
HPCA 2017 Submission #50 – CAMERA READY DRAFT!!

Hipster: Hybrid Task Manager for
Latency-Critical Cloud Workloads

Rajiv Nishtala†‡, Paul Carpenter†, Vinicius Petrucci∗, Xavier Martorell†‡

†Barcelona Supercomputing Center, Barcelona, Spain
‡Universitat Politècnica de Catalunya, Barcelona, Spain

∗Federal University of Bahia, Bahia, Brazil

{rajiv.nishtala, paul.carpenter, xavier.martorell}@bsc.es, vpetrucci@ufba.br

ABSTRACT

In 2013, U.S. data centers accounted for 2.2% of the
country’s total electricity consumption, a figure that
is projected to increase rapidly over the next decade.
Many important workloads are interactive, and they
demand strict levels of quality-of-service (QoS) to meet
user expectations, making it challenging to reduce power
consumption due to increasing performance demands.
This paper introduces Hipster, a technique that com-

bines heuristics and reinforcement learning to manage
latency-critical workloads. Hipster’s goal is to improve
resource efficiency in data centers while respecting the
QoS of the latency-critical workloads. Hipster achieves
its goal by exploring heterogeneous multicores and dy-
namic voltage and frequency scaling (DVFS). To im-
prove data center utilization and make best usage of the
available resources, Hipster can dynamically assign re-
maining cores to batch workloads without violating the
QoS constraints for the latency-critical workloads. We
perform experiments using a 64-bit ARM big.LITTLE
platform, and show that, compared to prior work, Hip-
ster improves the QoS guarantee for Web-Search from
80% to 96%, and for Memcached from 92% to 99%,
while reducing the energy consumption by up to 18%.

1. INTRODUCTION
In 2013, U.S. data centers consumed 91 billion kilowatt-

hours, which corresponds to 2.2% of the country’s total
electricity consumption and about 100 million metric
tons of carbon pollution per year [1–3]. Energy effi-
ciency is, in fact, a major issue across the whole comput-
ing spectrum, and modern systems have been explor-
ing alternative heterogeneous processors [4–10] and Dy-
namic Voltage and Frequency Scaling (DVFS) [11–14]
to trade-off performance and energy consumption.
Many important cloud workloads are latency-critical,

and they require strict levels of quality-of-service (QoS)
to meet user expectations [15–17]. A web-search, for ex-
ample, must complete within a fraction of a second [18],
otherwise users are likely to give up and leave. A previ-
ous study [19] has shown that marginal QoS delays (of
hundreds of milliseconds) can greatly impact user expe-
rience and advertising revenue. In particular, it is im-
portant to meet the QoS tail latency, such as the 95th or
99th percentile of the request latency distribution [20].

Recent works [15–17, 21–23] have shown that tradi-
tional power management practices and CPU utilization
measures are unsuitable to drive task management for
data center workloads. This is because prior schemes
(like OS-level DVFS) work well to deliver long-term
performance for batch workloads, but they can severely
hurt the QoS of latency-critical data center workloads.
As noticed in prior work [21, 24], workload manage-

ment can be very challenging in heterogeneous server
systems because an application can experience differ-
ent behavior in QoS and resource efficiency depending
on specific resource allocation decisions. This requires
careful resource characterization of the running work-
loads to optimize resource usage. In many data cen-
ters, there also is a wish to run both latency-critical
and batch workloads. Running both latency-critical and
batch workloads, in this way, increases cluster utiliza-
tion during periods of low demand, reducing operational
cost and total energy consumption.
In this paper, we introduce Hipster, a scheme that

manages heterogeneous multi-core allocation and DVFS
settings for latency-critical workloads given QoS con-
straints, while minimizing system power consumption.
In addition, Hipster allows collocation of latency-critical
and batch workloads in shared data centers to maximize
the data center utilization. In such scenarios, the re-
sources allocated to latency-critical workloads are just
enough to meet the QoS target, and the remaining re-
sources are allocated to throttle the batch workloads.
The major contributions of our work are:
1 We present Hipster, which is a hybrid manage-

ment solution combining heuristic techniques and re-
inforcement learning to make resource-efficient alloca-
tion decisions, specifically deciding the best mapping of
latency-critical and batch workloads on heterogeneous
cores (big and small) and their DVFS setting.

2 Hipster is presented in two variants: HipsterIn
and HipsterCo. HipsterIn (for interactive workloads)
is targeted towards allocating resources to latency-critical
workloads so that the system power consumption is
minimized, whereas HipsterCo (for collocated workloads)
enables running both latency-critical and batch work-
loads for improved server utilization. Both variants en-
sure that QoS for latency-critical workloads is met.

3 We carried out real measurement experiments us-

0 100 200 300 400 500 600 700 800
Time (s)

0
20
40
60
80

100
Pe

rc
en

t o
f M

ax
 c
ap

ac
ity QPS Server Power

Figure 1: Power drawn for a diurnal load [15,22,25] for
Web-Search running on two big cores of the ARM Juno
R1 (64-bit big.LITTLE) platform.

ing a 64-bit big-LITTLE (ARM Juno R1) platform along
with back-end services such as Web-Search and Mem-
cached. The request generator for each of the back-end
services follows a diurnal load pattern typical of pro-
duction data centers.

4 We evaluate Hipster against the only other het-
erogeneous platform-aware state-of-the-art scheme [21]
that dynamically allocates heterogeneous cores to latency-
critical workloads. Our results show that HipsterIn out-
performs prior work, in energy consumption reduction
by 13%, while achieving up to 99% QoS guarantees for
the latency-critical workloads. In addition, our results
for HipsterCo show that it improves performance by
2.3× compared to a static/conservative policy running
batch workloads, while meeting QoS targets for latency-
critical workloads.

2. MOTIVATION
Typical web applications experience large variations

in user traffic over time. Figure 1, for example, shows
how the number of Web-Search queries per second, a
typical load at Google data center, varies between about
5% and 80% of maximum capacity [15,22,25]. Similarly,
Facebook consistently sees diurnal load variations be-
tween 10% and 95% of maximum capacity, across mul-
tiple server clusters [26,27].

The periods of low server utilization provide opportu-
nity to reduce data center energy consumption [16, 21,
24]. As seen in Figure 1, although load drops dramati-
cally, power consumption is always at 60% or above. For
this reason, both academia and industry are working
towards better energy proportionality; i.e. that the sys-
tem’s power consumption is proportional to utilization.
There are also opportunities to improve energy ef-

ficiency using heterogeneous servers combined with DVFS.
Heterogeneous servers can minimize power consumption
at low load by deploying small cores, and can provide
maximum performance using big cores to meet the QoS
target for latency-critical workloads [5, 21,28].

[Mixing different core types with DVFS]: Fig-
ure 2 shows the energy efficiency in RPS/Watt (Re-
quests Per Second per Watt) and QPS/Watt (Queries
Per Second per Watt) when using a state-of-the-art
baseline policy [21]. We explore a heterogeneous ar-
chitecture mixing different cores types and DVFS (Het-
CMP) running Memcached (Figure 2a) and Web-Search
(Figure 2b) at different load levels. The table at the

bottom of each subfigure shows the configuration se-
lected by HetCMP and our baseline policy. In the con-
figurations of the embedded table, B and S represent
big and small cores, respectively. The configuration
space for HetCMP consists of core-mappings (big and
small cores) and DVFS combinations for a heteroge-
neous platform, whereas the baseline policy consists
exclusively of either big or small cores at the highest
DVFS. The configurations available for the baseline pol-
icy are therefore a subset of HetCMP. For each policy,
among the configurations where the QoS is met at each
load level, the configuration with the least power con-
sumption is selected. Experimental details in Section 4.
Figure 2 raises two main concerns with current state-

of-the-art heuristic algorithm [21]. First, Figure 2a dem-
onstrates in periods of low load (less than 60% of max
capacity for Memcached), exclusive use of low perfor-
mance cores at lower DVFS ensures QoS is met while
reducing static-power, thus making it an excellent op-
tion to use for periods of low load. As the load increases,
HetCMP transitions from low performance cores to a
best combination of small and big cores at a given DVFS
(for instance, 2 big and 2 small cores – 2B2S at 0.9GHz
at 89% load) to deliver the required latency. On the
other hand, the baseline policy transitions directly from
low performance cores to high performance cores at
highest DVFS to deliver the required latency, thereby
increasing energy consumption by 27.74% (mean). In
periods of very high load (more than 90% for Mem-
cached), exclusive use of high performance cores at higher
DVFS ensures QoS is met with better energy propor-
tionality. Similarly results were observed for Web-Search
(Figure 2b) with up to 25% (mean) energy savings.

