
1

HISTOGRAM-BASED SMOKE SEGMENTATION IN

FOREST FIRE DETECTION SYSTEM
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Abstract. A focus of this paper is a pixel level analysis and segmentation of smoke colored pixels for the automated forest fire
detection. Variations in the smoke color tones, environmental illumination, atmospheric conditions and low quality of the images of
wide outdoor area make smoke detection a complex task. In order to find an efficient combination of a color space and pixel level
smoke segmentation algorithm, several color space transformations are evaluated by measuring separability between smoke and
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I. INTRODUCTION

Forest fires represent a constant threat to ecological systems,

infrastructure and human lives. According to the prognoses,

forest fire, including fire clearing in tropical rain forests, will

halve the world forest stand by the year 2030 [1]. Every

year in Europe over 10.000 km2 of forest terrain is burnt

and in Russia and USA over 100.000 km2. The fact that

more than 20% of complete world CO2 emissions comes

from forest fires indicates that it is a phenomenon which

has to be dealt with great attention. The only effective way

to minimize damage is early detection and appropriate fast

reaction. Great efforts are therefore made in all regions to

achieve early recognition. Different approaches and sensor

inputs are used for the automatic detection of fire [2] [3],

ranging from IR sensors to identify heat flux from the fire

[4], light detection and ranging (LIDAR) systems [5] [6] that

measure the laser light backscattered by the smoke particles,

detection of smoke on satellite images [7], to smoke plume

detection with cameras in visible spectra. Several platforms

for surveillance activities have been tested in recent years. The

individual method depends on the specific regional conditions

and financial budget. Optical based systems often imply a high

rate of false alarms due to atmospheric conditions (clouds,

shadows, dust particle formations), light reflections and human

activities. In systems based on visible spectra images, auto-

matic smoke plume detection can be combined with human

operator monitoring multi camera system. In addition, cost

of the visual spectra camera equipment is often several times

cheaper compared to IR cameras and other types of advanced

sensors. Variation in the smoke color tones, environmental

illumination, atmospheric conditions, quality of the images of

wide outdoor areas and other problems make smoke detection

a complex task. To detect smoke with reasonably low error

rates, one has to implement several detection algorithms and

a voting based strategy [1]. First processing step in smoke

detection in most of forest fire detection systems is motion

detection. Outputs of this processing are regions that are

detection candidates, which go through rest of processing

and analysis procedures to determine if they have smoke

characteristics. One of the commonly used techniques is the

analysis of the obtained regions regarding color information in

particular color-space. Smoke has certain visual characteristics

relating to color and there are some rules which the color

information of smoke adhere to. Such visual characteristics

and rules are explored and analyzed in different color-spaces

in order to better distinct between smoke and non-smoke

regions. This process generally consists of two steps: (1)

converting the image to the targeted color space and (2)

classification of the image pixels according to the adopted

model. The transformation of the image to a color space other

than the RGB is assumed to increase separability between

clusters of pixels representing different phenomena [8], thus

improving the performance of image classification algorithm.

The selection of the color space depends on the specific

problem and algorithms used. A primary objective of this

work is to evaluate performance of histogram based image

classification algorithms for smoke detection task and to find

color space-algorithm combination with lowest error rates. A

framework for evaluation of different approaches in smoke

detection is created and a dataset of images of forest fire

is collected. The images are collected from various sources,

taken in different conditions and with different equipment. All

images in the dataset are segmented by hand in the ground

truth segmentation and divided in the training and the testing

set. The performance of the algorithms is measured using a

receiver operating characteristics (ROC) [9] [10] [11] [12]

[13] [14]. Acceptable error ranges are defined and algorithm

performance examined at the error bounds. In order to select

a particular color space with highest separability between

smoke and non-smoke pixels, RGB color space is evaluated

along with four other color space transformations: YCrCb,

CIELab, HSI [8] and HS’I, which is a transformation of HSI.

