 
Nonlinear filter for image smoothing. 
Display an image sequence in real time. 
Multiply a sequence by a fixed frame. 
Negate an image. 
Bit reversal noise. 
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Program Synopsis 
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pad 
pictranspose 
pixentropy 
pixto3d 
plot3tov 
powerpix 
prtdth 
prthlf 
pstrobe 
psubseq 
quad 
quad-r 
reduce 
reflect 
repframe 
rframe 
rotate180 
rseq 
scale 
seeheader 
seeplot 
shiftpix 
sonyfwd 
sonyfwdst 
sonyrec 
sonyrv 
sonyrvst 
stretchpix 
stripheader 
strobe 
subseq 
thicken 
thin 
thresh 
tmag 
trot 
tshift 
tvc 
view 
vrot 
vshift 
walshtr 
wframe 
zc 

Pad an image with a homogeneous background. 
Transpose an image. 
Compute entropy of an image. 
Convert a byte image to vector plot format. 
Convert vector plot image to Unix plot format. 
Stretch contrast with a power function. 
Print halftone using a dither matrix. 
Print halftone using dot density. 
Collapses a sequence of vector images to a single image. 
Extracts a subsequence from a sequence of vector plot images. 
Hierarchical coding compression. 
Hierarchical coding receiver. 
Reduce an image using pixel averaging. 
Reflect an image. 
Simulate compression using frame repetition. 
Read a frame from the Grinnell. 
Rotate an image 180”. 
Read in a sequence from film. 
Linearly scale a floating image to fit in byte format. 
Print out image header information in a readable format. 
Inspect the numerical representation of a vector plot, 
Binary shift pixel values. 
Control the Sony motion analyzer, 
I, 
I, 
,I 
I, 

Stretch pixel contrast. 
Strip the header from a sequence. 
Collapse a sequence to a single frame by averaging. 
Extract a subsequence from an image sequence. 
Thicken a thinned binary image. 
Thin a binary image and categorize the remaining pixels. 
Apply a threshold to an image. 
Scale a vector plot over time. 
Rotate a vector plot over time. 
Translate a vector plot over time. 
Start the Grinnell digitizer. 
Compute polar perspective for a vector plot. 
Rotate the viewer coordinates in a vector plot over time. 
Translate the viewer coordinates in a vector plot over time. 
Forward Walsh transform. 
Write a frame on the Grinnell. 
Compute zero crossings. 

The following subroutines are available as of the time of this writing: 

Subroutine Synopsis 

dct Discrete cosine transform. 
fft Fast Fourier transform. 
ffwt Fast Walsh transform (floating point). 
fwt Fast Walsh transform (integer). 
init-header Initialize an image header. 

pw Step the film projector. 
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Subroutine Synopsis 

read-header 
update-desc 
update-header 
write-header 

Read an image header from the standard input. 
Add information to the sequence description. 
Update the sequence history. 
Write an image header to the standard output. 
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