In summary, we show that small and big cores are
an attractive option for periods of low load and very
high load, respectively, while meeting QoS targets at a
much lower cost. On the other hand, for intermediate
loads, which are generally experienced by data centers
during the day [29], harnessing HetCMP provides the
opportunity for higher performance at a lower cost.
[Exploring workload particularities]: We note

that prior work [21] relies on a single heuristic to allo-
cate exclusively big or small cores to workloads. By al-
lowing an arbitrary allocation mix of big and small cores
with DVFS, this kind of heuristic can be sub-optimal
across diverse applications and architectures (evalua-
tion details in Section 4); that is, a single state-machine
management (as in prior work) may fail to precisely sat-
isfy the QoS targets given distinct workload characteris-
tics of diverse applications. To illustrate this point, Fig-
ure 2c shows two distinct/unique state transition map-
pings that are optimal (throughput per watt) at differ-
ent load capacities for Memcached and Web-Search.
Figure 3 shows the energy efficiency that would be

neglected (ensuring QoS is met at different load lev-
els) when using the state-machine built for Web-Search
but used for the Memcached workload, normalized to
the energy efficiency using the state-machine built ex-
clusively for Memcached; and vice-versa. The state-
machine configuration for Memcached and Web-Search
are represented in blue and red line, respectively, in
Figure 2c. Figure 3 demonstrates that different latency-

2

29% 40% 51% 63% 69% 71% 77% 83% 89% 91% 94% 97% 100%
HetCMP
GHz

2S
0.65

3S
0.65

4S
0.65

4S
0.65

1B3S
0.6

2B2S
0.6

2B2S
0.6

2B2S
0.6

2B2S
0.9

2B2S
1.15

2B
1.15

2B
1.15

2B
1.15

BP
GHz

2S
0.65

3S
0.65

4S
0.65

4S
0.65

2B
1.15

2B
1.15

2B
1.15

2B
1.15

2B
1.15

2B
1.15

2B
1.15

2B
1.15

2B
1.15

Percentage of Max Capacity

0

5000

10000

15000

20000

25000

RP
S/
W
at
t

HetCMP Baseline policy (BP)

(a) Memcached

18% 25% 33% 40% 47% 55% 62% 69% 76% 84% 91% 96% 100%
3S
0.65

3S
0.65

3S
0.65

4S
0.65

4S
0.65

2B
0.60

1B3S
0.90

2B2S
0.60

2B2S
0.60

1B3S
0.90

1B3S
1.15

1B3S
1.15

2B
1.15

3S
0.65

3S
0.65

3S
0.65

4S
0.65

4S
0.65

2B
1.15

2B
1.15

2B
1.15

2B
1.15

2B
1.15

2B
1.15

2B
1.15

2B
1.15

Percentage of Max Capacity

0

5

10

15

20

QP
S/
W
at
t

HetCMP Baseline policy (BP)

(b) Web-Search

20 30 40 50 60 70 75 85 90 95 100
Percentage of Max load

1S-0.65
2S-0.65
3S-0.65
2B-0.60

1B3S-0.60
4S-0.65

2B2S-0.60
1B3S-0.90
2B-0.90

2B2S-0.90
1B3S-1.15
2B2S-1.15
2B-1.15

Co
re
-m
ap
pi
ng
 -
DV
FS

Web-Search Memcached

(c) State Machine

Figure 2: Throughput per watt of Memcached (2a) and Web-Search (2b) with baseline policy (BP) [21] and hetero-
geneous platforms with DVFS (HetCMP) at different load levels along with their respective state machines (2c)

20% 30% 40% 50% 60% 70% 75% 85% 90% 95% 100%
Percentage of max load

0.0

0.2

0.4

0.6

0.8

1.0

En
er
gy
 e
ffi
ci
en
cy
 (N
or
m
al
iz
ed
) Memcached Web-Search

Figure 3: Energy efficiency at various load levels for
Memcached while meeting QoS, using the state-machine
of Web-Search normalized to the state-machine of Mem-
cached (lower is worse); converse for Web-Search.

critical applications benefit from different state-transition
mappings and show improvement in energy efficiency
up to 35% for Memcached (at 90% load) and up to 19%
for Web-Search (at 50% load). For instance, at low
loads and at very high loads both applications use exclu-
sively small cores (low static power) or big cores (high
static power), respectively. However, for intermediate
loads, the configurations in the state-transition for Web-
Search are not present in Memcached and vice-versa,
thus providing minimal to no energy optimization.
In practical scenarios, each workload has a time-varying

load [30] and a QoS target that needs to be met. As
shown in Figure 2 and 3, there exists a unique config-
uration for each load that optimizes energy efficiency.
Moreover, the time-varying load presented in two forms:
sudden load spikes [20] or gradual load changes [22,25].
Both these forms present a challenge for a heuristic
based approach as it jumps across multiple configura-
tions to meet the QoS target, thereby leading to QoS
violations due to rampant core oscillations. Also, Kas-
ture et al [17] note that core-transitions are far more
costly – relative to DVFS changes.
There is a need for application agnostic learning ap-

proach that can exploit the energy efficiency benefits
of heterogeneous architectures and DVFS features, and
can deal with sudden/gradual load changes across dif-
ferent levels. This is precisely what Hipster delivers.

3. HIPSTER
In this section, we introduce Hipster, a hybrid rein-

forcement learning (RL) approach coupled with a feed-
back controller that dynamically allocates workloads

to heterogeneous cores while selecting optimized DVFS
settings. We propose a variant, called HipsterIn, that
is optimized for latency-critical workloads running solo
in the system, adjusting the system configuration to
reduce energy consumption. The HipsterCo variant,
which supports collocation of latency-critical and batch
workloads, and focuses on maximizing the throughput
of the batch workloads. Both variants of Hipster al-
ways ensure that the QoS requirements are met for the
latency-critical workload.

3.1 Hipster Reinforcement Learning
The RL problem solved by Hipster is formulated as a

Markov Decision Process (MDP). In an MDP, a decision-
making process must learn the best course of action to
maximize its total reward over time. At each discrete
instant, n, the process can observe its current “state”,
wn, and it must choose an “action” cn from a finite set
of alternatives. Depending on the chosen action and
current state (but nothing else), there is an unknown
probability distribution controlling which state, wn+1,
it enters next and the reward, λn, that it receives. The
problem is to maximize the total discounted reward,
given by

∑∞
n=0 γ

nλn, where γ is the discounting fac-
tor. The discounting factor γ should be positive and
(slightly) less than one, in order to reflect a moderate
preference for rewards in the near future.
The hybrid task management problem solved by Hip-

ster is translated to an MDP as follows. The state wn

indicates the current load on the latency-critical work-
load, measured during the (prior) time interval tn−1 to
tn. Hipster quantizes the load into buckets. Specifically
the latency-critical application provides a measurement
of the percentage load during the time interval, in terms
of requests per second, queries per second, or similar.
The action, cn, which is chosen by Hipster depending
on the state, determines the configuration to be used
in the (next) time interval, tn to tn+1; i.e. the com-
bination of cores and DVFS settings allocated to the
latency-critical application. These settings are used for
the upcoming interval, at the end of which, at time tn+1,
the reward λn is determined depending on the level of
QoS relative to the target, given a metric of optimiza-
tion: either the system power consumption (HipsterIn)
or the throughput of the batch workloads (HipsterCo).
A precise definition of the calculation of the reward is
given in Section 3.4.

3

RL is a type of unsupervised machine learning with
a focus on online learning [31]. It solves an MDP by
maintaining a table of values, R(w, c), indexed on the
possible states w ∈ W and possible actions c ∈ C. The
entry R(w, c) estimates the total discounted reward that
will be received, starting from state w, if the decision-
making process starts by choosing next action c. As-
suming that the lookup table, R(w, c) has close to
correct values, then, if the current state is wn, the best
action cn is the one that gives the largest total dis-
counted reward; i.e. cn = argmaxc R(wn, c). The pro-
cess chooses this value of cn, then it updates R(wn, cn)
using a particular formula based on the old and new
states, wn and wn+1, and the reward λn.

1 A classic
problem in RL is known as the exploitation–exploration
dilemma, which captures the need not only to exploit
the best solution identified so far, but also to fully ex-
plore alternatives, which may or may not be better.
Hipster uses a hybrid RL approach [32], which com-

bines reinforcement learning with a heuristic, to be used
while the algorithm is still learning the optimal behav-
ior. For Hipster, the heuristic improves QoS at the be-
ginning of the execution and it is also re-used after a
change in the characteristics of the problem, e.g. the
mix of batch workloads. A hybrid RL [32] has the po-
tential to outperform pure RL schemes [33,34] that only
deal with the exploitation–exploration dilemma (e.g. Q-
learning), for several reasons:

1 During the learning phase, online unsupervised
learning without a heuristic generates random decisions,
which would produce an unacceptable number of QoS
violations.

2 As the complexity of the problem increases, in
terms of workloads, number of cores, DVFS settings,
and so on, it may take longer to learn the table R. In
contrast, a hybrid RL can find acceptable solutions even
during the learning phase.

3 The exploration feature of many RL approaches
is necessary to capture a global maximum, but it may
cause extra QoS violations. Using a heuristic in the
learning phase can reduce the need to explore configu-
rations that clearly violate QoS.

