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Abstract

Single-cell, spatially resolved ‘omics analysis of tissues is poised to transform biomedical research 

and clinical practice. We have developed an open-source, computational multiplex image 

cytometry analysis toolbox (miCAT) to enable interactive, quantitative, and comprehensive 

exploration of individual cell phenotypes, cell-to-cell interactions, microenvironments, and 

morphological structures within intact tissues. We highlight the unique abilities of miCAT by 

analysis of highly multiplexed mass cytometry images of human breast cancer tissues.

Technological advances in multi-parametric analysis of single cells have revealed the 

heterogeneity of cellular phenotypes and functional states concealed in population-based 

studies1–3. Each cellular phenotype is defined by the interplay of its internal state and the 

environment in which it resides, and tissue function is the output of these coordinated cell 

activities. Deregulation of inter-cellular communication is central to many diseases such as 

cancer4. Consequently, the ability to analyze single-cell functional states with spatial 
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resolution is key to understanding normal tissue function and disease biology and for the 

development of treatments of disease.

Recent techniques such as FISSEQ5, MERFISH6, cycling immunofluorescence7–9, 

multiplexed ion beam imaging (MIBI)10, and imaging mass cytometry (IMC)11 allow for 

single-cell, spatially resolved, highly multiplexed analysis of solid tissues and provide 

essential information on the distribution of transcripts, proteins, and their modifications 

within single cells, microenvironments, and entire tissues12. Despite these experimental 

advances no computational approach has been developed to enable comprehensive, 

quantitative, and interactive exploration of all levels of information within the data that 

results from spatially resolved, highly multiplexed measurements on tissue. Current open-

source tools that provide image-linked data analysis are typically focused on the analysis of 

cell lines imaged with low-plex fluorescence microscopy or basic tissue histology and are 

not geared for analysis of highly multiplexed measurements13–15. On the other hand, tools 

developed to perform analyses of non-imaging, multiplexed single-cell data such as that 

obtained using suspension-based mass cytometry do not exploit spatial information 

(Supplementary Fig. 1)16,17.

In order to provide a complete picture of a tissue ecosystem, define molecular and spatial 

signatures necessary for analysis of tissue biology, and, in the case of disease, identify 

clinically relevant features, it is necessary to analyze and interrelate layers of information 

obtained from molecular measurements on cells, cell populations, cell-to-cell interactions, 

microenvironments, tissues, and experimental cohorts. Here we present a powerful, 

interactive computational platform called miCAT that makes quantitative analysis of highly 

multiplexed, single-cell-resolved tissue measurements possible (Supplementary Software 

1-3). miCAT combines intuitive high-dimensional image visualization, state-of-the-art 

analysis methods for cell phenotype characterization, and novel algorithms for the 

comprehensive study of cell-to-cell interactions and the social networks of cells within 

complex tissues (Fig. 1). Thus, miCAT provides investigators from biology, biomedicine, 

and pathology a toolbox with which to investigate tissues during health, disease, and 

treatment.

In miCAT, all single-cell information, including spatial features (Fig. 1a), is linked to the 

corresponding multiplex image enabling visualization of images and single-cell analysis in 

parallel (Fig. 1b,c). miCAT uses a segmentation mask to extract single-cell data from images 

including abundances of all measured markers for a cell and area of interest, spatial features 

(like cell size and shape), and aspects of the cell’s environment such as cell neighbors and 

cell crowding. This information is compiled into a flow cytometry standard format (.fcs) file 

for further analysis inside or outside miCAT. “Round-trip” analyses, from a specific area of 

an image, to dataset-wide analyses of single-cell phenotypes and their interactions, and back 

to the visualization of unique cells on images, enables users to define and understand key 

cell populations and their spatial context in tissue. To enable quantitative and systematic 

analysis of all cell-to-cell interactions, we developed a novel algorithm to identify proximate 

cell-to-cell interactions that are present more frequently than expected by chance (Fig. 1d). 

