
HISS: a HIghly Scalable
Scheme for group rekeying

Gianluca Dini and Marco Tiloca

Dept. of Ingegneria dell’Informazione
University of Pisa

Via Diotisalvi 2, 56100 Pisa, Italy

Email: {g.dini,m.tiloca}@iet.unipi.it

Group communication is a suitable and effective communication model for large
scale distributed systems. To be fully exploitable, group communication must
be protected. This is normally achieved by providing members with a group
key which is revoked and redistributed upon every member’s joining (backward
security) or leaving (forward security). Such a rekeying process must be efficient
and highly scalable. In this paper we present HISS, a highly scalable group
rekeying scheme that efficiently rekeys the group in two broadcast rekeying
messages. HISS features two novel contributions. First, it exhibits a rekeying
cost which is constant and independent of the group size, thus being highly
scalable with the number of users. At the same time, memory occupancy and
computational overhead are affordable on customary platforms. Second, HISS
considers collusion as a first-class attack and recovers the group in such a way that
does not require a total group recovery. Efficiency of collusion recovery gracefully
decreases with the attack severity. We prove the correctness of HISS, analytically
evaluate its performance and argue that it is deployable on customary platforms.
Finally, we show that it is possible to practically contrast or even prevent collusion

attacks by properly allocating users to subgroups.

Keywords: Security; Key Management; Group communication

1. INTRODUCTION

Group communication has proven to be a suitable and
efficient communication model for distributed systems
in many different application scenarios, including con-
tent distribution, Wireless Sensor Networks (WSNs),
teleconferencing, wargaming, and others. These appli-
cation scenarios typically involve a large number of par-
ticipants, which dynamically join and leave the applica-
tion, so causing group membership to change frequently.
Furthermore, they also require that group communica-
tion is protected from unauthorized accesses. This is
achieved by restricting the access to group communica-
tion to group members only.

Intuitively, this is achieved by distributing a group
key to all group members which use it to encrypt
(decrypt) messages broadcast (received) within the
group. Good cryptographic practices suggest to
periodically refresh the key in order to prevent
cryptanalysis. Furthermore, when a new user joins
the group, he must not be able to access any group
communication prior its joining (backward security).
Besides, when a current member leaves the group, he
must be prevented from accessing any further group
communication (forward security). As a consequence,
upon a new user’s joining or a current one’s leaving, the

current group key has to be revoked and a new one has
to be distributed. This process is known as rekeying ,
and makes it possible to fulfill the backward and forward
security requirements [1].

Rekeying the group upon a new member’s joining
is actually trivial. In contrast, rekeying the group
upon a current member’s leaving is a far more complex
problem. A näıve solution consists in separately
rekeying every remaining member, by transmitting
that member the new group key encrypted with the
member’s secret key. Although very simple, this
solution requires O(n) rekeying messages, where n
is the group size, and thus scales poorly. Actually,
efficient rekeying requires to broadcast the new group
key in its encrypted form into the group. However, the
current group key cannot be used, because the leaving
member is aware of it. A typical approach is to encrypt
rekeying messages by means of administrative keys that
are not known to the evicted member. Furthermore,
the administrative keys known to the evicted member
should also be replaced. It follows that efficient
rekeying is a crucial component in any secure group
communication system [1, 2, 3, 4, 5, 6, 7, 8].

A group member may leave a group for several
reasons. For example, because its mission is concluded,

The Computer Journal, Vol. ??, No. ??, ????



2 G. Dini and M. Tiloca

its subscription is expired, or it has failed or depleted
its energy. Furthermore, a group member may be
forced to leave because it has been compromised or it
is suspected so. A collusion attack occurs when evicted
compromised members share their security material in
order to regain access to the group key [1]. A typical
collusion attack consists of an adversary capturing a
set of users, incrementally aggregating the uncovered
keying material of individual members to a level that
allows revealing the group key and, consequently, all
encrypted traffic in the network. No group rekeying
scheme is exempt from collusion attacks, and different
schemes display different levels of resilience to this kind
of attack [6, 9, 10, 11, 12, 13]. In any case, after
a successful collusion attack, group rekeying schemes
generally require a total group recovery , i.e. every group
member must be re-initialised in a one-to-one fashion.
Of course such a total group recovery has a negative
impact on the overall rekeying scheme performance.

In this paper, we propose HISS, a highly scalable
rekeying scheme for large scale, dynamic groups.
HISS is centralized and levers on logical subgrouping ,
a consolidated conceptual technique that has been
already exploited in several existing group rekeying
schemes [6, 7, 9, 10, 11, 13, 14, 15]. HISS partitions
group members into non-overlapping logical subgroups
that become the units of rekeying and recovery from
collusion attacks.

With respect to other rekeying schemes based
on subgrouping, HISS features the two following
novel contributions. First, unlike other well-known
centralized approaches [6, 7, 11, 14], HISS rekeys the
system with a number of messages that is small,
constant, and independent of the group size, thus
resulting highly scalable and efficient. Specifically,
HISS only requires two broadcast messages to rekey the
system, so displaying O(1) communication complexity.
One broadcast message rekeys the subgroup containing
the leaving member, and another one rekeys all the
remaining subgroups.

Second, differently from [9, 10, 13, 15], HISS
considers collusion attacks as a first-class problem,
and provides an integrated recovery protocol that re-
establishes security as soon as a collusion attack has
been detected. Such protocol gracefully decreases in
efficiency with the collusion attack severity, and does
not require a total group recovery of the system. In
fact, only compromised subgroups are totally recovered,
whereas uncompromised ones are efficiently rekeyed
by a single broadcast message each. The rational
basis for this is that while rekeying accounts for the
normal functioning of the system (joining or a leaving),
recovery has to be considered an exceptional event.
Therefore, according to the well-known Lampson’s
recommendations for computer systems design [16],
while rekeying must be very efficient, it is sufficient that
recovery is able to make progress provided it remains
practically sustainable. Finally, we also show that a

proper allocation of users to subgroups may practically
increase the resilience of HISS to collusion attacks or,
even, prevent them altogether.

The rest of this paper is organized as follows. In
Section 2, we discuss some related work, and compare
HISS with the current state of the art. Section 3
describes the system scenario and the threat model.
Section 4 presents the HISS rekeying scheme, that
is composed of a suite of three protocols: the leave
protocol, the join protocol and the recovery protocol.
While the first and the second protocol implement
rekeying, the last one supports recovery from collusion
attacks. Section 5 presents a security analysis and
argues that HISS guarantees forward security and
backward security. Section 6 analitycally evaluates
HISS performance in terms of communication, storage,
and computing overhead. In this section, we show that
while rekeying is highly scalable, the recovery overhead
is sustainable on customary platforms (e.g. personal
computers or sensor nodes). In Section 7, we discuss
how HISS can help us to deal with collusion attacks
and argue that allocation policies of users to subgroups
can be defined to practically contrast or, even, prevent
collusion attacks. Finally, in Section 8 we draw our final
conclusions.

2. RELATED WORK

Group key management schemes are typically classified
as centralised, decentralised, or distributed [1]. All
these schemes attempt to provide a balance among
security and performance. In a centralised scheme, key
management is concentrated in a single entity. Relevant
examples include [6, 7, 14]. Typically, a centralised
approach makes it possible to minimize storage,
computation, and communication requirements on both
client and server sides. However, the single group
key managing entity may become a performance and
security bottleneck. Centralised settings are suitable
for large scale, possibly geographically disparate, groups
with dynamic membership. Content distribution
applications such as pay TV, news or stock information
dissemination are in this category [17].

The decentralised and distributed approaches at-
tempt to overcome these limitations by distributing key
management over a set of key managers in the for-
mer case, or, even, the users themselves in the lat-
ter. Relevant examples of the decentralised approch
include [10, 13, 18, 19], whereas examples of distributed
approach include [5, 20, 21, 22, 23]. Unfortunately,
decentralised and distributed approaches tend to be
harder to implement than centralised ones, raise secu-
rity concerns, and are often less scalable. Applications
like conferencing and distributed interactive simulation
fall under the category of distributed setting. The group
sizes in such applications are typically small and justi-
fies the usage of the relatively high end computation
required by the group key agreement techniques [17].

The Computer Journal, Vol. ??, No. ??, ????



HISS 3

Centralised versus distributed or decentralised group
key management is still an open debate.

HISS is based on a centralized approach and
introduces the following two benefits with respect to the
current state of the art. First, it is highly scalable with
the number of users, as it requires a number of rekeying
messages that is constant and independent of the group
size. At the same time, it is affordable in terms
of memory occupancy and computational overhead.
Second, HISS considers collusion as a first-class attack
and provides a specific protocol aimed at recovering the
group from collusion attack. In particular, unlike many
rekeying schemes, HISS does not require a total group
recovery, and its performance gracefully decreases with
the collusion attack severity.

In the rest of this section, we provide a comparison
between HISS and other well known rekeying schemes.
First, we consider rekeying approaches akin to HISS
from an architectural standpoint, and give an analytical
comparison of performance. Then, we qualitatively
compare HISS to other rekeying schemes that, although
different from an architectural point of view, display
however certain similarities with it.

As stated above, HISS takes a centralized approach,
as LKH [6], Key Graphs [7], LARK [14], and KTR [24].
These systems use a set of “administrative keys” (or
other cryptographic material, e.g. tokens) and logically
group them in order to provide a scalable rekeying in
the case of leaving events. LKH hierarchically organises
administrative keys in a logical tree, so achieving an
overhead that is logarithmic in the number of users of
the system. Key Graph is essentially a generalisation
of LKH and logically organises administrative keys in a
graph, so achieving a performance that depends on the
specific graph topology but is no better than LKH [14].
LARK is based on Key Graph and logically groups
administrative keys into a graph, but for different
reasons than HISS. In LARK, logical grouping is a
tool for application design. An application designer
defines a key graph topology reflecting cooperation
within the system. The Key Manager receives such a
topology and does its best to provide efficient rekeying.
An approach similar to LARK is taken by KTR that
generalises LKH to manage multiple subscriptions in
content distribution applications and wireless broadcast
services [24]. In contrast to LARK and KTR, logical
subgrouping in HISS is instead a network management
tool aimed at supporting efficient and scalable rekeying.
Subgroups have no application meaning and are even
transparent to the application level.

More in details, LKH organises keys hierarchically
into a logical tree where the root contains the group
key, the leaves contain users’ private keys, and internal
nodes contain administrative keys. If we assume that
the group size is n and the key tree is balanced with
ariety a, a > 1, then the (leave) communication
overhead is (a · loga n) − 1, and the storage overhead
at the user side is (loga n) + 1. A number of schemes

Communication User storage Collusion
overhead overhead threshold

LHK O(loga n) O(loga n) n
2

HISS O(1) O(
√
n) 2 ·

√
n

TABLE 1. LKH and HISS performance comparison.

deriving from LKH have been proposed, including [2, 3,
8, 14, 24].

