
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 43, NO. 3, JUNE 1994 

~ 

373 

Histogram Measurement of ADC 
Nonlinearities Using Sine Waves 

Jerome Blair, Member, IEEE 

Abstract-This paper gives results concerning the measurement 
of differential and integral nonlinearity of ADC’s using the 
histogram method with a sine wave input Signal. w e  specify the 
amount of overdrive required as a function of the noise level 

a function of the desired accuracy, the desired confidence level, 

as to achieve the desired accuracy in individual DNL values 
with 99% confidence, we expect 1% of the DNL values (or 
approximately 10 of them) to be out of tolerance. This means 

Will be measured with an error greater than the 
and the desired accuracy and the number of samples required as that there is a high probability that the worst DNL 

and the noise level. An analysis o f  the effect on the results of 
harmonic distortion of the applied signal is given. The error 
analysis assumes a mixture of coherent and random sampling 
rather than pure random sampling. 

I. INTRODUCTION 

HE use of sine wave histogram tests for the determina- T tion of the nonlinearities of analog-to-digital converters 
(ADC’s) has become quite common and is described in [ l ]  
and [2]. Our purpose is to extend the results of [ l ]  and [2] 
in several ways. 

First, we consider the effect of additive random noise on 
the measurement results. When a triangle wave is used for 
histogram tests (as in [3]), additive noise has no effect on the 
results; however, it is difficult to guarantee the accuracy of a 
triangle wave. When a sine wave is used, an error is produced 
which becomes larger near the peaks. This error can be made 
as small and desired by sufficiently overdriving the ADC, and 
we give formulas for the required amount of overdrive as a 
function of the desired accuracy. 

Additionally, we consider the situation in which the sample 
points are taken from records with a fixed sampling frequency, 
where this frequency is chosen to minimize the errors. We 
specify how to select the input signal frequency and the 
accuracy required of this frequency. We give formulas giving 
the required minimum number of samples that must be taken 
to guarantee a given accuracy. It is shown that the number of 
samples required with this approach is smaller than the number 
required with the random sampling studied in [2] and [3]. 

We give results for guaranteeing a specified accuracy for 
integral nonlinearity (INL) as well as differential nonlinearity 
(DNL), and we consider the effect of harmonic distortion 
of the input signal. Finally, we give formulas based on a 
specified confidence level for worst case deviations. The latter 
is especially important when measuring DNL. For example, 
if we measure the DNL of a 10-bit ADC in such a manner 
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11. BACKGROUND AND NOTATION 

A .  General Notation 

throughout: 
The following general notation and definitions will be used 

N = number of bits of the ADC. The output codes of 
the ADC are integers between 0 and 2N - 1 
(inclusive). 

T[k]  = kth transition level. The voltage level at which the 
ADC will produce an output code of k - 1 or less 
50% of the time and an outputof k or more 50% 
of the time. 

w [ k ]  = T[k  + 11 - T[k] = the k th  code bin width. 
v 

Q 
The reduced full-scale voltage, V ,  is the difference between 

the last and first transition levels and is one code bin width 
smaller than what is commonly called the full-scale voltage. 
Additional parameters relating to the ADC depend on the Gain 
and Offset, which have nonunique definitions. The gain and 
offset are parameters of a straight-line fit to T[k]  versus k ,  
and will have different values depending on how the fit is 
done. The general relation used to define gain and offset is 

= T[2N - 11 - T[1] = the reduced full-scale voltage 

= V/(aN - 2) = the average code bin width. 
of the ADC. 

G .  T [ k ]  + V,, + ~ [ k ]  = ( k  - 1 )  . Q + T[1] 

where 

G 
VOS = the offset voltage, nominally 0, 
~ [ k ]  = the residual error. 

= the gain, nominally 1, 

The fit might be done to minimize the sums of the squares 
of the residuals, to minimize the maximum residual, to make 
the residuals zero at the end points, or by some other method. 
Different methods yield slightly different values for the gain, - -. .. 
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B .  Differential and Integral Nonlinearity 

For any particular values for the gain and the offset, the 
differential nonlinearity (DNL) and integral nonlinearity (INL) 
are defined as follows: 

G . W[k]  - Q 
Q '  

DNL[k]  = 

+I INL[k]  = - Q 
and (3) 

I N L  = max IINL[k]I. (4) 

We have defined both INL and DNL in fractions of a code bin 
width, though other units are frequency used. 

C. Histogram Measurements and Calculations 

A sine wave that slightly overdrives the ADC is sampled 
many times. The data is collected as a series of R records each 
of which contains M samples. Each record is taken with the 
same constant sampling rate. The record length and ratio of 
the sampling rate to the signal frequency are chosen so that the 
phases of the samples are uniformly distributed between 0 and 
27r. The rules for selecting the signal frequency and the record 
length are given in Section 111-B. The phase of the first sample 
point of each record is assumed to be randomly and uniformly 
distributed between 0 and 2n with the phases of different 
records being independent. Formulas are given in Sections III- 
A and 111-C for determining the amount of overdrive required 
and the number of samples required. Results in Section IV 
relate harmonic distortion of the sine wave source to errors in 
transition levels, INL and DNL. If the range of the ADC is not 
symmetrical about 0 v, a constant, approximately equal to the 
mid-scale voltage of the ADC, must be added to the sine wave. 

Let 

h[i] = the total number of samples received in code bini, 

and let 
k 

ch[k] = Ch[i], 
i = O  

and 

S = 1M . R = the total number of samples. 

The applied signal is of the form 

w[t] = Asin [ut + $4 + d. 

The frequency and phase of the sine wave are not used in the 
data analysis. The values of A and d are assumed to be known 
but they need not be. Errors in the values for A and d will 
affect the values calculated for the gain and the offset of the 
ADC but will not affect values for DNL or INL at all. The 
transition levels are estimated from the data ([l], [2]) by 

The code bin widths are given by 

W[k] = T [ k  + 11 - T [ k ] .  (7) 

If the values of A and d are unknown, approximate values can 
be obtained from (6) and approximate values for the first and 
last (or any two) transition levels. Values for gain and offset 
may then be determined by any desired method, and INL and 
DNL can be determined from (1) through (4). 