Our algorithm enables determination of significant interactions and unique cell 

environments across entire datasets and within specific cohorts (Fig. 1d,e). These 
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interactions can be represented in “social networks” of cells and is complementary to 

interactions inferred from the presence of ligand receptor pairs18.

To combine image-based spatial information and high-dimensional cytometry data, the 

miCAT GUI is divided in two parallel sections for paired image and cytometry analysis 

(Supplementary Note 1). In the image visualization section of miCAT, high-dimensional 

images (Fig. 2a) as well as cell masks, single-cell marker quantification, and cell 

identification labels can be visualized. In the analysis section of miCAT, image-derived 

marker quantification and spatial features of single-cell data are extracted for each image 

(Fig. 2a), combined (Fig. 2b), and visualized using multi-dimensional reduction tools such 

as tSNE maps16 (Fig. 2b), scatter plots (Supplementary Fig. 2), histograms, box plots, or 

other visualizations (Supplementary Note 1).

To demonstrate the potential of miCAT-powered analyses, we investigated cellular 

phenotypes and microenvironments of human breast cancer as visualized by IMC. By 

pairing classic immunohistochemistry staining, high-resolution tissue laser ablation, and 

mass cytometry, IMC can measure abundances of more than 40 unique metal-isotope-

labeled tissue-bound antibodies simultaneously at a resolution comparable to fluorescence 

microscopy11. Here we analyzed images collected from 49 diverse breast cancer samples 

and three matched normal tissues, and an additional six normal breast tissue samples. 

Tissues were stained with an antibody panel tailored to identify cell lineages and to detect 

signaling pathway activation, proliferation, apoptosis, and clinical markers (Supplementary 

Fig. 3, Supplementary Tables 1-2).

To gain a tissue-wide overview of cell phenotypes present in a given image set, we have 

incorporated two approaches into miCAT. The first approach is supervised and based on 

tSNE16, a data dimensionality reduction method that projects multi-marker quantification 

into two dimensions, grouping similar cells (as shown for image analysis of all samples in 

Fig. 2b,c). On the tSNE map in miCAT, expression of individual markers can be highlighted 

using color scales, manually gated, and annotated for cell phenotype (Supplementary Note 

1). The second approach is based on the unsupervised clustering algorithm Phenograph19. 

In the breast cancer and normal tissue samples, PhenoGraph identified 29 phenotype clusters 

shared across images and clinical subgroups, which were then visualized on a tSNE map 

(Fig. 2c, Supplementary Fig. 3). These cell phenotypes are present at different frequencies 

(Fig. 2d) and were characterized by specific epitopes (e.g., vimentin, phenotype #4; and 

CD68, phenotype #7) and combinations of markers (e.g., proliferative Ki-67+ and phospho-

S6+ phenotypes #8, #10, and #19) (Fig. 2e). Cell populations can be linked back to their 

source images and visualized within the context of their multi-cellular environment (Fig. 2f).

Tumor-associated macrophages (TAMs) can drive or hinder tumor progression and are 

therefore highly attractive biomarkers and drug targets20. To gain a deeper understanding of 

TAMs and their neighborhoods, we inspected PhenoGraph phenotype #7 with high CD68 

signal suggestive of macrophage identity (Fig. 2e, Supplementary Fig. 2b). It is also possible 

to select potential macrophages by gating for CD68 expression on the tSNE plot (Fig. 2g). 

CD68 epitope expression was visualized in images by color (Fig. 2h,i, yellow) and 
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heatmapped for each segmented cell (Fig. 2j). miCAT also allows CD68+ cells selected from 

a plot to be highlighted on source images in their original tissue context (Fig. 2k).

miCAT has two neighborhood functions that enable investigation of the microenvironment. 

