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The brain’s histaminergic system has been implicated in hippocampal synaptic plasticity, learning, and memory, as
well as brain reward and reinforcement. Our past pharmacological and lesion studies indicated that the brain’s
histamine system exerts inhibitory effects on the brain’s reinforcement respective reward system reciprocal to
mesolimbic dopamine systems, thereby modulating learning and memory performance. Given the close functional
relationship between brain reinforcement and memory processes, the total disruption of brain histamine synthesis via
genetic disruption of its synthesizing enzyme, histidine decarboxylase (HDC), in the mouse might have differential
effects on learning dependent on the task-inherent reinforcement contingencies. Here, we investigated the effects of
an HDC gene disruption in the mouse in a nonreinforced object exploration task and a negatively reinforced
water-maze task as well as on neo- and ventro-striatal dopamine systems known to be involved in brain reward and
reinforcement. Histidine decarboxylase knockout (HDC-KO) mice had higher dihydrophenylacetic acid
concentrations and a higher dihydrophenylacetic acid/dopamine ratio in the neostriatum. In the ventral striatum,
dihydrophenylacetic acid/dopamine and 3-methoxytyramine/dopamine ratios were higher in HDC-KO mice.
Furthermore, the HDC-KO mice showed improved water-maze performance during both hidden and cued platform
tasks, but deficient object discrimination based on temporal relationships. Our data imply that disruption of brain
histamine synthesis can have both memory promoting and suppressive effects via distinct and independent
mechanisms and further indicate that these opposed effects are related to the task-inherent reinforcement
contingencies.

Neuronal histamine has been implicated in a variety of physi-
ological, pathophysiological, and behavioral processes (Huston
et al. 1997; Brown et al. 2001; Haas and Panula 2003). Neuronal
histamine is exclusively derived from the nucleus tuberomam-
millaris (TM) of the posterior hypothalamus, which receives ma-
jor inputs from limbic areas, and from where diffuse projections
to wide parts of the brain arise, including the hippocampal for-
mation (Wada et al. 1991). Histamine synthesis is executed by
histidine-decarboxylase (HDC) converting histidine to hista-
mine. Two postsynaptic (H1 and H2) and one presynaptic recep-
tor (H3), with auto- and heteroreceptor functions, were identified
(Hill et al. 1997). Histamine facilitated (Kamei et al. 1993) and
suppressed active avoidance conditioning (Alvarez and Banzan
1996). The HDC-blocker �-FMH both improved (Sakai et al.
1998) and impaired spatial memory in a radial-maze task (Chen
et al. 1999). Furthermore, H1 receptor antagonism improved wa-
ter-maze (Hasenöhrl et al. 1999) and impaired radial-maze per-
formance (Taga et al. 2001), whereas learning and memory in H1

knockout mice were unaffected (Yanai et al. 1998a,b). Contradic-
tory results were also found with agents acting at H2 (Flood et al.
1998; Onodera et al. 1994) and H3 receptors (Blandina et al. 1996;
Rubio et al. 2002). Finally, lesions and temporary inactivation of
the TM region improved habituation learning, inhibitory avoid-
ance, discrimination, and water-maze learning in adult and aged
rats (Frisch et al. 1998, 1999). A selective, significant, and lasting
disruption of brain histamine synthesis through the HDC-
blocker �-fluoromethyl histidine (�-FMH) or the simultaneous
inhibition of all histamine receptors has failed (Watanabe et al.
1990). Systemic injections of high doses of �-FMH did not reduce
hippocampal histamine levels significantly (Onodera et al. 1992).
Most histaminergic agents also show activity at nonhistamine,
for example, cholinergic receptors (Hill et al. 1997). Furthermore,
lesions of the TMmay not only lead to neuronal histamine deple-
tion but also to the depletion of the transmitter systems colocal-
ized in the TM or even coreleased by histaminegic neurons
(Köhler et al. 1985; Yamatodani et al. 1991). These shortcomings
might have contributed to some extent to the fact that the func-
tions of brain histamine in learning and memory are still con-
troversial. Alternatively, modulation of central histaminergic
transmission might, indeed, have both memory promoting and
suppressive effects possibly via distinct and independent mecha-
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nisms. One mechanismmight act directly on the brain’s memory
substrate via the modulation of hippocampal synaptic plasticity
as recently reviewed in Haas and Panula (2003), whereas the
other might have an indirect effect on memory inscription via
modulation of the brain’s reinforcement system (for review, see
Huston et al. 1997). Our results indicate that the brain’s hista-
mine system exerts inhibitory effects on the brain’s reinforce-
ment respective reward system reciprocal to mesolimbic dopa-
mine systems (Wise 1996; Huston et al. 1997). We thus evaluated
whether neo- and ventro-striatal dopamine concentrations and
metabolism were affected by the histidine decarboxylase knock-
out (HDC-KO), because these brain structures were implicated in
brain reward and reinforcement (Fibinger and Phillips 1988;
Wise 1996). Given the close functional relationship between
brain reinforcement and memory processes (Huston et al. 1997;
Huston and Oitzl 1989), the HDC-KO might have differential
effects on learning dependent on the task-inherent reinforce-
ment contingencies. We expected to find unaffected perfor-
mance of HDC-KO mice in a nonreinforced object exploration
task, where possible disinhibitory effects of the HDC-KO on the
brain’s reinforcement system should play a minor role. On the
contrary, improved performance might be evident in water-maze
tasks that closely depend on negative reinforcement, as indicated
by our previous work (Frisch et al. 1998, 1999; Hasenöhrl et al.
1999).

RESULTS

Habituation to Object Stimuli
During the 2 d of object exploration with four equivalent objects
(A), the HDC-KO mice showed a fewer number of total contacts
than the controls (F(1,20) = 12.430, p = 0.002; repeated measures
ANOVA; Fig. 1A). Post hoc t-tests revealed that the HDC-KOmice
contacted the objects on day 1 (p = 0.001; t-test for independent
samples) and day 2 (p = 0.010) less frequently than the wild-type
(WT) mice. However, both groups showed a reduced number of
contacts on day 2 relative to day 1 (HDC-KO: p = 0.001; WT:
p < 0.001). These findings indicate that although HDC-KO mice
show reduced contacts with objects, they nevertheless habituate
to object stimuli.

Nonreinforced Relational Object Memory
From days 3 to 8, the wild-type mice and HDC-KO mice showed
a similar low number of contacts with the most familiar Object A
(Object A: F(1,20) = 3.356, p = 0.082; repeated measures ANOVA;
Fig. 1B,C). The number of contacts with Objects B, C, and D,
however, was higher for wild-type mice relative to HDC-KO mice
(Object B: F(1,20) = 9.100, p = 0.007; Object C: F(1,20) = 9.309,
p = 0.006; Object D: F(1,20) = 20.515, p < 0.001). Within-group
comparisons of contacts with pairs of objects (A vs. B, A vs. C, A
vs. D, B vs. C, B vs. D, and C vs. D) on corresponding days,
revealed that wild-type mice generally contacted the less familiar
objects more frequently than the more familiar ones (Fig. 1B; see
also p-values in Table 1 for comparisons of object pairs). These
findings indicate that the control mice were able to establish
temporal relationships between discrete object stimuli. We addi-
tionally computed for each animal the sum of contacts with Ob-
jects A, B, C, and D for days 7 and 8 (Fig. 2A,B) and performed
within-group comparisons for different contact numbers. As
shown in Figure 2A, the wild-type mice showed the expected
rank order A < B < C < D. On the contrary, the HDC-KO mice
were unable to discriminate between objects in dependence of
the number of previous encounters with those objects (Figs. 1C
and 2B; see also p-values in Table 1 for within-group comparisons
of object pairs), indicating that relational object memory based
on temporal discrimination is disrupted in HDC-KO mice.

