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In grouped data, the estimation of the Lorenz curve with-
out taking into account the within-class variability leads to an
overestimation of the curve and an underestimation of the Gini
index. We propose a new strictly convex estimator of the Lorenz
curve derived from a linear interpolation-based approximation
of the cumulative distribution function. Integrating the Lorenz
curve, a correction can be derived for the Gini index that takes
the intraclass variability into account.
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1. INTRODUCTION

According to the U.S. Census Bureau (DeNavas-Walt, Proc-
tor, and Smith 2011), in 2010, the shares of aggregate incomes
are distributed as follows. The poorest 20% of households earn
3.3% of the total aggregate income, while the poorest 80% of
households earn 49.8% of the total income. The evolution of the
shares is presented in Table 1. The curve that associates each
proportion α of poorest to this share of income is called the
Lorenz (1905) curve. This curve is the basic tool for the compu-
tation of several indices of inequality of income and wealth, the
most well-known and broadly used of which is the Gini index
(Gini 1914).

The Gini concentration index can be derived from the Lorenz
curve. Larger Gini coefficients mean greater inequality of in-
come. The Gini index is standardized in the sense where it
varies between 0 and 1. Value 0 occurs when all the households
have the same income, while value 1 occurs when only one
household earns all the available income. The Gini index for the
household income distribution in the United States in 2010 was
estimated to be 0.469 (DeNavas-Walt, Proctor, and Smith 2011).

Although the Gini index is mostly used to measure the un-
equal allocation of income, its area of application is very wide,
ranging from computer science to ecology or industrial concen-
tration. Thus, both the Lorenz curve and the Gini index have

generated an impressive amount of literature (for a review, see,
e.g., Giorgi 1990, 1999; Cowell 2000; Xu 2004; Langel and
Tillé 2013).

Inside this literature, a large set of articles is devoted to how
bounds may be defined for the Lorenz curve and the Gini index
when estimated from grouped data. Deriving a lower (upper)
bound for the Lorenz curve generally allows for the derivation of
an upper (lower) bound for the Gini index. The Lorenz curve and
the Gini index can be estimated by assuming that all the incomes
are equal within the groups. This reductive hypothesis leads to
overestimation of the Lorenz curve (and an underestimation of
the Gini index) and thus an upper bound for the Lorenz curve
(Gastwirth 1972; Mehran 1975).

Different approaches exist for obtaining lower bounds of the
Lorenz curve and, by extension, upper bounds of the Gini in-
dex. As shown by Ogwang (2006), proposed upper bounds for
the Gini index differ mostly in the grouping information they
require, such as the limits of each interval and the mean income
of each class. Moreover, some approaches make assumptions
on the shape of the underlying density function.

Gastwirth (1972) proposed distribution-free bounds for the
Lorenz curve and the Gini index that involve a grouping-
correction term (see also Fuller 1979; Gastwirth, Nayak, and
Krieger 1986; Giorgi and Pallini 1986, 1987; Ogwang and
Wang 2004), as well as improved bounds at an additional cost of
only weak assumptions on the distribution function. The equiva-
lence between different approaches is shown by Ogwang (2003).
Mehran (1975) and Silber (1990) suggested approaches that do
not require knowledge of the mean income or of the limits of the
grouping intervals, while Krieger (1979) derived bounds for
the Lorenz curve and the Gini index under the assumption that
the probability density function is unimodal.

The Lorenz curve can also be directly modeled (Kakwani
and Podder 1976) and estimated by modeling the distribu-
tion of the variable of interest (e.g., using Pareto, beta, log-
normal, generalized-beta distributions). A review of expres-
sions of the Lorenz curve and the Gini index for a vari-
ety of parametric distributions can be found in Giorgi and
Nadarajah (2010). Income distributions, however, seem to have
modeling-resistant distributions. Schader and Schmid (1994)
showed that most parametric Lorenz curves produce unreli-
able estimates in empirical applications. Finally, Cowell and
Mehta (1982) used a split-histogram technique to estimate var-
ious inequality measures, while Gastwirth and Glauberman
(1976) and Schrag and Krämer (1993) had proposed to esti-
mate the Lorenz curve using a Hermite interpolator. The latter
method seems to give reasonable estimates for the Gini index.
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Table 1. Shares of aggregate income earned by poorest fractions of
households (source: DeNavas-Walt, Proctor, and Smith 2011)

Year 20% 40% 60% 80%

2010 3.3 11.8 26.4 49.8
2000 3.6 12.5 27.3 50.3
1990 3.8 13.4 29.3 53.3
1980 4.2 14.4 31.2 55.9

Unfortunately, the underlying estimated Lorenz curve is not
always convex.