The first function is user guided and returns a subpopulation of cells touching or proximal to 

a cell population of interest for visualization on images (Fig. 2l) or for downstream analysis 

(Fig. 2m). This analysis performed on the 52 tumor-derived images showed that distinct 

proliferative (Ki-67, phospho-S6) and hypoxic (carbonic anhydrase IX) epithelial tumor 

cells neighbor CD68+ cells (Supplementary Fig. 4). The second neighborhood function 

enables the unbiased and systematic study of all cell-to-cell interactions present in a tissue or 

all tissues of a sample cohort by using a permutation test to compare the number of 

interactions between all cell types in a given image to that of a matched control containing 

randomized cell phenotypes (Fig. 3a). This approach determines the significance of cell-to-

cell interactions and reveals enrichments or depletions in cell-to-cell interactions that are 

indicative of cellular organization. The significance of a neighboring interaction between 

each pair of phenotypes is visualized as a heatmap in which rows represent the 

neighborhood of a cell phenotype of interest and columns the enrichment or depletion of a 

cell in other neighborhoods (Fig. 3b,c).

We validated this strategy (Methods, Supplementary Notes 2-3) on synthetic data 

(Supplementary Fig. 5), investigated its robustness to variations in cell segmentation 

(Supplementary Fig. 6), and showed that the algorithm identified known luminal-basal cell 

interactions in healthy mammary ducts and alveoli (Supplementary Fig. 7). Neighborhood 

analyses of images obtained from 49 breast cancer samples and three matched normal 

tissues identified cell phenotypes that surround or are surrounded by another cell phenotype 

(Fig. 3b,c, Supplementary Fig. 8a,b). For TAMs (phenotype #7), unsupervised neighborhood 

analysis revealed that they surround multiple cell phenotypes (Fig. 2e; Fig. 3c, column 7 

rows 6, 8, 22, 23, 24) identifying key TAM-interacting cells within all neighbor interactions 

(Supplementary Fig. 4j). Relationships and cellular crosstalk between CD68+ cells and other 

cells, including phospho-S6+/vimentin+ stromal cells (#6) and E-cadherin+/phospho-S6+/

Twist+ tumor cells (#22), were identified, suggestive of distinct tumor microenvironments 

for future study.

To identify cellular landscapes, we clustered images based on all significant cell-to-cell 

interactions (Fig. 3d). Distinct subgroups enriched in Grade 1 and Grade 3 tumors became 

apparent as well as a mixed grade subgroup. To facilitate the visualization and comparison 

of cell-to-cell interactions over large datasets, we used our permutation-based neighborhood 

algorithm to identify social networks of cells that are specific to tumor grade (Fig. 3e). 

Separation of the Grade 1 tumor subgroup was driven by tumor cell phenotypes (phenotypes 

#3, #9, #11) that interact with surrounding stromal cells (phenotypes #1, #5, #13), a cellular 

organization that reflects tissue tubularity, a major pathology grading criteria (Fig. 3d, e, 

Supplementary Fig. 8a,b, Supplementary Fig. 9). The more advanced lesions of Grade 3 

samples contained hypoxic cells (phenotype #14), interacting proliferative cells (phenotypes 

#8, #10, #19), and interactions with “active” stroma (phospho-S6+ and vimentin+, phenotype 

#6) including macrophages (phenotype #7) (Fig. 3d,e, Supplementary Fig. 8c,d, 

Supplementary Fig. 9). Clustering of images based on significant cell interactions defined 
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groups of tissues (in this case, the cancer samples) that have similar organization and 

revealed pathology grade-associated cellular ecosystems that may distinguish unique disease 

states.

By combining cytometry, image analysis, and novel algorithms for cell-to-cell interaction 

network analysis, miCAT is able to define complex cell types using multiplexed 

measurements and spatial features as parameters and elucidate patterns of cellular 

interactions within heterogeneous tissues. The use of round-trip analyses between single-cell 

data and source images using machine learning and community-finding algorithms within an 

intuitive user interface will enhance our understanding of tissue structure at the cellular 

level. Combined with focused, hypothesis-driven datasets, future investigations of 

multiplexed imaging cytometry data using miCAT could reveal cell types and cell 

interactions that drive disease. miCAT is open source: we invite the community to further 

develop this toolbox for the analysis of next-generation imaging and pathology data.

Online Methods

Preparation and staining of breast cancer tissue specimens

Formalin-fixed paraffin-embedded tissue samples from patients treated at the University 

Hospital Zurich between 1991 and 2005 were retrieved from the archives of the Institute of 

Surgical Pathology. This project was approved by the local Commission of Ethics (ref. no. 