D. Tolerance and Confidence Level 

The histogram approach is based on the assumption that the 
relative number of counts occurring in that code bin is equal 
to the probability of a measurement occurring in that code bin. 
This is only true in the limiting case of an infinite number of 
samples. For any finite number of samples there is a statistical 
error, and the number of samples must be chosen large enough 
to make this error sufficiently small. 

Two quantities are used to describe the errors-the tolerance 
and the confidence level. We follow the convention here of 
measuring tolerances in fractions of a code bin width. We say 
that a code bin width, W ,  is measured with tolerance, B,  and 
confidence 1 - U if the probability is equal to or greater than 
1 - U that 

WTI(1-t B )  5 W M  5 WT(1-k B )  

where WM is the measured value and W, is the true value. We 
say that a transition level, T ,  is measured with tolerance, B, 
and confidence 1 - U if the probability is equal to or greater 
than 1 - U that 

where TT and TM are the true and measured values, and Q 
is the average code bin width. 

111. DETERMINING THE -ST PARAMETERS 

This section contains the main results of the paper. The 
proofs of these results will be postponed until the next sections. 

The first step is to determine the desired tolerance. Fre- 
quently, there is a different required tolerance for code bin 
widths (and DNL) than there is for transition levels (and INL). 
For example, one may want the DNL to f 5 %  ( B  = 0.05), but 
the INL may only be needed to fl code bin width ( B  = 1). 
Having specified the desired tolerance, one next determines 
the required amount of overdrive. The amount of overdrive 
required depends on the combined noise level of the signal 
source and the ADC. The only information required about the 
noise is an upper limit on the rms noise level. Note that the 
amount of overdrive required is the same whether one is using 
the more commonly studied random sampling method or the 
method proposed here. 

Next, the required minimum number of samples is deter- 
mined. This depends on the tolerance, the confidence level 
and on the overdrive. For given values of these parameters, the 
number of samples required depends whether one is specifying 
the tolerance for an individual measurement or for the worst 
case. The total number of samples required also depends on the 
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where record length chosen, the longer the record the fewer samples 
that are required. However, the accuracy required of the input 
signal frequency increases with increasing record length. 

A .  Required Overdrive Versus Noise Level 
The positive overdrive voltage is the difference between 

the maximum voltage of the applied signal and the largest 
transition level of the ADC. The negative overdrive voltage is 
the difference between the smallest (most negative) transition 
level of the ADC and the minimum of the applied signal. The 
overdrive voltage, Voo, is the smallest of the positive and 
negative overdrives. 

To obtain a tolerance, B,  in the code bin widths choose the 
overdrive voltage to satisfy 

VOD 2 ~7 x max (3, &) (8) 

where (T is the combined rms noise level (in volts) of the signal 
source and the ADC. Note that the value of (T only includes 
the rms value of the random noise (i.e., errors that are not 
repeatable); it does not include distortion or quantization error. 

To obtain a tolerance, B, in the transition levels choose the 
overdrive voltage to satisfy 

(9) 

Note that, to first order, the effect of noise on the results is 
not random but systematic. The error is largest near the peaks 
of the sine wave; the overdrive keeps the measurements far 
enough from the peaks to make the error as small as desired. 
The values of overdrive in (8) and (9) are adequate to keep 
the errors due to noise to 5 B / 3  code bin widths so that these 
errors are negligible when added to the statistical errors due 
to taking a finite number of samples. 

The amount of overdrive also affects the errors in DNL due 
to harmonic distortion of the signal source. This is covered 
in Section IV. 

B. Determining the Frequency and Record Length 

To obtain meaningful measurements of transition levels and 
of integral and differential nonlinearity, it is important to 
choose the signal frequency low enough that dynamic errors 
are negligible. 

The frequency of the input signal and the record length 
of the data collected must be carefully selected for the error 
estimates of the following section to apply. There must be an 
exact integer number of cycles in a record, and the number 
of cycles in a record must be relatively prime to the number 
of samples in the record. This guarantees that the samples in 
each record are uniformly distributed in phase from 0 to 27~. 

A frequency that meets the above requirements can be 
selected as follows. Choose the number of cycles per record, 
D, and a record length, M ,  such that M + 1 is an integer 
multiple of D. Choose the ratio of the signal frequency to the 
sampling frequency by the following formula: 

f = the signal frequency, and 
f s  = the sampling frequency. 
This selection of signal frequency is described in [4] where 

it is shown that, with rearrangement of the data, it produces an 
equivalent time sampling of the input signal with an equivalent 
sampling frequency of Ofs.  For the rest of our analysis we 
assume that the ratio, p, of the signal frequency to the sampling 
frequency satisfies (10) with an error, Ap, which satisfies 

For D > 1 this, by the results in [4], is the condition that the 
error in equivalent sampling time is equal to or less than 1/4 of 
the interval between equivalent time samples. The decision to 
derive the results with precisely this restriction was somewhat 
arbitrary. Note that larger values of M or D require more 
accurate frequencies. We will see in the next section that fewer 
total samples are required with larger values of M ,  so the best 
approach is to choose the largest value of M compatible with 
the frequency accuracy obtainable. 

C. Required Number of Records 

The relation giving the number of records required for a 
given tolerance and confidence level contains a constant that 
depends on whether the confidence level is for individual 
values or for worst case values. For worst case values the 
constant depends on the number of bits, N ,  of the ADC. 
In both cases we use values from Table I. For values of N 
between those in the table, linear interpolation may be used. 
The values 2, and ZN,,  in the table are defined as follows. 
If z is a random variable with a Gaussian distribution with 
a mean of zero and a standard deviation of one, then the 
probability that 1x1 2 2, is 2a. If IC is the maximum of 
the absolute values of 2N independent random variables with 
mean zero and standard deviation 1, then the probability that 
1x1 > Z N , ~  is 2a. The values of Z N , u / 2  were calculated by 
the formula 

where erfc is the complimentary error function. Values of 2 4 2  

were calculated with the same formula using N = 0. The 
standard statistical package from Mathematica version 2.1 was 
used to perform the calculations. 