In this article, after reviewing definitions, we use a very sim-
ple procedure to construct a realistic quadratic interpolation of
the Lorenz curve. The histogram is used as the estimator of den-
sity. We then derive an estimator of the cumulative distribution
function, a quantile function, and a quadratic interpolation for
the Lorenz curve. Using this convex estimator of the Lorenz
curve, we derive an estimator of the Gini index that contains a
correction for the within-class variability.

Note that estimating the density via a histogram depends
heavily on the number and length of classes of the available
grouped data. Moreover, this issue is accentuated by skewness,
which is a common feature of income distributions. The choice
of the binning procedure when producing a histogram is a well-
known issue (Sturges 1926; Doane 1976; Scott 1979) and a par-
ticular case of the bandwidth problem in nonparametric statis-
tics. As it is clear that, for example, larger bins result in loss of
information; the quality of estimation of the Lorenz curve or the
Gini index is affected by the choice of class intervals. However,
this issue is not addressed in this article because the binning
procedure is viewed here as more of a constraint than a choice.
Indeed, for confidentiality reasons, income data are often only
available in grouped form with a given number of classes and
given interval bounds.

2. LORENZ CURVE AND GINI INDEX IN INFINITE
POPULATION

The Lorenz curve is the share of total income earned by the
100α% poorest. For example, the statement that the poorest 40%
of households in the United States earned altogether 11.8% of
the total income in 2010 is simply evaluating the Lorenz curve
for the household income distribution of the United States at
α = 0.4.

More formally, let X be a positive and continuous income
random variable with a strictly increasing cumulative distribu-
tion function F (.). We assume that the expectation μ and the
variance σ 2 exist. The quantile function is the inverse of F (.):

Q(α) = F−1(α), α ∈ (0, 1).

The interpretation of the quantile is that 100α% of the
population has an income less than or equal to Q(α) and
100(1 − α)% of the population has an income larger than or
equal to Q(α).

The Lorenz curve is defined by the ratio

L(α) =
∫ Q(α)

0 xdF(x)∫∞
0 xdF(x)

. (1)

It is the share of average income earned by the 100α% poor-
est, which in a finite population is also the total income of the
100α% poorest divided by the total income of the entire popu-
lation. By posing x = Q(p) (and thus F (x) = p), we can also
define the Lorenz curve as

L(α) =
∫ α

0 Q(p)dp∫ 1
0 Q(p)dp

.

The numerator of the Lorenz curve is the incomplete (or
partial) first moment evaluated at the quantity Q(α). The de-
nominator of the Lorenz curve in (1) is equal to the expectation
of X: ∫ 1

0
Q(p)dp =

∫ ∞

0
xdF(x) = μ.

When F (.) is strictly increasing, the Lorenz curve is strictly
convex, because its derivative is the quantile function divided
by the mean, which is a strictly increasing function. Indeed,

dL(α)

dα
= Q(α)

μ
. (2)

Figure 1 gives an example of the graphical representation of
the Lorenz curve for a uniform and a lognormal distribution. It
is commonly plotted together with the diagonal line, because,
when everyone has the same income, the Lorenz curve is equal
to the diagonal line. The diagonal line is thus the benchmark for
the perfect equality of income.

The Lorenz curve is always below the diagonal line. The
further the Lorenz curve is from the diagonal line, the greater
is the level of inequality. The area between the curve and the
line thus serves as a measure of inequality. Doubling this area
directly gives the well-known Gini index that can also be defined
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Figure 1. Lorenz curve for a uniform distribution (a = 0, b) and for a
lognormal distribution (dotted curve) with parameters (μ = 0, σ 2 = 1).
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by means of the cumulative distribution function

G = 1 − 2
∫ 1

0
L(α)dα =

∫∞
0

∫∞
0 |x − y|dF(x)dF(y)

2μ
. (3)

The value of the Gini index lies between 0 (perfect equality)
and 1 (perfect inequality). Perfect inequality means that only
one person has a positive income and all the others have a null
income. In this case, the Lorenz curve would be 0 and jump to
1 at α = 1.

