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Histogram Thresholding Using Fuzzy and Rough
Measures of Association Error
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Abstract—This paper presents a novel histogram thresholding
methodology using fuzzy and rough set theories. The strength of
the proposed methodology lies in the fact that it does not make any
prior assumptions about the histogram unlike many existing tech-
niques. For bilevel thresholding, every element of the histogram
is associated with one of the two regions by comparing the cor-
responding errors of association. The regions are considered am-
biguous in nature, and, hence, the error measures are based on
the fuzziness or roughness of the regions. Multilevel thresholding
is carried out using the proposed bilevel thresholding method in a
tree structured algorithm. Segmentation, object/background sep-
aration, and edge extraction are performed using the proposed
methodology. A quantitative index to evaluate image segmentation
performance is also proposed using the median of absolute devi-
ation from median measure, which is a robust estimator of scale.
Extensive experimental results are given to demonstrate the effec-
tiveness of the proposed methods in terms of both qualitative and
quantitative measures.

Index Terms—Edge extraction, histogram thresholding, image
segmentation, index of fuzziness, rough entropy, segmentation
evaluation.

I. INTRODUCTION

T HRESHOLDING the histogram of an image, due to its
simplicity and ease of implementation has been a popular

technique used in various low-level image processing tasks. A
plethora of bilevel histogram thresholding techniques exist in
literature for purposes such as separating the foreground from
the background in images [1]–[5] and removing the spurious
edges during edge detection [6], [7]. Multilevel histogram
thresholding finds application in partitioning an image into
different regions [1], [8].

Comprehensive reviews of various histogram thresholding
techniques are available in [9] and [10]. Most of these his-
togram thresholding algorithms are based on optimizing certain
criteria, searching certain features such as “valleys” and “shoul-
ders,” or decomposing the histogram on the basis of modeling.
However, as mentioned in [11], such methods would perform
satisfactorily only when the histogram is “well-defined” with
respect to the technique used, that is, when the histogram
meets the prior assumptions made about it. Some examples
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of histograms being “well-defined” are those which posses
specific characteristics such as prominent “valleys” or “peaks,”
fit a particular model very well, or whose regions can be
appropriately described using certain homogeneity measures.
However, in practice, one can not guarantee that images having
“well-defined” histograms will be encountered. Hence, it is
desirable to have thresholding techniques that do not depend
on whether the histogram is “well-defined” or not.

In this paper, we propose such a bilevel histogram thresh-
olding method that assigns a bin of the histogram to one of
the two classes based on the computation of certain association
errors. The histogram of gray values in a grayscale image is
considered here, unless mentioned otherwise. In the proposed
methodology, the histogram is first divided into three regions,
say, bright (a region of larger gray values), dark (a region of
smaller gray values) and an undefined region. These regions
are obtained using two predefined gray values, which are called
the seed values. It is known (prior knowledge) that the bins
of a histogram representing the smallest and the largest gray
value would belong to the dark and bright regions, respectively.
Hence, we consider that the graylevel bins of the histogram
below the smaller seed value belong to the dark region and
those above the larger seed value belong to the bright region.
Rest of the graylevel bins form the undefined region. Then, each
graylevel bin in the undefined region is associated with the de-
fined regions, dark and bright, followed by the use of fuzzy
(index of fuzziness [4]) or rough (rough entropy [12]) set theory
to obtain measures of error due to the associations. The thresh-
olding is then achieved by comparing the association errors and
assigning each graylevel bin of the undefined region to one of
the defined regions that corresponds to the lower association
error. A similar technique that considers the similarity between
graylevels for bilevel histogram thresholding has been proposed
in [11]. However, we find that certain aspects of the method in
[11] are flawed and, hence, might lead to incorrect thresholding
(see Section III).