It is evident that the communication overhead of
LKH grows logarithmically with n. Instead, the
communication overhead of HISS is equal to five and
therefore is small, constant, and independent of the
group size (Section 6.2). This overhead accounts for
the amount of information that a user has to receive
and process. Therefore, it results to be particularly
important, since, in a centralised key management
scheme, users are generally considered computationally
less capable than servers.

As to the LKH memory overhead at the user side, it
grows logarithmically with n. On the other hand, the
HISS memory overhead grows with

√
n (Section 6.1).

Although LKH is more efficient than HISS from
this standpoint, HISS memory overhead is practically
affordable in current platforms (Section 6.1).

Finally, LKH becomes vulnerable to a collusion
attack when at least tLKH = n

2 users are captured
before they are detected. In contrast, HISS requires
tHISS = 2 ·

√
n users to be captured (see Section 7.1).

For any system larger than n = 16 users, tLKH >
tHISS. Hence, LKH results more resistant than HISS
to collusion attacks. However, A proper allocation of
users to subgroups can make HISS practically resistant
to collusion attacks (Section 7). Table 1 resumes
performance differences between HISS and the LKH
scheme.

As it turns out, HISS is highly scalable, more
than LKH, while displaying a practical and affordable
overhead and resistance to collusion attacks.

Rekeying schemes such as SECK [9], HySOR [11],
SHELL [13], and EBS [15] are architecturally different
from HISS but display similarities with it. HySOR
makes it possible to trade off the message cost
of rekeying with some increased vulnerability to
collusion [11]. Also, it provides a range of protocols
with LKH at one extreme and LORE at the other, which
requires O(1) messages for rekeying, but in which any
two receivers can collude. In contrast to HySOR, the
HISS cost of rekeying is always constant, small, and
independent of the group size. Furthermore, in LORE
two colluding receivers compromise the whole group,
whereas in HISS two colluding users compromise only a
single subgroup. Finally, HySOR does not suggest any
recovery protocol.

Exclusion Basis System (EBS) is another scheme that
displays some similarities with HISS, as it uses a form
of grouping [15]. EBS views the logical structure of the

The Computer Journal, Vol. ??, No. ??, ????



4 G. Dini and M. Tiloca

group as a collection of subsets of the group members,
and applies combinatorial optimization techniques to
the key management problem. In EBS, keys are reused
in multiple nodes and only key combinations are unique.
It follows that collusion of a few nodes can reveal all
the keys employed in the network to the adversary,
so causing forward security to be completely broken,
the capture of the entire network, and the consequent
need of a total network recovery. Optimal assignment
of keys to prevent network capturing is a classical
resource allocation problem that is NP-hard [25]. Thus,
differently from HISS, in EBS it is possible to mitigate,
but not eliminate, collusion using allocation heuristics
that reduce the probability of capturing the entire
network, but require, for example, the knowledge of
nodes’ location while allocating keys.

SECK [9, 10] and SHELL [13] are two EBS-
based schemes for WSNs that provide countermeasures
against collusion attacks. Precisely, these systems
should be classified as decentralised because they
physically cluster neighbouring nodes into clusters and
use EBS-based key management schemes to administer
keys within each cluster. However, a comparison with
HISS is interesting, at least at the cluster level, because
they use logical grouping of keys, although at the cluster
level, and consider a collusion attack in their threat
model.

In SECK, the robustness to a collusion attack
may be tuned by acting on certain EBS parameters.
Unfortunately, making SECK more robust to a collusion
attack decreases the communication performance of
rekeying, and vice versa. Furthermore, SECK recovery
in the case of a successful collusion attack performs
better in localized attacks. Also in HISS the robustness
to collusion attacks depends on system parameters,
namely subgroups and allocation of users to subgroups.
However, the impact on performance due to the
rekeying protocol is small, constant and independent of
those parameters. Furthermore, in the case of localized
attacks, such as those described in Section 7.2, a proper
definition of subgroups and a proper allocation of users
to subgroups make it possible to practically prevent
collusion attacks.

SHELL suggests a key assigment approach such
that, even though colluding nodes share their keys, an
adversary would not be able to access all the keys of the
network unless many nodes are compromised. In other
words, SHELL attempts to reduce the probability that
the entire network is captured. However, if a collusion
attack is successful, the entire network is compromised
and a total recovery is necessary. SHELL is based
on quite a specific collusion model, i.e. compromised
nodes have direct communication links. In contrast,
HISS is based on a more general collusion model.
Actually, HISS does not place any restriction on the
communication among captured nodes, and between
captured nodes and the adversary. In Section 7.1,
we assume that the adversary collects keying material

Total Recovery Rekeying
recovery protocol efficiency

HISS No
Yes

The amount of
rekeying messages
is independent of
the group size.

HySOR - No
The amount of

rekeying messages
can be constant.

EBS
Yes Yes Incomparable

CRMS

SECK No Yes
Collusion protection
decreases rekeying

performance.

SHELL Yes Yes Incomparable

Collusion

- No

Assuring efficiency
Resistant is a difficult task.
Rekeying Ciphertexts are
Scheme very large in size.

TABLE 2. Qualitative comparison between HISS and
other rekeying schemes.

from users possibly selected at random, whereas, in
Section 7.2, we assume that an adversary can even
physically capture users.

Finally, it is worth mentioning CRMS [12] and
the collusion-resistant rekeying architecture proposed
by Cheung et al. [26]. CRMS is a matrix-based
scheme similar to EBS, aimed at supporting dynamic
membership and increasing the robustness to collusion
attacks. The scheme proposed by Cheung et al. relies
on attribute-based encryption [26]. They refer to
the ciphertext-policy attribute-based encryption (CP-
ABE) scheme described in [27], and use it to improve
the flat table group key management scheme [5, 28], so
making it resistant to collusion attacks. However, it is
quite challenging to define user attributes in an optimal
way, in order to assure efficiency during the rekeying
procedure. In addition, the considered attribute-based
encryption primitive produces very large ciphertexts,
thus resulting in huge broadcast rekeying messages.

Table 2 summarizes the differences between HISS
and the other rekeying schemes discussed above.
Specifically, it focuses on performance of the rekeying
procedure, and collusion managent.

3. SYSTEM ARCHITECTURE

We consider a group G of users. A user becomes
member of the group by explicitly joining it. As a
member of the group, a user may broadcast messages
to the other members. Later on, a member may
voluntarily leave the group or be forced to leave if
compromised or suspected to be so. In order to
guarantee the security of group communication, it is
generally required that when a user joins the group
it is not able to access group communication prior

The Computer Journal, Vol. ??, No. ??, ????



HISS 5

FIGURE 1. The Group Controller GC.

its joining (backward security), and that when a user
leaves the group it is prevented from accessing any
further group communication (forward security). In
order to achieve this, group members share a secret
cryptographic key, the group key, which they use to
encrypt and decrypt messages that are transmitted and
received, respectively, within the group. We denote by
KG the group key of the group G. When a new user
joins or a current member leaves the group, the current
group key is revoked and a new one is distributed. We
call this operation rekeying .

The group is managed by a Group Controller (GC),
which is composed of three components: a Group
Membership Service (GMS), a Key Management System
(KMS), and an Intrusion Detection System (IDS). The
GMS maintains group membership by keeping track of
users that join and leave the group. A user wishing
to join the group invokes the join operation. Later
on, a user may leave the group by invoking the leave
operation. As they are exposed to attackers, the
IDS monitors network activities to detect compromised
users. As there exist no sure and efficient way to readily
detect a single user capture [10, 29], the IDS may return
multiple compromised users at once. Upon detecting
them, the IDS invokes the leave operation specifying
the set Gc of compromised users, in order to have those
users evicted from the group. IDS is beyond the scope of
this paper. Readers may refer to [30, 31, 32, 33, 34, 35]
to fix ideas.

Whenever a user joins, leaves or is evicted, the
group key has to be renewed in order to guarantee the
backward and forward security requirements. The KMS
is responsible for the rekeying task. When managing a
change in the group membership, the GMS activates
a rekeying. In particular, it invokes the rekey(u, join)
operation when a new user u joins the group, or the
rekey(Gc, leave) operation when a set Gc of users have
to leave the group. Figure 1 shows the architecture
described above.

In a centralized approach, GC is implemented by
a resourceful computing node that is generally more
powerful than users. GC may be a server with
plentiful of computing, storage, communication, and
power resources. Furthermore, we assume that GC
is trustworthy and thus cannot be compromised by
attackers. Although server security is still a research
issue, the literature provides a number of established
techniques and methodologies to keep servers secure.
Good starting readings are [36, 37], for example. In

the rest of the paper we detail the Key Manager (KM)
that implements the Key Management System in the
centralized approach.

4. THE REKEYING SCHEME

In this section, we describe HISS. In Section 4.1, we
provide an informal description of the basic rekeying
scheme with particular reference to key revocation and
distribution upon a user’s leaving. Then, in Section 4.2,
we introduce the problem of collusion attack and give
an informal description of how HISS solves it. Finally,
in Section 4.3 we present the rekeying protocols that
manage a user’s leaving and joining, as well as the
recovery from multiple colluding user captures.

4.1. The basic scheme

We assume that the group G is partitioned into a set
S of nonempty subgroups, such that every member
of G is exactly in one of these subgroups. More
formally, let S ⊆ 2G be a partition of G. Then,
∀S, S′ ∈ S, S ∩ S′ = ∅, and

⋃
S∈S S = G. We

call cognate two users belonging to the same subgroup.
Furthermore, we consider the function SubgroupOf :
G → S that returns the subgroup of a given user,
i.e. ∀u ∈ G,∀S ∈ S, S = SubgroupOf(u) iffu ∈ S.
Subgroups are relevant only for key management and
have no application-level meaning. Finally, we consider
the function SubgroupSetOf : 2G → S that given G′ ⊆ G
returns a set of subgroups S ′ such that ∀u ∈ G′ ⇒
SubgroupOf(u) ∈ S ′ and ∀S ∈ S ′, S ∩G 6= ∅.

We assume that every user and every subgroup
are associated with random quantities called tokens.
We call user tokens and subgroup tokens the tokens
associated with users and subgroups, respectively. We
denote by tu the token associated to user u, and by tS
the subgroup token associated to subgroup S. We also
assume that every user a priori shares a user key with
the Key Manager KM. We denote by Ku the user key
of user u. Finally, we assume that every subgroup is
associated to a subgroup key . We denote by KS the
subgroup key of subgroup S ∈ S. A subgroup key is
shared between the Key Manager KM and every user
in the subgroup. KM and users keep tokens and keys
secret.

The Key Manager maintains subgroups, tokens and
keys for all users and subgroups in the system. In
particular, the Key Manager records: i) all user tokens
in the User Token Set (UTS ); ii) all subgroup tokens
in the Subgroup Token Set (STS ); iii) all user keys in
the User Key Set (UKS ); and, finally, iv) all subgroup
keys in the Subgroup Key Set (SKS ).