3.2 Hipster Design
Figure 4 shows a high-level view of Hipster. Hip-

ster includes a QoS Monitor, a Learning Phase and an
Exploitation Phase. Given a QoS target, an incoming
load, and a metric to optimize for, Hipster learns the
most adequate core configuration and DVFS settings
by managing a lookup table that is used to map the
workloads to the available hardware resources.
[QoS Monitor]: The QoS Monitor is responsible for

periodically collecting the performance statistics from
the latency-critical and batch workloads. For the latency-
critical workload, Hipster gathers the appropriate ap-
plication-level QoS metrics such as throughput (RPS or
QPS) and latency (query tail latency). It also reads
the current load on the latency-critical workload and
quantizes this value into discrete buckets between 0 and
T−1, for (some) small value T . HipsterCo uses a profil-

1The update of R(wn, cn) is on line 16 of Algorithm 1.

Figure 4: High-level view of Hipster runtime system

ing tool to measure the throughput of the batch work-
loads, using per-core hardware performance counters,
such as CPU utilization, cache-misses and instructions
per second (IPS).
[Learning and exploitation phases]: The data

collected by the QoS monitor is used to make the thread-
to-core mapping decisions. In the learning phase, Hip-
ster uses a feedback control loop based on heuristics to
map the latency-critical workload to resources. Follow-
ing the intuition from Section 2, when load is low, the
mapper executes the latency-critical workload on small
cores at lower DVFS states, and when load is high, it
uses a combination of big and small cores at higher
DVFS. Hipster also begins populating the lookup ta-
ble so that each entry approximates the corresponding
total discounted reward. Specifically, Hipster uses the
reward mechanism (Section 3.4) to prefer core config-
urations that minimize system energy consumption or
maximize batch workload throughput, while ensuring
as well as possible that at least 95% QoS guarantee is
achieved [35].
In the exploitation phase, Hipster uses the lookup

table to select the core mapping and DVFS settings,
based on the load. It also continues to update the val-
ues in the lookup table, in order to continue to improve
the mapping decisions. At runtime, Hipster determines
when to dynamically switch between the learning and
exploitation phases, based on a prefixed time quantum.
At deployment stage, we ensure that the bucket size for
each workload gives at least 95% QoS guarantee [30]
with minimal energy consumption.

3.3 Heuristic Mapper (Learning Phase)
The heuristic mapper is a state machine with a feed-

back control loop. The current state identifies the core
configuration: the DVFS settings and number and type
of cores to use for the latency-critical workload.2 The
choice of available states depends on the platform; i.e.
the total number and types of cores, and the DVFS
settings. There is a predefined ordering of the states,
approximately from highest to lowest power efficiency.
This ordering is determined by measuring the power and
performance of each state using a stress microbench-

2State machines and Markov Decision Processes use “state”
with different meanings. In Section 3.3 (only), “state” refers
to the core configuration, elsewhere it is the load.

4

mark consisting of mathematical operations without mem-
ory accesses.
Whenever QoS is close to being violated, the state

machine transitions into the next-higher power state.
The QoS is quantified using the currently measured tail
latency at the 95th or 99th percentile, denoted QoScurr.
The target tail latency is denoted by QoStarget. The
state machine transitions to the next-higher state when-
ever the time interval ends in the so-called danger zone
defined by:

QoScurr > QoStarget ×QoSD

where QoSD is a parameter between 0 and 1 that
defines the size of the danger zone. Whether such a
state transition improves or degrades performance and
whether it actually increases or decreases power de-
pends on the characteristics of the platform and the
particular workloads. The state machine may have to
make several consecutive state transitions until the QoS
is met.
In contrast, whenever the QoS is far from being vio-

lated, the state machine transitions into the next-lower
power state. This happens whenever the time interval
ends in the so-called safe zone defined by:

QoScurr < QoStarget ×QoSS

where QoSS is a parameter between 0 and QoSD that
defines the size of the safe zone. The values of QoSD

and QoSS are determined to avoid oscillations between
adjacent states. In particular, QoSD is empirically com-
puted in the same way as for Octopus-Man [21,35].
The heuristic proposed by Octopus-Man is attractive

because of its simplicity but it can be sub-optimal (see
Section 2, Figure 2c) because there is no common static
ordering of configuration states that works for all work-
loads. Moreover, in practice, the state machine may
respond slowly to rapid changes in load. Nevertheless,
we found that such a state machine heuristic is suitable
to accelerate the learning phase of the RL algorithm by
exploring viable core configurations to quickly populate
reasonable values into the lookup table.

3.4 Reward Calculation
During both the learning and exploitation phases,

the values in the lookup table are dependent on the
reward, which is calculated as defined in Algorithm 1.
This reward calculation is invoked after each monitoring
interval, and its definition was determined empirically
(more details in Section 3.6). The reward λn has three
parts: the QoS Reward, Stochastic Reward, and either
the Power Reward (for HipsterIn) or the Throughput
Reward (for HipsterCo):
[QoS Reward]: The ratio of the measured QoS to

the QoS target is known as QoSreward. If this value is
less than one, then the QoS target has been met, and
it quantifies how quick the response was as the QoS
earliness. In this case, line 7 or 9 applies a positive
reward that prefers configurations that approach the
QoS target, which acts as a heuristic to reduce energy
consumption or improve batch workload throughput. If
QoSreward is greater than one, then the QoS target has

Algorithm 1 Reward mechanism

⊲ Determine reward λn based on interval tn . . . tn+1

1 Let QoStarget be the target QoS of the interactive work-
load.

2 QoScurr = QoSMonitorLatency
3 Power = QoSMonitorPower
4 QoSreward = QoScurr/QoStarget

5 Powerreward = TDP/Power ⊲ TDP (thermal design
power)

6 if QoScurr < QoStarget ×QoSD then
7 λn = QoSreward + 1
8 else if QoScurr < QoStarget then
9 λn = QoSreward + 1−Random(0, 1)

10 else
11 λn = −QoSreward − 1
12 if there exist batch jobs then

13 λn = λn +
BIPS+SIPS

maxIPS(B)+maxIPS(S)

14 else
15 λn = λn + Powerreward

16 R(wn, cn) = R(wn, cn)+

α
(

λn + γmax
d∈C

R(wn+1, d)−R(wn, cn)
)

not been met, and it determines how intense the viola-
tion was as the QoS tardiness. In this case, line 10
applies a negative QoS reward.
[Stochastic Reward]: When the QoS is below the

target, as defined in Section 3.3, but still over the dan-
ger zone, then a stochastic penalty is applied (line 9 of
Algorithm 1). The stochastic penalty offers the possibil-
ity to continue to explore the configuration, but with a
smaller probability. In future, other external influences
for the latency-critical workload like noise, contention
on shared resources, pending queue lengths, etc., may
cause a QoS violation.
[Power Reward (HipsterIn)]: The ratio of the

thermal design power (TDP) to the measured system
power consumption is known as Powerreward as shown
in line 15. A smaller value of this term means that the
system power consumption was lower, and it increases
the reward.
[Throughput Reward (HipsterCo)]: Lines 12 to

13 of Algorithm 1 calculate the Throughput Reward,
which is approximately proportional to the total through-
put of the batch workloads. Since HipsterCo does not
require modifications to the batch workloads, it is only
possible to measure their throughput in a generic way
using performance counters. Specifically, the through-
put is quantified in terms of IPS. The parameters BIPS

and SIPS measure the total IPS of the big and small
clusters running batch workloads, respectively. The de-
nominator is constant given by the sum of maxIPS(B)
and maxIPS(S), which measure the maximum IPS, at
highest DVFS, for the big and small cores respectively.
More details are given in Section 4.1.

Once the reward λn has been calculated, line 16 up-
dates the value of R(wn, cn) in the lookup table, and
this is done in the same way during both the learning
and exploitation phases. This update is controlled us-
ing two scalar parameters, both between zero and one:
the discounting factor, γ, and the learning rate, α.