Based on the histogram analysis of the collected images, a

transformation of the HSI color space is proposed in order to
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increase separability between smoke and non-smoke classes.

The separability of smoke and non-smoke classes is measured

using four statistical measures. The performance of two color

histogram based image classification algorithms is evaluated.

The first is the widely used lookup table method [10], and

the second makes use of the Bayes decision theory [9] [10].

The performance of both approaches is evaluated in different

color spaces, at four histogram resolutions. In order to improve

the performance of the Bayes theory based classifier we

adopt the kernel density estimation technique for calculating

Bayes probability distributions. Suggested improvement aims

to compensate the error introduced by the discretization of the

color space.

II. ALGORITHMS USED FOR SMOKE DETECTION

The performances of three histogram based algorithms are

evaluated. For each algorithm a parameter t is used to control

algorithm sensitivity, where higher sensitivity implies lower

rate of missed smoke-colored pixels, usually followed with

higher rate of non-smoke pixels recognized as smoke. The

exact meaning of the parameter t will be discussed for each

algorithm separately.

The first algorithm is the simple Lookup Table Method (LT)

[10]. This approach relies on the assumption that the smoke-

colored pixels form an isolated cluster in some color space.

The three dimensional histogram is created from the training

set of the images using only pixels segmented as smoke in

the ground truth segmentation (GT), defined manually by

human operator. For each pixel marked as smoke in the GT

segmentation, the appropriate cell in the histogram (discretized

colorspace) is incremented. The lookup table is created by di-

viding cell values with the largest value present. The values in

the LT cells reflect the likelihood that the corresponding color

range represents smoke. When classifying newly encountered

images, pixel color triplet indexes the normalized value in the

LT. A pixel is classified as smoke if this value is not less than

a threshold t. Thus, the parameter t is defined as the minimum

value which LT cell indexed by a pixel color value triplet must

have in order to be classified as smoke.

The second approach incorporates the probabilistic model

for classification [9] to classify a pixel into the Smoke class

(ωs) or into the Non-smoke class (ωns). Pixels belonging to

the Smoke class are assumed to have measurement vector x

(color coordinates in some color space) distributed according

to some distribution density function p(x|ωs, θs), where θs is

the parameter governing the characteristics of the class ωs.

Similarly, the distribution of the Non-smoke class is defined

with p(x|ωns, θns), where θns defines the characteristics of

the class ωns. Once the distributions have been estimated,

the Bayes theorem [10] [15] is applied to calculate the

probabilities:

p(ωs|x) =
p(x|ωs, θs)p(ωs)

p(x)
(1)

p(ωns|x) =
p(x|ωns, θns)p(ωns)

p(x)
(2)

where the probabilities p(ωs) and p(ωns) are referred to as

prior probabilities, since they represent the probabilities of

Smoke and Non-smoke classes before observing the vector

x. The naive Bayes (NB) classifier implicitly split the input

space X into two decision regions with the decision boundary

located along the contours where p(ωs|x) = p(ωns|x). The

newly encountered pixel, represented with the measurement

vector x, is classified as smoke if

p(ωs|x)

p(ωns|x)
> 1 (3)

Prior probabilities p(ωs) and p(ωns) can be estimated from

the training data: if a random sample of the entire population

has been drawn, the maximum likelihood of p(ωs) is just

the frequency with which ωs occurs in the training data set.

In practice, real forest fires are very rare on any monitoring

site, which would result in p(ωs) << p(ωns). For the smoke

detection task, the prior probabilities are used as a parameter to

control sensitivity of the smoke detection algorithm. This way

the algorithm can be biased to minimize more expensive errors

(it is obviously more serious to misdetect a real forest fire than

to disturb the operator with the false alarm). To be consistent

with the LT method, the parameter t is set to t = p(ωns),
where higher parameter values correspond to lower sensitivity

of the detection algorithm.