If X follows a known parametric distribution, the Lorenz curve
and the Gini index can be derived as functions of these parame-
ters (for a review, see Sarabia 2008; Giorgi and Nadarajah 2010).
For example,

• if X ∼ Uniform(a, b):

L(α) = 2aα + (b − a)α2

a + b
,

G = b − a

3(a + b)
,

• if X ∼ Lognormal(μ, σ 2):

L(α) = �[(�−1(α) − σ ],

G = 2�

(
σ√

2

)
− 1,

where �(.) denotes the cumulative distribution function of the
standard normal distribution. Thus, the Gini index for a Uniform
(a = 0, b) distribution is equal to 1/3 for any value of b > 0,
while it is approximately equal to 0.52 for a Lognormal (μ, σ 2 =
1) distribution for any value of μ.

The Gini index and the Lorenz curve are invariant under
scale changes because they are ratios between two quantities
that linearly depend on the scale. These measures do not depend
on whether the units are dollars or cents or euros. However, these
measures are not invariant under location changes. This means,
for instance, that if all the incomes are increased by a constant,
the Gini index decreases, while if all the incomes are increased
by the same proportion, the Gini index remains unchanged.

3. GROUPED DISTRIBUTION

Table 2 contains a small example of grouped income data of
the U.S. Current Population Survey 2010 (U.S. Census Bureau
2011). The data consist of n = 118,683 observations grouped
in J = 4 classes. We have advisedly regrouped the data in a
small number of classes to better put the differences between
the methods into evidence. We arbitrarily put the upper bound
of the last class to 500,000. The mean computed by using the
centers of classes is

x̄ =
J∑

j=1

fjx
C
j = 72,904.9.

The following notations are used in Table 2 and throughout
the article:

• J is the number of classes,
• n is the sample size,

Table 2. Grouped distribution of incomes of the U.S. Current Popu-
lation Survey 2010

x−
j x+

j nj fj Fj xC
j �j Lj

0 49,999 59,831 0.50 0.50 24,999.5 50,000 0.17
50,000 99,999 34,618 0.29 0.80 74,999.5 50,000 0.47
100,000 199,999 19,607 0.17 0.96 149,999.5 100,000 0.81
200,000 500,000 4627 0.04 1.00 349,999.5 300,000 1.00

• x−
j is the lower bound of class j = 1, . . . , J ,

• x+
j is the upper bound of class j = 1, . . . , J , with x+

j = x−
j+1,

• xC
j = (x−

j + x+
j )/2 is the center of class j = 1, . . . , J ,

• nj is the frequency of class j = 1, . . . , J ,
• fj = nj/n is the relative frequency of class j = 1, . . . , J ,
• Fj =∑j

k=1 fk is the cumulative relative frequency of class
j = 1, . . . , J (with F0 = 0 and FJ = 1),

• �j = x+
j − x−

j is the length of class j,

• x̄ =∑J
j=1 fjx

C
j is the mean computed by using the centers

of classes, and

• pj = ∫ x+
j

x−
j

f (x)dx is the probability of interval [x−
j , x+

j ] in

the population, where f (x) = dF (x)/dx is the density of the
underlying population.

In a grouped distribution, a common estimator of the Lorenz
curve (see, e.g., Gastwirth 1972; Pyatt, Chen, and Fei 1980;
Lerman and Yitzhaki 1989; Deltas 2003; Wodon and Yitzhaki
2003) is the continuous piecewise linear function connecting
the points (Fj , Lj ), where L0 = 0, LJ = 1, and

Lj = 1

x̄

j∑
k=1

fkx
C
k .

The empirical curve is thus defined by

L̂1(α) = 1

x̄

J∑
j=1

fjx
C
j H

(
α − Fj−1

fj

)
, (4)

where H (.) is the cumulative distribution function of a uniform
[0, 1] distribution:

H (x) =
⎧⎨⎩

0, if x < 0,

x, if 0 ≤ x < 1,

1, if x ≥ 1.