To carry out multilevel thresholding using the proposed
scheme, more than two seed values would be required. Unlike
bilevel thresholding, in the case of multilevel thresholding we
do not posses the prior knowledge required to assign all the
seed values. Hence, we present a tree structured technique that
uses the proposed bilevel histogram thresholding scheme in
order to carry out multilevel histogram thresholding. In this
technique, each region (node) obtained at a particular depth
are further separated using the proposed bilevel thresholding
method to get the regions at the next higher depth. The required
number of regions are obtained by proceeding to a sufficient
depth and then discarding some regions at that depth using a
certain criterion.
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The effectiveness of the proposed histogram thresholding
methodology is demonstrated with the help of extensive exper-
imental results and comparison with that of a few other existing
algorithms. We apply the proposed and existing schemes for
segmentation and edge extraction purposes, and especially use
images with not “well-defined” histograms. The dependency of
the proposed technique on the required input parameters, that
is, the seed values, is also examined by carrying out statistical
analysis.

We also present a new quantitative index to evaluate image
segmentation performance and refer it as the VMAD-index. The
proposed evaluation index measures variability using the me-
dian of absolute deviation from median (MAD) measure, which
is a well-known outlier rejecting (robust) estimator [13].

In Section II, we present the measures of image ambiguity
used in this paper. The explanation of the proposed bilevel and
multilevel histogram thresholding methods are given in Sec-
tions III and IV, respectively. The proposed VMAD-index, var-
ious experimental results and comparisons, and parameter de-
pendency analysis of the proposed methodology are presented
in Section V. The paper concludes with Section VI.

II. MEASURING IMAGE AMBIGUITY USING INDEX OF

FUZZINESS AND ROUGH ENTROPY

Regions in a grayscale image do not have well-defined bound-
aries. Moreover, a gray value does not have appreciable dis-
cernibility from the nearby higher or lower gray values. These
aspects of an image means that it is ambiguous in nature and
so are the areas in an image corresponding to the dark, bright
and undefined regions of the histogram. Ambiguity in images
can be quantified using fuzzy and rough set theories [4], [12].
Therefore, as mentioned earlier, we consider fuzzy and rough
set theories to measure certain association errors corresponding
to regions in the histogram (see Section III). In this section, we
briefly explain the measures of image ambiguity that have been
used later in this paper.

A. Ambiguity Measure Using Index of Fuzziness [4]

Consider an -level (graylevel) image and let be the uni-
verse of discourse of the gray values with the elements repre-
sented by , . Let A be a set in which is given
as . In order to define , all the elements in

are associated with values from the interval , which gives
the extent (membership) of possession of a particular property
(that characterizes the set ) by these elements . Such a set

is called a fuzzy set and the corresponding values associated
with , which are denoted by , are referred to as member-
ship grades. Here we consider that represents the brightness
property [4] (defined on gray values) and use Zadeh’s S-func-
tion [4] to calculate the membership values as follows:

(1)

where , , and are certain gray values, is referred to as
the cross-over point given by and a measure

is called the bandwidth of the fuzzy set .
Index of fuzziness is a measure that can be used to quantify the
average amount of fuzziness in the set and it is expressed as

(2)

where is a positive integer and is given by

if

otherwise

When the value of , the measure is called the linear index
of fuzziness and when , it is called the quadratic index of
fuzziness [4].

Now, let be a portion of having elements denoted
by , . Let represent the number of
elements in the array having the gray value (that is,

). In the notation of fuzzy sets, may be considered as an
array of fuzzy singletons represented as .
Therefore, the expression of the index of fuzziness in (2) can be
used to obtain a measure of ambiguity in as follows:

(3)

Note that, the value of lies in the range . Let us now
consider a pictorial interpretation of the formula given in (3).
Consider Fig. 1, where and are shown. As mentioned
earlier, represents the brightness property, which means that
the value of at each element gives the extent to which the
element is bright. When the value of at an element is 0 or 1,
it is not ambiguous to the decide whether the element is bright
or not bright. On the otherhand, when the value of at an
element is greater than 0 and less than 1, it is ambiguous to
make such a decision about the element. In Fig. 1(a), the shaded
region in represents the elements in which are associated
with the aforesaid ambiguity. From the above explanation, it is
straightforward that the formula in (3) gives an average measure
of ambiguity in .