The number of records required also depends on whether 
the tolerances are specified for transition levels (INL) or for 
code bin widths (DNL). Having chosen the record length, M ,  
the number of records required to obtain a tolerance of B and 
a confidence of 1 - U is given by 

N - 1 ~  
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TABLE I 

11 Z U P  2 4 4 2  Z8slp z 1 2 , u / 2  Z16.,/2 2 2 0 4 2  

0.2 1.28 2.46 3.33 4.04 4.64 5.19 
0.1 1.64 2.72 3.53 4.21 4.80 5.33 
0.05 1.96 2.95 3.72 4.37 4.94 5.46 
0.02 2.33 3.22 3.95 4.57 5.12 5.62 
0.01 2.58 3.42 4.11 4.71 5.25 5.74 
0.005 2.81 3.60 4.27 4.85 5.38 5.85 
0.002 3.09 3.84 4.47 5.03 5.54 6.01 
0.001 3.29 4.00 4.62 5.16 5.66 6.12 

where 

R =  
c =  
M =  

v =  
a =  

VOD = 
K,  = 

K,  = 

U* = 
(J* = 
B =  

N =  

minimum required number of records, 
1 for INL, and C = 2 for DNL, 
the number of samples per record, 
1 + 2 V O D / V ,  
the reduced full-scale voltage of the instrument in 
volts, 
overdrive voltage, 
Z+ for obtaining the specified confidence in an 
individual transition level or code bin width, 
ZN>, /z  for obtaining the specified confidence in 
the worst case transition level or code bin width, 
0, the rms noise level in volts, for INL, 
min[a, Q/1.13] (Q = code bin width) for DNL, 
desired test tolerance as a fraction of a code bin 
width, and 
number of bits of the ADC. 

Note that if the noise level is sufficiently large, then the 
first term in the curly braces dominates, and the total number 
of samples, R M ,  obtained from (12) for DNL is the same 
as that obtained from (A15) of [2]. As the noise level gets 
smaller and the second term in the braces dominates, the total 
number of samples required becomes inversely proportional to 
the record length. The condition for the required number of 
samples given by (12) to be smaller than that given in [2] is 
M 2 0.63 x a2 x 2 N .  (Note: the result in 121 is only valid 
with a = 1.) 

Iv. EFFECTS OF HARMONIC DISTORTION 

In this section we examine the effect of harmonic distortion 
in the sine wave signal used for the histogram measurements. 
We obtain upper bounds for the errors in transition levels 
and in code bin widths due to a given amount of harmonic 
distortion. We assume that the input signal satisfies 

(13) 

where ~ ( t )  is the harmonic distortion which we assume 
satisfies 

w [ t ]  = Asin [ut + $1 + d + ~ ( t ) ,  

I T ( t ) l  I f. (14) 

The result for transition levels is that if e l  is the error due to 
harmonic distortion in the kth transition level, then 

IeTI  I E. (15) 

This result, which will be proved shortly, says that the max- 
imum error in a transition level is bounded by the maximum 
error in the input signal. If the harmonic distortion is in phase 
with the signal then an error of magnitude t will occur, so the 
bound in (15) cannot be improved. 

Since a code bin width is the difference between two 
transition levels, we have for the error, e r ,  in the kth code bin 

We will later give a much smaller bound than (16) for 
the typical case where the distortion consists of low-order 
harmonics. 

To prove the result (15) we define, for any voltage value, U, 
the set of time values S(v) = { t  : v ( t )  5 v } .  We also define 
the real-valued functions, $ and g, by 

+(U) = p [ S ( v ) ] / ~ ,  and g = ?It-' (17) 

where p[S] is the measure of the set, S (the sums of the lengths 
of the intervals comprising S), T is the period of the signal, 
and g is the inverse function of +. Thus, $(U) is the fraction of 
time that the signal spends with voltage I v .  We define SO,  $0, 

and go in the same manner with ~ ( t )  replaced with v ( t )  - ~ ( t )  
(the undistorted signal). Since for vp 2 v l ,S(vp)  2 S ( v l ) ,  
it follows that 11, and g are nondecreasing functions of their 
arguments. From (14) and the definition of S it follows that 
So(v - E) G S(v)  So(v + t) and, therefore, that 

If Tk is the kth transition level, then the expected fraction 
of counts, uk, in the kth cumulative histogram bin is given 
by uk = +(Tk), and the calculated transition level, TL, is 
given by TL = g o ( u k )  = g o ( + ( T k ) ) .  But from (18), $ ( T k )  
is between $ o ( T k  - E )  and $o(Tk  + e), so TL is between 

yields (15). 
Although (16) gives the smallest possible bound on DNL 

errors for general harmonic distortion, a smaller bound can be 
obtained for low-order harmonic distortion. Harmonic distor- 
tion induces a relative error in the DNL value of a particular 
code bin equal to the derivative of the distorting signal divided 
by the derivative of the undistorted signal. However, with 
small amounts of overdrive the derivative of the undistorted 
signal approaches zero for the code bins near the peaks of the 
signal, so the analysis must be done very carefully. 

Using the same notation as that following (18) and letting 
h(z)  = go(z) - g(z), we have 

go($o(Tk - E ) )  = Tk - E and gO('$O(Tk f 6 ) )  = Tk + t which 

e,W = e:+' - e; = h ( u k + l )  - h(uk) 

= h'(Ek)(Uk+l - 'Q) (19) 

where Ek is some value between u k  and ?&+I. We will develop 
upper bounds for each of the terms on the right of (19). 