After a retention interval of 6 d, the animals were again
presented with the Objects A, B, C, D.

During the long-term memory test for temporal inter-object
relationships, the HDC-KO mice again showed fewer contacts
with Objects C and D but not A and B compared with the wild-
type mice (A: p = 0.138; B: p = 0.057; C: p = 0.026; D: p < 0.001;
t-test for independent samples; Fig. 1B,C).

The wild-type mice contacted Object D more frequently
than the other three objects (Fig. 1B; see also Table 2 for respec-
tive p-values) and contacted Object A less frequently than B and
C. The contact numbers of Objects B and C were similar.

On the contrary, HDC-KO mice contacted the four objects
to similar extents (Fig. 1C; see also Table 2 for respective p-val-
ues). These results confirm the above finding (days 3 to 8) that
HDC-KO mice are unable to relate the number of previous en-
counters with one object to those of another, and, thus, have not
formed a long-term memory for temporal inter-object relation-
ships.

Because the above results might be the consequence of re-
duced general activity or the inability to discriminate different
objects visually by HDC-KO mice, we additionally assessed the
time the mice spent in the object zones (Fig. 1D,E). As can be seen
in Figure 1D and from the p-values depicted in Table 1, the wild-
type mice spent significantly more time in Object zone D relative
to the remaining object zones. Furthermore, they spent more
time in Object zones B and C relative to A. Thus, the time spent
and contact number parameters yielded similar results for wild-
type mice. On the contrary, the HDC-KO mice only spent less
time in Object zone A relative to the other zones, but the values
for the remaining comparisons were similar (Fig. 1E; Table 1 for
respective p-values). Thus, the “time spent in object zone” pa-
rameter indicates that the HDC-KOs were able to discriminate at
least Object A from the other ones visually and regarding tem-
poral relationships. However HDC-KO mice were not able to dis-
criminate the temporal relationships between Objects B, C, and
D. These results demonstrate that the deficit of HDC-KO mice is
not related to their low activity level or to sensory impairments.

On day 15 after a retention interval of 6 d, the control mice
still spent more time in Object zone D relative to the remaining
object zones (see Fig. 1D and Table 2 for p-values). Again, as with
the “contact” parameter, no differences were found for the HDC-
KO mice (see Fig. 1E and Table 2 for p-values). Thus, these results
clearly indicate that the HDC-KO mice indeed show deficient
object discrimination on the base of temporal relationships (days
3 to 8), and, thus, deficient relational object memory (day 15).

Reinforced Relational Spatial Memory
Reinforced relational spatial memory was assessed with a water-
maze hidden-platform task, in which the mice were required to
associate different platform locations with extra-maze cues to
efficiently escape from forced swimming. Both groups showed
reductions in search times and path lengths to reach the six hid-
den platforms across the eight trials (HDC-KO: search times,
F(7,63) = 9.854, p < 0.001; path length, F(7,63) = 6.778, p < 0.001;
WT: search times, F(7,77) = 15.039, p < 0.001; path length,
F(7,77) = 5.194, p < 0.001; one-way ANOVA). The mean distance
the animals swam to locate the first two platform positions was
lower in the HDC knockouts compared with controls (p = 0.0004;
t-test for independent samples; Fig. 3C); this was not the case for
the remaining platforms (all ps > 0.1). When the distance trav-
eled to reach the six different platform locations were averaged
for each subject yielding eight data points, the HDC-KO mice
swam a shorter distance to reach the platforms compared with
controls (Fig. 3A). However, this difference failed to reach a p-
value smaller than 0.05 (F(1,20) = 3.753, p = 0.067). Thus, as hy-
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Figure 1 (Legend on facing page)
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pothesized, the HDC gene disruption indeed improved initial
hidden-platform water-maze performance (platforms A + B). The
overall search times to locate the platforms were similar between
groups (F(1,20) = 0.425, p = 0.522; data not shown), possibly be-
cause of the higher swim speed of the controls (F(1,20) = 5.220,
p = 0.033; Fig. 3B).

Stimulus–Response Learning
During two consecutive days, the submerged platform was
shifted from trial to trial and was signaled by an easily perceptible
cue. The animals were required to learn the association between
the cue and the hidden platform. Both groups showed reductions
in search times and path lengths to reach the signaled platform
locations across the eight trials (HDC-KO: search times,
F(7,63) = 3.125, p = 0.007; path length, F(7,63) = 5.307, p = 0.032;
WT: search times, F(7,77) = 5.055, p < 0.001; path length,
F(7,77) = 2.556, p = 0.020; one-way ANOVA). The HDC-KO mice
performed superior to controls, exhibiting shorter path lengths
(F(1,20) = 5.307, p = 0.032; Fig. 3D) and search times
(F(1,20) = 10.122, p = 0.005; Fig. 3E) to reach the platform, while
having similar swim speeds (F(1,20) = 0.011, p = 0.918; Fig. 3F).
These results indicate that the HDC gene disruption had im-
proved performance in a simple stimulus–response task.

Striatal Dopamine Concentrations and Metabolism
HDC-KO mice had higher dihydrophenylacetic acid concentra-
tions (p = 0.054; Table 3) and a higher dihydrophenylacetic acid/
dopamine ratio in the neostriatum (p = 0.088). In the ventral
striatum, the dihydrophenylacetic acid/dopamine (p = 0.044;
Table 4) and 3-methoxytyramine/dopamine ratios (p = 0.046)
were higher relative to the wild-type mice. No further differences
were observed (all p-values > 0.1). These results indicate that his-
tamine deficiency altered dopamine metabolisms in the neo- and
ventral striata known to be involved in brain reward and rein-
forcement.

DISCUSSION
In the present study, we investigated the effects of a HDC gene
disruption in the mouse on two relational memory tasks, a non-
reinforced object exploration task and a negatively reinforced
water-maze task, as well as on neo- and ventro-striatal dopamine
systems. HDC-KO mice had higher dihydrophenylacetic acid

concentrations and a higher dihydrophenylacetic acid/dopa-
mine ratio in the neostriatum. In the ventral striatum, the dihy-
drophenylacetic acid/dopamine and 3-methoxytyramine/dopa-
mine ratios were higher in HDC-KO mice. Thus, histamine defi-
ciency altered dopamine metabolism in the neo- and ventral
striata known to be involved in brain reward and reinforcement
(Fibinger and Phillips 1988; Di Chiara et al. 1991). As expected,
the HDC-KO mice showed improved water-maze performance
during both hidden and cued platform tasks, but surprisingly
deficient object discrimination based on temporal relationships.
Our data imply that disruption of brain histamine synthesis can
have both memory promoting and suppressive effects apparently
via distinct and independent mechanisms, and further indicate
that these opposed effects are related to the task inherent rein-
forcement contingencies.