B. Ambiguity Measure Using Rough Entropy [12]

Let us again consider an -level (graylevel) image and let
be the universe of discourse of the gray values with the

elements represented by , . We now consider
the brightness property (defined on gray values) and define two
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Fig. 1. Image ambiguity measurement using index of fuzziness.

mutually exclusive sets and , respectively, representing
the “bright” and “dark” gray values in as

(4)

(5)

As can be seen, and are defined such that .
The gray value is called the cross-over point. Now, as in-
discernibility is created by the similarity between nearby gray
values in the universe , granules or induced equivalence
classes (of equal size) are obtained by partitioning . A granule
in contains gray values which are considered similar to each
other. As mentioned in [12], the granules are obtained such
that the gray value is never at the boundary of a granule.
Let us denote the size of the granules in by . We consider
the ambiguity in as the limited discernibility in its subsets
created by the similarity between nearby gray values and then
use rough set theory to obtain the lower approximations of
and , which are given as

(6)

(7)

and the upper approximations of and , which are ex-
pressed as

(8)

(9)

where stands for granule of size containing the element
. The rough entropy measure [12] quantifying the ambiguity

in the universe is given as

(10)
where

In the above, , , , and are the cardinalities of
the sets , , , and , respectively.

Now, as considered earlier, let be a portion of having
elements denoted by , . Let represent

Fig. 2. Image ambiguity measurement using rough entropy.

the number of elements in the array having the gray value
(that is, ). In order to find the rough entropy measure of
ambiguity in , we define

(11)

We then obtain the expression for the rough entropy measure of
ambiguity in as

(12)

Note that, the value of lies in the range . Let us
now consider a pictorial interpretation of the formula given in
(12). Consider Fig. 2, where , , , , and are shown.
As mentioned earlier, the lower and upper approximations of

and are considered as limited discernibility exists due
to the similarity between nearby gray values in . When an
element belongs to the lower approximation of a set, it means
that the element totally possesses the property characterizing
the set (for example, every element in is bright). When
an element belongs to the lower approximation of the set
of “bright” gray values or to that of the set of “dark”
gray values , it is not ambiguous to the decide whether
the element is bright or dark. On the otherhand, when an
element does not belong to both and , it is ambiguous to
make such a decision about the element. Therefore, we infer
that the limited discernibility due to the similarity between
nearby gray values in leads to the aforesaid ambiguity.
In Fig. 2, the shaded region in represents the elements
in which do not belong to both and . From the
above explanation, it is straightforward that the formula in
(12) gives a measure of ambiguity in .

III. BILEVEL HISTOGRAM THRESHOLDING BASED ON

ASSOCIATION ERROR

In this section, we propose a methodology to carry out
bilevel histogram thresholding that does not make any prior
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assumption about the histogram. Let us consider two regions
in the histogram of an image containing a few graylevel
bins corresponding to the dark and bright areas of the image,
respectively. These regions are obtained using two predefined
gray values, say and , with the graylevel bins in the
range representing the initial bright region and
the graylevel bins in the range representing the
initial dark region. The symbols and represent the
lowest and highest gray value of the image, respectively. A
third region given by the graylevel bins in the range
is referred to as the undefined region.

Now, let the association of a graylevel bin from the undefined
region to the initial bright region causes an error of
units and the association of a graylevel bin from the undefined
region to the initial dark region results in an error of
units. Then, if , it would be
appropriate to assign the graylevel bin from the undefined
region to the bright (dark) region. As boundaries in an image
are not well-defined and nearby gray values are indiscernible,
one can naturally consider the various areas in an image as
ambiguous regions. Hence, the initial dark and bright regions
of the histogram will represent two ambiguous areas in the
image. Therefore, fuzzy and rough set theory, which have
been extensively used to handle ambiguity, may be used to
quantify the association errors.

A. Proposed Methodology

Here we present the methodology to calculate the error
caused due to the association of a graylevel bin from the
undefined region to a defined region. Using this method we
shall obtain the association errors corresponding to the dark
and bright regions, that is, and . Each of these
association errors comprise of two constituent error measure
referred to as the proximity error and the change error.