Let us consider a user u belonging to a subgroup
S, i.e. S = SubgroupOf(u). The user maintains its
user key Ku and the subgroup key KS associated with
its subgroup S. Furthermore, the user maintains the
User Token Set UTSu, namely the set of user tokens

The Computer Journal, Vol. ??, No. ??, ????



6 G. Dini and M. Tiloca

associated to its cognate users. More formally,

UTSu = {tv|v ∈ S ∧ v 6= u}. (1)

Finally, the user u maintains the Subgroup Token
Set STSS , namely, the set of subgroup tokens of all
subgroups belonging to the absolute complement of S
in S. More formally,

STSS = STSSubgroupOf(u) = {tR|R ∈ S ∧R 6= S}. (2)

In order to fix ideas, without any ambition of
generality, consider the example in Figure 2. Figure 2-A
shows a group G partitioned in three subgroups S, S′,
and S′′, whereas Figure 2-B shows the data structures
maintained by members of S and S′.

Intuitively, the Key Manager uses tokens to rekey the
system in a scalable way as follows. With reference to
Figure 2-A, let us suppose that user u ∈ S leaves the
group G and, therefore, the current group key KG has
to be revoked and a new one K+

G redistributed to all
members of G but u. In order to distribute the new key
to all members of S but u, the Key Manager uses tu. By
construction, all users in S but u know tu (see Figure 2-
B). Therefore, the Key Manager can use tu to generate
a key encryption key, use it to encrypt K+

G , and then
broadcast the resulting ciphertext into S. All members
of S but u can use tu to derive the key encryption key,
decrypt the received ciphertext and finally obtain K+

G .
In order to distribute the new key to all the other

subgroups, the Key Manager uses tS . By construction,
this token is known to all members of any subgroup S′

different from S. Thus, user u does not know tS (see
Figure 2-B). Therefore, the Key Manager can use tS to
generate another key encryption key, use it to encrypt
K+
G , and then broadcast the resulting ciphertext into G.

Any user w ∈ S′, S′ 6= S, can derive the key encryption
key, decrypt the received ciphertext and finally obtain
K+
G .

4.2. Dealing with collusion attacks

Collusion attack is a typical problem in group
rekeying [1]. We have a collusion attack when evicted
members share their individual piece of information to
regain access to the group key. Colluding users may be
evicted malicious group members working together or
compromised members under the control of the same
adversary. In the worst case, a collusion attack requires
a total group recovery , i.e. every single user of the
group has to be re-initialized separately in a one-to-
one fashion, thus limiting efficiency and scalability of
the rekeying scheme.

If two or more users are captured within a subgroup,
two cases need to be considered: 1) non-colluding
user captures (e.g. attacks carried out by different
adversaries); and 2) colluding user captures. In the
former case, it is possible to exploit the basic scheme in
order to evict non-colluding users (see Section 4.1). In

the latter case, colluding attackers may compromise the
whole subgroup. Actually, by joining the user token sets
of at least two users it is possible to obtain the whole
set of user tokens associated with the subgroup. With
reference to Figure 2-A, if users u and v collude, then
all user tokens associated to S, namely UTSu∪UTSv =
{tu, tv, tz}, are compromised. It follows that user tokens
cannot be used to rekey the compromised subgroup.

Notice that in this case, subgroup tokens can still be
used to rekey the other non-compromised subgroups.
However, in the most general case, multiple users
belonging to two or more subgroups collude. Let
us suppose that u, v, w, and x collude. Similarly
to before, all user tokens associated with subgroups
S and S′ are compromised. However, with respect
to the previous case, the adversary may obtain all
the subgroup tokens by joining the Subgroup Token
Sets of any two users belonging to different subgroups.
With reference to Figure 2-A, if users u ∈ S and
w ∈ S′ collude, then all the subgroup tokens, namely
STSS ∪ STSS′ = {tS , tS′ , tS′′}, are compromised. It
follows that subgroup tokens cannot be used to rekey
non-compromised subgroups.

The basic scheme described in Section 4.1 is efficient
as it requires just two broadcast messages to rekey
the group upon a member’s leaving, and works
well provided that captured users are non-colluding.
However, in practice collusion attacks can occur and the
group key management system solution has to take this
threat into account. Researchers have pointed out that
there exist no sure and efficient way to readily detect a
single user capture [10, 29]. Therefore, for a group key
management solution to be truly effective in a hostile
environment, it must be able to recover from multiple
user captures.

Let us suppose that r subgroups are compromised
due to a collusion attack involving multiple users. Let
C ⊆ S be the set of these subgroups. Let U be
the absolute complement of C in S, i.e. U = S \
C. Subgroups in U are not compromised. Then,
every compromised subgroup in C needs to be totally
recovered by unicasting the new keying material to
every non-captured user using its respective user key.
Furthermore, every non-compromised subgroup in U is
recovered by broadcasting the new keying material to
the subgroup using its subgroup key.

As it turns out, a collusion attack affects subgroups
separately, and does not compromise the entire group.
More specifically, a total group recovery is not necessary
upon a collusion attack. In contrast, total recovery
is necessary only for the subgroups involved in the
attack. The other subgroups that are not involved in
the attack can be efficiently rekeyed by broadcasting the
new key material. This form of partial recovery provides
a form of graceful degradation of performance in terms
of the number of recovery messages and cryptographic
operations.

The Computer Journal, Vol. ??, No. ??, ????



HISS 7

wx y

vu z

S

S′

G

S′′

(A)

Subgroup User
User Subgroup

User Key Subgroup Key
Token Set Token Set

S
u {tv, tz} {tS′ , tS′′} Ku KS

v {tu, tz} {tS′ , tS′′} Kv KS

z {tu, tv} {tS′ , tS′′} Kz KS

S′
x {tw, ty} {tS , tS′′} Kx KS′

w {tx, ty} {tS , tS′′} Kw KS′

y {tx, tw} {tS , tS′′} Ky KS′

(B)

FIGURE 2. The picture shows: A) a group G partitioned in three subgroups S, S′, and S′′, and B) the keying material
held by members of S and S′.

4.3. The protocols

In this section, we present the leave, join, and recovery
protocols in a more detailed way. Each protocol is a
master-slave protocol, where the Key Manager is the
master, and the users are the slaves. Every user is
structured as a collection of message handlers. Each
handler is denoted by � Handler handler name. The
execution of a handler is triggered by the reception
of the corresponding message, and runs uninterrupted
until completion.

We also use the following notation. By h() we denote
a one-way hash function [38]. A one-way hash function
h() is a function that has the following properties:
given an input x, it is easy to compute the image
y, y = h(x), whereas given y it is computationally
unfeasible to compute the preimage x so that y =
h(x). Furthermore, given an input x and its image
y = h(x) it is computationally unfeasible to find a
second preimage z such that y = h(z). Examples
of one-way hash functions are SHA-1, SHA-2, SHA-
256 [39]. Furthermore, by kdf () we denote a key
derivation function that is a pseudo-random function
that derives one or more cryptographic keys from a
secret value [40]. Keyed cryptographic hash functions
are popular examples of pseudo-random functions used
for key derivation. Finally, by {x}k we denote the
encryption of quantity x by means of key k. Concerning
this, we assume that: i) the cipher is computationally
secure; ii) the cryptographic keys are generated by
means of a secure random generator, unless otherwise
specified; and, iii) key length is adequate to discourage
an exhaustive key search [38]. Finally, by u → v : m
we denote process u sending a unicast message m to

process v, whereas by u 9 G : m we denote process u
sending a broadcast message m to the group G.

4.3.1. System initialization
Upon system initialization, the Key Manager performs
the following actions: i) randomly generate user tokens
and subgroup tokens, as well as user keys and subgroup
keys for all users and subgroups in the system; ii) store
tokens and keys into the Key Manager’s User Token
Sets, Subgroup Token Sets, User Key Set, and Subgroup
Key Set, as appropriate (see Section 4.1); and, finally,
iii) initialise every user with the corresponding user
and subgroup key as well as the user and subgroup
tokens, according to the subgroup the user belongs
to (see Section 4.1). User initialisation (step iii) is
performed through a pre-existing secure, confidential,
and authentic channel.

4.3.2. Forward security
In order to assure forward security, the Key Manager
KM relies on two different protocols, namely the
leave protocol and the recovery protocol. The former
protocol is used when a single user has to be evicted
from the group G. This may occur when the user
has completed its mission and thus leaves the group.
Alternatively, this may happen when the Intrusion
Detection System has detected a single user capture
and thus the compromised user has to be evicted from
the group. The recovery protocol is used in case
the Intrusion Detection System has detected multiple
possibly colluding user captures and thus multiple users
have to be evicted at the same time.

More specifically, upon receiving the rekey(Gc, leave)
call from the Group Membership Service GMS, the

The Computer Journal, Vol. ??, No. ??, ????



8 G. Dini and M. Tiloca

Key Manager KM determines whether to trigger the
leave protocol or the recovery protocol, according to the
following steps.

1. If Gc contains a single user u, then KM triggers the
leave protocol specifying u as argument. Otherwise,

2. if Gc contains t users, t > 1, then

(a) if the t users belong to different subgroups, i.e.
there are no couples of cognate users, then for
each user u ∈ Gc, KM triggers an instance of
the leave protocol specifying u. Otherwise,

(b) if a number of users in Gc are cognate,
i.e. one or more subgroups have been
compromised, then KM triggers the recovery
protocol specifying the set Gc as argument.

It is worthwhile to notice that multiple user captures
require the execution of the recovery protocol if and
only if the compromised users are colluding. Actually,
the presence of multiple user captures does not imply
in itself that they are colluding too. If compromised
users are not colluding, they can be efficiently evicted
from the system by means of the leave protocol. In
general, determining whether two or more compromised
users are also colluding may be a difficult task that
strictly depends on the specific application scenario.
A conservative application-independent policy, trading
performance for security, could consist in invoking the
recovery protocol whenever the Intrusion Detection
System detects multiple user captures.

In this paper, we abstract away from both the
application scenario and the corresponding intrusion
detection technique and recovery policy, and present
the leave and recovery protocols in the two respective
relevant situations, namely upon a user’s leaving, or
being evicted, and upon evicting a set of colluding
captured users. These two protocols constitute the
basic mechanisms for any intrusion management policy.

The leave protocol

Let us suppose that a user u, belonging to the sub-
group S, leaves, or is forced to leave, the group G. The
Key Manager KM revokes the current group key KG

and distributes a new one K+
G according to the leave

protocol .

Key Manager KM

1. KM generates i) a new group key K+
G ; ii) a

new subgroup key K+
S ; iii) a key encryption

key KEKu,KEKu ← kdf (tu), to rekey the
subgroup S; and, finally, iv) a key encryption key
KEKS ,KEKS ← kdf (tS), to rekey all the other
subgroups. Then,

2. KM broadcasts the following rekeying messages.

M1 : KM 9 S : u, {K+
G ,K

+
S }KEKu

M2 : KM 9 G \ S : S, {K+
G}KEKS

Finally,
3. KM installs K+

G as the current group key, KG ←
K+
G ; installs K+

S as the current subgroup key of
the subgroup S, KS ← K+

S ; removes tu from UTS ,
UTS ← UTS \ {tu}, and updates the user tokens
related to the remaining users in S, ∀tv ∈ UTS , v ∈
S, tv ← h(tv‖K+

G); and, finally, updates all the
subgroup tokens, ∀t ∈ STS , t← h(t‖K+

G).