Drugs with rewarding and reinforcing properties increase
dopamine release in the neo- and ventral striata (Fibinger and
Phillips 1988; Wise 1996). TM lesions as well as histamine recep-
tor blockade in rats lower the threshold for rewarding brain
stimulation (Wagner et al. 1993; Zimmermann et al. 1999). Fur-
thermore, antihistaminergic drugs induce place preference (Un-
terwald et al. 1984) and potentiate the rewarding effects of ad-
dictive drugs, such as amphetamines (Masukawa et al. 1993) and
opioids (Shannon and Su 1982). These findings indicate that the
brain histamine system exerts inhibitory effects on the brain’s
reinforcement respective reward system reciprocal to mesolimbic
dopamine systems (Wise 1996; Huston et al. 1997). Here, we
found changes in dopamine metabolites and turnover ratios in
the neo- and ventral striata in HDC-KOmice. Our results indicate
that dopamine turnover in these brain areas was increased in
HDC-KO mice, possibly because of increased dopamine release
(Wood and Altar 1988; Schlicker et al. 1993; Dringenberg et al.
1998; Maisonnette et al. 1998; Galosi et al. 2001). In future stud-
ies, we will examine whether HDC-KO mice show changes in
cocaine- and morphine-induced place preference to test the hy-
pothesis that reward and reinforcement processes are actually
disinhibited in HDC-KO mice. However, if lack of neuronal his-
tamine in HDC-KO mice has a disinhibitory effect on the brain’s
reinforcement system, it should also have a beneficial effect on
performance in learning and memory tasks in which specific be-
haviors are positively or negatively reinforced (Huston et al.
1997). As hypothesized, the HDC-KO mice showed improved
performance not only in the hidden but also in the cued plat-
form water-maze task, possibly because in both tasks escape to
the platform is negatively reinforced. Furthermore, the HDC-KO
mice showed decreased swim speeds during the hidden platform
task. This finding, however, stands in contrast with an increased
motivation to escape from forced swimming. Interestingly, the
wild-type mice showed an increase in swimming speed across the
four daily trials during hidden and cued platform tasks, leading
to a drop in swimming speed on the fifth trial on the second days
of hidden platform and cued version performance. However, the
basis for this effect remains obscure and awaits further research.

Although these above findings are in accord with results
showing that TM lesions (Frisch et al. 1998) and systemic block-
ade of histaminergic receptors (Hasenöhrl et al. 1999) or hista-
mine synthesis (Sakai et al. 1998) facilitate performance in sev-
eral positively or negatively reinforced learning and memory
tasks, there is also evidence for impaired learning performance
after inhibition of histaminergic neurotransmission (Chen et al.
1999; Taga et al. 2001). The low specificity of the lesion tech-

Table 1. One-Tailed p-Values Obtained After Pairwise
Within-Group Comparisons Using One-Way Repeated Measures
ANOVAs for Object Contacts and the Time Spent in Object
Zones on Indicated Days

Objects Days

Number of
Contacts

Time Spent
in Object Zone

WT HDC-KO WT HDC-KO

A < B 3 to 8 p = 0.014 p = 0.240 p = 0.007 p = 0.0025
A < C 5 to 8 p = 0.002 p = 0.215 p = 0.006 p = 0.038
A < D 7 and 8 p < 0.0005 p = 0.040 p = 0.0005 p = 0.005
B < C 5 to 8 p = 0.102 p = 0.454 p = 0.360 p = 0.227
B < D 7 and 8 p = 0.003 p = 0.149 p = 0.0005 p = 0.086
C < D 7 and 8 p = 0.042 p = 0.287 p = 0.002 p = 0.105

Figure 1 Effects of the HDC gene disruption on nonreinforced object habituation (A) and episodic object memory based on temporal relationships
(B–E). (Insert top left) Scheme of the object exploration design. (A) Mean and sem total contacts for all identical objects on indicated days. (B,C) Mean
and sem number of contacts with different objects on indicated days for HDC-KO and wild-type mice. (D,E) Mean and sem time spent in the four object
quadrants on indicated days for HDC-KO and wild-type mice. P = HDC-KO versus WT, t-test for independent samples.
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niques (Airaksinen et al. 1992) and the pharmacological tools
used (Hill et al. 1997) might have contributed to this discrep-
ancy. However, one should also take into account that past re-
search on the role of histamine in learning and memory pro-
cesses almost exclusively used tasks that bear an explicit reinforc-
ing event. Only a handful of studies used nonassociative memory
tasks, yielding diverging results.

We further hypothesized that HDC-KO mice would not ex-
hibit performance changes in a nonreinforced relational object
memory task. We surprisingly found deficient episodic object
memory performance of HDC-KO mice. Here, the HDC�/� mice
showed normal habituation to object stimuli but were strongly
impaired when they had to discriminate different objects varying
regarding their familiarity, or in other words, in dependence on
the number of previous encounters with those objects. Moreover,
after a retention interval of 6 d, the wild-type mice, but not the
HDC�/� mice, still recognized the lastly presented Object D as
“novel” relative to the other objects. It seems that the HDC gene
disruption had selectively impaired episodic object memory. As
outlined below, this finding might involve effects on NMDA re-
ceptor-mediated synaptic plasticity and on memory-related in-
tracellular second messenger cascades activated after H1 and H2
receptor stimulation.

NMDA receptors were implicated in certain types of synap-
tic long-term potentiation (LTP) and some types of memory
(Martin and Morris 2002). Histamine enhances NMDA-receptor
responses and hippocampal LTP (Vorobjev et al. 1993; Brown et
al. 1995). Among the NMDA-receptor subtypes, those containing
the NR2B subunit show biophysical properties well suited for LTP
induction (Thomas et al. 1996; Williams et al. 1998; Tang et al.
1999). Histamine facilitates NR2B containing NMDA-receptor ac-
tivation directly via binding to polyamine sites, indirectly via
H1-receptor induced C-terminal phosphorylation through PKC,
and through reduced voltage sensitivity (Bekkers 1993; Vorobjev
et al. 1993; Williams 1994; Payne and Neumann 1997). Further-
more, H2 receptor activation was linked to cAMP and PKA pro-
duction; both were implicated in the persistent postsynaptic
structural consequences of LTP (Selbach et al. 1997). H1 receptors
(via the induction of the retrograde messengers nitric oxide and
arachidonic acid) might also be involved in the presynaptic
changes seen after LTP induction (Brown and Haas 1999; Haas
and Panula 2003). Therefore, the impaired performance of HDC-
KO mice in the nonreinforced relational object memory task
might be related to the absence of the facilitating effect of brain
histamine on both NMDA-receptor-dependent hippocampal
synaptic plasticity and histamine-receptor-dependent activation
of retrograde and secondmessenger systems. However, it remains
to be determined whether hippocampal NMDA-receptor-depen-
dent LTP is actually altered in the brains of HDC-KO mice.