Probability distributions for the Smoke and Non-smoke

classes are computed from the training set of images, where

smoke pixels are used to create Smoke class distribution, while

non-smoke pixels are used to create Non-smoke class distribu-

tion. Two separate color histograms are created representing

Smoke and Non-smoke classes. Probabilities are computed

directly from the histogram by dividing histogram cell values

with the sum of all cells in the histogram. In the rest of the

paper, this classifier will be referred to as NB1.

Alternative approach based on the assumption that the

probability distribution at a continuity point can be estimated

using the sample observation that falls within a region around

that point utilizes the kernel density estimation technique [16],

[17], [18]. Each input data sample (image pixel) is assigned

a kernel, decreasing monotonically with the distance from the

origin. Density at some point x is computed as the sum of the

contributions of all data samples:

fD(x) =
1

nhd

n
∑

i=1

K

(

x − xi

h

)

, (4)

where n is the number of samples, h is the bandwidth, and

kernel K : R
d → R,K(x) ≥ 0 is a symmetric function

satisfying
∫

Rd

K(x)dx = 1 (5)

In the discrete histogram, pixel contribution is accounted for

in a set of cells surrounding pixel origin in the targeted color

space, rather than only in one cell. This approach is expected

to compensate the error introduced by the discretization of

the feature space, resulting in the probability distribution that

better reflects the underlying true distribution. For the smoke

detection task, each pixel, described by a three dimensional
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The performances of three histogram based algorithms 

are evaluated. For each algorithm, a parameter t is used to 

control algorithm's sensitivity, where higher sensitivity 

implies lower rate of missed smoke-colored pixels, usually 

followed with higher rate of non-smoke pixels recognized 

as smoke. The exact meaning of the parameter t will be 

discussed for each algorithm separately. 

An alternative approach based on the assumption that 

the probability distribution at a continuity point can be esti-

mated using the sample observation that falls within a re-

gion around that point utilizes the kernel density estimation 

technique [16], [17], [18]. Each input data sample (image 

pixel) is assigned a kernel, decreasing monotonically with 

the distance from the origin. Density at some point x is com-

puted as the sum of the contributions of all data samples: 



vector in some color space, is assigned a normal kernel

KN (x) =
1

√

(2π)3
e−

1

2
‖ x

h
‖2

(6)

Bandwidth h is connected with the histogram resolution

h =
1

N
, (7)

where N is the number of histogram bins in each dimension,

and contribution of each pixel is calculated in 5 × 5 × 5
grid of cells centered on the cell corresponding to the pixel

origin. Two histograms are created for Smoke and Non-smoke

classes of pixels, and probability distributions are assessed by

normalizing cell values of each histogram by dividing with

the sum of all cells. It should be emphasized that additional

computational costs are introduced only in the training phase

of the classifier, while the classification process of newly

encountered data remains the same. Classifier constructed

using kernel density estimation technique will be referred as

NB2 in the rest of the paper.

III. DATASET USED FOR TRAINING AND TESTING

Fig. 1. Sample images with manually created Ground Truth (GT) segmen-
tations. Smoke pixels are labeled white, non-smoke pixels are labeled black.
Pixels labeled gray are not used in the experiments.

The total of 113 images in the dataset are divided into the

training set, containing 64 images, and the testing set with 49

images. The complete dataset contains 87 images of real forest

fires from the archive of the Professional Firefighting Brigade

of the Split-Dalmatian county of the Republic of Croatia, and

the rest of the images which do not contain fire have been

taken on the potential locations of the forest fire surveillance

system.

The ground truth (GT, see Fig. 1) is defined at pixel-

level. The three labels method is adopted, where each pixel

is labeled as Smoke (white), Non-smoke (black), or Undefined

(gray). The Undefined label is assigned to pixels that are too

ambiguous to be marked either way and to boundary pixels

on the border between smoke and non-smoke regions. The

image pixels labeled gray are not used in the experiments,

either in the training phase, or in the testing phase. For images

containing no smoke, all of the image is labeled black (Non-

smoke).