Figure 2 shows a plot of the Lorenz curve L̂1(α) for the data of
Table 2.

This estimator derives from taking the following step function̂̃F (.) as an estimator of the cumulative distribution function
F:

̂̃F (x) =
⎧⎨⎩

0, if x < x−
1 ,

Fj , if x−
j ≤ x < x+

j , j = 1, . . . , J,

1, if x ≥ x−
J .

(5)

Estimator L̂1(α) is known to overestimate the Lorenz curve and
is besides used by Mehran (1975) as an upper bound for L(α).
If we apply definition (3) on (4), we obtain after some algebra

3
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Figure 2. Estimated Lorenz curve L̂1(α) for the dataset presented in
Table 2.

an estimator of the Gini index:

Ĝ1 = 1

2x̄

J∑
j=1

J∑
k=1

fjfk

∣∣xC
j − xC

k

∣∣,
which underestimates the population value because the within-
class inequality is not accounted for. This estimate of the Gini
index is Ĝ1 = 0.4414.

4. ESTIMATION OF THE DENSITY, MEAN, AND
VARIANCE

In grouped data, the most usual estimator of the density func-
tion is the histogram that is thus defined as

f̂ (x) =
⎧⎨⎩

0, if x < x−
1 ,

fj /�j , if x−
j ≤ x < x+

j , j = 1, . . . , J,

0, if x ≥ x+
J .

Figure 3 shows a plot of the histogram or empirical den-
sity function f̂ for the data of Table 2. Integrating the esti-
mated density distribution, we obtain an estimator of the cu-
mulative distribution function by linear interpolation in the
classes:

F̂ (x) =
∫ x

0
f̂ (z)dz

=

⎧⎪⎨⎪⎩
0, if x < x−

1 ,

Fj−1 + fj
x−x−

j

�j
, if x−

j ≤ x < x+
j , j = 1, . . . , J,

1, if x ≥ x+
J .

(6)

While ̂̃F (.) in (5) is a step function, F̂ (x) is piecewise linear.
Using the estimated density or the estimated cumulative dis-
tribution function, estimators of moments can be derived. The
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Figure 3. Histogram of the dataset presented in Table 2.

estimator of the mean is

μ̂ =
∫ x+

J

x−
1

xdF̂ (x) =
J∑

j=1

∫ x+
j

x−
j

xdF̂ (x)

=
J∑

j=1

fj

�j

�jx
C
j =

J∑
j=1

fjx
C
j .

The estimator of the second moment is

μ̂2 =
∫ x+

J

x−
1

x2dF̂ (x) =
J∑

j=1

∫ x+
j

x−
j

x2dF̂ (x) =
J∑

j=1

fj

�j

∫ x+
j

x−
j

x2dx

=
J∑

j=1

fj

�j

[(
x+

j

)3 − (x−
j

)3]
3

= 1

3

J∑
j=1

fj

[(
x+

j

)2 + x+
j x−

j + (x−
j

)2]
=

J∑
j=1

fj

(
xC

j

)2 + 1

12

J∑
j=1

fj�
2
j ,

and enables us to propose an estimator of the variance

σ̂ 2 = μ̂2 − μ̂2 =
J∑

j=1

fj

(
xC

j − x̄
)2 + 1

12

J∑
j=1

fj�
2
j . (7)

Note that the use of the density f̂ (.) automatically provides
an estimator of the variance that includes a correction for the
within-class variability. This estimator is the sum of the variance
between the centers of classes and of the variance within the
classes. Under simple random sampling with replacement, the
alternate estimator

σ̂ 2
A = n

n − 1

J∑
j=1

fj

(
xC

j − x̄
)2 + 1

12

J∑
j=1

fj�
2
j

228 General
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is, however, preferable because it unbiasedly estimates

σ̃ 2 =
J∑

j=1

pj

(
xC

j − μ
)2 + 1

12

J∑
j=1

pj�
2
j .

Given the loss of information that results from grouping the
data, σ 2 cannot be unbiasedly estimated. However, part of the
intraclass variability is recovered when using the proposed es-
timators. Moreover, if the distribution inside each class in the
population is uniform, σ̂ 2

A is an unbiased estimator of σ 2. Relax-
ing this assumption, estimator σ̂ 2

A unfortunately remains biased
with respect to σ 2, but its bias only depends on σ̃ 2 − σ 2, that is,
on the distribution of the variable within the classes. In the next
section, the same histogram-based approach is used to propose
estimators of the Lorenz curve and of the Gini index, which take
the within-class variability into account.