We first obtain a bound for h ' ( U k )  under the condition of 
nth harmonic distortion of magnitude f. The peak magnitude 
of h(u) and its derivative will depend on the relative phases 
of the harmonics and the fundamental and will be maximum if 
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the peaks of the distortion are at the peaks of the fundamental. 
In this case we have 

h(u) = E C O S [ ~ T U ] ,  and lh’(u)I 5 nTc .  (20) 

Lemma 1: If f [ x ]  is any function with a continuous second 
derivative and p [ z ]  is a probability density function with a 
mean of zero and standard deviation of oz then 

(26) 
0 2  

The value of u k + l  - uk in (19) is the fraction of time spent f * P[zI z fkl  + y r . 1  
by the signal in the kth code bin, so this is largest for the code 
bins nearest the peaks of the signal and depends on the amount 

/3Q, where Q is the code bin width. This gives for the upper 

where the asterisk denotes the 

keeping terms to second Order gives 
of overdrive. We will assume that the amount of overdrive is proof: Expanding f[tl  in a Tay1or series about = and 

bound On U k + l  - u k ,  f [ t ]  f[x] + f ’ [ x ] ( t  - x) + i f [ x ] ( t  - x ) 2 .  

U k + l  - Uk 5 U 2  - U1 

= $ ( d  - A + PQ + Q) - +(d - A + PQ). (21) 

We will approximate the right-hand side of (21) by replacing 
7c, with $0 and will justify this later. From (6) we have 

g o ( u )  = d - ACOS [TU] 2 d - A + i A r 2 u 2  (22) 

where the right-hand side is valid near the negative peak of 
the signal. Solving for U as a function of the left-hand side 
gives for the inverse function 

$,o(v) = -AxTi. 
T d  

We then have 

E f[x] /p[x - t]  d t  + f ’ [ 5 ]  p[x - t ] ( t  - x) d t  s 
+ if”[.] / p [ ~  - t] ( t  - x ) ~  dt .  

Since p[x] is a probability density the first integral is one; since 
its mean value is zero the second integral is zero; and since its 
standard deviation is oz the third integral is (T:. Substituting 
these values gives (26). 

A .  Overdrive Result for Code Bin Widths 

Let f[x] be the probability density of the input signal and 
let p[x] be the probability density for the noise. Let g[x] be 
the probability density for the signal plus noise. We then have 

Substituting this for $ in (21) gives 

U k + l  - U k  5 ‘E(m- T a). 
Combining this with (19) and (20) gives 

g[x] = f *p[x] f[.l + $ / % I  

If we second-hmonic distortion with = Q/2, an 
%bit A D  converter and P = 3 (i.e., 2.3% overdrive), then the 
code bin width error calculated from (23) is 0.033Q, while 

If W is the width of a code bin at some value z, then the 
measured ‘Ode bin width, wm7 satisfy 

- N -  w7n dxl  - 
that from (16) is Q, a reduction by a factor of 30. w .f1x1’ . .  ~ 

The justification for replacing $I with $0 in (21) is as 
follows. Near the peaks of the signal both go and g are given 
by a second-order expansion as in (22). If the distortion is 
small relative to the signal, then the relative difference between 
the coefficients is small. and 11, and 11,n also have the same 

because the measured code bin width is proportional to the 
number of samples in the code bin which, in turn, is propor- 
tional to the probability density at the code bin. 

This gives for the error 
I ”  

functional form with slightly different coefficients. 

v. DERIVATION OF RESULTS FOR 
OVERDRIVE VERSUS NOISE LEVEL 

For a sine wave of amplitude one the probability density is 
given by 

1 + 2 2  
T ( 1  - 5 2 ) 5 / 2 ’  

and f”[x]  = 
1 We assume that the input signal to the ADC is of the form 

v[t] = Asin [ut + 41 + d. f b ]  = TJ” 

It will be more convenient to change variables from v to 5,  This gives the approximation for the error 

with x given by op I f252  - up 1 + 2 x 2  Ewz-- - - 
2 (1 - x2)2 2 (1 + x)2(1 - x ) 2 ’  

(24) 
This has its maximum values near 5 = f l .  Since it is an even 

Thus the value of x ranges from -1 to 1 for the input signal, function of examine the e,.,.Or at either end point; 
and the range of the ADC will be somewhat less than this. If near = we have, by substituting = in all except 

(1 - x), the noise has a standard deviation of o in volts, then it will 
have a standard deviation of oz in “x -units” with 

V - d  x=- 
A ’  

we 

(28) 
30; En. E= ~ (25) 8( 1 - x ) ~  ’ 

0 
oz = - A ’  
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To guarantee that the error is 5 some value, p, we have 

3 4  
(1 - z)2 2 -. 

8P 

Letting p = B/4 and taking the square root, it follows that 

(29) 

We set the maximum error to B/4 to guarantee that the extra 
error caused by the noise is small compared to the desired 
error. Substituting (24) and (25) into this gives 

The last inequality comes from the fact that A + d is the peak 
of the signal, and ‘U is an arbitrary voltage within the range 
of the ADC. 

This is an approximation based on the approximation (27) 
for the convolution of the signal probability density with 
the noise probability density. This, in tum, is based on the 
assumption that f ” [ z ]  is relatively constant throughout the 
width of the noise probability density function. In fact, as 
z approaches 1, f ” [ z ]  is rapidly increasing, and the error is 
larger than that predicted by (27). To determine how much 
larger the error is as a function of z, the convolutions were 
evaluated numerically for a% = O . O l , O . O O l ,  and 0.0001 for a 
Gaussian, a uniform, and a triangular probability density for 
the noise. In all cases it was found that if the overdrive was 
2 30, then the error was no more than 1.43 times that predicted 
by (27); in all cases it was the Gaussian density that gave the 
largest error. This means that if the overdrive is 230, then 
the error caused by the noise will be 50.36B.  