[Discounting Factor, γ]: The γ coefficient in line 6

5

Algorithm 2 Exploitation Phase

1 Let X be threshold on QoS guarantee to re-enter learn-
ing phase

2 Let wn be observed load for interval tn−1 . . . tn
3 Let cn be configuration for interval tn . . . tn+1

4 Let R(w, c) = 0 for all w, c
5 Let n = 0
6 repeat

⊲ At time tn, choose configuration for tn to tn+1

7 Let cn = maxd∈CR(wn, d)
8 if there exist batch jobs then
9 Allocate remaining cores to batch jobs

10 if latency-critical jobs on a single core type then
11 Set highest DVFS for other core type
12 else
13 Set lowest DVFS for remaining cores
14 Sleep until tn+1 ⊲ Run for interval tn to tn+1

15 Let wn+1 be the quantised load from the latency-
critical workload

16 Call Algorithm 1 ⊲ Algorithm 1 updates R(wn, cn)
17 n = n+ 1
18 if QoSGuarantee ≤ X then Learning phase
19 until Terminated

of Algorithm 1 is the discounting factor, which quanti-
fies the preference for short-term rewards [36]. Setting
γ = 0 means that the algorithm only relies on imme-
diate short-term rewards. To allow a balance between
short-term and future rewards, we set γ = 0.9 (empir-
ically determined). In other words, this methodology
allows the optimization problem to also take into ac-
count future rewards.
[Learning Factor, α]: The α coefficient in line 16

of Algorithm 1 is the learning factor, which controls the
rate at which the values in the lookup table R(w, c)
are updated. A large value of α close to one means that
the algorithm learns quickly, favoring recent experience,
but increasing the susceptibility to noise. In contrast, a
small value of α means that the algorithm learns slowly.
In our experiments we used α = 0.6

3.5 Exploitation Phase
The exploitation phase of Hipster is defined by Algo-

rithm 2. Line 7 determines the configuration, cn, with
the highest estimated total discounted reward. Lines 8
to 13 apply the configuration by mapping the work-
loads to the resources, as described below, depending on
the specific variant of Hipster (HipsterIn or HipsterCo).
Line 14 runs the workload for the next time interval,
and line 16 calls Algorithm 1 to update the lookup ta-
ble, based on the metrics obtained by the QoS Monitor
during the time interval. Line 18 re-enters the learning
phase when necessary. The mapping of workloads to
resources is as follows:
[Reward Mechanism for HipsterIn]: To mini-

mize power consumption while meeting the QoS target
for latency-critical workloads, the configuration with
the highest reward is selected and then DVFS setting for
the remaining cores is set to the lowest value (Lines 12
to 13 of Algorithm 2).

[Reward Mechanism for HipsterCo]: Corrobo-
rating the findings of prior work [16], we observed that
collocating both latency-critical and batch workloads
degrades QoS at higher loads due to shared resource

contention. If the reward mechanism were not aware
of such collocations, it may make decisions that violate
QoS for the latency-critical workload and/or reduce the
throughput of the batch workloads. As a precursor to
this condition, we introduce the following mechanisms.
First, to maximize the throughput of the throughput-
oriented workloads while meeting QoS targets, all of
the remaining cores are allocated to the batch work-
loads (lines 8 to 9 in Algorithm 2). Second, in case the
latency-critical job is allocated exclusively to a given
core type, the other core type is set to the highest DVFS
to accelerate the batch workloads (lines 10 to 13 in Algo-
rithm 2). For instance, on a two-socket/cluster system
with two cores per socket/cluster, if the latency-critical
workload is running on two small cores, the big cores are
allocated to the batch workloads at the highest DVFS.

3.6 Responsiveness and Stability
To ensure that QoS is met for latency-critical work-

loads, the scheduling policy must quickly respond to
fluctuations in load and latency, either due to changes in
core mapping, DVFS or any external influence. There-
fore, the responsiveness and stability of Hipster is de-
termined by (a) the computation latency in migrating
cores and setting DVFS. (b) the reaction time of QoS
between migrating an application from current mapping
to future mapping, and (c) the granularity of monitor-
ing for the latency-critical workload’s QoS.
The computational latency for changes in core map-

ping and DVFS are negligible [9, 37, 38]. The default
monitoring interval for Memcached and Web-Search is
one second. Based on the aforementioned overheads, we
determine the sampling interval as a sum of the mon-
itoring interval for the latency-critical application, and
the overhead to switch the core mapping and DVFS.

3.7 Hipster Implementation
Hipster is implemented in user space, and it uses min-

imal hardware support exposed by Linux. It consists of
the QoS Monitor and Mapper Module, together with a
lookup table, as shown in Figure 4.

[QoS Monitor]: Hipster uses a separate process to
read the power measurements using native energy me-
ters, at the sampling interval of the application. In ad-
dition to measuring energy, the QoS Monitor also gath-
ers runtime statistics for the query/request latency of
the latency-critical workload, using a logfile interface.
In the case of HipsterCo, the batch workload aggregate
IPS per core are measured using the performance mon-
itoring tool, perf [39], specifically using the perf event
instructions [40,41]. Alternatives to perf include the pro-
filing tools [42] supported by Docker, Kubernetes and
LXC [43].

On the ARM Juno platform, there is a known bug
that causes perf to generate garbage values for all cores
whenever any core enters an idle state. Since perfor-
mance statistics are only needed for the HipsterCo vari-
ant, we overcome this by disabling CPUidle [40, 41].
This prevents Linux from entering the cores in an idle
state when changes in the mapping cause idle periods
longer than 3500 µs.
[Mapper Module]: The workloads are mapped to

6

App Workload Max. Load Target Tail
Configuration latency (ms)

Memcached Twitter caching 36 000RPS 10 (95%ile)
server of 1.3GB

Web-Search English Wikipedia 44QPS | think- 500 (90%ile)
Zipfian distribution time of 2sec [45]

Table 1: Workload configurations, maximum load while
meeting the target tail latency with two big cores for
latency-critical applications.

cores using the Linux sched setaffinity call and DVFS
is controlled using acpi-cpufreq. In addition, Hipster
suspends and resumes the batch workloads using the
relevant OS signals (SIGSTOP and SIGCONT in Linux).
[Lookup table]: Each iteration of the RL algorithm

accesses and modifies several entries in the lookup table.
To ensure that these operations take negligible time, the
computational complexity to access the table should be
at most a few instructions. Therefore, in the prototype
implementation of Hipster, the lookup table was im-
plemented using a Python dictionary, which uses open
addressing to resolve hash collisions, thereby having a
computational complexity of O(1) irrespective of the
operation [44].
[Runtime overhead]: Hipster has a simple algo-

rithm, requiring few control flow statements and main
memory accesses, so its runtime overhead is negligi-
ble. We measured the execution time overhead (imple-
mented in Python and including I/O) to be <2ms, so
triggering Hipster every second, as in our experiments,
incurs an overhead <0.2%.

4. EVALUATION

4.1 Experimental Methodology
[Benchmarks]: We evaluate Hipster using two laten-

cy-critical applications,Memcached andWeb-Search,
which have distinct characteristics and impact on shared
resources [16]. Memcached [46] is an open source im-
plementation of an in-memory key-value store for data
caching used in many services from Twitter, Facebook
and Google [27, 47]. The backend of Web-Search [28,
48] is an instance of Elasticsearch [49], an open source
implementation of a search engine used by many com-
panies including Netflix and Facebook. The load gen-
erator (Faban [45]) for Memcached and Web-Search is
adapted from CloudSuite 3.0 [50]. It is configured to
model diurnal load changes (Figure 1), simulating a pe-
riod of 36 hours [22]; each hour in the original workload
corresponds to one minute in our experiments. For the
batch workloads [51,52], we use the programs from the
SPEC CPU 2006 suite [53].

[Tail latency]: For Memcached, we define the tail
latency to be the 95th percentile request latency, with
a target of 10ms [15, 50]; for Web-Search, we define it
to be the 90th percentile query latency, with a target of
500ms [50]. Table 1 lists the two latency-critical appli-
cations, their configurations, maximum loads, and tar-
get tail latency in milliseconds. For each latency-critical
workload, the maximum load is chosen so that the plat-

Power (Watts) Perf.(IPS × 106)

Core type (GHz) All cores One core All cores One core

Big A57 (1.15) 2.30 1.62 4,260 2,138
Small A53 (0.65) 1.43 0.95 3,298 826

Table 2: Power and performance characterization on
Juno platform.

form is able to meet the tail latency when running on
the big cores at maximum DVFS.
[Hardware resources]: We perform the evaluation

experiments on an ARM Juno R1 developer board [54]
with Linux (kernel 4.3). The Juno board is a 64-bit
ARMv8 big.LITTLE architecture with two high-per-
formance out-of-order Cortex-A57 (big) cores and four
low-power in-order Cortex-A53 (small) cores. The cores
are integrated on a single chip with off-chip 8GB DRAM.
The two big cores form a cluster with a shared 2MB L2
cache, and the four small cores form another cluster
with a shared 1MB L2 cache. The big cores are ca-
pable of DVFS from 0.6GHz up to 1.15GHz, whereas
the small cores are fixed at 0.65GHz. A cache coher-
ent interconnect (CoreLink CCI-400) provides full cache
coherency among the heterogeneous cores, allowing a
shared memory application to run on both clusters si-
multaneously. The workload generator runs on another
machine: an AppliedMicro X-Gene2 64-bit ARMv8-
A [55] with eight cores at 2.4GHz and 128GB DRAM.
[Power efficiency]: The power consumption of the