Given the importance of NMDA receptors and the second
messenger systems activated after histamine receptor stimulation
for certain types of synaptic plasticity and possibly memory, the
question arises, why did the HDC-KO mice not also show im-
paired water-maze performance? The simplest answer to this
question might be that the beneficial effect of histamine on
NMDA-receptor activation and the second messenger systems in-
volved after histamine receptor stimulation might be critically

Table 2. One-Tailed p-Values Obtained After Pairwise
Within-Group Comparisons Using t-Tests for Dependent
Samples for Object Contacts and the Time Spent in Object
Zones During the Test for Long-Term Memory on Day 15

Objects

Number of contacts Time spent in object zone

WT HDC-KO WT HDC-KO

A < B p = 0.034 p = 0.293 p = 0.124 p = 0.064
A < C p = 0.036 p = 0.247 p = 0.084 p = 0.183
A < D p = 0.001 p = 0.156 p = 0.009 p = 0.073
B < C p = 0.142 p = 0.464 p = 0.265 p = 0.333
B < D p = 0.001 p = 0.245 p = 0.004 p = 0.334
C < D p = 0.008 p = 0.263 p = 0.038 p = 0.227

Figure 2 Episodic object memory. Rank order of summed contacts with
objects A, B, C, D on days 7 + 8. (A) Wild-type mice. Mean and sem sum
of contacts with objects on days 7 + 8. (B) HDC-KO mice. Mean and sem
total contacts with objects A, B, C, and D on days 7 + 8. P-values repre-
sent t-tests for dependent samples.
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involved in relational object memory based on the establishment
of temporal relationships between distinct objects, but possibly
not in water-maze performance. Even if the modulatory effect of
brain histamine on NMDA receptors is crucial for their function-
ing, water-maze performance might be preserved. For example,
hippocampal NMDA-receptor blockade (Bannerman et al. 1995;
Hoh et al. 1999), and even hippocampal LTP-saturation (Otnaess
et al. 1999) do not necessarily impair water-maze performance

(but see also Steele and Morris 1999). Furthermore, the synaptic
plasticity subserving water-maze performance might also be trig-
gered by metabotropic G-protein-coupled glutamate receptors or
voltage-gated calcium channels that mediate a NMDA-receptor-
independent form of hippocampal LTP (Cavus and Teyler 1998;
Grover and Yan 1999).

Another possibility might be that the disinhibition of the
brain’s reinforcement system in HDC-deficient mice is not only

Figure 3 Effects of the HDC gene disruption on negatively reinforced water-maze performance during the multiple acquisition (A–C) and signaled
platform tasks (D–F). (Insert top) Arrangement of possible platform positions. (A) Mean and sem overall path lengths to reach the six hidden platforms
during the multiple acquisition task. (B) Mean and sem overall swim speeds during the multiple acquisition task. (C) Mean and sem path lengths to reach
the hidden platforms A + B, C + D, and E + F during the multiple acquisition task. (D) Mean and sem path lengths to reach the signaled platforms during
the cued version. (E) Mean and sem search time to reach the signaled platforms. (F) Mean and sem swim speeds during the signaled platform task.
P = HDC-KO versus WT, t-test for independent samples.
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sufficient for leveling the concomitant memory-impairing ef-
fect of histamine synthesis disruption, but instead overcom-
pensates it.

Brain histamine was also implicated in arousal mechanisms
and the regulation of sleep–wake cycles (for review, see Lin 2000).
Accordingly, the HDC�/� mice showed alterations in cortical-
EEG and sleep–wake cycle and fell asleep after ∼18.4 � 1.8 min
in a novel environment (Parmentier et al. 2002) and showed
reduced activity in an accustomed environment (Kubota et al.
2002). It was suspected that histamine deficiency reduces explor-
atory activity in HDC�/� mice via the inability to stay awake or
deregulated arousal mechanisms and should therefore generally
interfere with performance in learning and memory tasks (Par-
mentier et al. 2002). Here, we showed that HDC-KO mice despite
showing reduced activity are nevertheless able to habituate to
object stimuli. Furthermore, in an open field, the HDC-KO mice
showed reduced exploratory behaviors, which, however, did not
prevent spatial habituation (E. Dere, M.A. De Souza-Silva, B.
Topic, H.L. Haas, J.P. Huston, unpubl.). Our findings indicate
that deregulated arousal mechanisms in HDC-KO mice do not
per se prevent nonreinforced memory formation.

Residual Brain Histamine in HDC-KO Mice?
It was reported that the HDC gene disruption prevented the
HDC-gene expression at the transcriptional level. However, in
HDC-KO mice that were fed a low-histamine diet, some residual
histamine levels were found in brains, but not several other or-
gans, of the HDC�/� mice (HDC�/�: 18.41 � 2.74 pmole/g;
wild type: 58.67 � 9.83 pmole/g), possibly through absorption
from the digestive tract (Ohtsu et al. 2001). Because it is thought
that histamine cannot easily permeate the blood–brain barrier
(Schwarz et al. 1991), it was assumed that this residual brain
histamine is likely to be nonneuronal and located outside the
blood–brain barrier (Parmentier et al. 2002).

General Limitations of the Knockout Approach
Similar to other techniques in neuroscience, the classical knock-
out approach has its limitations. To avoid the interpretation
problems of knockout studies due to mixed genetic backgrounds
(for review, see Gerlai 1999), the HDC-deficient mice and their
wild-type littermates were kept on a pure 129/Sv genetic back-
ground. However, the HDC deficiency might have induced
subtle aberrations in brain development and might also have
initiated compensatory mechanisms that are not easily detect-
able. However, HDC-deficient mice were fertile and born at the
expected Mendelian frequency (Ohtsu et al. 2001), and no overt
morphological or neurochemical abnormalities have been de-
scribed in HDC-deficient mice. Indicators of general health sta-
tus, such as fur appearance and skin color, were not different
from controls at the analyzed ages. Nevertheless, it should be
considered that the HDC-gene disruption affects all cells in the

body that synthesize histamine. Therefore, peripheral effects can-
not be excluded. Nevertheless, the dissociation found for epi-
sodic object memory and negatively reinforced water-maze per-
formance supports the argument against such gross peripheral
effects. However, the final behavioral phenotype of the knockout
mice model is always the consequence of various interacting pro-
cesses, which might be affected by the lack of endogenous his-
tamine. It is obvious that the classical knockout approach cannot
be regarded as the ultimate tool to clarify the controversy regard-
ing the involvement of brain histamine in different types of
memory; it can, however, provide complementary information.
For the future, it might be promising to generate a brain-specific
inducible conditional HDC-knockout utilizing the already avail-
able cre-loxP recombinase technique (Tsien 1998) to exclude de-
velopmental and peripheral effects.

In conclusion, our present results clearly demonstrate that
disruption of brain histamine synthesis can promote and sup-
press performance in memory tasks, possibly via different mecha-
nisms, and dependent on the task-inherent reinforcement con-
tingencies.