B .  Overdrive Result for Transition Levels 

Let F [ z ]  be the probability that the input signal is iz, and 
let G[z] be the probability that the input signal plus noise is 
- <x. As in the previous section we have 

where p [ z ]  is the probability density for the noise (after 
converting from volts to %-units), and a% is the standard 
deviation of p .  For a sine wave of amplitude one we have 

If z is a true transition level, then [from (6)] the calculated 
transition level, z,, will be 

2 ,  = - COS [xG[z]] 2 -COS [ x F [ z ]  + 7ra:F”[z]/2] 

Taking a first-order Taylor expansion of the cosine function 
about x F [ z ]  gives 

7rafF”[z] sin [7rF[z]] 
2 

5 ,  E - cos [xF[z] ]  + 

Substituting the expression for F and making the substitutions 
- cos [xF[z] ]  = z and sin [7rF[z]] = d m  we obtain 

To guarantee that the error, z, -z, is <p for z near 1 we have 

l-z>--. 
4P 

Substituting p = ( B 2 - ( N - 1 ) ) / 4  to guarantee that the error is 
5 B/4 code bin widths gives 

Substituting from (24) and (25) and noting that V O ~  = 
A + d - U,,,, we obtain 

(34) 

where V is the reduced full-scale voltage of the ADC. To 
obtain the rightmost expression we have made the substitution 
A 2 V/2. 

All of the above is based on the convolution approximation 
(31). As in the previous section the actual error is larger, 
because F”[z] is rapidly increasing near x = hl. The 
convolution was calculated numerically with p [ z ]  being a 
Gaussian distribution and a uniform distribution for values 
of a% of 0.01, 0.001, and 0.0001. In all cases the actual error 
was 5 1.28 times the error predicted from (33) if the overdrive 
was at least 2u. 

VI. DERIVATION OF RESULTS FOR NUMBER OF SAMPLES 

We will estimate the variances in the cumulative histogram 
values, ch[k] in (5), for a single record, then use (6) and (7) 
to estimate the variance in the transition levels or the code 
bin widths. This is done in three parts. First we consider the 
case where the samples are evenly spaced in time, i.e., the 
signal and sample frequencies satisfy (IO) exactly. We next 
consider the effect of nonuniform spacing as allowed by (1 1). 
We finally consider the effect of noise. These results are next 
used to determine the number of records required to reduce the 
variance in any particular transition level or code bin width to 
any desired level. We finally consider worst case errors. 

A. Variance and Covariance for Uniform Sampling 

We will associate with each sample a phase angle, 4, which 
we will take to be between -7r and 7r and relative to the 
negative peak of the signal. Associated with any transition 
level, T [ k ] ,  is the positive phase angle, $ k ,  which satisfies 

(35) T[k]  = d - A COS [$k3 

where d and A are as in Section II-C. The number of counts 
in the cumulative histogram for this level, ch[k] ,  will be the 
number of samples with phase angles between -$k and +$k. 

We assume in this section that the phase angles of the 
samples are uniformly spaced with a spacing A4 = 27r/M 
and that the smallest positive phase angle of a sample is 
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equally likely to be any value between 0 and A$. If the phase 
length, 2$k, corresponding to a transition level is of the form 
( n  + a)A+ with n an integer and a between 0 and 1, then 
we will have ch[k] = n + 1 with probability a and ch[k] = n 
with probability 1 - a. The mean value is easily seen to be 
n + a and the variance to be a(1 - a) .  Assuming Q: to be 
equally likely to be any value between 0 and 1, the average 
variance, in counts, is given by 

U," = 6' a(1- a )  da = ;. (36) 

Using (6) and the fact that & = 7rch[k]/M gives, for the 
variance in volts, 

1 ( A T ) 2  (37) 
2 -  1 2 7r2 

0, - -A  - sin2 [$k] 5 - - . 6 M2 6 M  

Later we will need the covariances between ch[j]  and ch[k].  
We will show that for j # k.  

(38) 
+1/12 with probability 0.5 
-1/12 with probability 0.5. cov [ch[j] ,  ch[k] )  = 

The value of ch[k] is the number of samples that occur in the 
phase interval between -$k and f $ k .  It will be convenient to 
scale all phase intervals so that the distance between samples 
is 1 rather than 2.rrlM. We let the scaled lengths of the two 
intervals for which we are calculating the covariance be n,+a; 
for i = 1,2,  where ni is an integer and 0 5 Q; < 1. The 
situation differs depending on whether n1 and n2 are even 
or odd. We first consider the case where both are even. We 
assume that the sample points have x-coordinates given by 
m + E ,  where m is an integer and E is uniformly distributed 
between 0 to 1. Fig. 1 illustrates an interval of length 2 + 2/3 
with E = 0. The dots represent the sampling points, and 
the brackets represent the ends of the interval, which are at 
f ( n ;  + a;)/2. As [ varies from 0 to 1, the dots move to 
the right. We let c:([) = the number of dots contained in the 
interval when the dots are translated to the right by E ,  and 
c;(() = c:(E) - n;. The variance and covariance of c; and 
ci will be the same, because they differ by constants. Fig. 2 
shows a plot of c;([). Since the mean value of c; is a; we have 

cov (Cl[Ql] ,  C 2 b 2 1 )  = Cl( [ )  c 2 ( 0  & - QlQ2 6' 
= min (a1, ap) - ~ 1 ~ x 2 .  

We now let a1 and a2 range from 0 to 1 and get 

cov (c1,  c2)  = 1' l l [ - i n  (al ,  - wa21 da1 d a 2  

(39) 

The situation is different when either n1 or 722 is odd. Fig. 3 
illustrates an interval of length 3 + 1/2 with [ = 0. Fig. 4 is a 
plot of c ; ( ( )  for the case where n; is odd. The result is easily 
derived by examination of Fig. 3. In the case when nl is odd 
and n2 is even (or vice versa) we have 

- 1  - 
- 12'  

cov (Cl[QlI,  c2[a2])  = Cl(<) c 2 ( 0  dE - Q1Q2 1' 
= max (0 ,  + 122 - 1 )  - a1a2. 

fi 1 

I . -  1 
x=-2 x=-1 X=O x= 1 x=2 

Fig. 1. 
dots represent the sample points. 

The brackets represent a phase interval of 2 2 /3  sample points. The 

E,=1 
5=1- a i u  

Fig. 2. 
points as a function of the location parameter, <, for n, even. 