Juno platform is obtained by reading specific hardware
registers [56]. These registers report separately the power
consumed by the big cluster, small cluster, and the rest
of the system (Juno’s sys register [57]). The power con-
sumption of the Mali GPU is also available, but it is
negligible because the GPU is disabled in all our exper-
iments. Performance is quantified using the IPS mea-
sured by hardware performance counters.
Table 2 summarizes the power and performance char-

acteristics of the big cluster (2 cores) and the small clus-
ter (4 cores). We characterize the heterogeneous plat-
form by running a compute-intensive microbenchmark
(same as used in Section 3.3) consisting of mathemat-
ical operations without memory accesses. We report
the system power consumption as the sum of the big
and small clusters and the rest of the system (including
memory controllers, etc). For the per-cluster compari-
son, we run the microbenchmark on all the cores in the
cluster (two big cores vs four small cores). For a per-
core comparison, we run the microbenchmark either on
a single big core or on a single small core.
Considering system power, a single big core is 52%

more power-efficient than a single small core, in terms
of IPS per watt (Table 2). However, taking into account
all cores in a cluster, and assuming that all cores can
be fully utilized, a small cluster is 25% more power-
efficient than a big cluster. This discrepancy is due to
the rest of the system, outside the core clusters, which
consumes about the same power as a big core at full
utilization (0.76W). If we subtract the power of the
rest of the system, a single small core is 2.3× more
power-efficient than a big core. We notice that small

7

0

10

20

30
95

%
ile

 la
t.
(m

s) LATENCY Danger zone Safe zone Target

0

20000

40000

RP
S

0.6

0.65

0.9

1.15

DV
FS

 (G
Hz

) Big Core
Small Core

0 200 400 600 800 1000 1200 1400
Time (S)

0B1S
0B2S
0B3S
0B4S
1B3S
2B2S
2B0S

Co
re

s

Static mapping (all big cores)
M
E
M
C
A
C
H
E
D

(a) Static mapping (all big cores)

LATENCY Danger zone Safe zone Target

Big Core
Small Core

0 500 1000 1500
Time (S)

Octopus-Man

(b) Octopus-Man

0

10

20

30

95
%
ile

 la
t.
(m

s)LATENCY Danger zone Safe zone Target

0

20000

40000

RP
S

0.6

0.65

0.9

1.15

DV
FS

 (G
Hz

)Big Core
Small Core

0 200 400 600 800 1000 1200 1400
Time (S)

0B1S
0B2S
0B3S
0B4S
1B3S
2B2S
2B0S

Co
re

s

Hipster’s heuristic mapper

(c) Hipster’s heuristic mapper

0.0

0.5

1.0

90
%
ile

 la
t.
(m

s) LATENCY Danger zone Safe zone Target

0

20

40

QP
S

0.6

0.65

0.9

1.15

DV
FS

 (G
Hz

) Big Core
Small Core

0 200 400 600 800 1000
Time (S)

0B1S
0B2S
0B3S
0B4S
1B3S
2B2S
2B0S

Co
re

sW
eb
-S
ea
rc
h

(d) Static mapping (all big cores)

LATENCY Danger zone Safe zone Target

Big Core
Small Core

0 200 400 600 800 1000
Time (S)

(e) Octopus-Man

0.0

0.5

1.0

90
%
ile

 la
t.
(m

s)LATENCY Danger zone Safe zone Target

0

20

40

QP
S

0.6

0.65

0.9

1.15

DV
FS

 (G
Hz

)Big Core
Small Core

0 200 400 600 800 1000
Time (S)

0B1S
0B2S
0B3S
0B4S
1B3S
2B2S
2B0S

Co
re

s

(f) Hipster’s heuristic mapper

Figure 5: Comparison of Hipster’s heuristic policy (right-hand column) with static mapping (left) and Octopus-Man
(centre). Results are shown for Memcached (top) and Web-Search (bottom) on ARM Juno R1.

cores are attractive for throughput-oriented workloads,
because of improved power efficiency. Big cores are,
however, still needed for latency-critical workloads with
tight QoS constraints, as a result of computationally-
intensive single-threaded requests.
[Algorithm configuration]: In deploying Octopus-

Man, we first performed a sweep on the danger and safe
thresholds, and picked the combination of thresholds
with the highest QoS guarantee. For HipsterIn, we set
the learning phase to be 500 seconds, except when quan-
tifying the learning time, where we set it to 200 seconds.

4.2 HipsterIn Results
This section evaluates the effectiveness of HipsterIn,

as a policy for managing a single interactive workload.
The objective is to minimize system energy consump-
tion while satisfying QoS.

4.2.1 Hipster’s Heuristic Policy (interactive only)

We first evaluate the effectiveness of Hipster’s heuris-
tic policy alone, for mapping interactive workloads. Fig-
ure 5 shows the results for both workloads: Memcached
(top row, subfigures (a), (b) and (c)) and Web-search
(bottom row, subfigures (d), (e) and (f)). The columns,
from left to right, correspond to static mapping, for
which the interactive threads are mapped to the two

big cores at highest DVFS of 1.15GHz ((a) and (d)),
Octopus-Man ((b) and (e)) and Hipster’s heuristic pol-
icy ((c) and (f)). For each subfigure, from top to bot-
tom, the first plot presents the tail latency (QoS), with
the target marked with a dashed line. The second plot
shows the achieved throughput in RPS (requests per
second). The third plot presents the DVFS of the big
and small cores, and the fourth plot represents the choice
of core mapping.
Comparing the DVFS and core configuration sub-

plots, we observe that Hipster’s heuristic policy is suc-
cessfully exploring the DVFS settings available on the
Juno platform (third plots), and it is exploring all con-
figurations including those that use both big and small
cores at the same time (bottom plots). In contrast,
Octopus-Man does not adjust the DVFS settings and it
uses either the big or small cores, but not both at once.
Both Octopus-Man and Hipster’s heuristic policy fre-

quently oscillate between consecutive core configura-
tions. In the case of Octopus-Man, there are clear oscil-
lations between two big cores and four small cores, for
example between the 600th and 800th seconds. Using
two big cores satisfies QoS but since it is within the safe
zone, Octopus-Man switches to four small cores, which
enters the danger zone, generating an alert provoking a
return to two big cores. Such oscillations between cores

8

0

10

20

30
95

%
ile

 la
t.
(m

s) LATENCY Danger zone Safe zone Target

0

20000

40000

RP
S

0.6

0.65

0.9

1.15

DV
FS

 (G
Hz

) Big Core
Small Core

0 200 400 600 800 1000 1200 1400
Time (S)

0B1S
0B2S
0B3S
0B4S
1B3S
2B2S
2B0S

Co
re

s

Figure 6: HipsterIn on Memcached

0.0

0.5

1.0

90
%
ile

 la
t.
(s

) LATENCY Danger zone Safe zone Target

0

20

40

QP
S

0.6

0.65

0.9

1.15

DV
FS

 (G
Hz

) Big Core
Small Core

0 200 400 600 800 1000
Time (S)

0B1S
0B2S
0B3S
0B4S
1B3S
2B2S
2B0S

Co
re

s

Figure 7: HipsterIn on Web-Search

20

40

60

80

100

Pe
rc
en
ta
ge
 o
f

 M
ax
. l
oa
d

0 20 40 60 80 100 120 140 160 180
Time (s)

0
1
2
3
4
5
6

Qo
S
Ta
rd
in
es
s

Octopus-Man HipsterIn Target

Figure 8: Percentage of Max.
load, and Tail latency (QoS Tar-
diness) running Memcached with
HipsterIn and Octopus-Man.

QoS Guarantee QoS Tardiness Energy Reduction

Memcached Web− Search Memcached Web− Search Memcached Web− Search

Static (all big cores) 99.5% 99.5% 1.1 1.3 - -
Static (all small cores) 85.8% 78.4% 1.4 2.0 48.0% 31.0%
Hipster′s Heuristic 89.9% 95.3% 1.8 1.9 18.7% 13.6%
OctopusMan 92.0% 80.0% 2.2 2.1 17.2% 4.3%
HipsterIn 99.4% 96.5% 1.4 2.0 14.3% 17.8%

Table 3: HipsterIn: summary of QoS guarantees, tardiness and energy savings for Memcached and Web-Search.

in different clusters leads to severe QoS degradation of
up to 20%. As expected, the static mapping (all big
cores) has the least number of violations.
In summary, although Hipster’s heuristic policy alone

improves over Octopus-Man by exploiting a wider search
space, it still suffers from an unacceptable number of
QoS violations.

4.2.2 HipsterIn: Memcached Results

Figure 6 shows the results using HipsterIn for Mem-
cached. After completing the learning phase, the oscil-
latory effect between core mappings is greatly reduced
(by 8.3%), and overall the QoS guarantee is improved by
24% compared with the learning phase. HipsterIn per-
forms well because it moves directly to the appropriate
core configuration for a given load that satisfies QoS. In
addition to switching between a combination of different
cores, HipsterIn also explores more fine-grained DVFS
adaptations, which has lower overheads (of microsec-
onds) compared with migrations between cores (order
of milliseconds) [17].

4.2.3 HipsterIn: Web-Search Results

Figure 7 shows the results using HipsterIn for Web-
Search. In contrast to the heuristic policies (Octopus-
Man and Hipster’s heuristic), during the exploitation
phase, HipsterIn monitors the QoS and dynamically ad-
justs the core mapping and DVFS settings to adapt to
load fluctuations. Both Hipster’s heuristic and Octopus-
Man perform aggressive changes to core mappings to
reduce energy, leading to a negative impact on QoS.
On the other hand, HipsterIn shows a more balanced
behavior, performing 4.7× fewer task migrations than

Octopus-Man for Web-Search, while improving QoS up
to 16% and reducing energy consumption by 13.5%.