StV 12-2005). H&E stained sections of all tumors were re-evaluated by a pathologist for 

their suitability for tissue microarray construction prior to array construction as previously 

described21.

Tissues were stained as previously described11. Briefly, tissue sections were de-waxed 

overnight in xylene and rehydrated in a graded series of alcohol (ethanol:deionized water 

100:0, 90:10, 80:20, 70:30, 50:50, 0:100; 5 min each). Heat-induced epitope retrieval was 

conducted in a water bath at 95 °C in Tris-EDTA buffer at pH 9 for 20 min. After immediate 

cooling, the microarrays were blocked with 3% BSA in TBS for 1 hour. Samples were 

incubated overnight at 4 °C in primary antibody at 7.5 g/L diluted in TBS/0.1% Triton 

X-100/1% BSA (clones in Supplementary Table 1, Supplementary Note 4). Panel design and 

antibody database management was done in AirLab22. Samples were then washed twice 

with TBS/0.1% Triton X-100 and twice with TBS and dried before imaging mass cytometry 

measurement.

Imaging mass cytometry

Antibody staining of tissue sections was quantified through the combination of laser ablation 

using a modified ArF excimer GeoLas C laser system (Coherent) to ablate tissues in a 

rastered pattern at 20 Hz and to direct aerosol transportation of the sample to a CyTOF mass 

cytometer (Fluidigm) as described previously23. All raw data processing was performed 

using in-house Matlab routines as described and provided previously11.
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Segmentation

Segmentation was performed using Ilastik 1.1.924 and CellProfiler 2.1.115. Ilastik was used 

to classify pixels into three classes (nuclei, membrane, and background) and to generate 

probability maps. CellProfiler was used to segment probability maps to generate 

segmentation masks. A combination of channels was used to classify the background and 

membrane25. These masks were combined with the individual tiff files to extract single-cell 

information from each individual image.

To quantitatively assess the segmentation quality, we used four intuitive segmentation 

constraints for a segmentation score25: (1) mask should overlap with membrane signal; (2) 

mask should not overlap with nuclei signal; (3) segmented cells should contain maximally 

one nucleus; (4) mask should approximate the expected number of cells based on cell radius. 

We also analyzed the effect of segmentation by using segmentation masks generated by five 

independent users on three test images (Supplementary Fig. 6). The complexities and 

difficulties of image segmentation are discussed in our Supplementary Note 3.

Single-cell feature extraction

miCAT uses Matlab’s regionprops function to extract shape and pixel value measurements. 

Additionally, by step-wise pixel expansion, miCAT creates a network of neighbors 

surrounding each cell at a range of defined distances. In most cases, expansion in the range 

of 1 to 6 pixels was chosen. Cells were expanded using a rectangular membrane shape. All 

cells within the defined range were considered neighbors. The distances between centroids 

were used to define cell-to-cell distances. The number of neighbors and the percent of 

membrane in contact with a neighboring cell were both determined with modified 

CellProfiler 1.0 modules15.

Data transformation

Raw measurements were used for the presented data. miCAT also offers arcsinh 

transformation with a variable cofactor input.

Normalization

All images were segmented and single-cell measurements were extracted from all available 

channels using the mean pixel values for each segmented cell. The presented data were not 

normalized, but miCAT features Z-score normalization across all samples or across a 

subgroup as a module. We used 99th percentile normalized data for t-SNE and PhenoGraph 

as suggested16,19. Heat maps were visualized using scaled values from 0-1 for individual 

columns in analysis plots as well as on images for individual masks.

miCAT

miCAT can be downloaded either as a Matlab 2014b app or as a stand-alone application for 

Mac OS12 (Supplementary Software 1), Windows 7 (Supplementary Software 2), and 

Windows 10 (Supplementary Software 3) from https://github.com/BodenmillerGroup/

miCAT. Documentation, user manual, and development versions of miCAT can also be 

found on the project page. All modules, if not differently stated, were written in Matlab 
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2014b, and the GUI was designed in Matlab 2014b using Matlab's GUI development 

environment (GUIDE). miCAT is built modularly to enable addition of new features without 

need for changes to the existing structure. In general, features in miCAT must include only 

two basic scripts: callback from the GUI and the script executing the function. The main 

functions are not linked to the GUI and can be run independently.