The number of counts n2 in a phase interval of length n,  +a, sample 

1/2 + qi-2 

+I 
r 
L 1 -  

x=-2 x=-l x=o x=1 x=2 

Fig. 3. Representation of a phase interval of length 3 1/2 sample points. 

Fig. 4. 
points as a function of the location parameter, F .  for n,  odd. 

The number of counts R,  in a phase interval of length nz  +a, sample 

Averaging over a1 and a2 we obtain 

cov (c1, c2) = I' ll[rnax (0 ,  a1 + a2 - 1) 

- ~ 1 ~ 2 1  da l  do2 

(40) - 1  - -  
12' - 

A similar analysis shows that when both n1 and n2 are odd, 
we get the same result as (39). If we let the lengths of the 
intervals vary over many sample lengths we will get situations 
with the covariance = +1/12 equally often with situations with 
the covariance = -1/12. 

B .  Effect of Nonuniform Sampling 
In this section we show that the nonuniform sampling 

resulting from errors in the frequency satisfying (1 1) will cause 
an increase in the variance of no more than 20% above what 
was determined in the previous section. As in Section 111-B, we 
let D be the number of cycles in a record. As shown in [4], 
if the signal frequency satisfies (lo), then the phase angles 
associated with the samples will have a uniform spacing of 
A40 = 2.rr/M. If the signal frequency is incorrect, then there 
will be a nonuniform pattem to the sample phases that will 
repeat every D samples. We will have D - 1 sample intervals 
of length A40 + e / ( D  - 1 )  followed by one of length A40 -e. 
If the signal frequency is too large, e will be positive; if it is too 
small, e will be negative. Since the maximum error, e, occurs 
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Variance as a Function of X 

1 -  1 
x=O x=3/4 x=2 x=23/4 X = 4  

Fig. 5. 
nonuniform sample points with e = 1/4. 

A phase interval of length, a ,  and location parameter, f ,  with 

C = O  5 3  %-L 5=314 5 = 2 - a  5=2 314 - a 5=2 

Fig. 6. The number of sample points in the interval of Fig. 5 as a function 
of f .  

in only one of every D intervals, its effect on the variance will 
be greatest, for fixed e,  when D = 2.  

As in the previous section we will stretch out the phase 
axis so that the nominal distance between samples is 1. If the 
frequency error satisfies (1 l), then the error, e, will be 5 1 / 4  in 
these units. The locations of the sampling points for e = 1/4 
are illustrated in Fig. 5. The spacing between sample points 
altemates between 314 and 514. We assume that the width of 
a histogram bin is of the form n + cy with n an even integer 
and cy between 0 and 2. The situation with n = 0 and cy = 1 
is shown in Fig. 5. We let E denote the distance between the 
left of the histogram interval and the beginning of a sample 
interval of length 314. We determine the number of sample 
points, c(<), in a histogram interval as < varies from 0 to 2 
and calculate the variance of c as a function of cy. We can, 
without loss of generality, assume that n = 0. 

There are three different situations: a 5 1/4,1/4 5 a 5 
5/4, and 5/4 5 Q! 5 2. We will show the calculations for the 
second, most complicated, situation and summarize the other 
two. Fig. 6 shows a graph of c ( E )  for (Y between 314 and 514. 
This graph is easily derived from examination of Fig. 5. The 
mean value of .(e) is easily seen to be cy, and the variance 
is given by 

= f l2 d< - a2 = 2a - 3/4 

for3/4 5 a 5 5/4. 

A similar analysis gives, for the other two situations, 

a:(.) = c y  - a2 
a:(.) =3a - 2 - cx2 

Averaging over all values of cy gives 

for (Y 5 3/4, and 
for5/4 5 cy 5 2 .  

19 1 
1 6 . 6  6 

(T: = l2 a:(.) da = - = 1.1875 x -. 

This exceeds the variance, 116, of the uniform spacing case 
by less than 20%. 

C .  Effect of Noise 

The presence of noise will add additional variance to the 
number of counts that will be sampled in any phase interval. 
The effect of noise is to cause a sample point that is inside 

0 0.5 1 1.5 2 2.5 3 
X - I n  units of sigma 

Fig. 7. 
for a single sample point at a distance .z from the edge of the bin. 

The variance in the number of counts recorded in a bin due to noise 

(outside) the phase interval of a histogram bin, but near the 
edge of that phase interval, to sometimes be recorded in a bin 
outside (inside) the phase interval. We will assume that the 
noise has a Gaussian distribution with a mean of zero and a 
standard deviation of (T (in volts). We will separate the analysis 
into two situations-depending on whether or not the voltage 
width of the histogram bin is large compared to c. We will 
find that this means the bin width is larger than 1 . 1 ~ .  

1) Noise Effect on Transition Levels: For this analysis we 
focus our attention on an individual sample and look at how 
the noise determines whether or not the sample appears in a 
particular cumulative histogram bin. Let 

p ( z )  = the probability that a sample that is inside the 
phase interval for a cumulative histogram bin at a 
distance z, in volts, from the edge of the interval 
will be recorded in that interval. 

If the sample point is at distance z from the right edge of 
the interval, then p ( z )  is the probability that the noise voltage 
is 5z; if z is the distance from the left edge, then p ( z )  is 
the probability that the noise voltage is 2 -z. In either case 
we have 

Let c3 be the random variable that takes the value one if the 
j th  sample point is recorded in the cumulative histogram bin 
in question and takes the value zero if it is recorded outside. 
If the sample point is inside the phase interval for the bin at a 
distance z from the edge of the interval, then the mean value of 
cj will be p ( z )  and the variance will be ~ ( 5 )  = p(z)(l-p(z)). 
If the sample point is outside the phase interval for the bin at a 
distance z from the edge of the interval, then the mean value 
of c3 will be 1 - p ( z )  and the variance will also be U(.). 
A plot of v(z)  for z between 0 and 3 ( ~  is shown in Fig.7. 
The variance, due to the noise, in the counts in a cumulative 
histogram bin is given by 

03 

o c  - - 4 X l  74.) dz (41) 

where X is the density of sample points per volt near the end 
points of the phase interval for the bin. The factor of 4 appears, 
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because there are four separate regions that contribute to the 
variance-the regions immediately inside and outside of both 
ends of the interval. The corresponding variance, in volts, is 
given by 

For large bin width-to-noise ratio we have, by combining (41), 
(44) and the fact that the variance for code bins is twice that 
for transition levels, 

(48) 02 5 2X1.130. 