4.2.4 HipsterIn Summary

Table 3 summarizes the QoS guarantee, QoS tardi-
ness and energy reduction for Memcached and Web-
Search for different policies: Static (all big cores), Static
(all small cores), Hipster’s heuristic mapper, Octopus-
Man and HipsterIn. We compare the energy consump-
tion of each mapping schema against Static (all big
cores). We quantify the QoS behavior at each sam-
pling interval by assessing the measured QoS using two
metrics: QoS guarantee and QoS tardiness.3 The QoS
Guarantee is the percentage of samples for which the
measured QoS did not violate the target (100%-QoS
violations%). The QoS tardiness in the table is the av-
erage (mean) of the QoS tardiness, including only the
samples that violated the QoS target.
As shown in Table 3, for Web-Search and Memcached,

static (all small cores) cannot meet the required QoS.
On the one hand, the heuristic policies reduce energy
marginally, but violate QoS due to excessive core migra-
tions. On the other hand, HipsterIn meets QoS at 99.4%
and 96.4% for Memcached and Web-Search, while hav-
ing energy savings of 14.3% and 17.8%, respectively.

4.2.5 HipsterIn Analysis

[Rapid adaptation to load changes]: Hipster can
respond to rapid changes in load by directly mapping
to a configuration that satisfies the QoS. Figure 8 shows

3QoS Tardiness is QoScurr/QoStarget, using the definitions
from Section 3.4.

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
70

80

90

100
Qo

S
Gu

ar
an

te
es HipsterIn

Octopus-Man

Figure 9: QoS Guarantees of HipsterIn and Octopus-
Man. Each data point represents the QoS guarantees
over 100 s intervals.

how HipsterIn (during the exploitation phase) and Octo-
pus-Man respond to changes in load. From top to bot-
tom, we express the input load in terms of the percent-
age of maximum load, where it increases from 50% to
100% over a period of 175 seconds for Memcached. In
the second graph, we express the 95th percentile tail la-
tency as QoS Tardiness. A QoS violation has occurred
if the QoS Tardiness is above 1, otherwise QoS is sat-
isfied. We find that Octopus-Man violates QoS due to
aggressive core mappings to minimize energy consump-
tion. By contrast, HipsterIn achieves more stable tail
latency even at higher load (80%). Note that, from 75%
to 90% of the load, the QoS tardiness (extent of vio-
lation) experienced by HipsterIn is 3.7× (mean) lower
than Octopus-Man.
[Impact of learning time:] HipsterIn aims to de-

liver the best balance between QoS guarantee and en-
ergy reduction compared to heuristic policies (Table 3).
In practice, to best optimize for energy efficiency, and
to improve QoS, HipsterIn needs a short learning phase.
Figure 9 shows the QoS guarantee and energy distribu-
tion over 100 s intervals for Web-Search, for both Hip-
sterIn and Octopus-Man. Each data point in the graph
refers to a 100-second interval. The learning phase is
set to 200 s. As can be seen, HipsterIn quickly learns
during the heuristic phase, which improves QoS guar-
antees. On the other hand, for Octopus-Man, the QoS
guarantees are consistently around the 80% mark, since
it does not use past decisions and their associated effects
to improve the future decisions.
[Impact of bucket sizes]: Figure 10 shows the

impact on QoS and energy savings when varying the
load bucket sizes in Hipster. The x-axis represents the
bucket size, expressed as the percentage of maximum
load. Each bar in the figure (y-axis) represents the QoS
violations and energy reductions normalized to Static
(all big cores). Using a large bucket size forces Hipster
to use the same core configuration across a wide range
of loads, whereas using a small bucket size allows fine-
grained control. A small bucket size therefore improves
the energy savings, but it tends to cause rapid changes
in core configuration for small changes in load, and do-
ing so incurs a larger number of QoS violations. On
the other hand, larger bucket sizes provide better QoS
guarantee but lower energy savings, because they cate-
gorize large variations in load into a single load bucket.
Therefore, in tuning Hipster, we empirically determine
the bucket size to maximize energy savings subject to
at least 98% QoS guarantee.

3% 6% 9% 2% 3% 4%
0

10

20

30

%
 R
ed
uc
tio

n

QoS Violations Energy reduction

 Web-Search Memcached

Figure 10: Impact of bucket size on HipsterIn QoS guar-
antees, and energy savings, normalized to static (all big
cores) on Web-Search and Memcached.

4.3 HipsterCo Results
This section evaluates the effectiveness of HipsterCo,

as a policy for collocating a single latency-critical work-
load and a mix of batch workloads. The objective is to
maximize the throughput of the batch workloads while
satisfying QoS of the interactive workloads.
Figure 11 shows the QoS guarantee (top), throughput

(middle) and energy consumption (bottom) for Web-
Search collocated with batch workloads, managed by
Octopus-Man and HipsterCo. All figures are normalized
to a static mapping that allocates the latency-critical
workload to the two big cores and the batch workloads
to the four small cores. The number of running batch
workloads is equal to the number of cores not utilized
by Web-Search. We report the system throughput by
aggregating the IPS of all batch programs.
As shown in the top plot of Figure 11, HipsterCo con-

sistently delivers 94% QoS guarantees, whereas Octo-
pus-Man has much lower QoS guarantees of 76%. This
is because Hipster learns from the QoS behavior and
performance history and is able to jump directly to a
core mapping and DVFS state that satisfies QoS. As
a result, it incurs fewer core migrations compared with
Octopus-Man (see Section 4.2.3), so it achieves superior
QoS guarantees.
As shown in the middle plot of Figure 11, for all

benchmarks, Hipster and Octopus-Man deliver much
higher throughput compared to static mapping, with
an average of 2.3× and 2.6× improvement, respectively.
Both task managers improve performance compared with
the static mapping because they migrate the latency-
critical workload to small cores during periods of low
load, allowing the batch workloads to run on big cores
(which can be 2.6× more powerful than small cores).
For Calculix, a compute-bound application, HipsterCo
achieves the highest throughput improvement over static
of 3.35×, and for libquantum, a memory-bound pro-
gram, the least improvement is still 1.6×.

As shown in the bottom plot of Figure 11, HipsterCo
reduces the energy consumption to an average of 80%
of static, whereas Octopus-Man increases energy to an
average of 1.2 times that of static. This is because, as
shown in Figure 2, Hipster explores a wider range of
core configurations, including DVFS settings and mix-
ing core types. In contrast, Octopus-Man only allows
the latency-critical workload to occupy a single cluster
and each cluster is set to the highest DVFS.
HipsterCo sometimes chooses a different performance–

10

0.0
0.2
0.4
0.6
0.8
1.0

Qo
S
Gu

ar
an

te
e
(n
or
m
al
ize

d)
Octopus-Man HipsterCo

QoS Guarantees

0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6

IP
S
(n
or
m
al
ize

d)

Throughput

po
vr
ay

na
md

gr
om

ac
s

to
nt
o

sje
ng

ca
lcu

lix
ca
ctu

sA
DM lbm as
ta
r

so
ple

x
lib
qu
an
tu
m

ze
us
mp

me
an

0.6

0.8

1.0

1.2

1.4

1.6

En
er
gy

 (n
or
m
al
ize

d) Energy consumption

Figure 11: QoS guarantee (top), Throughput improve-
ment (middle) and Energy consumption (bottom) when
Web-Search is collocated with batch workloads. The re-
sults are normalized to static all big cores.

energy tradeoff than Octopus-Man. An example is lbm,
a memory bound workload, for which HipsterCo delivers
40% the throughput of Octopus-Man, but 31% lower en-
ergy. There are two main reasons for this. Firstly, when
HipsterCo uses DVFS for the latency-critical workloads,
this DVFS setting also applies to batch workloads run-
ning in the same cluster, reducing both batch through-
put and system energy. Secondly, HipsterCo sometimes
uses a larger number of cores at lower DVFS, leaving
fewer resources available for the batch workloads. As
a result, on average, HipsterCo marginally reduces per-
formance (by 7%) but it delivers energy savings of 33%,
both compared with Octopus-Man.