User v

� Handler LH1. Upon receiving message M1,
user v, v ∈ S, v 6= u, performs the following actions.

1. User v computes the key encryption key
KEKu,KEKu ← kdf (tu), and uses it to
retrieve the new group key K+

G and the new
subgroup key K+

S . Then,
2. user v installs K+

G as the current group key,
KG ← K+

G ; installs K+
S as the current

subgroup key of the subgroup S, KS ← K+
S ;

removes tu from UTSv, UTSv ← UTSv\{tu},
and updates the remaining user tokens, ∀t ∈
UTSv, t ← h(t‖K+

G); and, finally, updates its
Subgroup Token Set STSS , ∀t ∈ STSS , t ←
h(t‖K+

G).

� Handler LH2. Upon receiving message M2, user
v ∈ S′, S′ ∈ S, S′ 6= S, performs the following
actions.

1. User v computes the key encryption key
KEKS ,KEKS ← kdf (tS), and uses it to
retrieve the new group key K+

G . Then,
2. user v installs K+

G as the current group key,
KG ← K+

G , and updates its Subgroup Token
Set, ∀t ∈ STSS′ , t← h(t‖K+

G).

It is worth noting that, in any execution of the leave
protocol, a user v receives either message M1 or message
M2. Since both the Key Manager and any user’s
handler have a fixed number of steps, the protocol time
complexity is constant.

The recovery protocol

Let Gc be the set of compromised users. KM revokes
the current group key KG and distributes a new one
K+
G according to the recovery protocol.

Key Manager KM

1. Initially, KM builds C = SubgroupSetOf(Gc) and
U = S \ C. Then, ∀u ∈ Gc, KM removes u from
G and from SubgroupOf(u). Then, KM randomly
generates i) a new group key K+

G ; ii) a new
subgroup key K+

S for each compromised subgroup
S ∈ C; iii) a new user token tu for each non-
compromised user u belonging to a compromised
subgroup S, i.e. u 6∈ Gc, u ∈ S, S ∈ C; and, finally,

The Computer Journal, Vol. ??, No. ??, ????



HISS 9

iv) a new subgroup token tS for every subgroup
S ∈ S. Then,

2. ∀S ∈ C,∀u ∈ S, KM sends u a unicast rekeying
message Mu

Mu : KM → u : {K+
G ,K

+
S ,UTS

+
u ,STS

+
S }Ku

carrying the new group key K+
G , the new subgroup

key K+
S , the new User Token Set UTS+

u (see
equation 1) and the new Subgroup Token Set STS+

S

(see equation 2) containing, respectively, the new
user tokens and the new subgroup tokens built at
step 1.

3. Then, ∀S ∈ U , KM broadcasts a rekeying message
MS

MS : KM 9 S : {K+
G ,STS

+
S }KS

carrying the new group key K+
G and the new

Subgroup Token Set STS+
S (see Equation 2) which

contains the subgroup tokens built at step 1.
Finally,

4. KM installs K+
G as the current group key, KG ←

K+
G ; installs the new subgroup keys as the

current subgroup keys of each colluding subgroup
belonging to C; and, finally, updates its own User
Token Set UTS and Subgroup Token Set STS with
the user tokens and subgroup tokens generated at
step 1.

User u

� Handler RH1. Upon receiving the unicast
rekeying message Mu, non-compromised user u
belonging to a compromised subgroup S ∈ C per-
forms the following actions.

1. User u uses the user key Ku shared with
KM to decrypt message Mu and retrieve the
new group key K+

G , the new subgroup key
K+
S , the new User Token Set UTS+

u and the
new Subgroup Token Set STS+

S . Then,
2. user u installs K+

G as the current group key,
KG ← K+

G ; installs K+
S as the current

subgroup key of the subgroup S, KS ← K+
S ;

and, finally, updates its own User Token Set,
UTSu ← UTS+

u , and Subgroup Token Set,
STSS ← STS+

S .

� Handler RH2. Upon receiving the rekeying mes-
sage MS, user u belonging to a non-compromised
subgroup S ∈ U performs the following actions.

1. User u uses the subgroup key KS to decrypt
MS and retrieve the new group key K+

G , and
the new Subgroup Token Set STS+

S . Then,
2. user u installs K+

G as the current group key,
KG ← K+

G , and the new Subgroup Token Set
STS+

S , as the current Subgroup Token Set, i.e.
STSS ← STS+

S .

It is worth noting that, in any execution of the
recovery protocol, a user u receives either message
Mu or message MS. Also, involved users execute
their own rekeying operations independently from one
another. Since both the Key Manager and any user’s
handler have a fixed number of steps, the protocol time
complexity is constant.

Also, note that in the presence of C ⊂ S compromised
subgroups, then U 6= ∅ and thus the whole group G is
not entirely compromised. This implies that, in order
to restore secure communications, it is not necessary
to totally recover it by unicasting rekeying messages to
every non-compromised users remained in the group G.
In fact, it is necessary to unicast rekeying messages only
to non-compromised users in compromised subgroups,
i.e. subgroups in C. As subgroup keys associated to
non-compromised subgroups, i.e. subgroups in U , are
not compromised, then we can use each one of them to
efficiently rekey its respective subgroup by means of a
single rekeying message.

4.3.3. Backward security
Before a user can become a new member of the group
G, the Key Manager has to refresh the network security
material in order to assure also backward security.
More specifically, a new user must not be able to gain
knowledge of the past group activity that took place
before its join, that is, it must be prevented from having
access to old secured messages.

Let us suppose that a user u wants to join the group
G and become a member of the subgroup S ∈ S. First,
u invokes the join(u) operation provided by the Group
Membership Manager GMS. Then, GMS invokes the
rekey(u, join) operation provided by the Key Manager
KM. By doing so, KM revokes the current group key
KG and distributes a new group key K+

G according to
the join protocol.

Key Manager KM

1. KM generates a new group key K+
G , a new

subgroup key K+
S , and a new user token tu. Then,

2. KM broadcasts the following rekeying messages.

M1 : KM 9 G : {K+
G}KG

M2 : KM 9 S : {K+
S , tu}KS

Finally,
3. KM installs K+

G as the current group key, KG ←
K+
G ; installs K+

S as the current subgroup key of
the subgroup S, KS ← K+

S and, finally, adds tu to
UTS , UTS ← UTS ∪ {tu}.

User v

� Handler JH1. Upon receiving the rekeying mes-
sage M1, user v ∈ G performs the following actions.

1. User v uses KG to retrieve the new group key
K+
G . Then,

The Computer Journal, Vol. ??, No. ??, ????



10 G. Dini and M. Tiloca

2. user v installs K+
G as the current group key,

KG ← K+
G .

� Handler JH2. Upon receiving the rekeying
message M2, user v ∈ S performs the following
actions.

1. User v uses KS to retrieve the new subgroup
key K+

S and the new token tu. Then,
2. user v installs K+

S as the current subgroup key
of the subgroup S, KS ← K+

S , and adds tu to
UTSv, UTSv ← UTSv ∪ {tu}.

Once the join protocol has been completed, user u
joins the group G and the subgroup S, according to the
following steps.

1. KM provides user u with the new group key K+
G ,

the new subgroup key K+
S , the (m−1) user tokens

associated to its subgroup cognates, and the (p−1)
subgroup tokens stS′ , S′ 6= S, through a pre-
existing secure channel. Then,

2. user u installs K+
G as the current group key,

KG←K+
G ; installs K+

S as the current subgroup key
of the subgroup S, KS←K+

S ; and, finally, builds
its own User Token Set UTSu (see equation 1) and
Subgroup Token Set STSS (see equation 2) with
the user tokens and subgroup tokens received at
step 1.

As stated at step 1, the keying material is provided
to the new user u by the Key Manager through
a pre-existing secure channel. As a consequence,
authentication and confidentiality are both assured.
Possible implementations include an a priori shared
cryptographic key or out-of-band means.

5. SECURITY ANALYSIS

In this section, we argue that the leave, recovery, and
join protocols guarantee the forward and backward
security requirements.

Theorem 5.1. The leave protocol guarantees forward
security.

Proof. Given the assumptions on the cipher strength
and key length, the proof consists in showing that all
group users but u ∈ S can derive the next group key
K+
G from an execution instance of the leave protocol,

and that user u cannot derive it nor any future group
key.

Thanks to Handler LH1, all users in S but u
retrieves the new group key K+

G . Then, thanks to
Handler LH2, every user v ∈ S′,∀S′ ∈ S, S′ 6= S
retrieves K+

G as well. Thus, user u is evicted from the
group G, and all other users hold the new group key
K+
G .
Furthermore, tokens are updated by KM and users

in S by means of the new group key K+
G . As it does

not hold such key, user u cannot compute these new
tokens. Since we assume that the token length is large

enough to discourage a token exhaustive attack, user u
cannot derive K+

G , nor any future group key. Therefore,
forward security is guaranteed.

Theorem 5.2. The recovery protocol guarantees
forward security.

Proof. Given the assumptions on the cipher strength
and key length, the proof consists in showing that all
group users but colluding ones can derive the next group
key K+

G from an execution instance of the recovery
protocol, and that colluding users derive neither it nor
any future group key.

Thanks to Handler RH1, every non-colluding user
belonging to a compromised subgroup retrieves the
new group key K+

G . Then, thanks to Handler RH2,
every user belonging to a non-compromised subgroup
retrieves the new group key K+

G as well. It follows that
all non-colluding users are successfully rekeyed.

Furthermore, colluding users do not hold crypto-
graphic keys used to protect rekeying messages. Thus,
they are not able to retrieve the new security material.
Since we assume that the key length is large enough
to discourage a key exhaustive attack, colluding users
cannot derive K+

G , nor any future group key. Therefore,
forward security is guaranteed.

Theorem 5.3. HISS guarantees forward security.

Proof. The proof descends directly from Theorem 5.1,
in the case of a single user’s leaving, and Theorem 5.2,
in the case of colluding users’ leaving.

Theorem 5.4. HISS guarantees backward security.

Proof. First, the join protocol provides current users
with new keys. Then, once current users have been
rekeyed, the joining user u is provided with the new
keys as well, i.e. K+

G and K+
S . As a consequence, user u

never has knowledge of security material used before its
join, and thus is not able to access old communications.
Therefore, backward security is assured.

5.1. On rekeying message authenticity

Authenticity of rekeying messages specified in Sec-
tions 4.3.2 and 4.3.3 must be guaranteed. Otherwise,
an adversary could modify in-transit rekeying messages
or inject fake ones, so completely breaking the rekeying
protocol. In this section, we discuss techniques that
could be used in HISS to assure the authenticity of
rekeying messages. The choice of one of them is tightly
related to the current application scenario, the network
technology, as well as the hardware capabilities of the
network devices.