MATERIALS AND METHODS

Animals
The HDC-KO and wild-type mice used in the present study were
generated by Ohtsu et al. (2001) and were the progeny of the
colony maintained at the Department of Experimental Medicine,
Claude Bernard University of Lyon, France. The procedures for
creating a null allele of the HDC gene, generation of HDC-defi-
cient mice, loss of HDC activity and reduction of histamine levels
in organs of homozygous HDC-deficient mice were described
previously in detail (Ohtsu et al. 2001). Both the HDC-deficient
and wild-type mice had a pure 129/Sv genetic background. The
mice used were 5- month-old male HDC-KO (n = 10) and wild-
type mice (n = 12). The mice were obtained from the animal
breeding division of the Heinrich-Heine University of Düsseldorf.
The animals were single-housed and accustomed to the housing
conditions for 1 wk prior to the beginning of the behavioral
experiments. During this adaptation period, the animals were
habituated to handling. The mice were held in standard Makro-
lon cages (type 2, 22 � 16 � 13 cm) with metal covers and had
continuous access to rodent chow (Ssniff, Spezialdiäten GMBH)
and tap water. The mice were maintained on a 12-h light/dark
cycle and were tested during the light phase between 9 a.m. and
4 p.m.

Habituation to Object Stimuli
The mice were exposed to four equivalent objects (type A), made
of glass with a height of 12 cm and a maximum diameter of 4 cm,
placed in the corners of a familiar open field (30 � 30 � 40 cm).
The mice were free to explore these four objects during 5-min
sessions for two consecutive days (test days 1 and 2). This test was
performed to ensure that the mice were able to habituate to ob-
ject stimuli after a delay of 24 h, prior to the assessment of object
discrimination on the basis of temporal relationships.

Table 3. Mean (and SEM) Concentration (Picograms/Milligram) of Dopamine (DA), Dihydrophenylacetic Acid (DOPAC), Homovanillic
Acid (HVA), and 3-Methoxytyramine (3-MT) and Metabolite/Transmitter Ratios in the Neostriatum of HDC-KO and Wild-Type Mice. P =
HDC-KO Versus Wild-Type Mice t-Test for Independent Samples

DA DOPAC HVA 3-MT DOPAC/DA HVA/DA 3-MT/DA

HDC-knockout mice
Mean 29,395.54 1666.32 1617.21 1174.81 0.0564 0.0551 0.0401
SEM 513.88 133.51 54.34 20.87 0.0042 0.0018 0.0011

Wild-type mice
Mean 28,463.30 1258.73 1591.82 1205.59 0.0443 0.0561 0.0424
SEM 354.75 133.10 61.29 37.89 0.0047 0.0023 0.0012

P = 0.160 0.054 0.775 0.528 0.088 0.769 0.213
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Nonreinforced Relational Object Memory6

To measure relational object memory, we demanded the animals
to relate the frequency of previous encounters with a specific
object to the frequency of previous encounters with other ob-
jects, thus adding a time factor to an object discrimination task
(see insert in Fig. 1). In this task, which does not involve an
explicit reinforcing event, the animals learn about the temporal
relationships between objects. Therefore, possible effects of the
HDC gene disruption on brain reinforcement processes as indi-
cated by pharmacological and lesion studies (Huston et al. 1997)
might not be decisive in this task. Thus, we expected unaltered
performance of HDC-deficient mice.

One day after the object habituation task (test day 3), one of
the four type A objects was replaced by a novel glass object (type
B) with similar height, color, and smell, but a different shape and
surface texture. Although this is a more difficult task to solve
than the discrimination between objects differing regarding a
multitude of dimensions (different materials, surface textures,
smell, colors, size, shape, and height), it nevertheless controls
more strictly for gene deletion effects on specific sensory modali-
ties or the preference for certain materials. On test days 5 (C) and
7 (D), another two novel glass objects replaced two old ones of
the A type. Thus, on days 7 and 8, four different objects were
presented with different degrees of “familiarity” (see insert in Fig.
1). Once a given novel object was introduced to a specific corner,
it was kept in this location over the following days. It was ex-
pected that on days 3 to 8 the animals would contact “novel”
objects more frequently and spend more time in the “novel”
object zones relative to “familiar” ones, dependent on the num-
ber of encounters with an object on previous days. Because the
performance of the mice in this task not only demands the di-
chotomic distinction, novel versus familiar, between two differ-
ent objects, but also requires the distinction of relative novelty
and familiarity among at least four different objects, for example,
requires the establishment of temporal inter-object relationships,
this task can also be considered as a test for relational, but non-
reinforced, learning, respective memory. After a retention inter-
val of 6 d, the same spatial constellation of objects as on days 7
and 8 was presented to assess long-term memory of temporal
inter-object relationships. After each trial, the apparatus and the
objects were cleaned with water containing 0.1% acetic acid. The
number of object contacts with forepaws or vibrissae were scored.
Furthermore, the time spent (seconds) in the four corner squares
where objects were placed (10 � 10 cm each) was measured us-
ing an automated tracking system (EthoVision, Noldus).

Reinforced Relational Spatial Memory
We used the Morris water-maze, hidden-platform paradigm to
measure relational spatial memory of HDC-KO mice. In this task,

animals acquire relational spatial
memories after negative reinforce-
ment. Therefore, it is expected that
the possible disinhibition of the
brain’s reinforcement system after
HDC gene disruption would im-
prove water-maze performance.

Apparatus
The water maze used was a black,
painted, circular tank with 112 cm
diameter, and 40 cm height. It was
filled to a depth of 25 cm with wa-
ter (19°–20°C) made opaque white
by the addition of 1 L of durable
milk. The escape platform, made of
transparent Plexiglas, had a diam-

eter of 10 cm and was height-adjustable. The room was diffusely
illuminated by ceiling lamps. Several potential visual cues sur-
rounded the water maze, including doors, racks, apparatus, and
ceiling texture. A spatially fixed broad-spectrum noise generator
provided masking noise and possibly an auditory spatial cue for
orientation in the maze. To assess relational learning, the ani-
mals were required to find a submerged platform at six sequenced
different locations. Each new location was presented for two con-
secutive days with four trials a day. For each animal, the platform
was submerged 0.5 cm beneath the water surface in one of eight
possible platform locations (see insert in Fig. 2). For the first
location to be learned, all possible platform locations were used
at least once in both groups. Thereafter, the platform was shifted
every 2 d 180°, 90°, 180°, 225°, and 180° in the clockwise direc-
tion. Mice were placed into the maze from four equally spaced
points (N, S, W, O) along the perimeter of the pool in a semir-
andom sequence. After reaching the platform, the animals were
allowed to stay on it for 30 sec. If an animal failed to escape
within 60 sec, it was placed manually onto the platform. During
the 60-sec intertrial interval, the mice were placed into a resting
cage beside the pool. The digitized image of the animal’s path
was analyzed with a semiautomated tracing device (EthoVision,
Noldus). The search time (seconds) and the path length (centi-
meters) to reach the hidden platform as well as the mean swim
speed (centimeters/second) were analyzed. Two days after the
hidden platform task, the platform was indicated by a black-and-
white striped narrow rod (diameter 0.5 cm, height 22 cm), and
was shifted in a quasirandomized fashion from trial to trial to a
new position. This was done to assess simple stimulus–response
learning. Each animal received four trials on two consecutive
days with the same procedure as on previous days. For each sub-
ject, the mean hidden platform task performance (search times,
distance moved, and swim speed) across the six platform loca-
tions was computed by building the mean of corresponding tri-
als, yielding eight data points per variable. Additionally, the
mean distance to reach the platforms, A + B, C + B, and E + F
(mean performance across the 16 trials), was calculated for each
subject.