5. RELATED WORK
Bubble-flux and Bubble-Up [58, 59] detect at run-

time the memory pressure and find the optimal colloca-
tion to avoid negative interference with latency-critical
workloads. They also have a mechanism to detect neg-
ative interference allocations via execution modulation.
However such fall-back mechanism would not adhere to
applications like Memcached, as modulations have to be
done at a finer granularity. DeepDive [60] identifies and
manages performance interference between VM systems
collocated on the same system. Q-Clouds [61] develop a
feedback based mechanism to tune resource assignment
to avoid negative interference to collocated VMs sys-
tems. CPI2 [62] enables race-to-finish for low-priority
workloads to not have a deadlock with high priority ser-
vices.
Octopus-Man [21] was designed for big.LITTLE ar-

chitectures to map workloads on big and small cores at
highest DVFS using a feedback controller in response

to changes in measured latency. Heracles [16] uses a
feedback controller that exploits collocation of latency-
critical and batch workloads while increasing the re-
source efficiency of CPU, memory and network as long
as QoS target is met. However, this work is limited to
modern Intel architectures due to its extensive use of
cache allocation technology (CAT) and DRAM band-
width monitor, which are available from Broadwell pro-
cessors released after 2015. Pegasus [15] achieves high
CPU energy proportionality for low latency workloads
using fine-grained DVFS techniques. TimeTrader [29]
and Rubik [17] exploit request queuing latency varia-
tion and apply any available slack from queuing delay
to throughput-oriented workloads to improve energy ef-
ficiency. Quasar [63] use runtime classification to pre-
dict interference and collocate workloads to minimize
interference.
KnightShift [8] introduces a server architecture that

couples commercial available compute nodes to adapt
the changes in system load and improve energy pro-
portionality. Autoscale [64] is for load-balancing a sin-
gle workload, whereas Hipster could be used for multi-
tenant data centers (different workloads on different
nodes). Also, Autoscale cannot exploit heterogeneity
properly. In contrast, at low utilization, Hipster can
use the small cores for the latency-critical workloads
and leave the big cores for batch workloads.
Tesauro et al [32] use an offline model based on heuris-

tics for autonomous resource allocation, which may be
limited to specific architectures or applications. Build-
ing a lookup table at runtime is important because ap-
plications have diverse power and performance charac-
teristics which need to be learnt individually (as shown
in Section 2).

6. CONCLUSION
We propose Hipster, a hybrid scheme that combines

heuristics and reinforcement learning to manage hetero-
geneous cores with DVFS control for improved energy
efficiency. We show that Hipster performs well across
workloads and interactively adapts the system by learn-
ing from the QoS/power/performance history to best
map workloads to the heterogeneous cores and adjust
their DVFS settings. When only latency-critical work-
loads are running in the system, Hipster reduces energy
consumption by 13% in comparison to prior work. In
addition, to improve resource efficiency in shared data
centers by running both latency-critical and batch work-
loads on the same system, Hipster improves batch work-
load throughput by 2.3× compared to a static and con-
servative policy, while meeting the QoS targets for the
latency-critical workloads.
Acknowledgment — This work has been partially

supported by the European Union FP7 program through
the Mont-Blanc-2 project (FP7-ICT-610402), by the
Ministerio de Economia y Competitividad under con-
tract Computación de Altas Prestaciones VII (TIN2015-
65316-P), and the Departament de Innovació, Univer-
sitats i Empresa de la Generalitat de Catalunya, under
project MPEXPAR: Models de Programació i Entorns
d Execució Paral·lels (2014-SGR-1051).

11

7. REFERENCES

[1] P. Delforge and J. Whitney, “Data Center Efficiency
Assessment,”Natural Resources Defense Council (NRDC),
2014.

[2] Q. Wu, Q. Deng, L. Ganesh, C.-H. Hsu, Y. Jin, S. Kumar,
B. Li, J. Meza, and Y. J. Song, “Dynamo: Facebook’s Data
Center-Wide Power Management System,” 2016
ACM/IEEE 43st International Symposium on Computer
Architecture (ISCA), 2016.

[3] “Facebook is opening a new wind-powered data center in
Texas, http://goo.gl/dKVnSB.”

[4] J. Mars, L. Tang, and R. Hundt, “Heterogeneity in
’Homogeneous’ Warehouse-Scale Computers: A
Performance Opportunity,” IEEE Computer Architecture
Letters, vol. 10, pp. 29–32, 2 2011.

[5] N. Chitlur, G. Srinivasa, S. Hahn, P. K. Gupta, D. Reddy,
D. Koufaty, P. Brett, A. Prabhakaran, L. Zhao, N. Ijih,
S. Subhaschandra, S. Grover, X. Jiang, and R. Iyer,
“QuickIA: Exploring heterogeneous architectures on real
prototypes,” in IEEE International Symposium on
High-Performance Comp Architecture, pp. 1–8, IEEE, 2
2012.

[6] M. Halpern, Y. Zhu, and V. J. Reddi, “Mobile CPU’s rise
to power: Quantifying the impact of generational mobile
CPU design trends on performance, energy, and user
satisfaction,” in 2016 IEEE International Symposium on
High Performance Computer Architecture (HPCA),
pp. 64–76, IEEE, 3 2016.

[7] M. Guevara, B. Lubin, and B. C. Lee, “Navigating
heterogeneous processors with market mechanisms,” in 2013
IEEE 19th International Symposium on High Performance
Computer Architecture (HPCA), pp. 95–106, IEEE, 2 2013.

[8] D. Wong and M. Annavaram, “KnightShift: Scaling the
Energy Proportionality Wall through Server-Level
Heterogeneity,” in 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture,
pp. 119–130, IEEE, 12 2012.

[9] J. Cong and B. Yuan, “Energy-efficient scheduling on
heterogeneous multi-core architectures,” in Proceedings of
the 2012 ACM/IEEE international symposium on Low
power electronics and design - ISLPED ’12, (New York,
New York, USA), p. 345, ACM Press, 7 2012.

[10] R. Nishtala, D. Mosse, and V. Petrucci, “Energy-aware
thread co-location in heterogeneous multicore processors,”
in 2013 Proceedings of the International Conference on
Embedded Software (EMSOFT), pp. 1–9, IEEE, 9 2013.

[11] W. Wonyoung Kim, M. S. Gupta, G.-Y. Wei, and
D. Brooks, “System level analysis of fast, per-core DVFS
using on-chip switching regulators,” in 2008 IEEE 14th
International Symposium on High Performance Computer
Architecture, pp. 123–134, IEEE, 2 2008.

[12] W. Godycki, C. Torng, I. Bukreyev, A. Apsel, and
C. Batten, “Enabling Realistic Fine-Grain Voltage Scaling
with Reconfigurable Power Distribution Networks,” in 2014
47th Annual IEEE/ACM International Symposium on
Microarchitecture, pp. 381–393, IEEE, 12 2014.

[13] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou,
K. Constantinides, J. Demme, H. Esmaeilzadeh, J. Fowers,
G. P. Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil,
A. Hormati, J.-Y. Kim, S. Lanka, J. Larus, E. Peterson,
S. Pope, A. Smith, J. Thong, P. Y. Xiao, and D. Burger, “A
reconfigurable fabric for accelerating large-scale datacenter
services,” in 2014 ACM/IEEE 41st International
Symposium on Computer Architecture (ISCA), pp. 13–24,
IEEE, 6 2014.

[14] D. Lo and C. Kozyrakis, “Dynamic management of
TurboMode in modern multi-core chips,” in 2014 IEEE
20th International Symposium on High Performance
Computer Architecture (HPCA), pp. 603–613, IEEE, 2
2014.

[15] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and
C. Kozyrakis, “Towards energy proportionality for
large-scale latency-critical workloads,”ACM SIGARCH

Computer Architecture News, vol. 42, pp. 301–312, 10 2014.

[16] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and
C. Kozyrakis, “Heracles,”ACM SIGARCH Computer
Architecture News, vol. 43, pp. 450–462, 6 2015.

[17] H. Kasture, D. B. Bartolini, N. Beckmann, and D. Sanchez,
“Rubik,” in Proceedings of the 48th International
Symposium on Microarchitecture - MICRO-48, (New York,
New York, USA), pp. 598–610, ACM Press, 12 2015.

[18] L. A. Barroso, J. Clidaras, and U. Hölzle, “The Datacenter
as a Computer: An Introduction to the Design of
Warehouse-Scale Machines, Second edition,” Synthesis
Lectures on Computer Architecture, vol. 8, pp. 1–154, 7
2013.

[19] S. Eric and B. Jake, “The User and Business Impact of
Server Delays, Additional Bytes, and HTTP Chunking in
Web Search,”Velocity, 2009.

[20] J. Dean and L. A. Barroso, “The tail at scale,”
Communications of the ACM, vol. 56, p. 74, 2 2013.

[21] V. Petrucci, M. A. Laurenzano, J. Doherty, Y. Zhang,
D. Mosse, J. Mars, and L. Tang, “Octopus-Man:
QoS-driven task management for heterogeneous multicores
in warehouse-scale computers,” in 2015 IEEE 21st
International Symposium on High Performance Computer
Architecture (HPCA), pp. 246–258, IEEE, 2 2015.

[22] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and
T. F. Wenisch, “Power management of online data-intensive
services,” in Proceeding of the 38th annual international
symposium on Computer architecture - ISCA ’11, vol. 39,
(New York, New York, USA), p. 319, ACM Press, 6 2011.