IV. PERFORMANCE METRICS

Two statistical measures are defined to evaluate overlap of

the Smoke and the Non-smoke classes. In each color space

two normalized histograms are created, representing mutually

exclusive classes of pixels. The Histogram Intersection (HI)

[19] [20] [21] and the Histogram χ2 Error (HCE) [19] [22]

are statistical measures of the overlapping of smoke and non-

smoke histogram. Let M = N3 be the number of cells and

h(j) value of cell indexed by index j. Than HI and HCE are

computed as follows:

HI =
M
∑

j=1

min(hs(j), hns(j)) (8)

HCE =
M
∑

j=1

(hs(j) − hns(j))
2

hs(j) + hns(j)
(9)

For better separability of the classes, lower HI and higher HCE

are desired.

The color histogram of the collected images is examined

in several color spaces [8], including: RGB, HSI, YCrCb, and

CIELab. Histogram analysis of the surveillance camera images

of wide outdoor areas in the HSI color space shows that the

low percentage of pixels corresponds to high saturated regions.

Further, high saturated colors usually represent artificial ob-

jects (like firefighting trucks) relatively close to the camera.

Due to the atmospheric conditions, fog, particles in the air

and other degradations of the image quality, distant regions

and objects, which are of the main interest in the forest fire

detection problem, are represented with low saturated colors.

In order to increase separability between Smoke and Non-

smoke classes, a transformation of the HSI color space is

defined by (10):

S′ =

{

2S, S < 0.5
1, S ≥ 0.5

(10)

In the rest of the paper, this color space is referred to as HS′I .

The other two measures evaluate separability of classes with

respect to the threshold value t, defined as in the lookup

table algorithm. Absolute overlapping for some threshold t

is defined by

A(t) =
B(t)

N
, (11)

where B(t) is the number of histogram cells for which

both smoke and non-smoke histogram have the value above

threshold t, and N is the number of histogram cells.

Relative overlapping is defined by

R(t) =
B(t)

S(t)
, (12)

where S(t) is a number of cells for which histogram represent-

ing smoke has value above threshold t. Relative overlapping is

a ratio of the number of overlapping cells and the number of

cells representing smoke, representing expected error rates. In

calculating the absolute and the relative overlapping, histogram
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3. Dataset used for training and testing 

Figure 1. Sample images with manually created Ground 

Truth (GT) segmentations. Smoke pixels are labeled white, 

non-smoke pixels are labeled black. Pixels labeled gray  

are not used in the experiments 

 

 

 

4. Performance metrics 
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Two statistical measures are defined to evaluate overlap 

of the Smoke and the Non-smoke classes. In each color space 

two normalized histograms are created, representing mutual-

ly exclusive classes of pixels. The Histogram Intersection 

(HI) [19] [20] [21] and the Histogram χ2
 

Error (HCE) [19] 

[22] are statistical measures of the overlapping of smoke 

and non-smoke histogram. Let M = N
3
 be the number of 

cells and h(j) value of cell indexed by index j. Then HI and 

HCE are computed as follows: 



values are normalized to range [0, 1] by dividing with the

largest value present.

The performance of the algorithms is measured using a

receiver operating characteristics (ROC). Each color space-

classifier combination is evaluated at four histogram reso-

lutions N = {32, 64, 128, 256}. Smoke-Missed Error (SM)

measures the number of smoke pixels that are not detected

(False Negative). Non-Smoke Error (NS) measures the number

of non-smoke pixels that are badly detected as smoke (False

Positive). Let GTS be the number of pixels marked as smoke,

and GTNS number of the pixels marked as non-smoke in the

ground truth segmentation. Let M(t) be the number of missed

smoke pixels, and E(t) number of non-smoke pixels detected

as smoke at parameter value t. Than SM and NS errors are

defined with

SM(t) =
M(t)

GTS

NS(t) =
E(t)

GTNS

(13)

ROC curve represents True positive vs. False positive char-

acteristics for different values of the parameter t, where True

positive equals to 1−SM(t) and False positive equals to NS(t).
Based on experiential results and testing, acceptable ranges for

the SM and NS errors are set to:

SM < 0.2 NS < 0.3 (14)

SM error bound is set to a lower value as it is more serious

error to misdetect the smoke than to falsely detect non-

smoke pixel as the smoke. However, the final decision about

raising the alarm should be made by the post-processing

decision system based on the output from the several smoke

detection algorithms, where acceptable error ranges are defined

separately for each algorithm.