5. ESTIMATION OF THE LORENZ CURVE AND THE
GINI INDEX

Since the quantile function is the inverse of the cumulative
distribution function, an estimator of the quantile can be defined
as given below using expression (6). First, let α be the order of
the quantile and k be the index of the class such that Fk−1 ≤
α < Fk . For a grouped distribution, the quantile function can
then be estimated by

Q̂(α) = x−
k + α − Fk−1

fk

(
x+

k − x−
k

)
,

with Q̂(0) = x−
1 and Q̂(1) = x+

J . By using this definition, we
obtain an estimated Lorenz curve. Since the quantile function is
piecewise linear, expression (2) directly implies that the Lorenz
curve is piecewise quadratic.

L̂2(α) = 1

x̄

∫ α

0
Q̂(p)dp

= 1

x̄

⎧⎨⎩
k−1∑
j=1

∫ Fj

Fj−1

Q̂(p)dp +
∫ α

Fk−1

Q̂(p)dp

⎫⎬⎭
= 1

x̄

⎧⎨⎩
k−1∑
j=1

[
px−

j +
p2

2 − pFj−1

fj

(
x+

j − x−
j

)]Fj

Fj−1

+
[
px−

k +
p2

2 − pFk−1

fk

(
x+

k − x−
k

)]α

Fk−1

⎫⎬⎭
= 1

x̄

⎧⎨⎩
k−1∑
j=1

[
fjx

−
j + fj

2

(
x+

j − x−
j

)]

+
[

(α − Fk−1)x−
k + (α − Fk−1)2

2fk

(
x+

k − x−
k

)]⎫⎬⎭
= 1

x̄

⎧⎨⎩
k−1∑
j=1

fjx
C
j +

[
(α − Fk−1)x−

k

+ (α − Fk−1)2

2fk

(
x+

k − x−
k

)]⎫⎬⎭ .

In particular, we have L̂2(0) = 0 and L̂2(1) = 1. Now, we can
compute

∫ Fk

Fk−1

L̂2(α)dα = 1

x̄

⎡⎣fk

k−1∑
j=1

fjx
C
j + 1

6
f 2

k

(
2x−

k + x+
k

)⎤⎦
= 1

x̄
fk

⎡⎣ k∑
j=1

fjx
C
j − 1

6
fk

(
x−

k + 2x+
k

)⎤⎦ .

Thus, the area under the estimated Lorenz curve is

∫ 1

0
L̂2(α)dα =

J∑
k=1

1

x̄
fk

⎡⎣ k∑
j=1

fjx
C
j − 1

6
fk

(
x−

k + 2x+
k

)⎤⎦
= 1

x̄

⎡⎣⎛⎝x̄ −
J∑

j=1

fjx
C
j Fj +

J∑
j=1

f 2
j xC

j

⎞⎠
−
∑J

j=1 f 2
j xC

j

2
−

J∑
j=1

1

6
f 2

j

�j

2

⎤⎦
= 1

x̄

⎡⎣(x̄ −
J∑

j=1

fjx
C
j Fj

)+
∑J

j=1 f 2
j xC

j

2

−
J∑

j=1

1

6
f 2

j

�j

2

⎤⎦ .

Finally, the estimated Gini index is derived from the above result
and expression (3):

Ĝ2 = 1 − 2
∫ 1

0
L̂2(α)dα

= 1 − 2
1

x̄

⎡⎣(x̄ −
J∑

j=1

fjx
C
j Fj

)
+
∑J

j=1 f 2
j xC

j

2

−
J∑

j=1

1

6
f 2

j

�j

2

⎤⎦
= −1 + 1

x̄
2

J∑
j=1

fjx
C
j Fj − 1

x̄

J∑
j=1

f 2
j xC

j + 1

x̄

J∑
j=1

f 2
j

�j

6

= 1

2x̄

J∑
j=1

J∑
k=1

fjfk

∣∣xC
j − xC

k

∣∣+ 1

x̄

J∑
j=1

f 2
j �j

6
.