All data necessary to perform any function for the current session can be retrieved from the 

GUI handles or included manually without the GUI. Throughout a session, the data are kept 

in the fcs-format structure. There is one main matrix containing a column for each channel 

and a row for each individual cell of each image. This matrix is continuously updated during 

the session and will therefore also contain the custom gates and channels. The corresponding 

channel names for each image are saved in a cell array. All individual tiff files and 

corresponding masks are stored in a multidimensional matrix structure.

bh-t-SNE

We used the Barnes-Hut t-SNE implementation in miCAT16. Data were 99th-percentile 

normalized before the analysis, and we used the default t-SNE parameters (initial 

dimensions: 110; perplexity: 30; and theta: 0.5). The random seeds for the individual runs 

can be recorded.

PhenoGraph

PhenoGraph version 0.2 was used19. Data were 99th-percentile normalized before the 

analysis, and default parameters with nearest neighbors of 75 were used. This parameter was 

chosen based on prior knowledge of the underlying cell types. Lower values for nearest 

neighbors result in an over clustering and higher values an under clustering. The random 

seeds for the individual runs can be recorded.

Neighborhood analysis – permutation test

The neighborhood analysis uses basic statistical methods to find significantly enriched 

interactions between or within cell phenotypes. First, cells are manually or automatically 

classified. Manual classification can be done by manual gating on biaxial/t-SNE plots. 

Automatic classification uses the PhenoGraph19 algorithm, which consistently performs 

well for datasets with multiple cell populations26.

Once classified, pairwise interactions at a user-defined distance (6 pixels) between and 

within cell phenotypes are calculated for each single cell with its neighbors. A neighbor is 

defined as a cell within the pixel distance selected during the loading process. Pairwise 

interactions between and within cell phenotypes are compared to a random distribution using 

a permutation test. This test provides us with a p-value for each one-tailed test which 

represents interaction or avoidance. These p-values represent the likelihood of a 

neighborhood interaction being enriched or delimited in comparison to a randomized version 

of the same tissue. The comparison to a matched randomized tissue for every individual 

image controls for both the distinct connectivity and the specific cell types in that tissue. 

Equation 1 describes our approach using a permutation test with Monte Carlo sampling. We 

run this test twice to calculate the p-value for each tail.
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(Equation 1)

Agglomerative hierarchical clustering using inner squared distance (minimum variance 

algorithm employing Ward’s method) as linkage criteria and Euclidean distance as the 

distance metric are applied to display similar interaction signatures in a dendrogram of all 

samples.

Analyses of synthetic data (Supplementary Fig. 5), variations in single cell masks 

(Supplementary Fig. 6), and organized normal breast tissue (Supplementary Fig. 7) validated 

and highlighted the robustness of our neighborhood analysis. In the case of rare cell 

populations (i.e., low cell number) our algorithm is able to detect significantly enriched 

interactions (Supplementary Note 2-3). In contrast, avoidance in rare cell populations will 

rarely be detected due to the minimal interactions among the rare cell population in the 

random shuffled control. The absolute cell number or the size of the image does not have a 

direct effect on the neighborhood analysis, as described above; only the frequencies of cell 

types present and the relative quantities are important. The expected average interactions can 

be described by equation 2, which includes the amount of cell type A multiplied by the 

fraction of cell type B and by the average connectivity of the image. If the average 

connectivity in an image is high, the expected interactions are high and vice versa.