V. COLORSPACE EVALUATION

Each color space is evaluated at four histogram resolutions

in order to asses the ability of color space to separate smoke

from non smoke pixels. HI and HCE results are presented in

Table 1. The desirable result is lower HI value and higher

HCE value. The best result at each histogram resolution is

highlighted in bold and underlined. The second best result is

highlighted in bold.

In both measures, the results better than the results for

TABLE 1
COLOR SPACE EVALUATION

HI HCE

Res. 32 64 128 256 32 64 128 256

RGB .314 .261 .234 .226 1.120 1.251 1.325 1.348

YCrCb .351 .289 .252 .233 1.010 1.175 1.276 1.329

CIELab .380 .307 .265 .238 0.945 1.135 1.245 1.313

HSI .294 .257 .234 .227 1.164 1.269 1.326 1.346

HS’I .285 .251 .231 .226 1.187 1.284 1.335 1.347

the RGB color space are achieved in HSI color space

and its derivatives, while other color space transformations

achieve lower performance. According to both metrics, best

performing color space is HS’I (Eq. 10).

In Fig. 2 absolute overlapping is shown as a function of

threshold t (Eq. 11) for histogram resolution N = 256. Results

are shown for RGB, HSI, HS’I and CIELab colorspaces.

The relative overlapping (Eq. 12) for RGB, HSI, HS’I and

CIELab color spaces at histogram resolution N = 256 is

presented in Fig. 3.

At the highest histogram resolution the best results are

Fig. 2. Absolute overlapping at histogram resolution 256 × 256 × 256
(N = 256)

Fig. 3. Relative overlapping at histogram resolution 256× 256× 256

achieved in the HSI color space, in both absolute and relative

overlapping metrics. Overlapping is only slightly higher in

RGB and HS’I color spaces. Similar results are achieved

at other histogram discretization levels. At all histogram

resolutions, the RGB color space achieves the result close to

the best result for a particular resolution.

VI. ALGORITHM EVALUATION

Four sets of classifiers corresponding to different histogram

discretization resolutions are generated. Each set contains LT

classifier and two Bayes theory based classifiers (NB1, NB2)

with different approaches in calculating density probability
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5. Colorspace evaluation  

Figure 2. Absolute overlapping at histogram resolution 

256×256×256 (N =256)

 

Figure 3. Relative overlapping at histogram resolution 

256×256×256 
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True positive equals 1−SM(t) and False positive equals 

NS(t). Based on experiential results and testing, acceptable 
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distribution. The classifiers are trained using 64 images in

the training data set. The performance of the classifiers is

evaluated using 49 images in the testing data set.