Neo- and Ventral Striatal Dopamine Concentrations
and Metabolism
After behavioral testing, dopamine and its metabolites were ana-
lyzed in the neo- and ventral striata to determine whether brain
histamine deficiency altered dopaminergic systems related to
brain reward and reinforcement (Fibinger and Phillips 1988;
Wise 1996). The animals were sacrificed by cervical dislocation
followed by decapitation (Sethy and Francis 1988); their brains
were quickly removed, and placed in an ice-cold brain matrix.
Coronal sections were made following landmarks on the base of
the brain, and the neo- and ventral striata were dissected out
bilaterally onto an ice-cold platform. Thereafter, the brain tissue
was weighed, homogenized in ice-cold 0.5 N perchloric acid con-
taining ethylhomocholine as an internal standard, centrifuged,
filtered, and kept at �70°C until analyzed. Samples were ana-
lyzed for dopamine (DA), dihydrophenylacetic acid (DOPAC),

6The term “nonreinforced” refers to the fact that a specific reaction of the
animal is not immediately followed by the application, termination, or nonoc-
currence of an explicit aversive stimulation; nor is the animal explicitly re-
warded, for example, by palatable food or liquid delivery, for exerting a certain
reaction.

Table 4. Mean (and SEM) Concentration (Picograms/Milligram) of Dopamine (DA),
Dihydrophenylacetic Acid (DOPAC), Homovanillic Acid (HVA), and 3-Methoxytyramine (3-MT)
and Metabolite/Transmitter Ratios in the Ventral Striatum of HDC-KO and Wild-Type Mice. P =
HDC/KO Versus Wild-Type Mice t-Test for Independent Samples

DA DOPAC HVA 3-MT DOPAC/DA HVA/DA 3-MT/DA

HDC-knockout mice
Mean 5569.85 840.58 874.00 403.27 0.1604 0.1765 0.0732
SEM 628.32 65.84 47.16 38.72 0.0128 0.0212 0.0032

Wild-type mice
Mean 5923.83 713.84 834.78 362.14 0.1273 0.1516 0.0627
SEM 473.15 33.12 21.74 25.43 0.0081 0.0118 0.0034

P = 0.667 0.101 0.456 0.394 0.044 0.320 0.046
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homovanillic acid (HVA), and 3-methoxytyramine (3-MT) levels
using high-performance liquid chromatography with electro-
chemical detection (for technical details, see De Souza-Silva et al.
1997). To determine dopamine turnover in the neo- and ventral
striata, DOPAC/DA, HVA/DA, and 3-MT/DA ratios were com-
puted (Irifune et al. 1995).

Statistics
For statistical analyses, repeated measures one-way ANOVAs and
t-tests for independent and dependent samples were used. Unless
otherwise indicated, the p-values given are two-tailed, and rep-
resent measures of effect.

ACKNOWLEDGMENTS
We are very grateful to Dr. Hiroshi Ohtsu from the Department of
Cellular Pharmacology, Tohoku University, Japan, and Dr. Jian
Sheng Lin from the Department of Experimental Medicine,
Claude Bernard University, Lyon, France, for the supply of the
HDC-KO and wild type mice. This work was supported by the
Deutsche Forschungsgemeinschaft (DFG) with grants HU306/
24-1 to JPH and HA1525/6-3 to HLH as well as by funds of the
European Union EU QLG3-CT-2002-00826 to HLH.

The publication costs of this article were defrayed in part by
payment of page charges. This article must therefore be hereby
marked “advertisement” in accordance with 18 USC section 1734
solely to indicate this fact.

REFERENCES
Airaksinen, M.S., Alanen, S., Szabat, E., Visser, T.J., and Panula, P. 1992.

Multiple neurotransmitters in the tuberomammillary nucleus:
Comparison of rat, mouse, and guinea pig. J. Comp. Neurol.
323: 103–116.

Alvarez, E.O. and Banzan, A.M. 1996. Hippocampus and learning:
Possible role of histamine receptors. Medicina 56: 155–160.

Bannerman, D.M., Good, M.A., Butcher, S.P., Ramsay, M., and Morris,
R.G. 1995. Distinct components of spatial learning revealed by prior
training and NMDA receptor blockade. Nature 378: 182–186.

Bekkers, J.M. 1993. Enhancement by histamine of NMDA-mediated
synaptic transmission in the hippocampus. Science 261: 104–106.

Blandina, P., Giorgetti, M., Bartolini, L., Cecchi, M., Timmerman, H.,
Leurs, R., Pepeu, G., and Giovannini, M.G. 1996. Inhibition of
cortical acetylcholine release and cognitive performance by
histamine H3 receptor activation in rats. Br. J. Pharmacol.
119: 1656–1664.

Brown, R.E. and Haas, H.L. 1999. On the mechanism of histaminergic
inhibition of glutamate release in the rat dentate gyrus. J. Physiol.
515: 777–786.

Brown, R.E., Fedorov, N.B., Haas, H.L., and Reymann, K.G. 1995.
Histaminergic modulation of synaptic plasticity in area CA1 of rat
hippocampal slices. Neuropharmacology 34: 181–190.

Brown, R.E., Stevens, D.R., and Haas, H.L. 2001. The physiology of brain
histamine. Prog. Neurobiol. 63: 637–672.

Cavus, I. and Teyler, T.J. 1998. NMDA receptor-independent LTP in
basal versus apical dendrites of CA1 pyramidal cells in rat
hippocampal slice. Hippocampus 8: 373–379.

Chen, Z., Sugimoto, Y., and Kamei, C. 1999. Effects of
intracerebroventricular injection of �-fluoromethylhistidine on
radial maze performance in rats. Pharmacol. Biochem. Behav.
64: 513–518.

De Souza-Silva, M.A., Mattern, C., Häcker, R., Nogueira, P.J., Huston,
J.P., and Schwarting, R.K. 1997. Intranasal administration of the
dopaminergic agonists L-DOPA, amphetamine, and cocaine increases
dopamine activity in the neostriatum: A microdialysis study in the
rat. J. Neurochem. 68: 233–239.

Di Chiara, G., Acquas, E., and Carboni, E. 1991. Role of mesolimbic
dopamine in the motivational effects of drugs: Brain dialysis and
place preference studies. In The mesolimbic dopamine system: From
motivation to action (eds. P. Willner and J. Scheel-Krüger), pp.
367–384. Wiley, Chichester, UK.

Dringenberg, H.C., De Souza-Silva, M.A., Schwarting, R.K., and Huston
J.P. 1998. Increased levels of extracellular dopamine in neostriatum
and nucleus accumbens after histamine H1 receptor blockade.
Naunyn Schmiedebergs Arch. Pharmacol. 358: 423–429.

Fibinger, H.C. and Phillips, A.G. 1988. Mesocorticolimbic dopamine
systems and reward. In The mesocorticolimbic dopamine system (ed.
P.W. Kalivas), Vol. 537, pp. 206–215. New York Academy of
Sciences, NY.