[23] Y. Li, D. Wang, S. Ghose, J. Liu, S. Govindan, S. James,
E. Peterson, J. Siegler, R. Ausavarungnirun, and O. Mutlu,
“SizeCap: Efficiently handling power surges in fuel cell
powered data centers,” in 2016 IEEE International
Symposium on High Performance Computer Architecture
(HPCA), pp. 444–456, IEEE, 3 2016.

[24] C. Delimitrou and C. Kozyrakis, “Paragon: QoS-aware
scheduling for heterogeneous datacenters,”ACM SIGARCH
Computer Architecture News, vol. 41, pp. 77–77, 3 2013.

[25] U. Hoelzle and L. A. Barroso, The Datacenter as a
Computer: An Introduction to the Design of
Warehouse-Scale Machines. Morgan and Claypool
Publishers, 2009.

[26] O. Bilgir, M. Martonosi, and Q. Wu, “Exploring the
Potential of CMP Core Count Management on Data Center
Energy Savings,” in 3rd Workshop on Energy Efficient
Design (WEED), 2011.

[27] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny, “Workload analysis of a large-scale key-value
store,” in Proceedings of the 12th ACM
SIGMETRICS/PERFORMANCE joint international
conference on Measurement and Modeling of Computer
Systems - SIGMETRICS ’12, vol. 40, (New York, New
York, USA), p. 53, ACM Press, 2012.

[28] V. Janapa Reddi, B. C. Lee, T. Chilimbi, and K. Vaid,
“Web search using mobile cores,” in Proceedings of the 37th
annual international symposium on Computer architecture
- ISCA ’10, vol. 38, (New York, New York, USA), p. 314,
ACM Press, 6 2010.

[29] B. Vamanan, H. B. Sohail, J. Hasan, and T. N.
Vijaykumar, “TimeTrader: Exploiting Latency Tail to Save
Datacenter Energy for Online Search,” in 44th Annual
IEEE/ACM International Symposium on Microarchitecture
- MICRO-48, (Waikiki, Hawaii), ACM Press, 2015, 2015.

[30] J. Li, N. K. Sharma, D. R. K. Ports, and S. D. Gribble,
“Tales of the Tail,” in Proceedings of the ACM Symposium
on Cloud Computing - SOCC ’14, (New York, New York,
USA), pp. 1–14, ACM Press, 2014.

[31] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K.
Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,
I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg,
and D. Hassabis, “Human-level control through deep

12

reinforcement learning,”Nature, vol. 518, pp. 529–533, 2
2015.

[32] G. Tesauro, N. Jong, R. Das, and M. Bennani, “A Hybrid
Reinforcement Learning Approach to Autonomic Resource
Allocation,” in 2006 IEEE International Conference on
Autonomic Computing, pp. 65–73, IEEE.

[33] “IBM Research | Technical Paper Search | Model-Based and
Model-Free Approaches to Autonomic Resource
Allocation(Search Reports),” 2 2007.

[34] G. Tesauro, “Online Resource Allocation Using
Decompositional Reinforcement Learning.,” in Proceedings,
The Twentieth National Conference on Artificial
Intelligence and the Seventeenth Innovative Applications of
Artificial Intelligence Conference, July 9-13, 2005,
Pittsburgh, Pennsylvania, USA, pp. 886–891, 1 2005.

[35] T. Horvath, T. Abdelzaher, K. Skadron, and X. Liu,
“Dynamic Voltage Scaling in Multitier Web Servers with
End-to-End Delay Control,” IEEE Transactions on
Computers, vol. 56, pp. 444–458, 4 2007.

[36] Suton. R.S and A. Barto, Reinforcement Learning: An
Introduction. Cambridge, MA: MIT Press, 1998.

[37] J. Leverich, M. Monchiero, V. Talwar, P. Ranganathan,
and C. Kozyrakis, “Power Management of Datacenter
Workloads Using Per-Core Power Gating,” IEEE Computer
Architecture Letters, vol. 8, pp. 48–51, 2 2009.

[38] N. Madan, A. Buyuktosunoglu, P. Bose, and
M. Annavaram, “A case for guarded power gating for
multi-core processors,” in 2011 IEEE 17th International
Symposium on High Performance Computer Architecture,
pp. 291–300, IEEE, 2 2011.

[39] “Perf: Linux profiling with performance
counters,https://perf.wiki.kernel.org/.”

[40] ARM Limited, “ARM R© Cortex R© -A53 MPCore
Processor Technical Reference Manual.”

[41] ARM Limited, “ARM R© Cortex R© -A57 MPCore
Processor Revision: r1p0 Technical Reference Manual.”

[42] G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, and
R. Hundt, “Google-Wide Profiling: A Continuous Profiling
Infrastructure for Data Centers,” IEEE Micro, vol. 30,
pp. 65–79, 7 2010.

[43] D. Bernstein, “Containers and Cloud: From LXC to Docker
to Kubernetes,” IEEE Cloud Computing, vol. 1, pp. 81–84,
9 2014.

[44] R. Pattis, “Complexity of Python Operations,
https://www.ics.uci.edu/˜pattis/ICS-
33/lectures/complexitypython.txt.”

[45] “Faban,http://faban.org/.”

[46] “Memcached, https://memcached.org/.”

[47] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee,
H. C. Li, R. McElroy, M. Paleczny, D. Peek, P. Saab,
D. Stafford, T. Tung, and V. Venkataramani, “Scaling
Memcache at Facebook,” in Proceedings of the 10th
USENIX conference on Networked Systems Design and
Implementation, pp. 385–398, USENIX Association, 2013.

[48] L. Barroso, J. Dean, and U. Holzle, “Web search for a
planet: the google cluster architecture,” in IEEE Micro,
vol. 23, pp. 22–28, IEEE, 3 2003.

[49] “Elasticsearch,https://github.com/elastic/elasticsearch.”

[50] M. Ferdman, B. Falsafi, A. Adileh, O. Kocberber, S. Volos,
M. Alisafaee, D. Jevdjic, C. Kaynak, A. D. Popescu, and
A. Ailamaki, “Clearing the clouds,”ACM SIGARCH
Computer Architecture News, vol. 40, p. 37, 4 2012.

[51] J. Mars and L. Tang, “Whare-map,”ACM SIGARCH
Computer Architecture News, vol. 41, p. 619, 7 2013.

[52] H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-flux,”
ACM SIGARCH Computer Architecture News, vol. 41,
p. 607, 7 2013.

[53] J. L. Henning, “SPEC CPU2006 benchmark descriptions,”
ACM SIGARCH Computer Architecture News, vol. 34,

pp. 1–17, 9 2006.

[54] “ARM Juno R1,https://goo.gl/EcamOa.”

[55] “Applied Micro XGene2,http://goo.gl/XA04r1.”

[56] “ARM Juno Power Registers,https://github.com/ARM-
software/devlib/blob/master/src/readenergy/readenergy.c.”

[57] ARM, “SYS POW SYS Register, https://goo.gl/fmTTQi.”

[58] H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-flux:
precise online QoS management for increased utilization in
warehouse scale computers,” in Proceedings of the 40th
Annual International Symposium on Computer
Architecture - ISCA ’13, vol. 41, (New York, New York,
USA), p. 607, ACM Press, 2013.

[59] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa,
“Bubble-Up: Increasing Utilization in Modern Warehouse
Scale Computers via Sensible Co-locations,” in Proceedings
of the 44th Annual IEEE/ACM International Symposium
on Microarchitecture - MICRO-44 ’11, (New York, New
York, USA), p. 248, ACM Press, 2011.

[60] D. Novaković, N. Vasić, S. Novaković, D. Kostić, and
R. Bianchini, “DeepDive: transparently identifying and
managing performance interference in virtualized
environments,” in Proceedings of the 2013 USENIX
conference on Annual Technical Conference, pp. 219–230,
USENIX Association, 2013.

[61] R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds,” in
Proceedings of the 5th European conference on Computer
systems - EuroSys ’10, (New York, New York, USA),
p. 237, ACM Press, 4 2010.

[62] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale,
and J. Wilkes, “CPI 2,” in Proceedings of the 8th ACM
European Conference on Computer Systems - EuroSys ’13,
(New York, New York, USA), p. 379, ACM Press, 4 2013.

[63] C. Delimitrou and C. Kozyrakis, “Quasar: resource-efficient
and QoS-aware cluster management,”ACM SIGARCH
Computer Architecture News, vol. 42, pp. 127–127, 4 2014.

[64] Qiang Wu, “Making Facebook’s software infrastructure
more energy efficient with Autoscale,
https://goo.gl/vJi1kf.”

13

	Introduction
	Motivation
	Hipster
	Hipster Reinforcement Learning
	Hipster Design
	Heuristic Mapper (Learning Phase)
	Reward Calculation
	Exploitation Phase
	Responsiveness and Stability
	Hipster Implementation

	Evaluation
	Experimental Methodology
	HipsterIn Results
	Hipster's Heuristic Policy (interactive only)
	HipsterIn: Memcached Results
	HipsterIn: Web-Search Results
	HipsterIn Summary
	HipsterIn Analysis

	HipsterCo Results

	Related Work
	Conclusion
	References