(Equation 2)

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. From molecular to clinical information: multi-scale analysis of the tissue ecosystem.
(a) Spatially resolved, high-dimension molecular measurements are aggregated using image 

masks to define regions corresponding to each cell. (b) Visualization of images, (c) 

cytometry analysis, and (d) analysis of neighbors and cellular interaction networks facilitate 

“round-trip” analysis through layers of information. (e) Using molecular, cellular, and spatial 

signatures experimental cohorts can be compared and contrasted.
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Figure 2. Round-trip analysis of unique cell types in high-dimension images of breast cancer.
(a) Left: Two representative multi-parametric images are displayed in the miCAT image 

window using user-defined color channels (red, E-cadherin; green, vimentin; blue, histone 

H3; cyan, Ki-67; magenta, cytokeratin 7; yellow, CD68). Up to six colors can be defined. 

Scale bar = 100 µm. Right: High-dimension single-cell data, including spatial features and 

all expressed markers from each segmented cell are extracted from each individual image 

and visualized in a t-SNE plot. (b) When the entire breast cancer dataset is visualized in one 

t-SNE plot, distinct colors distinguish cells of each source image. (c) Unsupervised 
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clustering of all cells according to their marker expression throughout the dataset using 

PhenoGraph defines complex cell phenotypes and enables labeling of each cell phenotype 

cluster with a distinct color. (d) Bar plot of the total number of cells from each PhenoGraph-

defined cell phenotype in the dataset. (e) Cell phenotypes can be further investigated using 

plotting tools such as heatmaps. (f) All single cells can be colored according to the identified 

phenotypes within the context of the tissue microenvironment on their original image. In this 

example, non-cell tissue is not labeled. (g) Quantification of an individual parameter can be 

heatmapped onto the t-SNE plot, and populations can be identified in a supervised manner 

using the gating tool. (h) All images containing cells of a subpopulation of interest can then 

be identified. In this example: red, E-cadherin; green, fibronectin; blue, histone H3; cyan, 

Ki67; magenta, cytokeratin 7; yellow, CD68. Scale bar = 100 µm. Images can be visualized 

using (i) pseudo-color or by (j) heatmap representing the intensity of a marker in each cell. 

(k) Cells of interest can be highlighted on the image (turquoise), and neighboring cells 

(purple or gray if representing both subpopulations) within a defined pixel range can also be 

identified and highlighted on (l) the image or (m) the analysis plot of the individual image 

(red, cell of interest; blue, neighbor; yellow, both subpopulations).
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Figure 3. Neighborhood analysis of breast cancer cell phenotypes.
(a) Schematic of neighbor analysis in which the prevalence of a particular cell-to-cell 

interaction in an image is quantified and significance is determined by comparison to its 

prevalence in cell-type-randomized controls of the same image. Number of interactions 

between abundant green cells (green line), between rare clustered red cells (red line), and 

between abundant green cells and rare red cells (black line). (b) Schematic depicting 

directional aspects of neighbor interactions visualized in the heatmap. Rows visualize the 

significance of all cell types surrounding a cell type of interest. Columns visualize the 
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significance of the cell type of interest surrounding other cell types. White represents a 

prevalence of less than 10%. (c) All interactions present in 49 breast tumor images and three 

matched normal tissue images are represented as a heatmap in which the cell type in the row 

is significantly neighbored (red) or avoided (blue) by the cell type in the column. 

Significance was determined by permutation test (p < 0.01). Highlighted squares indicate an 

example of a directional interaction: Stromal phenotype #7 significantly surrounds tumor 

cell type #22 (red square), but #22 is not surrounded by #7 (blue square). (d) Agglomerative 

clustering of all samples and cell-to-cell interactions according to the presence of significant 

(p < 0.01) phenotype interaction (red) or avoidance (blue). White represents interactions that 

are not present or not significant. (e) Force-directed cell interaction network graphs 

representing the interactions of PhenoGraph-defined cell phenotypes in Cluster 1 and 

Cluster 2 tumors. Circle color corresponds to PhenoGraph cluster. Red arrows indicate 

interaction and blue arrows avoidance, and intensities of the line color indicate significance. 

A connection is only visualized if the interaction or avoidance is significant in a least 30% of 

the grouped samples and the cell phenotypes are simultaneously present in at least 90% of 

the grouped samples.
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