Flood, J.F., Uezu, K., and Morley, J.E. 1998. Effect of histamine H2 and
H3 receptor modulation in the septum on post-training memory
processing. Psychopharmacology 140: 279–284.

Frisch, C., Hasenöhrl, R.U., Haas, H.L., Weiler, H.T., Steinbusch,
H.W.M., and Huston, J.P. 1998. Facilitation of learning after lesions
of the tuberomammillary nucleus region in adult and aged rats. Exp.
Brain Res. 118: 447–456.

Frisch, C., Hasenöhrl, R.U., and Huston, J.P. 1999. Memory
improvement by post-trial injection of lidocaine into the
tuberomammillary nucleus, the source of neuronal histamine.
Neurobiol. Learn. Mem. 72: 69–77.

Galosi, R., Lenard, L., Knoche, A., Haas, H., Huston, J.P., and
Schwarting, R.K. 2001. Dopaminergic effects of histamine
administration in the nucleus accumbens and the impact of
H1-receptor blockade. Neuropharmacology 40: 624–633.

Gerlai, R. 1999. Ethological approaches in behavioral neurogenetic
research. In Handbook of molecular-genetic techniques for brain and
behavior research; techniques in the behavioral and neural science (eds.
W.E. Crusio and R.T. Gerlai), Vol. 13, pp. 605–613. Elsevier Science
B.V., New York.

Grover, L.M. and Yan, C. 1999. Evidence for involvement of group II/III
metabotropic glutamate receptors in NMDA receptor-independent
long-term potentiation in area CA1 of rat hippocampus. J.
Neurophysiol. 82: 2956–2969.

Haas, H. and Panula, P. 2003. The role of histamine and the
tuberomamillary nucleus in the nervous system. Nat. Rev. Neurosci.
4: 121–130.

Hasenöhrl, R.U., Weth, K., and Huston, J.P. 1999. Intraventricular
infusion of the histamine H1 receptor antagonist chlorpheniramine
improves maze performance and has anxiolytic-like effects in aged
hybrid Fischer 344xBrown Norway rats. Exp. Brain Res.
128: 435–440.

Hill, S.J., Ganellin, C.R., Timmerman, H., Schwarz, J.C., Shankley, N.P.,
Young, J.M., Schunack, W., Levi, R., and Haas, H.L. 1997.
International Union of Pharmacology. XIII. Classification of
histamine receptors. Pharmacol. Rev. 49: 253–278.

Hoh, T., Beiko, J., Boon, F., Weiss, S., and Cain, D.P. 1999. Complex
behavioral strategy and reversal learning in the water maze without
NMDA receptor-dependent long-term potentiation. J. Neurosci.
19: RC2.

Huston, J.P. and Oitzl, M.S. 1989. The relationship between
reinforcement and memory: Parallels in the rewarding and
mnemonic effects of the neuropeptide substance P. Neurosci.
Biobehav. Rev. 13: 171–180.

Huston, J.P., Wagner, U., and Hasenöhrl, R.U. 1997. The
tuberomammillary nucleus in the control of learning, memory and
reinforcement processes: Evidence for an inhibitory role. Behav.
Brain Res. 83: 97–105.

Irifune, M., Nomoto, M., and Fukuda, T. 1995. Effects of GBR 12909 on
locomotor activity and dopamine turnover in mice: Comparison
with apomorphine. Eur. J. Pharmacol. 272: 79–85.

Kamei, C., Okumura, Y., and Tasaka, K. 1993. Influence of histamine
depletion on learning and memory recollection in rats.
Psychopharmacology 111: 376–382.

Köhler, C., Swanson, L.W., Haglund, L., and Wu, J.Y. 1985. The
cytoarchitecture, histochemistry and projections of the
tuberomammillary nucleus in the rat. Neuroscience 16: 85–110.

Kubota, Y., Ito, C., Sakurai, E., Sakurai, E., Watanabe, T., and Ohtsu, H.
2002. Increased methamphetamine-induced locomotor activity and
behavioral sensitization in histamine-deficient mice. J. Neurochem.
83: 837–845.

Lin, J.S. 2000. Brain structures and mechanisms involved in the control
of cortical activation and wakefulness, with emphasis on the
posterior hypothalamus and histaminergic neurons. Sleep Med. Rev.
4: 471–503.

Maisonnette, S., Huston, J.P., Brandao, M., and Schwarting, R.K. 1998.
Behavioral asymmetries and neurochemical changes after unilateral
lesions of tuberomammillary nucleus or substantia nigra. Exp. Brain
Res. 120: 273–282.

Martin, S.J. and Morris, R.G. 2002. New life in an old idea: The synaptic
plasticity and memory hypothesis revisited. Hippocampus
12: 609–636.

Masukawa, Y., Suzuki, T., and Misawa, M. 1993. Differential
modification of the rewarding effects of methamphetamine and
cocaine by opioids and antihistamines. Psychopharmacology
111: 139–143.

Ohtsu, H., Tanaka, S., Terui, T., Hori, Y., Makabe-Kobayashi, Y., Pejler,
G., Tchougounova, E., Hellman, L., Gertsenstein, M., Hirasawa, N.,
et al. 2001. Mice lacking histidine decarboxylase exhibit abnormal
mast cells. FEBS Lett. 502: 53–56.

Onodera, K., Yamatodani, A., and Watanabe, T. 1992. Effects of
�-fluoromethylhistidine on locomotor activity, brain histamine and

Dere et al.

518 Learning & Memory
www.learnmem.org

 Cold Spring Harbor Laboratory Press on August 25, 2022 - Published by learnmem.cshlp.orgDownloaded from 

http://learnmem.cshlp.org/
http://www.cshlpress.com


catecholamine contents in rats. Exp. Clin. Pharmacol. 14: 97–105.
Onodera, K., Yamatodani, A., Watanabe, T., and Wada, H. 1994.

Neuropharmacology of the histaminergic neuron system in the
brain and its relationship with behavioral disorders. Prog. Neurobiol.
42: 685–702.

Otnaess, M.K., Brun, V.H., Moser, M.B., and Moser, E.I. 1999.
Pretraining prevents spatial learning impairment after saturation of
hippocampal long-term potentiation. J. Neurosci. 19: RC49.

Parmentier, R., Ohtsu, H., Djebbara-Hannas, Z., Valatx, J.L., Watanabe,
T., and Lin, J.S. 2002. Anatomical, physiological, and
pharmacological characteristics of histidine decarboxylase knock-out
mice: Evidence for the role of brain histamine in behavioral and
sleep–wake control. J. Neurosci. 22: 7695–7711.

Payne, G.W. and Neuman, R.S. 1997. Effects of hypomagnesia on
histamine H1 receptor-mediated facilitation of NMDA responses. Br.
J. Pharmacol. 121: 199–204.

Rubio, S., Begega, A., Santin, L.J., and Arias, J.L. 2002. Improvement of
spatial memory by (R)-�-methylhistamine, a histamine H3-receptor
agonist, on the Morris water-maze in rat. Behav. Brain Res.
129: 77–82.