U(.) dx. (42) Combining these results gives for all cases 

The density of sample points per unit phase is M/27r; by (35) 
the derivative of the voltage of a transition level with respect 
to the phase, 4, is A sin ($), where A is the magnitude of the 
signal. This gives 

M > -. M 1  A=--- 
2 i ~  A sin (4) - 27rA (43) 

Note also that v(x) = vl(z/a), where q ( x )  is the value of 
v(x) with o = 1. This gives 

where the value of the constant was determined by numerical 
integration. Combining (42), (43), and (44) we obtain 

1.13 OAT 
0 2  < --. 

2 M  ' U -  (45) 

2 )  Noise Effect on Code Bin Widths: A code bin width is 
the difference between two adjacent transition levels. If the 
code bin width is larger than twice the noise level, then the 
errors in the two transition levels will be nearly independent. 
This means that the variance in the code bin width will be 
twice that for the transition levels. When the bin width is 
small compared to the noise level, the errors in adjacent 
transition levels are highly correlated, and the variance for the 
bin width is smaller than twice the variance for the transition 
levels. One could determine the variance in the bin width by 
calculating the covariance between adjacent transition levels, 
but we choose the simpler approach of separately analyzing 
the variance in the case of small bin width-to-noise ratio. 

We focus our attention on a particular code bin of width 
Q centered at voltage vb. The probability that any particular 

o," 5 2X min [Q, 1.1301. (49) 

D. Combining the Results and Worst Case Errors 

in the voltage for a transition level is given by 

1 2  aV7r 1.130aV7r 

Combining the results of the previous sections, the variance 

(50) 4 2 + ( z h l )  + T M .  
The first term comes from (37), with the factor of 1.2 being 
the extra 20% added to the variance due to the allowed errors, 
(1 l), in the frequency. The second term comes from (45). The 
substitution A = aV/2 was made in both terms. When R 
records are taken, the variance is reduced by a factor of R. 
The variance in code bin widths for R records is then 

0: 22W-1) 
O2 Q - - (2-NV)ZR ' 7 

We make the approximation that the transition levels have 
a Gaussian distribution with this variance. This is a reason- 
able approximation, because the counts in any cumulative 
histogram bin are the sum of many random variables with a 
binomial distribution. To the extent that the distribution is not 
Gaussian, our results for confidence intervals are conservative, 
because the Gaussian distribution has a larger probability of 
deviations of several o than do the actual distributions. To 
meet the requirement that KOQ 5 B ,  for any constant, K ,  
we have 

sample point, with nominal sample voltage vi, will be recorded 
in this code bin is p = QP(v; - ~ b ) ,  where P(v) is the 
probability density for the noise. As in the previous section we 
let c; be the random variable that is 1 if this sample point is 
recorded in this code bin and that is 0 otherwise. The variance 
of c; is given by p ( l  - p )  5 p .  The total variance a," in the 
number of counts in the code bin is given by 

This is the result, (12), for transition levels for appropriate 
values of K .  The relationship of the value of K to the 
confidence levels is given in [2]. 

We showed in Section VI-A that the covariance between 
transition levels due to sampling errors is equally likely to 
be +1/2 of the variance or -1/2 of the variance and that 
the covariance of the errors due to noise, for large code bin 

Q 
QP(v;  - U*) = - av 

Q 
AV 

width-to-noise ratio, is zero. If we assume, for large code 
bin width-to-noise ratio, that this covariance is zero then the OP 5 P(w; - vb)Av Z - (46) 

where AV is the average voltage difference between samples 
near the code bin. Note that the second sum is approximately 
the integral of a probability density, which is equal to one. 
Now, l/Aw = 2X, where X is the constant used in (41) (the 
factor of 2 appears here because there are sample points on 
both the increasing and decreasing sections of the input signal). 
This gives for small bin width-to-noise ratio 

variance for code bin widths is twice that given by (51); 
hence, the number of required records is twice that given by 
(52). Combining this with (49) gives (12) for code bin widths 
and DNL. Although it is not technically correct to assume 
zero covariance, simulation results (see the following section) 
indicate that the predictions are accurate. 

The constants in Table I are based on the assumption that 
the errors in individual transition levels or code bin widths are 

af 5 2XQ. (47) independent. For Gaussian random variables independence is 
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TABLE I1 

Parameter Name Variable Value 
Samples per Record M 
Cycles per Record D 
Sampling Frequency f s  

Signal Frequency f 

Tolerance E 
Confidence Level 1 - U  

Signal Offset d 

250 
4 
1 
0.016005 
32 
0.2 
0.9 

TABLE 111 
THE NUMBER OF RECORDS AND THE SIGNAL AMPLITUDE 
USED FOR EACH OF THE FOUR TYPES OF SlMULATlONS 

Without Noise With Noise 
R = 3  R = 10 

A = 31.25 
R = 5  R = 2 1  

A = 31.25 

INL 
A = 32.5 

DNL 
A = 32.5 

TABLE IV 
HISTOGRAM OF THE INL AND DNL ERRORS OBSERVED IN THE TWELVE 

GUARANTEE THAT LESS THAN 10% OF THE VALUES, OR 75 OF THEM, 
WOULD BE OUT OF TOLERANCE. THE TABLE SHOWS THAT 40 OF THE 

SIMULATIONS. THE MEASUREMENT PARAMETERS WERE CHOSEN TO 

MEASUREMENTS, OR 5.3% OF THEM, WERE ACTUALLY OUT OF TOLERANCE 

Error INL DNL 
0-0.02 12 6 19 1 1  I O  20 
0.02-0.04 4 4 11 11 10 18 

0.04-0.06 14 12 17 5 3 6 
0.06-0.08 2 3 3 6 6 7 
0.084.10 8 12 5 9 9 5 
O.l(M.12 4 5 3 1 3 3 
0.12-0.14 8 9 3 2 2 1 
0.14-0.16 5 6 1 2 5 0 
0.16-0.18 3 5 1 3 5 2 
0.18-0.20 1 0 0 3 2 0 
0 .2w.22  0 0 0 3 3 0 
0.22-0.24 0 0 0 2 2 0 
0.24-0.26 1 1 0 2 1 0 
0.264.28 0 0 0 0 1 0 
0.28-0.30 0 0 0 2 0 0 
0 .3M.32 1 0 0 0 0 0 