Digital signatures are a typical and widely adopted
solution for providing rekeying messages authentica-
tion [6, 7]. Digital signature are quite onerous from
a computation and communication point of view [38].
The communication overhead derives from the increased

The Computer Journal, Vol. ??, No. ??, ????



HISS 11

size of packets due to the appending of the digital signa-
ture to the message itself. In RSA-1024, the increment
of a message size is 128 bytes. Since rekeying messages
are “short”, a digital signature may be even larger than
the information it protects. Elliptic Curve Cryptogra-
phy (ECC) ameliorates this situation [41]. For instance,
ECC-160 digital signature is, roughly, an order of mag-
nitude faster than RSA-1024 and increases a message by
only 40 bytes while delivering the same security level.

While digital signatures are adequate for conventional
distributed applications (e.g. teleconferencing or
content distribution), they may result practically
infeasible for resource-constrained computing platform
such sensor nodes in WSNs. Here, even ECC-
based digital signatures especially conceived for
sensor nodes may result too computing and energy
demanding [42, 43]. In this case, authentication
techniques more efficient than digital signatures have
to be exploited. For instance, group rekeying
schemes for WSNs such as LARK [14], S2RP [44, 45],
µTESLA [46], and LEAP++ [47] use hash-chains,
an authentication mechanism deriving from Lamport’s
one-time password [48]. The advantage of an hash-chain
is that the current element in the chain can be efficiently
authenticated by computing its hash and verifying that
the result is equal to the previous element in the chain.
Therefore, it is sufficient to distribute the head of the
chain in an authenticated way, e.g. off-line or through
a predefined point-to-point authenticated channel, so
that all the remaining items can be automatically and
efficiently authenticated.

In HISS, hash-chains may be used to authenticate
both the new group key and the new subgroup key in
the leave protocol messages M1 and M2, and the new
group key and the new subgroup tokens in the recovery
protocol message MS. Therefore, the authentication of
these quantities would require just the execution of a
hash function. Furthermore, these quantities are “self-
authenticating”, so avoiding the need for a MAC or
a digital signature which would increase the rekeying
and recovery message size. Finally, it is worthwhile
to notice that the contents of the recovery protocol
message Mu does not require any special technique to
be authenticated, neither the digital signature nor the
hash-chains, because it is encrypted by means of the
user key.

Using hash-chains has cons too. In fact, the previous
items in the chain can be computed from the current
one by repeatedly computing an hash function. This
implies that when a user joins the group he becomes
able to compute all the previous group keys. It follows
that the backward security requirements does not hold
anymore. However, backward security is not so crucial
for WSNs applications [14, 49]. In fact, they actually
deal most with monitoring and control, where integrity
is a top priority. In this application domain, supporting
the backward security requirement is not critical from
an integrity stand point. Actually, the adversary may

only attempt to inject messages by using “past” group
keys, but they are supposed to be discarded by the
monitoring and control algorithm.

6. PERFORMANCE EVALUATION

In this section, we evaluate the rekeying scheme per-
formance with respect to the following factors: com-
munication overhead , storage overhead , and computing
overhead . In this evaluation, we abstract away from the
specific design and implementation choices (e.g. the
cryptographic suite or the network technology). This
means that we evaluate the storage overhead and the
communication overhead as the number of information
items that protocol actors have to store and broadcast.
Similarly, we evaluate the computing overhead as the
number of cryptographic operations performed during
protocol instances, i.e. the number of encryptions, de-
cryptions, and hash function executions. In any case
we perform a worst-case analysis, that is we analyse the
largest overhead implied by a given protocol execution
instance.

For simplicity, but without lack of generality, we
assume that the system is organized in p homogeneous
subgroups containing m users each. It follows that the
group G is composed of n = p ·m users. We point out
that HISS supports heterogeneous subgrouping policies,
according to which different subgroups may contain
different numbers of users. However, an homogeneous
subgrouping policy allows us to perform an analytical
performance analysis without any significant lack of
generality.

While the communication and computing overhead
is protocol-specific, the storage overhead is common
to all protocols. For this reason, we analyse the
storage overhead in a separate section (Section 6.1),
and devote one section for the communication and
computing overhead of each protocol (Sections 6.2–6.4).

In order to fix ideas, we also discuss the respective
overheads of two paradigmatic applications, namely
content distribution applications (e.g. Pay-TV) and
WSNs applications. Such a discussion is contextual
to every overhead type and thus distributed over the
four Sections 6.1–6.4. As to the content distribution
application, we consider a group composed of 220

users, each one equipped with a commodity Personal
Computer (PC), and interconneted by the Internet. As
to the WSN application, we consider a group composed
of 1024 sensor nodes (e.g. Mica2 or TmoteSky)
interconnected by an IEEE 802.15.4 wireless network.
Every sensor node is battery operated and equipped
with a microcontroller, a small amount of memory.

Of course, these applications are not exhaustive of
the full range of possible applications in which HISS can
be used. However, they represent two extremes of this
range and therefore allow us to give a concrete insight of
the high scalability and practical sustainability of HISS.

The Computer Journal, Vol. ??, No. ??, ????



12 G. Dini and M. Tiloca

6.1. Storage overhead

As to the storage overhead, the Key Manager KM stores
the current group key KG, all the p current subgroup
keys, all the n user keys, all the n user tokens, and all
the p subgroup tokens. Thus, the storage overhead for
KM is Os,km = (2 · p+ 2 · n+ 1).

On the other hand, every user u ∈ S, stores: i) its
user key Ku; ii) the current group key KG; iii) the
current subgroup key KS ; iv) the (m − 1) user tokens
associated to its cognate users; and, finally, v) the
(p− 1) subgroup tokens associated to all the subgroups
different from S. Thus, the storage overhead for every
user is Os,u = (p+m+ 1).

Storage overhead Os,km at the Key Manager grows
linearly with n. However, this is not a problem in
practice because the Key Manager has plentiful of
resources. The key point is that the HISS memory
overhead is affordable at the user side. From this
standpoint, it is important to notice that for p � 1 or
m� 1, Os,u ' p+m. Therefore, under the assumption
that users are uniformly distributed in p subgroups of
m members each, then the minimum storage overhead

O
(min)
s,u = 2 ·

√
n for p = m =

√
n. Hereafter, we will

assume this distribution of users to subgroups.
In the content distribution application, the minimum

storage overhead at the user side is O
(min)
s,u = 2048. If

we consider that secrets have a size equal to 16 bytes,
the same as an AES key [50], the memory overhead in
bytes is 32768. As a PC is nowadays equipped with
a few Gbytes of RAM, the HISS memory overhead is
practically negligible even in this case.

In the WSN application, the minimum storage

overhead is O
(min)
s,u = 64. If we assume that secrets (keys

and tokens) have a size equal to 80 bits, then the storage
overhead is 640 bytes. The rationale basis of this choice
is that 80 bits is the size of keys of Skipjack, a secure
and efficient cipher for WSN applications [51, 52, 53]. If
the sensor nodes belong to the TmoteSky class, they are
equipped with 48 Kbytes of memory [54], and thus the
memory overhead is the 1.30% of the total sensor node’s
memory. If, instead, sensor nodes belong to the Mica2
class, they have 128 Kbytes of memory, and thus the
memory overhead becomes the 0.49% of the memory. It
follows that the storage overhead of HISS is practically
negligible even in resource-poor devices such as sensor
nodes.

6.2. The leave overhead

Let us consider the leave protocol (see Section 4.3.2),
and a user u ∈ S which leaves the group G. The
communication overhead accounts for messages M1 and
M2. Message M1 introduces a communication overhead
equal to three, as it conveys the identifier of the leaving
user, the next group key K+

G , and the next subgroup key
K+
S . Message M2 introduces a communication overhead

equal to two, as it conveys the identifier of the subgroup

S and the next group key K+
G in its encrypted form.

It follows that the total communication overhead is
constant and equal to five, i.e. O

(l)
c = 5.

From these initial considerations, we can conclude
that HISS provides a small and constant communication
overhead that is independent of the group size and
the adopted subgrouping strategy. This property is
particularly important because it makes HISS highly
scalable. Of course, in a real implementation setting,
the possibility of exploiting this property strictly
depends on the broadcast communication service
provided by the underlying network technology.

As to the computing overhead, the worst case regards
the operations performed by a user v ∈ S, v 6= u. In
particular, such a user is required to: i) compute the
key encryption key KEKu by means of kdf(); ii) decrypt
the message M1 to retrieve K+

G and K+
S ; iii) update its

own User Token Set UTSv by executing (m − 2) hash
functions, and its own Subgroup Token Set STSS by
executing (p − 1) hash functions. Thus, in the worst
case, a user performs one decryption and (p + m − 2)
hash function executions.

On the other hand, the Key Manager has to:
i) compute the new group key K+

G and the new
subgroup key K+

S , as well as the two key encryption
keys KEKu and KEKS , by means of kdf(); ii) encrypt
messages M1 and M2; and, finally, iii) update its
own User Token Set UTS by executing (m − 1) hash
functions, and its own Subgroup Token Set STS by
executing p hash functions. Thus, the Key Manager has
to perform 2 encryptions and (p+m+ 3) hash function
executions.

As it turns out, the computing overheads of the
Key Manager and users, respectively, have the same
order of magnitude. Once again, since the Key
Manager is plentiful of resources, the practical viability
of HISS from the computing standpoint depends on the
users. In the content distribution application, users
are required to perform at most 1 decryption and 2046
hash function executions, which is practically negligible
for modern PCs. In the WSN application, users are
required to perform at most 1 decryption and 62 hash
function executions, which is practically affordable for
sensor nodes.

6.3. The recovery overhead

Let us consider the recovery protocol (see Section 4.3.2),
with C compromised subgroups and (p − C) non-
compromised subgroups. For the sake of simplicity but
without any lack of generality, let us assume that every
compromised subgroup contains c colluding captured
users. It follows that the overall captured users are
(c · C), whereas non-captured users are (n− c · C).

The communication overhead accounts for messages
of type Mu and MS. For every compromised subgroup,
the Key Manager sends a message of type Mu to every
non-captured node in the subgroup. The size ‖Mu‖

The Computer Journal, Vol. ??, No. ??, ????



HISS 13

of a message of type Mu is ‖Mu‖ = p + m − c, as
the message conveys the new group key K+

G , the new
subgroup key K+

S , the new User Token Set UTSu, and
the new Subgroup Token Set STSS . As the number of
compromised subgroups is C, and the number of non-
captured users in every compromised subgroup is m−c,
then the total overhead due to messages of type Mu is
C · (m− c) · (p+m− c).

A message of type MS is broadcast to every non-
compromised subgroup S ∈ U . Thus, the number
of these messages is (p − C). The size ‖MS‖ of a
message of type MS is ‖MS‖ = p, as it conveys the
new group key K+

G and the new Subgroup Token
Set STSS . Therefore, MS messages introduce a total
overhead equal to p · (p − C). Consequently, the total
communication overhead of the recovery protocol is

equal to O
(r)
c = [C · (m− c) · (p+m− c)] + p · (p−C).