Sakai, N., Sakurai, E., Sakurai, E., Yanai, K., Mirua, Y., and Watanabe, T.
1998. Depletion of brain histamine induced by �-fluoromethyl-
histidine enhances radial maze performance in rats with modulation
of brain amino acid levels. Life Sci. 62: 989–994.

Schlicker, E., Fink, K., Detzner, M., and Gothert, M. 1993. Histamine
inhibits dopamine release in the mouse striatum via presynaptic H3
receptors. J. Neural. Transm. Gen. Sect. 93: 1–10.

Schwarz, J.C., Arrang, J.M., Garbarg, M., Pollard, H., and Ruat, M. 1991.
Histaminergic transmission in the mamalian brain. Physiol. Rev.
71: 1–51.

Selbach, O., Brown, R.E., and Haas, H.L. 1997. Long-term increase of
hippocampal excitability by histamine and cyclic AMP.
Neuropharmacology 36: 1539–1548.

Sethy, V.M. and Francis, J.W. 1988. Regulation of brain acetylcholine
concentration by muscarinic receptors. J. Pharmacol. Exp. Ther.
246: 243–248.

Shannon, H.E. and Su, T.P. 1982. Effects of the combination of
tripelennamine and pentazocine at the behavioral and molecular
levels. Pharmacol. Biochem. Behav. 17: 789–795.

Steele, R.J. and Morris, R.G.M. 1999. Delay-dependent impairment of a
matching-to-place task with chronic and intrahippocampal infusion
of the NMDA-antagonist D-AP5. Hippocampus 9: 118–136.

Taga, C., Sugimoto, Y., Nishiga, M., Fujii, Y., and Kamei, C. 2001. Effects
of vasopressin on histamine H1 receptor antagonist-induced spatial
memory deficits in rats. Eur. J. Pharmacol. 423: 167–170.

Tang, Y.P., Shimiizu, E., Dube, G.R., Rampon, C., Kerchner, G.A., Zhuo,
M., Liu, G., and Tsien, J.Z. 1999. Genetic enhancement of learning
and memory in mice. Nature 401: 63–69.

Thomas, K.L., Davis, S., Hunt, S.P., and Laroche, S. 1996. Alterations in
the expression of specific glutamate receptor subunits following
hippocampal LTP in vivo. Learn. Mem. 3: 197–208.

Tsien, J.Z. 1998. Behavioral genetics: Subregion- and cell type-restricted
gene knockout in mouse brain. Pathol. Biol. 46: 699–700.

Unterwald, E.M., Kucharski, L.T., Williams, J.E., and Kornetsky, C. 1984.
Tripelennamine: Enhancement of brain-stimulation reward. Life Sci.
34: 149–153.

Vorobjev, V.S., Sharonova, I.N., Walsh, I.B., and Haas, H.L. 1993.
Histamine potentiates N-methyl-D-aspartate responses in acutely
isolated hippocampal neurons. Neuron 11: 837–844.

Wada, H., Inagaki, N., Yamatodani, A., and Watanabe, T. 1991. Is the
histaminergic neuron system a regulatory center for whole-brain
activity? Tends Neurosci. 14: 415–418.

Wagner, U., Weiler, H.T., and Huston, J.P. 1993. Amplification of
rewarding hypothalamic stimulation following a unilateral lesion in
the region of the tuberomammillary nucleus. Neuroscience 52:
927–932.

Watanabe, T., Yamatodani, A., Maeyama, K., and Wada, H. 1990.
Pharmacology of �-fluoromethylhistidine, a specific inhibitor of
histidine decarboxylase. Trends Pharmac. Sci. 11: 363–367.

Williams, J.M., Mason-Parker, S.E., Abraham, W.C., and Tate, W.P. 1998.
Biphasic changes in the levels of N-methyl-D-aspartate receptor-2
subunits correlate with the induction and persistence of long-term
potentiation. Mol. Brain Res. 60: 21–27.

Williams, K. 1994. Subunit-specific potentiation of recombinant
N-methyl-D-aspartate receptors by histamine. Mol. Pharmacol.
46: 531–541.

Wise, R.A. 1996. Addictive drugs and brain stimulation reward. Annu.
Rev. Neurosci. 19: 319–340.

Wood, P.L. and Altar, C.A. 1988. Dopamine release in vivo from
nigrostriatal, mesolimbic, and mesocortical neurons: Utility of
3-methoxytyramine measurements. Pharmacol. Rev. 40: 163–187.

Yamatodani, A., Inagaki, N., Panula, P., Itowi, N., Watanabe, T., and
Wada, H. 1991. Structure and functions of the histaminergic
neurone system. In Histamine and histamine antagonists (ed. B.
Uvnäs), pp. 243–283. Springer-Verlag, Berlin.

Yanai, K., Son, L.Z., Endou, M., Sakurai, E., and Watanabe, T. 1998a.
Targeting disruption of histamine H1 receptors in mice: Behavioral
and neurochemical characterization. Life Sci. 62: 1607–1610.

Yanai, K., Son, L.Z., Endou, M., Sakurai, E., Nakagawasai, O., Tadano, T.,
Kisara, K., Inoue, I., Watanabe, T., and Watanabe, T. 1998b.
Behavioural characterization and amounts of brain monoamines and
their metabolites in mice lacking histamine H1 receptors.
Neuroscience 87: 479–487.

Zimmermann, P., Privou, C., and Huston, J.P. 1999. Differential
sensitivity of the caudal and rostral nucleus accumbens to the
rewarding effects of a H1-histaminergic receptor blocker as measured
with place-preference and self-stimulation behavior. Neuroscience
94: 93–103.

Received July 24, 2003; accepted in revised form October 3, 2003.

Memory and Dopamine Metabolism in HDC-KO Mice

Learning & Memory 519
www.learnmem.org

 Cold Spring Harbor Laboratory Press on August 25, 2022 - Published by learnmem.cshlp.orgDownloaded from 

http://learnmem.cshlp.org/
http://www.cshlpress.com


 10.1101/lm.67603Access the most recent version at doi:
 10:2003, Learn. Mem. 

  
Ekrem Dere, Maria A. De Souza-Silva, Bianca Topic, et al. 
  
Ventro-Striatal Dopamine Turnover
Reinforced Water-Maze Performance, and Increased Neo- and
Nonreinforced Episodic Object Memory, Improved Negatively 
Histidine-Decarboxylase Knockout Mice Show Deficient

  
References

  
 http://learnmem.cshlp.org/content/10/6/510.full.html#ref-list-1

This article cites 58 articles, 7 of which can be accessed free at:

  
License

Service
Email Alerting

  
 click here.top right corner of the article or 

Receive free email alerts when new articles cite this article - sign up in the box at the

Cold Spring Harbor Laboratory Press

 Cold Spring Harbor Laboratory Press on August 25, 2022 - Published by learnmem.cshlp.orgDownloaded from 

http://learnmem.cshlp.org/lookup/doi/10.1101/lm.67603
http://learnmem.cshlp.org/content/10/6/510.full.html#ref-list-1
http://learnmem.cshlp.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=protocols;10.1101/lm.67603&return_type=article&return_url=http://learnmem.cshlp.org/content/10.1101/lm.67603.full.pdf
http://learnmem.cshlp.org/
http://www.cshlpress.com