Estimator Ĝ2 includes a correction term that depends on the
within-class variability. Note that for a uniform continuous ran-
dom variable between x−

j and x+
j , the Gini index is equal to

�j/(6xC
j ). The second term thus depends on the Gini index

measured within the classes. Under simple random sampling
with replacement, the alternate estimator

ĜA = 1

2x̄

n

n − 1

J∑
j=1

J∑
k=1

fjfk

∣∣xC
j − xC

k

∣∣+ 1

x̄

J∑
j=1

(
nf 2

j − fj

)
�j

6(n − 1)
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Figure 4. Estimated Lorenz curve L̂2(α) and the two Mehran bounds
(dotted lines).

is, however, preferable because x̄ĜA unbiasedly estimates the
population parameter

1

2

J∑
j=1

pjpk

∣∣xC
j − xC

k

∣∣+ J∑
j=1

p2
j �j

6
,

as E(f 2
j ) = pi/n + p2

i (n − 1)/n and E(fjfk) = pjpj (n −
1)/n. Estimator ĜA unfortunately remains biased. This results
from the fact that ĜA is a ratio with the random variable x̄ at the
denominator, and that it also depends on the distribution of the
variable within the classes. Note that the numerator of the Gini
index is unbiasedly estimated by x̄ĜA under the assumption that
the population inside each class is uniformly distributed.

Figure 4 shows the interpolation of the estimated Lorenz curve
L̂2(α) that lies between the two Mehran bounds. Note that the
upper Mehran bound for the Lorenz curve is equal to L̂1(α). The
three Gini estimators for our dataset give Ĝ1 = 0.4414, Ĝ2 =
0.4874, and ĜA = 0.4874. Gastwirth’s (1972) upper bound for
the Gini index is

ĜU = Ĝ1 + 1

x̄

J∑
j=1

f 2
j

(
x−

j − xC
j

)(
xC

j − x+
j

)
�j

= 0.5565.
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Langel, M., and Tillé, Y. (2013), “Variance Estimation of the Gini Index: Re-
visiting a Result Several Times Published,” Journal of the Royal Statistical
Society, Series A, 176, DOI: 10.1111/j.1467-985X.2012.01048.x. [225]

Lerman, R. I., and Yitzhaki, S. (1989), “Improving the Accuracy of Estimates
of Gini Coefficients,” Journal of Econometrics, 42, 43–47. [227]

Lorenz, M. O. (1905), “Methods of Measuring the Concentration of Wealth,”
Publications of the American Statistical Association, 9, 209–219. [225]

Mehran, F. (1975), “Bounds on the Gini Index Based on Observed Points of the
Lorenz Curve,” Journal of the American Statistical Association, 70, 64–66.
[225,227]

Ogwang, T. (2003), “Bounds of the Gini Index Using Sparse Information on
Mean Incomes,” Review of Income and Wealth, 49, 415–423. [225]

——— (2006), “An Upper Bound of the Gini Index in the Absence of Mean
Income Information,” Review of Income and Wealth, 52, 643–652. [225]

The difference between the estimates is thus far from being neg-
ligible. The estimators proposed in this article have the advan-
tages of being intuitive, easy to compute, and directly coherent
with the histogram as a density function. Moreover, the estima-
tor of the Lorenz curve is strictly convex, which is in line with
its infinite population definition.

6



Ogwang, T., and Wang, B. (2004), “A Modification of Silber’s Algorithm to
Derive Bounds on Gini’s Concentration Ratio From Grouped Observations,”
Statistica (Bologna), 64, 697–706. [225]

Pyatt, G., Chen, C.-N., and Fei, J. (1980), “The Distribution of Income
by Factor Components,” The Quarterly Journal of Economics, 95,
451–473. [227]

Sarabia, J. M. (2008), “Parametric Lorenz Curves: Models and Applications,” in
Modeling Income Distributions and Lorenz Curves, ed. D. Chotikapanich,
New York: Springer, pp. 167–190. [227]

Schader, M., and Schmid, F. (1994), “Fitting Parametric Lorenz Curves to
Grouped Income Distributions: A Critical Note,” Empirical Economics, 19,
361–370. [225]
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