If we reasonably assume that i) each subgroup
includes a non-negligible number of members, i.e. m�
1; ii) a few users per subgroup are captured, i.e. m� c;
iii) a few subgroups are compromised, i.e. p � C; and
iv) p = m =

√
n, for storage optimisation, then Mu,

MS , and O
(r)
c can be approximated as follows: ‖Mu‖ '

2 ·
√
n, ‖MS‖ '

√
n, and O

(r)
c ' (2C+1) ·n. As it turns

out, the total communication overhead linearly grows
with C, so displaying a smooth degradation behavior.

The total communication overhead also grows
linearly in n. However, an execution of the recovery
protocol has to be considered an exceptional event
with respect to an execution of the leave protocol,
that is instead a normal event. So, according to the
well-known Lampson’s recommendations for computer
systems design [16], while the leave protocol must be
efficient and scalable, the recovery protocol must be
able to make some progress. However, it is crucial that
the recovery protocol is sustainable. In the rest of this
section we argue that this is indeed the case.

In the content distribution application, we have

‖Mu‖ = 32 Kbytes, ‖MS‖ = 16 Kbytes and O
(r)
c =

48 Mbytes, an amount of traffic that is fully sustainable
in a conventional network of commodity PCs.

In the WSN application, we have ‖Mu‖ = 640 bytes,

‖MS‖ = 320 bytes and O
(r)
c = 30 Kbytes. Let us

consider the IEEE 802.15.4 communication protocol
[55], where unsecured frames have a payload whose
size can be up to 102 bytes. Thus, every message
Mu requires 7 frames, whereas the transmission of

the whole O
(r)
c overhead requires 302 frames. In

an implementation of IEEE 802.15.4, the effective
data rate (i.e. excluding headers, CRCs, and control
packets) is about 8.4 Kbps (out of 250 Kbps), thus
the transmission of every message Mu requires about
610 ms (per-hop), whereas the transmission of the

whole O
(r)
c overhead requires about 29.25 s (per-hop).

It follows that also in this case the communication
overhead is sustainable. However, it is worthwhile
to notice that IEEE 802.15.4 is conducive to provide

better performance. For instance, Latré et al. showed
that a throughput of about 140 Kbps can be achieved
in IEEE 802.15.4, even if Acknowlegment frames are
trasmitted [56]. In such a case, the trasmission of a
message Mu requires about 36.57 ms (per-hop), whereas

the transmission of the whole O
(r)
c overhead requires

1.75 s (per-hop).
As to the computing overhead, each user performs

only one decryption, in order to decrypt either a
message Mu or a message MS. On the other hand,
the Key Manager has to: i) compute K+

G , (p− C) new
subgroup keys, C · (m− c) new user tokens, and p new
subgroup tokens by means of kdf ; ii) encrypt C ·(m−c)
messages Mu and (p−C) messages MS. Thus, the Key
Manager has to perform p+C · (m− c− 1) encryptions
and 2 · p+ C · (m− c− 1) + 1 hash functions.

The computing overhead at the Key Manager side is
generally not a problem because the Key manager may
be implemented on a high-performance server platform.
Therefore, the actual sustainability from the computing
standpoint practically depends on the user side.

In the content distribution application, messages
Mu and MS are 32 Kbytes and 16 Kbytes in size,
respectively. Decrypting these amounts of data by
means of a symmetric cipher does not constitute a
problem on any commodity PC.

In contrast, more attention must be paid in the
WSN application scenario, where users are sensor
nodes with constrained computing capabilities. In
such a case, messages Mu and MS are 640 bytes and
320 bytes in size, respectively. On a Mica2 node,
the performance of a software-version of Skipjack is
25 µs per encrypted/decrypted byte [53], whereas, on a
TmoteSky node, it is 77 µs [14]. Hence, decrypting
a message Mu or a message MS takes 16 ms and
8 ms, respectively, on a Mica2 node, and 49.28 ms
and 24.64 ms, respectively, on a TmoteSky node. This
makes the HISS recovery protocol affordable from the
computing standpoint too.

6.4. The join overhead

Let us consider the join protocol (Section 4.3.3), and
a user u which wants to join the group G and become
a member of the subgroup S. An execution instance
of the protocol requires a constant number of rekeying
messages, namely i) a broadcast message providing
the new group key K+

G ; and ii) a broadcast message
providing the new subgroup key K+

S and the user token
tu to the members of S. Thus, the total communication

overhead amounts to three, i.e. O
(j)
c = 3.

As to the computing overhead, the worst case regards
the operations performed by the members of the
subgroup S. That is, each one of them is required to
perform two decryptions, in order to retrieve K+

G , and
K+
S and tu from messages M1 and M2, respectively. On

the other hand, the Key Manager has to: i) compute
the new group key K+

G , the new subgroup key K+
S , and

The Computer Journal, Vol. ??, No. ??, ????



14 G. Dini and M. Tiloca

the user token tu; and ii) encrypt messages M1 and M2.
Thus, the Key Manager has to perform 2 encryptions
and 3 hash function executions.

7. COLLUSION MANAGEMENT

So far, we have shown that if two captured users
belonging to the same subgroup collude, then the whole
subgroup is compromised. However, we have also shown
that recovering a compromised subgroup requires only
to totally recover such a subgroup rather than the
whole group. The remaining uncompromised subgroups
can be then efficiently rekeyed by means of a single
broadcast message each.

In this section, we argue that a proper allocation
of users to subgroups can make a successful collusion
attack practically unfeasible. As we consider a form of
practical security, we cannot abstract away from the
application scenario and the hypothesized adversary
strength. So, given an application scenario, we have
first to assess the adversary strength, and then devise
an allocation strategy that is consistent with the
application constraints and requirements, and that
makes a collusion attack practically unfeasible for the
alleged adversary. This is a common process in security
management [57].

In any case, the chosen allocation strategy has to
satisfy the general principle that, for an adversary,
it must be practically unfeasible to i) determine the
subgroups membership, or ii) compromise two or more
users belonging to the same subgroup.

In the former case, the only strategy for the
adversary consists in exhaustively attacking users in
the attempt to compromise two users belonging to the
same subgroup. The system is practically secure if the
resources required to carry out this exhaustive attack
strategy exceeds the resources of the hypothesized
adversary. For instance, if we consider the Internet
and its magnitude, determining subgroups and their
membership through traffic analysis is a practically
unfeasible task.

In the latter case, subgroups membership is known
to the adversary, who can thus target the attack to well
defined users. Therefore, the system is secure if the
resources required to attack, physically or logically, two
or more users belonging to the same subgroup exceed
the resources of the adversary. In this case, off-the-
shelf protection measures and security engineering best-
practices can be employed [58, 59].

In order to fix ideas, we refer again to the application
scenarios that so far have constituted the leading
examples of this paper, namely large-scale content
distribution and WSNs applications (see Section 6). In
particular, for each application scenario, we will discuss
a possible instantiation of the allocation strategy
principle, that depends on the specific application
requirements and constraints as well as the related
hypothesized adversary.

In both cases, we consider an homogeneous allocation
of users to subgroups, with p subgroups containing m
members each, and a total group size n = p ·m. Once
again, it is arguable that, although not exhaustive,
they however constitute two meaningful examples to
get a concrete insight of the HISS flexibility in collusion
management.

7.1. Large-scale content distribution

Given the large scale nature of this distributed
application, we reasonably assume that the adversary
is not able to observe the whole network traffic and
analyse it. It follows that it is practically unfeasible
for the adversary to deduce subgroups membership and
thus perform an adaptive attack. Therefore, if users
are randomly allocated to subgroups, the only possible
strategy for the adversary is to compromise users at
random as well.

As a measure of resistance to collusion attack, we
consider the probability P (t) that the adversary has
compromised at least one subgroup after t, 1 < t < p,
users have been captured. Of course, for t > p, at least
two captured users belong to the same subgroup.

Initially we compute the probability Q(t) of the
complementary event, i.e. the probability that no
subgroups have been compromised after t captures. By
definition P (t) = 1−Q(t). In Appendix 1, we show that
Q(t) may be expressed as follows:

Q(t) =

t−1∏
i=1

n− i× (m− 1)

n
.

Let α = m−1
n . If we reasonably assume that n � m,

then α � 1, and thus it is possible to approximate
Q(t) at the first order, i.e. Q(t) ' 1 −

∑t−1
i=1 i × α =

1 − α × t(t−1)
2 . It follows that P (t) ' t(t−1)

2 × α. If,
hopefully, t � 1, then P (t) ' 1

2 × α × t
2. In the case

m � 1, then we can approximate α as α ' m
n and we

obtain P (t) = 1
2×

m
n ×t

2. Thus, if we wish that P (t) < ε,
for an arbitrarily small ε, than we obtain m

n < 2ε
t2 .

If we consider n = 220 and require that after t = 100
user captures the probability of having at least one
compromised subgroup is no greater than ε = 0.5,
then a possible choice consists in p ≥ 104 subgroups,
containing at most m ≤ 100 members each. On the
other hand, if we wish to minimize the storage overhead
and set m =

√
n, then an adversary has to capture

t = 32 users in order to have a probability ε = 0.5 of
compromising a subgroup. As it turns out, HISS makes
it possible to establish a trade-off between security and
resource consumption, while keeping constant and small
the leaving communication overhead and thus keeping
high the rekeying scalability.

This allocation strategy can be complemented by
other countermeasures. As a possible countermeasure,
we may consider a reactive one, where the Intrusion
Detection System (IDS) detects the colluding captured

The Computer Journal, Vol. ??, No. ??, ????



HISS 15

users. Of course, the larger t the larger the time
at hand for the IDS, and the more numerous the
adversary’s traces. Another possible countermeasure
might be preventive and rely upon secure hardware [60].
For instance, in Pay-TV applications, a subscriber
holds a smart card containing credentials and keys to
exploit the subscribed service. Then, we could add
the security material necessary for HISS to the smart
card, especially the User Token Set. By doing so, as
smart cards can be considered tamper-resistant to some
practical extent [61], it would be no longer practically
possible to jeopardize the HISS rekeying procedure, and
collusion would not be an actual problem anymore.

7.2. Wireless Sensor Networks applications

In this application scenario, we could exploit the
random allocation strategy discussed in Section 7.1.
This strategy would be useful when, for example,
sensors are deployed randomly. According to this
strategy, if we consider a probability ε = 0.5 of
compromising at least one subgroup, then at least
t = 8 sensor nodes captures are necessary in a WSN
organised in p = 64 subgroups of m = 16 members each.
Alternatively, at least t = 16 sensor nodes captures are
necessary for p = 256 subgroups of m = 4 members
each. If these numbers of nodes captures are too small
with respect to the alleged adversary strength, then one
can devise more application-specific allocation policies
that better contrast a collusion attack performed by
that specific adversary.