Let represent the value of the bin of the histogram
of a grayscale image . We may define , the array of all the
graylevel bins in the initial bright region as

where

(13)

and , the array of all the graylevel bins in the initial dark
region as

where

(14)

Now, consider that a graylevel bin from the undefined region
corresponding to a gray value has been associated to the ini-
tial bright region. The bright region after the association is rep-
resented by an array as

where

when

elsewhere. (15)

In a similar manner, the dark region after the association is rep-
resented by an array as

where

when

elsewhere. (16)

In order to decide whether the graylevel bin corresponding to the
gray value belongs to the bright or dark region, we need to de-
termine the corresponding errors and . As mentioned
earlier, our measure of an association error comprises of
a proximity error measure and a change error measure .
We represent an association error as

(17)

where and are constants such that and take values
from the same range, say, .

In order to determine the errors and corresponding to
the bright and dark regions, let us consider the arrays and ,
respectively. We define the change error due to the association
in the bright region as

(18)

where the array is obtained by replacing by 0 in
and gives the ambiguity in the image region repre-
sented by the graylevel bins in an array as a real value in the
range . The function is implemented using fuzzy
or rough set theory, which shall be explained later. Now, in a
similar manner, the change error due to the association in the
dark region is given as

(19)

where the array is obtained by replacing by 0 in .
It is evident that the expressions in (18) and (19) measure the
change in ambiguity of the regions due to the association of ,
and, hence, we refer the measures as the change errors. The form
of these expressions is chosen so as to represent the measured
change as the contrast in ambiguity, which is given by the ratio
of difference in ambiguity to average ambiguity. As can be de-
duced from (18) and (19), the change errors would take values
in the range . It is also evident from (18) and (19) that
the change error may take a pathological value of . In such
a case, we consider the change error to be 1.

Next, we define the proximity errors due to the associations
in the bright and dark regions, respectively, as

(20)

and (21)

In the above, we take , if . It will
be evident later from the explanation of the function ,
that the ambiguity measures in (20) and (21) increase with the
increase in proximity of the graylevel bin corresponding to
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Fig. 3. Various defined arrays shown for a multimodal histogram.

from the corresponding regions. Thus, the expressions in (20)
and (21) give measures of farness of the graylevel bin corre-
sponding to from the regions, and, hence, we refer the mea-
sures as the proximity errors. The symbol C is a constant such
that the values of and when equals and ,
respectively, are the same and, hence, the proximity error values
are not biased towards any region. As can be deduced from (20)
and (21), the proximity errors would take values in the range

. The various arrays defined in this section are graphically
shown in Fig. 3.

The implementation of function using Fuzzy Sets and
Rough Sets: Let us first consider an array which has the
graylevel bins corresponding to the gray values given in another
array say and let the length of the arrays be . We shall
now define an array as follows:

(22)

where a notation represents an array formed by re-
peating the value , number of times. Considering
the array as the array (portion of an image) mentioned in
Section II, the index of fuzziness and rough entropy based mea-
sures of ambiguity in can be calculated. One of these mea-
sures is considered as the output of the function applied
to the array and represented as . Note that arrays
such as can be obtained for the arrays , , , and
defined earlier, and, hence, the measures , ,

, and are given in a manner similar to the
one explained above.

From Section II, we find that we need to define the cross-over
point , the bandwidth of the S-function and the granule
size in order to calculate the index of fuzziness and rough
entropy based ambiguity measures. For the calculation of the

association errors corresponding to the bright and dark regions,
we define the respective cross-over points as

(23)

and (24)

Considering the above expressions for the cross-over points and
the explanation in Section II, it can be easily deduced that the
ambiguity measures in (20) and (21) increase with the increase
in proximity of the graylevel bin corresponding to from the
defined regions, as mentioned earlier.