TABLE 2
AUC RESULTS, HISTOGRAM RESOLUTION 32× 32× 32

Global AUC Local AUC

LT NB1 NB2 LT NB1 NB2

RGB 0.8333 0.8796 0.8582 0.0004 0.0886 0.0414

YCrCb 0.8273 0.8627 0.8406 0.0072 0.0586 0.0337

CIELab 0.8500 0.8569 0.8444 0.0192 0.0312 0.0385

HSI 0.8379 0.8818 0.8852 0.0137 0.1222 0.1093

HS’I 0.8385 0.8814 0.8838 0.0207 0.1139 0.1146

TABLE 3
AUC RESULTS, HISTOGRAM RESOLUTION 64× 64× 64

Global AUC Local AUC

LT NB1 NB2 LT NB1 NB2

RGB 0.8376 0.8839 0.8860 0.0050 0.1179 0.1167

YCrCb 0.8400 0.8837 0.8683 0.0036 0.1190 0.0648

CIELab 0.8633 0.8836 0.8724 0.0294 0.1185 0.0775

HSI 0.8338 0.8865 0.8955 0.0047 0.1274 0.1705

HS’I 0.8330 0.8845 0.8934 0.0039 0.1255 0.1651

TABLE 4
AUC RESULTS, HISTOGRAM RESOLUTION 128× 128× 128

Global AUC Local AUC

LT NB1 NB2 LT NB1 NB2

RGB 0.8301 0.8798 0.8952 0.0041 0.1264 0.1596

YCrCb 0.8356 0.8848 0.8921 0.0051 0.1352 0.1420

CIELab 0.8582 0.8850 0.8896 0.0408 0.1148 0.1452

HSI 0.8332 0.8798 0.8941 0.0056 0.1266 0.1584

HS’I 0.8340 0.8784 0.8921 0.0077 0.1242 0.1503

TABLE 5
AUC RESULTS, HISTOGRAM RESOLUTION 256× 256× 256

Global AUC Local AUC

LT NB1 NB2 LT NB1 NB2

RGB 0.8300 0.8762 0.8920 0.0045 0.1216 0.1520

YCrCb 0.8284 0.8791 0.8942 0 0.1273 0.1600

CIELab 0.8507 0.8820 0.8964 0.0282 0.1323 0.1712

HSI 0.8256 0.8762 0.8897 0 0.1215 0.1440

HS’I 0.8298 0.8761 0.8875 0.0047 0.1218 0.1392

The classifiers are evaluated using a Receiver Operating

Characteristics (ROC) curve analysis and Area Under Curve

(AUC) value [11]. Global AUC is computed as the total area

under the ROC curve within the unit square. The local AUC

[13] represents the area under the ROC curve within a square

bounded by acceptable error ranges defined with equation (14),

as shown in Fig. 4 and Fig. 5.

Error ranges are annotated by solid black lines, where top-

left square of the graph corresponds to the acceptable error

Fig. 4. ROC curve, HSI color space; histogram resolution 64 × 64 × 64.
Acceptable errors (SM(t) < 0.2, NS(t) < 0.3) are marked by solid lines. The
square in the upper left corner (magnified in the smaller figure) represents the
unit square of the Local AUC value.

Fig. 5. ROC curve, RGB color space; histogram resolution 128×128×128.
Acceptable errors (SM(t) < 0.2, NS(t) < 0.3) are marked by solid lines. The
square in the upper left corner (magnified in the smaller figure) represents the
unit square of the Local AUC value.

ranges defined by (14). For each classifier, the global AUC is

the total area under the ROC curve. The local AUC represents

partition of the top-left square of the graph under the ROC

curve. The results for the classifiers evaluated at different

histogram resolutions are given in tables 2 trough 5. Each

table contains the overview of the results of the classifiers at

the particular discretization resolution. For each color space,

the best result in global and local AUC metrics is emphasized

in bold.

For color spaces with higher separability between the smoke

and the non-smoke classes the improvement introduced by

the kernel density estimation technique is observed at lower

histogram resolutions, while the NB1 performs better in color

spaces with lower separability. At higher histogram resolutions

the NB2 classifier outperforms the NB1 classifier in all color

spaces. In local AUC metrics, the peak performance of the
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Figure 4. ROC curve, HSI color space; histogram 

resolution 64×64×64. Acceptable errors (SM(t) < 0.2, NS(t) 

< 0.3) are marked by solid lines. The square in the upper 

left corner (magnified in the smaller figure) represents the 

unit square of the Local AUC value 

 

Figure 5. ROC curve, RGB color space; histogram 

resolution 128×128×128. Acceptable errors (SM(t) < 0.2, 

NS(t) < 0.3) are marked by solid lines. The square in the 

upper left corner (magnified in the smaller figure) 

represents the unit square of the Local AUC value 
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Fig. 6. SM error (false negative) for NS = 0.3; hist. res. 128×128×128

Fig. 7. NS error (false positive) for SM = 0.2; hist. res 128× 128× 128

NB2 classifier (Table 5; CIELab color space, N = 256) is up

to 40% better compared to the peak performance of the NB1

(Table 4; YCrCb color space, N = 128).