WSNs are often employed in monitoring, surveillance,
and control of buildings, plants, or critical infrastruc-
tures. In these application scenarios, we can assume
that an adversary is able to physically break into a given
area, and capture “neighbouring” sensor nodes, possi-
bly all, that are deployed in that area. Once a sensor
node has been captured, all the secrets it holds become
known to the adversary. The adversary can thus gather
secrets possibly from all sensor nodes in that area, and
possibly collect enough information to be able to gain
access to the group key. It has been experimentally
shown that an equipped and experienced adversary is
able to obtain copies of all the memory and data of, for
instance, a Mica2 mote in tens of seconds, or minutes,
after a node is captured [62].

On the other hand, due to the reduced amount of
services provided by sensor nodes, it is believed that
a WSN presents a number of vulnerabilities which is
smaller with respect to computers typically connected
to the Internet. Since there are less functionalities and
less complex code, there are less software bugs too.
Furthermore, as sensor nodes are resource-constrained,
programmers spend more time per line of code in sensor
network applications, than in applications for regular
computer networks [49].

Thus, it is the size of the area the adversary can
physically compromise that gives a practical measure

FIGURE 3. The HAA application: an allocation policy
for w = 5. Black circles represents sensor nodes, whereas
the dashed rectangle depicts the largest size of an area that
the adversary can compromise.

of the adversary’s strength. Such a “critical” value
is typically defined at pre-deployment after a threat
analysis [57]. It follows that the problem that has to be
solved consists in devising an allocation and deployment
policy such that any area not larger than the critical size
contains sensor nodes belonging to different subgroups
with high probability.

It is well-known that devising an optimal allocation
policy is in general an NP-hard problem [13, 25].
Therefore, we have to resort to heuristics for the
assignment of users to subgroups that reduce, or
even practically eliminate, the probability of successful
collusion attacks. Such heuristics depend on both the
adversary model and application-specific requirements
and constraints. In this section, we discuss a
real case-study, the “Highly Automated Airfield”
(HAA) reference application of the PLANET European
integrated project [63].

The HAA application provides the support for
automated airfield operations involving cooperating
unmanned air vehicles (UAVs). In particular, by
means of a WSN, the HAA application intends to
monitor the runways of an airport in order to permit
automated take-offs and landings of UAVs. The HAA
application considers a WSN composed of n sensor
nodes, evenly distributed on both sides of every runway
to monitor both the runway occupancy and the presence
of obstacles. As the airport is provided with a physical
land surveillance system, we assume that an adversary
can compromise a portion L of a runway, possibly
spanning both sides (see Figure 3), and thus capture
the w “neighbouring” sensors deployed therein. The
adversary cannot move from one runway to another
without being caught.

In order to avoid collusion attacks, we organize sensor
nodes into p = 2 ·w different subgroups with m = n/(2 ·
w) members each, and cyclically allocate sensor nodes

The Computer Journal, Vol. ??, No. ??, ????



16 G. Dini and M. Tiloca

w
Memory TmoteSky Mica2
(bytes) (%) (%)

32 800 1.66 0.62

64 1360 2.83 1.06

128 2600 5.41 2.03

256 5140 10.70 4.01

TABLE 3. Highly Automated Airfield: storage overhead.

to subgroups. Figure 3 shows an example for w = 5.
Since the adversary is not able to compromise a number
of sensor nodes larger than w, nor to move from one
runway to another, then he cannot successfully perform
a collusion attack. It is worthwhile to notice that
the application-specific constraints and requirements
have allowed us to reduce the allocation problem to a
single-dimension problem, and thus devise an effective
allocation strategy that prevents collusion attack under
the considered threat model.

Table 3 reports the storage overhead in the TmoteSky
and Mica2 platforms, for different values of w. The
column “Memory” reports the amount of storage
necessary for the sensor node to store the HISS keys and
tokens (see Section 6). The columns “TmoteSky” and
“Mica2” specify, respectively, the percentual impact of
this amount of storage on the total memory available
on the platform. It follows that the proposed allocation
policy has a practically affordable storage overhead.
Actually, in the most extreme case of tolerating the
capture of w = 256 sensor nodes, the overhead is around
10% on the TmoteSky platform and 4% on the Mica2
platform.

8. CONCLUSIONS

In this paper we have presented HISS, a highly scalable
scheme for group rekeying based on logical subgrouping.
We believe that HISS has the following merits.

• HISS allows for securely and efficiently performing
group rekeying upon a user join or leave, thus
assuring both backward and forward security. In
order to do that, HISS requires a number of
rekeying messages that is small, constant, and
independent of the group size.

• In terms of memory occupancy, HISS requires
every user to store O(

√
n) secrets, which is an

affordable storage overhead in the most practical
cases even encompassing resource-scarce devices
such as sensor nodes.

• HISS provides a recovery protocol aimed at restor-
ing group security upon a collusion attack. The re-
covery protocol does not require to re-initialise the
group, it is affordable on customary platforms, and
displays a form of graceful degradation, namely,
the protocol communication performance degrades
with the number of compromised subgroups.

• HISS makes it possible to define policies of

allocation of users to subgroups that practically
constrast or even prevent successful instances of
collusion attacks. We have shown two practical
examples of these policies.

9. FUNDING

This work was supported by EU FP7 Network of
Excellence CONET [grant number FP7-224053]; and
EU FP7 Integrated Project PLANET [grant number
FP7-257649].

ACKNOWLEDGEMENTS

We thank the anonymous referees for having helped us
to improve our work with their precious comments and
recommendations.

REFERENCES

[1] Rafaeli, S. and Hutchison, D. (2003) A Survey of Key
Management for Secure Group Communication. ACM
Computing Surveys, 35, 309–329.

[2] Goodrich, M. T., Sun, J. Z. and Tamassia, R. (2004)
Efficient Tree-Based Revocation in Groups of Low-
State Devices. Proceedings of CRYPTO ’04, Volume
2204 of LNCS, Santa Barbara, California, USA, 15-19
August, pp. 511–527. Springer, Berlin, Germany.

[3] Naor, D., Naor, M. and Lotspiech, J. B. (2001) Re-
vocation and Tracing Schemes for Stateless Receivers.
Proceedings of the 21st Annual International Cryptology
Conference on Advances in Cryptology, Santa Barbara,
California, USA, 19-23 August, pp. 41–62. Springer,
Berlin, Germany.

[4] Sherman, A. T. and McGrew, D. A. (2003) Key
establishment in large dynamic groups using one-
way function trees. IEEE Transactions on Software
Engineering, 29, 444–458.

[5] Waldvogel, M., Caronni, G., Sun, D., Weiler, N.
and Plattner, B. (1999) The VersaKey Framework:
Versatile Group Key Management. IEEE Journal on
Selected Areas in Communications, 17, 1614–1631.

[6] RFC 2627 (1999) Key Management for Multicast:
Issues and Architectures. Internet Engineering Task
Force. Fremont, CA, USA.

[7] Wong, C. K., Gouda, M. and Lam, S. S. (2000) Secure
group communications using key graphs. IEEE/ACM
Transactions on Networking, 8, 16–30.

[8] Xu, S. (2007) On the security of group communication
schemes. Journal of Computer Security, 15, 129–169.

[9] Chorzempa, M., Park, J.-M. and Eltoweissy, M.
(2005) SECK: survivable and efficient clustered keying
for wireless sensor networks. Proceedings of the
24th IEEE International Performance, Computing,
and Communications Conference, Phoenix, Arizona,
USA, 7-9 April, pp. 453–458. IEEE Computer Society,
Washington, DC, USA.

[10] Chorzempa, M., Park, J.-M. and Eltoweissy, M. (2007)
Key management for long-lived sensor networks in
hostile environments. Computer Communications, 30,
1964–1979.

The Computer Journal, Vol. ??, No. ??, ????



HISS 17

[11] Fan, J., Judge, P. and Ammar, M. H. (2002) HySOR:
group key management with collusion-scalability
tradeoffs using a hybrid structuring of receivers.
Proceedings of the Eleventh International Conference
on Computer Communications and Networks, Miami,
Florida, USA, 14-16 October, pp. 196–201. IEEE
Computer Society, Washington, DC, USA.

[12] Ma, J., Wang, W. and Moon, S. J. (2008) CRMS:
A Collusion-Resistant Matrix System for Group Key
Management in Wireless Networks. Proceedings
of the 2008 IEEE International Conference on
Communications, Beijing, China, 19-23 May, pp. 1551–
1555. IEEE Computer Society, Washington, DC, USA.

[13] Younis, M. F., Ghumman, K. and Eltoweissy, M.
(2006) Location-Aware Combinatorial Key Manage-
ment Scheme for Clustered Sensor Networks. IEEE
Transactions on Parallel and Distributed Systems, 17,
865–882.

[14] Dini, G. and Savino, I. M. (2011) LARK: A Lightweight
Authenticated ReKeying Scheme for Clustered Wireless
Sensor Networks. ACM Transactions on Embedded
Computing Systems, 10, 41:1–41:35.

[15] Eltoweissy, M., Heydari, M. H., Morales, L. and
Sudborough, I. H. (2004) Combinatorial Optimization
of Group Key Management. Journal of Network and
Systems Management, 12, 33–50.

[16] Lampson, B. W. (1983) Hints for Computer System
Design. ACM Operating Systems Review, 17, 33–48.

[17] Bruhadeshwar, B. and Kulkarni, S. S. (2011) Balancing
Revocation and Storage Trade-Offs in Secure Group
Communication. IEEE Transactions on Dependable
and Secure Computing, 8, 58–73.

[18] Mittra, S. (1997) Iolus: a framework for scalable secure
multicasting. SIGCOMM Computer Communication
Review, 27, 277–288.

[19] Park, T. and Shin, K. G. (2004) LiSP: A lightweight
security protocol for wireless sensor networks. ACM
Transactions on Embedded Computing Systems, 3, 634–
660.

[20] Perrig, A., Kim, Y. and Tsudik, G. (2004) Tree-
based group key agreement. ACM Transactions on
Information and System Security, 7, 60–96.

[21] Birman, K., Rodeh, O. and Dolev, D. (2000) Optimized
Rekey for Group Communication Systems. Proceedings
of the Symposium on Network and Distributed Systems
Security, San Diego, California, USA, 3-4 February,
pp. 37–48. The Internet Society, Reston, VA, USA.

[22] Tsudik, G., Steiner, M. and Waidner, M. (1996) Diffie-
Hellman Key Distribution Extended to Group Commu-
nication. Proceedings of the 3rd ACM Conference on
Computer and Communications Security, New Delhi,
India, 14-16 March, pp. 31–37. ACM, New York, NY,
USA.

[23] Sun, Y., Yu, W. and Liu, K. J. R. (2007) Optimizing
Rekeying Cost for Contributory Group Key Agreement
Schemes. IEEE Transactions on Dependable and
Secure Computing, 4, 228–242.