While calculating the association errors corresponding to
both the bright and dark regions, it is important that same
S-function bandwidth and same granule size be
considered. Although any constant value can be assigned to

and , as suggested in [4], we vary the values of and
over a range. As presented earlier in (17), the errors due to

the association of a gray value from the undefined region to the
dark and the bright region are given as

(25)

(26)

We calculate the association errors and for all
graylevel bins corresponding to , that is, the
graylevel bins of the undefined region. We then compare the
corresponding association errors and assign these graylevel
bins to one of the two defined (dark and bright) regions that
corresponds to the lower association error. In (25) and (26),
we consider and, hence, force the range of
contribution from the change errors to , same as that of the
proximity errors. Thus, the bilevel thresholding is achieved by
separating the bins of the histogram into two regions, namely,
the dark and the bright regions.

As mentioned in Section I, a bilevel thresholding technique
similar to the one proposed in this section has been reported
in [11]. The authors in [11] have considered the indeces of
fuzziness of the two defined regions after the association of a
graylevel bin from the undefined region as measures of simi-
larity and then compared these similarity measures (fuzziness)
corresponding to the two defined regions in order to carry out
the thresholding operation. Here, we point out two extremely
important aspects of the algorithm in [11], which are flawed
and might lead to incorrect thresholding.

1) It is appropriate to compare two fuzziness values only
when they have been calculated using similar member-
ship functions having the same bandwidth (same units).
Although the algorithm given in [11] uses similar mem-
bership functions for calculating the fuzziness values,
same bandwidth is not guaranteed.

2) Let us consider the error due to the association of a
graylevel bin of certain value in the undefined region to
the defined dark and bright regions be and ,
respectively. Let the ambiguities in the initial dark and
bright regions obtained using the seed values are equal.
Then, if the proximity of the graylevel bin under consider-
ation from the bright region is greater than that from the
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dark region then must be less than and vice
versa. The algorithm given in [11] does not guarantee such
a condition.

The above problems do not exist in the proposed methodology.

IV. MULTILEVEL HISTOGRAM THRESHOLDING BASED ON

ASSOCIATION ERROR

In this section, we extend the bilevel histogram thresholding
methodology proposed in the previous section to the multilevel
histogram thresholding problem. One way of carrying out this
extension would be to formulate a function of the gray values
in the undefined region based on their and measures
and then search for a predefined number of local optima in the
function and consider them as the required thresholds. But, this
approach would have the following drawbacks.

1) Presence of a predefined number of local optima would
not be guaranteed and, hence, such an algorithm may not
always be feasible.

2) As mentioned above, the function of the gray values would
be based on and measures. Note that these mea-
sures are obtained using two seed values representing the
initial dark and bright regions. Thus, as the function would
relate to the association errors obtained with respect to two
initially defined regions, it is inappropriate to get multiple
regions (multilevel thresholding) in the histogram based
on such a function. In order to carry out multilevel thresh-
olding, multiple seed values should be used.

As mentioned in Section I, we do not posses the prior knowledge
required to assign more than two seed values. Therefore, we un-
derstand that the concept of thresholding based on association
error can be used to separate a histogram only into two regions
and then these regions can further be separated only into two re-
gions each and so on. From this understanding, we find that the
proposed concept of thresholding using association error could
be used in a tree structured technique in order to carry out mul-
tilevel thresholding.

Now, let us consider that we require a multilevel histogram
thresholding technique using association error in order to sep-
arate a histogram into regions. Let be a non-negative in-
teger such that . In our approach to multilevel
histogram thresholding for obtaining regions, we first sepa-
rate the histogram into regions. The implementation of this
approach can be achieved using a binary tree structured algo-
rithm [14]. Note that in [14], the binary tree structure has been
used for classification purposes, which is not our concern. In our
case, we use the binary tree structure to achieve multilevel his-
togram thresholding using association error, which is a totally
unsupervised technique. We list a few characteristics of a binary
tree below stating what they represent when used for association
error based multilevel histogram thresholding.

1) A node of the binary tree would represent a region in the
histogram.

2) The root node of the tree represents the histogram of the
whole image.