Total 2 1 0 9 7 0 
Out of 
Toler- 

ance 
Total 63 63 63 62 62 62 

Counts 

the same as zero covariance. When there is correlation between 
the errors, either positive or negative, the probability of the 
worst case value exceeding any particular value is always 
smaller than the probability of uncorrelated errors exceeding 
the same value. 

VII. SIMULATION RESULTS 

TABLE V 

SIMULATIONS. THE MEASUREMENT PARAMETERS WERE CHOSEN TO 
HISTOGRAM OF THE INL AND DNL ERRORS OBSERVED IN THE TWELVE 

GUARANTEE THAT LESS THAN 10% OF THE VALUES, OR 75 OF THEM, 
WOULD BE om OF TOLERANCE. THE TABLE SHOWS THAT 40 OF THE 

MEASUREMENTS, OR 5.3% OF THEM, WERE ACTUALLY OUT OF TOLERANCE 

Error LNL DNL 
(M.02 11 11 11 13 8 7 
0.02-0.04 
0.044.06 
O.OW.08 
0.084.10 
0.10-0.12 
0.12-0.14 
0.14-0.16 
0.1W.18 
0.18-0.20 

6 
17 
5 
5 
1 

6 
5 
2 
2 

I 
12 
6 
6 
5 
7 
3 
2 
2 

8 
11 
9 
6 
8 
1 

2 
1 
2 

11 
11 
13 
5 
4 
1 

1 

3 
2 

10 
13 
10 
7 
4 
2 
4 
1 

2 
0.20-0.22 2 1 1 0 2 1 

0.22-0.24 1 1 4 1 0 1 

0.24-0.26 0 0 1 0 0 0 
0.26-0.28 0 0 1 0 0 0 
0.28-0.30 0 0 2 0 0 0 
0.30-0.32 0 0 1 0 1 0 

Total 3 2 10 1 3 2 
out of 
Toler- 

ance 
Total 63 63 63 62 62 62 

Counts 

transition levels were given by T[L] = IC for IC = 1..63 (i.e., 
Q = 1 ). The measurement parameters that were common 
to all simulations are given in Table 11. The signal frequency 
was determined by using (10) then adding the maximum error 
allowed by (1 1). 

The simulations were divided into four groups depending 
on whether the specified tolerance was sought for DNL or for 
INL and depending on whether or not noise was present. For 
the simulations with noise the rms noise level was a = 0.5, 
the noise level that reduces the number of effective bits of the 
ADC from 6 to 5. The parameters used for the simulations in 
each of the four situations are given in Table 111. 

For the simulations without noise the signal amplitude was 
set to give an overdrive of Q/4; with noise the overdrive was 
1.5Q = 3a. The amounts of overdrive required by (8) and 
(9) are a x max[3,2.7] = 30 and a x max[2,2.5] = 2.5a, 
respectively. The number of required records, calculated from 
(12), is 2.2 for INL and 4.4 for DNL. We used the next 
larger integer. The vaue of K used in (12) was 1.64, giving 
a probability of 0.1 or less that any particular INL or DNL 
value will exceed the tolerance. For all of the simulations the 
amplitude and the offset of the signal were assumed unknown, 
and their values were calculated from the data using T[1] = 1 
and T[63] = 63 in (6). 

Each simulation resulted in estimates for each of the 63 
values of T [ k ]  and each of the 62 values of W[k].  The 63 
values of INL and 62 values of DNL were then calculated as 

All of the simulations reported here were done using a six- 
bit ADC with no differential or integral nonlinearity. The true 

in Section I1 using G = 1, Q = 1, and V& = 0. All of the 
correct values for INL and DNL are zero. For each simulation 
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a histogram (with a bin width of 0.02) was constructed of the 
absolute values of the calculated INL and DNL values. The 
histograms for three simulations of each of the four types are 
shown in Figs. 4 and 5 .  The solid line below the error range 
of 0.18 to 0.20 indicates that data below the line is out of 
tolerance. With the 0.9 confidence level chosen we expect an 
average of up to 6.3 counts to fall below this line. Note that 
the standard deviation in this value is = 2.5; thus, the 
largest number of out-of-tolerance measurements (10) is only 
1.5a greater than the expected value; the second largest (9) 
is 1.10 greater than the expected value. The probability of a 
random variable with a normal distribution deviating by 1.5g 
(or 1.10) from its expected value is 0.14 (or 0.28), so the two 
values out of 12 in the two tables with these deviations are to 
be expected statistically. 

VIII. CONCLUSIONS 
We have shown that histogram tests using sine wave input 

signals can be used to determine differential nonlinearity and 
integral nonlinearity of an ADC to any desired accuracy. We 
have given formulas for calculating the amount of overdrive 
required, as a function of the noise level, to obtain any desired 
level of accuracy. We have shown that if the ratio of sampling 
frequency to signal frequency is chosen appropriately, the 
number of records required to obtain any desired tolerance 
and confidence level is smaller than that required with random 
sampling. We have shown how to determine the ratio of sam- 

pling frequency to signal frequency and have given formulas 
for calculating the number of samples required. These formulas 
can be used to obtain a given confidence in individual values 
of INL or DNL or for the worst case values of INL or DNL. 
Results were also given relating harmonic distortion in the 
signal source to errors in INL and DNL results. 
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