Furthermore, these results suggest that no particular color

space transformation can significantly improve classifying per-

formance. For each color space, a particular resolution can be

found where the classifier achieves its peak performance. For

each classifier, the peak performances in all color spaces are

close to each other, but they are achieved at different histogram

resolutions. On the basis of this analysis, a conclusion can be

made that the peak performance is the distinctive feature of

the classifier itself, rather than the combination of the color

space and the histogram resolution.

Smoke-missed (SM) error and non-smoke (NS) error on

error boundaries defined by (14) are presented in Fig. 6 and

Fig. 7. SM (False Negative) error for NS = 0.3 is presented

in Fig. 6. The NB2 classifier achieves the lowest error rate

in all color spaces. Fig. 7 shows NS (False Positive) error

for SM fixed to 0.2. The kernel density estimation technique

improves performance in color spaces with higher separability.

The lowest error rate is achieved by the NB2 classifier in the

RGB color space.

If the improvements in SM and NS error rates are observed

separately, it is obvious that benefits introduced by the NB2

classifier are higher with regard to NS error, i.e. less non

smoke pixels are falsely detected as smoke. Examples of

smoke segmentation using both versions of Bayes classifier

are shown in Fig. 8.

The performance of the Bayes classifier with kernel density

estimation technique is additionally evaluated by constructing

a simple smoke detection algorithm. The algorithm is based on

motion detection, where regions detected as ”moving” contain

not only smoke but artefacts resulting from camera trembling,

moving trees and bushes in the wind, sunlight reflections from

particles in the air etc. After motion detection, detected regions

are confirmed as smoke or rejected based on the output of the

NB2 classifier. Results are given in Fig. 9.

VII. CONCLUSION

The comparative evaluation of the histogram-based pixel

level classification methods presented in this paper meets two

goals. The first is the evaluation of different approaches in

extracting knowledge from the training data set. Series of

experiments confirm that the model for creating probability

distributions using kernel density estimation technique im-

proves the Bayes classifier performance. Classifying procedure

of the Bayes classifier is not altered, and no additional com-

putational costs are introduced in the decision-making phase.

As expected, simple lookup table based classifier constructed

solely from the smoke-labeled pixels achieves the lowest

performance.

The second goal encountered is the selection of the

algorithm-color space combination for the task of smoke

detection. Thorough analyses suggest that peak performance

is the distinctive feature of the classifier itself, rather than

the classifier-color space combination. When selecting a color

space for a particular task, balance should be found between

memory requirements regarding histogram resolution and the

efficiency of the required color space transformation. Good

color space candidates for the smoke detection task are HSI

and its derivative, as well as RGB color space.

The proposed algorithm is successfully implemented as one

of the smoke detection methods of the Intelligent Forest Fire

Monitoring System (iForestFire) [23] [24]. The algorithms

described in this paper are only a part of the detection process

and the final decision is made by result fusion of several

different algorithms. Developed system is adopted as forest fire

detection system for the coastline of the Republic of Croatia.
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Figure 8. Sample result of smoke segmentation using pixel color classification. Columns left to right: input images; 

segmentations obtained using NB1 classifier; segmentations obtained using NB2 classifier. Classifiers thresholds are chosen  

at the ROC curve with True positive = 85%. Input image in second row contains no smoke 
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Figure 9. Smoke detection based on the motion detection and the Bayes classifier with the kernel density estimation technique. 

Columns from left to right: input images; motion detection; smoke regions confirmed with NB2 classifier implemented in  

HSI colorspace, hist. res N = 64 
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