3) The depth of a node is given by . At any depth we
always have nodes (regions).

Fig. 4. Separation of a histogram into three regions using the proposed multi-
level thresholding based on association error.

4) Splitting at each node is performed using the bilevel his-
togram thresholding technique using association error pro-
posed in the previous section.

5) All the nodes at a depth are terminal nodes when our
goal is to obtain regions in the histogram.

In order to get regions from the regions, we need to declare
certain bilevel thresholding of histogram regions (node) at depth

as invalid. In order to do so, we define a measure of a
histogram region based on the association errors and
obtained for the values of (see Section III) corresponding to
the histogram region as follows:

(27)

where , and are the same as explained in the previous
section, except for the fact that they are defined for the under-
lying histogram region and not for the entire histogram. We use
the expression in (27) to measure the suitability of the applica-
tion of the bilevel histogram thresholding technique to all the
histogram regions at the depth . Larger the value of for
a region of the histogram, more is the corresponding average
association error and, hence, more is the suitability. Hence, in
order to get regions, we declare the bilevel thresholding of

least suitable (based on ) regions at depth as in-
valid, and, hence, we are left with regions at depth . Fig. 4
graphically demonstrates the use of proposed multilevel thresh-
olding technique using association error in order to obtain three
regions (Regions 1, 2, and 3) in the histogram. The values and

gives the suitability of the application of the bilevel thresh-
olding on the two regions at depth .

V. EXPERIMENTAL RESULTS AND COMPARISONS

In this section, we provide experimental results evaluating the
performance of the proposed bilevel and multilevel histogram
thresholding methods and compare them with that of a few ex-
isting algorithms. We use the proposed and other thresholding
techniques to carry out segmentation, object/background sepa-
ration and edge extraction in images.

A. Segmentation and Object/Background Separation

The use of the proposed thresholding methodology in per-
forming segmentation and object/background separation in im-
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Fig. 5. Qualitative results obtained using the various thresholding algorithms applied to extract blood vessels in an angiography image. (a) Image. (b) Histogram.
(c) Seg. by (i). (d) Seg. by (ii). (e) Seg. by (iii). (f) Seg. by (iv). (g) Seg. by (v). (h) Seg. by (vi). (i) Seg. by (vii). (j) Seg. by (viii).

ages is presented here. Both quantitative and qualitative eval-
uation of performance are considered for study and compar-
isons. Quantitative evaluation methods can be classified into
those which require ground truth and those which do not. Seg-
mentation results can be evaluated by homogeneity based mea-
sures such as the -index [15] which do not require ground truth.
The expression for -index is

(28)

where gives the number of regions obtained after the segmen-
tation process, is the number of pixels in the region,
is the gray value of the pixel in the region of an image

, is the mean of the gray values in the region and is the
mean of the gray values in the image . In the case of evaluation
of object/background separation in images we have .

Note that -index uses sum of squared distance from mean
as the underlying measure of variability. It is well-known that
such a measure of variability does not reject extreme values or
outliers effectively. Hence, the presence of a very few extreme
values of variation could have a greater effect on the -index
measure than the significant majority of moderate values of vari-
ation. We suggest that a segmentation evaluation index should
ignore the effect of an insignificant minority of extreme values
of variation (unlike -index), and, hence, we present an alterna-
tive segmentation evaluation index in this regard.

A segmentation evaluation measure—VMAD-index:
Here we propose a new homogeneity based index, which is

less affected by extreme values of variation, to evaluate segmen-
tation results quantitatively. We call this index as the VMAD-
index which calculates the ratio of the total variation in an image
to the sum of within-region variations. We use the median of ab-
solute deviation from median (MAD) measure [13], which is a
well-known robust estimator of scale, in order to quantify the
variations. Hence, the VMAD-index is not heavily influenced
by a minority of extreme values of variation and it is given as

(29)

where represents the median element value in the array
and stands for the gray value of the pixel in the image

. The symbols , and are the same as the ones defined
for (28), is the number of pixels in the image and rep-
resents the region in the image . It is evident from (29)

that for an image, the VMAD-index increases with increase
in homogeneity in the regions and, hence, higher the value of
VMAD-index better the segmentation. The VMAD-index takes
values in the range for a given value of ( is a integer
with , being the number of graylevels). Note that,
in order to quantify the variations, one may also use the or

measure proposed in [16], which are also robust estimators
of scale having certain advantages over the MAD measure. We
shall use both -index and VMAD-index while presenting the
quantitative results of the proposed and other histogram thresh-
olding techniques.