[24] Liu, P., Lee, W.-C., Gu, Q. and Chu, C.-H. (2009)
KTR: An Efficient Key Management Scheme for
Secure Data Access Control in Wireless Broadcast
Services. IEEE Transactions on Dependable and Secure
Computing, 6, 188–201.

[25] Ghumman, K., Younis, M. and Eltoweissy, M.
(2005) Key management in wireless ad hoc networks:
collusion analysis and prevention. Proceedings of the
24th IEEE International Conference on Performance,
Computing, and Communications, Phoenix, Arizona,
USA, 7-9 April, pp. 199–203. IEEE Computer Society,
Washington, DC, USA.

[26] Report 2007/161 (2007) Collusion-Resistant Group
Key Management Using Attribute-Based Encryption.
International Association for Cryptologic Research.
Santa Barbara, CA, USA.

[27] Bethencourt, J., Sahai, A. and Waters, B. (2007)
Ciphertext-Policy Attribute-Based Encryption. Pro-
ceedings of the 2007 IEEE Symposium on Security and
Privacy, Oakland, California, USA, 20-23 May, pp.
321–334. IEEE Computer Society, Washington, DC,
USA.

[28] Chang, I., Engel, R., Kandlur, D., Pendarakis, D.
and Saha, D. (1999) Key management for secure
Internet multicast using Boolean function minimization
techniques. Proceedings of IEEE Infocomm ’99, New
York, New York, USA, 21-25 March, pp. 689–698. IEEE
Computer Society, Washington, DC, USA.

[29] Setia, S., Zhu, S. and Jajodia, S. (2006) LEAP+:
Efficient security mechanisms for large-scale distributed
sensor networks. ACM Transactions on Sensor
Networks, 2, 500–528.

[30] Bao, F., Chen, I., Chang, M. and Cho, J. (2012)
Hierarchical Trust Management for Wireless Sensor
Networks and its Applications to Trust-Based Routing
and Intrusion Detection. IEEE Transactions on
Network and Service Management, 9, 1–15.

[31] Kemmerer, R.A. and Vigna, G. (2005) Hi-DRA:
Intrusion Detection for Internet Security. Proceedings
of the IEEE, 93, 1848–1857.

[32] Zhang, J., Zulkernine, M. and Haque, A. (2008)
Random-Forests-Based Network Intrusion Detection
Systems. IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews, 38,
649–659.

[33] Wang, Y., Wang, X., Xie, B., Wang, D. and Agrawal,
D.P. (2008) Intrusion Detection in Homogeneous and
Heterogeneous Wireless Sensor Networks. IEEE
Transactions on Mobile Computing, 7, 698–711.

[34] Rajasegarar, S., Leckie, C. and Palaniswami, M. (2008)
Anomaly detection in wireless sensor networks. IEEE
Wireless Communications, 15, 34–40.

[35] Sun, B., Osborne, L., Yang, X. and Guizani, S.
(2007) Intrusion detection techniques in mobile ad
hoc and wireless sensor networks. IEEE Wireless
Communications, 14, 56–63.

[36] Anderson, R. J. (2008) Security Engineering: A
Guide to Building Dependable Distributed Systems, 2nd
Edition. Wiley Publishing Inc., Indianapolis, IN, USA.

[37] Cole, E. (2009) Network Security Bible, 2nd Edition.
Wiley Publishing Inc., Indianapolis, IN, USA.

[38] Menezes, A. J., van Oorschot, P. C. and Vanstone, S. A.
(2001) Handbook of Applied Cryptography. CRC Press,
Boca Raton, FL, USA.

[39] SHS (2008) Secure Hash Standard. National Institute
of Standards and Technology (NIST). Gaithersburg,
MD, USA.

The Computer Journal, Vol. ??, No. ??, ????



18 G. Dini and M. Tiloca

[40] RFC 2898 (2000) PKCS #5: Password-Based Cryptog-
raphy Specification Version 2.0. Internet Engineering
Task Force. Fremont, CA, USA.

[41] Ver. 1.7 (2006) Standards for Efficient Cryptography:
SEC 1 (working draft): Elliptic Curve Cryptography.
Certicom Research. Mississauga, Canada.

[42] Gaubatz, G., Kaps, J.-P., Öztürk, E. and Sunar, B.
(2005) State of the Art in Ultra-Low Power Public Key
Cryptography for Wireless Sensor Networks. Proceed-
ings of the Third IEEE International Conference on
Pervasive Computing and Communications Workshops,
Kauai Island, Hawaii, USA, 8-12 March, pp. 146–150.
IEEE Computer Society, Washington, DC, USA.

[43] Wander, A., Gura, N., Eberle, H., Gupta, V. and
Shantz, S. C. (2005) Energy Analysis of Public-Key
Cryptography for Wireless Sensor Networks. Proceed-
ings of the Third IEEE International Conference on
Pervasive Computing and Communications, Kauai Is-
land, Hawaii, USA, 8-12 March, pp. 324–328. IEEE
Computer Society, Washington, DC, USA.

[44] Dini, G. and Savino, I. M. (2006) An efficient
key revocation protocol for wireless sensor networks.
Proceedings of the 2006 International Symposium on a
World of Wireless, Mobile and Multimedia Networks,
Buffalo, New York, USA, 26-29 June, pp. 450–452.
IEEE Computer Society, Washington, DC, USA.

[45] Dini, G. and Savino, I. M. (2006) S2RP: a Secure
and Scalable Rekeying Protocol for Wireless Sensor
Networks. Proceedings of the 2006 IEEE International
Conference on Mobile Adhoc and Sensor Systems,
Vancouver, Canada, 9-12 October, pp. 457–466. IEEE
Computer Society, Washington, DC, USA.

[46] Perrig, A., Szewczyk, R., Wen, V., Culler, D. and
Tygar, D. J. (2001) SPINS: Security protocols for
sensor networks. Proceedings of the Seventh Annual
International Conference on Mobile Computing and
Networking, Rome, Italy, 16-21 July, pp. 189–199.
ACM, New York, NY, USA.

[47] Lim, C. H. (2008) LEAP++: A Robust Key
Establishment Scheme for Wireless Sensor Networks.
Proceedings of the Distributed Computing Systems
Workshops, Beijing, China, 17-20 June, pp. 376–381.
IEEE Computer Society, Washington, DC, USA.

[48] Lamport, L. (1981) Password authentication with
insecure communication. Communications of the
ACM, 24, 770–772.

[49] Cardenas, A. A., Roosta, T. and Sastry, S. (2009)
Rethinking security properties, threat models, and the
design space in sensor networks: A case study in
SCADA systems. Ad Hoc Networks, 7, 1434–1447.

[50] Publication 197 (2001) Federal Information Process-
ing Standards, Specification for the ADVANCED EN-
CRYPTION STANDARD (AES). National Institute of
Standards and Technology. Gaithersburg, MD, USA.

[51] Biryukov, A. (2005) Skipjack. In van Tilborg, H. C.
A. (ed.), Encyclopedia of Cryptography and Security.
Springer, Berlin, Germany.

[52] Doumen, J., Law, Y. W. and Hartel, P. H. (2006)
Survey and benchmark of block ciphers for wireless
sensor networks. ACM Transactions on Sensor
Networks, 2, 65–93.

[53] Alcaraz, C., Roman, R. and Lopez, J. (2007) A survey
of cryptographic primitives and implementations for
hardware-constrained sensor network nodes. Network
& Applications, 12, 231–244.

[54] Datasheet 11/13/2006 (2006) Tmote Sky: Datasheet.
Moteiv Corporation. San Francisco, CA, USA.

[55] IEEE Std 802.15.4-2006 (2006) IEEE Std. 802.15.4-
2006, IEEE Standard for Information technology -
Telecommunications and information exchange between
systems - Local and metropolitan area networks -
Specific requirements Part 15.4: Wireless Medium
Access Control (MAC) and Physical Layer (PHY)
Specifications for Low-Rate Wireless Personal Area
Networks (WPANs). Institute of Electrical and
Electronics Engineers, Inc. New York, NY, USA.

[56] Latré, B., De Mil, P., Moerman, I., Van Dierdonck,
N., Dhoedt, B. and Demeester, P. (2005) Maximum
Throughput and Minimum Delay in IEEE 802.15.4.
Proceedings of the First international conference on
Mobile Ad-hoc and Sensor Networks, Wuhan, China,
13-15 December, pp. 866–876. Springer, Berlin,
Germany.

[57] Pfleeger, C. and Pfleegeer, S. L. (2006) Security in
Computing–4th Edition. Prentice Hall, Upper Saddle
River, NJ, USA.

[58] Cheswick, W. R., Bellovin, S. M. and Rubin, A. (2003)
Firewalls and Internet Security: Repelling the Wily
Hacker (2nd Edition). Addison-Wesley Professional,
Boston, MA, USA.

[59] Anderson, R. (2008) Security Engineering: A Guide
to Building Dependable Distributed Systems. Wiley,
Hoboken, NJ, USA.

[60] Shavitt, Y., Kogan, N. and Wool, A. (2006) A
practical revocation scheme for broadcast encryption
using smartcards. ACM Transactions on Information
and System Security, 9, 325–351.

[61] Schneier, B. and Shostack, A. (1999) Breaking Up Is
Hard to Do: Modeling Security Threats for Smart
Cards. Proceedings of the USENIX Workshop on
Smartcard Technology, Chicago, Illinois, USA, 10-11
May, pp. 175–185. USENIX Association, Berkeley, CA,
USA.

[62] Hartung, C., Han, R., Deng, J. and Mishra, S.
(2005) A practical study of transitory master key
establishment for wireless sensor networks. Proceedings
of the 1st IEEE/CreateNet Conference on Security
and Privacy for Emerging Areas in Communication
Networks, Athens, Greece, 5-9 September, pp. 289–299.
IEEE Computer Society, Washington, DC, USA.

[63] PLANET (2010). PLAtform for the deployment
and operation of heterogeneous NETworked coop-
erating objects, European Commission, 7th Frame-
work Programme, Grant Agreement n. 257649.
http://www.planet-ict.eu/.

APPENDIX

1. ON DETERMINING Q(T )

Let us suppose that initially the adversary has
compromised a given user, namely u. Hence, t = 1.
Then, the adversary compromises another user, namely

The Computer Journal, Vol. ??, No. ??, ????



HISS 19

v. Hence, t = 2. No subgroup has been colluded if
v belongs to a different subgroup than u. This occurs

with probability Q(2) = n−(m−1)
n .

Then, the adversary compromises another user,
namely z. Hence, t = 3. No subgroup has been
compromised if z belongs to a different subgroup
than u and v. This occurs with probability Q(3) =
n−2×(m−1)

n × n−(m−1)
n .

By repeating this reasoning, after t captures, the
probability that no subgroup has been compromised is

Q(t) =
n− (t− 1)× (m− 1)

n
× . . .× n− (m− 1)

n
,

i.e., Q(t) =
∏t−1
i=1

n−i×(m−1)
n .

The Computer Journal, Vol. ??, No. ??, ????