Let us first consider the visual assessment of segmentation re-
sults in different images in order to evaluate the qualitative per-
formance of the various techniques. The techniques considered
for comparison are: (i) thresholding based on fuzzy measure of
association errors (proposed), ii) thresholding based on rough
measure of association errors (proposed), (iii) Otsu’s method
[1], (iv) method by Kapur et al. [2], (v) method by Kittler et
al. [3],(vi) Tsai’s method [5], (vii) fuzzy graylevel similarity
based thresholding [11], and (viii) thresholding based on index
(linear) of fuzziness [4]. These methods will henceforth be re-
ferred using their corresponding numbers in the paper.

In Fig. 5, an angiography image is considered and the goal
is to extract the blood vessels. The number of occurrences of
a few gray values are very large compared to the others in the
histogram of this image. As can be seen from the figure, the
proposed methodology outperforms the others as it extracts out
the thinner blood vessels successfully. An image of a galaxy is
considered in Fig. 6. The graylevel histogram of this image is
almost unimodal in nature and, hence, extracting multiple re-
gions from it is a nontrivial task. We use the proposed multi-
level thresholding scheme and the various other schemes to find
out the total extent and the core region of the galaxy. It is evi-
dent from the figure that the results obtained using the proposed
methodology is as good as or better than the others.

Let us now consider the quantitative evaluation of segmen-
tation results. Table I lists the quantitative measures of object/
background separation and segmentation performance of the
various thresholding algorithms. The serial numbers in the first
(left most) column of the table represent various images used,
whereas those in the first (top most) row represent the techniques
considered. Object/background separation has been carried out
on the first five images [images (1)–(5)] and multiple region seg-
mentation has been performed on the rest of the images.

In the evaluation on the basis on the proposed VMAD-index
and -index, a higher value indicates better object/background
separation or segmentation. Note that both these measures are
based on the intra-region homogeneity and the homogeneity of
the whole image. Although our methodology [techniques (i)
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Fig. 6. Qualitative performance of the various thresholding algorithms applied to find the core and extent of the galaxy in an image. (a) Image. (b) Histogram.
(c) Seg. by (i). (d) Seg. by (ii). (e) Seg. by (iii). (f) Seg. by (iv). (g) Seg. by (v). (h) Seg. by (vi). (i) Seg. by (viii).

TABLE I
QUANTITATIVE RESULTS OBTAINED USING THE VARIOUS THRESHOLDING TECHNIQUES ON DIFFERENT IMAGES

and (ii)] is based on the calculation of certain association er-
rors which do not use any image homogeneity measure, the per-
formance is comparable to the others in terms of both VMAD-
index and -index. Moreover, it is evident from the table that
if we consider the evaluation only in terms of the proposed
VMAD-index, our techniques outperform most of the others.

We find that the proposed VMAD-index relates more to the
visual observation of the segmentation results. For example,
consider the image (2) in Table I. It is the image which is con-
sidered in Fig. 5. The VMAD-index like the qualitative results
suggests that the proposed methodology performs better than
the others, whereas the -index does not. This is due to the
fact that the -index measure is influenced by outliers unlike
the VMAD-index.

Note that as described in Section III, two gray values and
are needed to be predefined in order to use the proposed

thresholding methodology. We have considered (for 256-level
grayscale images) and .

B. Edge Extraction

We present here the use of the proposed thresholding method-
ology in carrying out edge extraction from images of gradient
magnitudes, referred to as gradient images. It is mentioned in
[17] that quantitative evaluation of edge detection, which does
not use ground truth, is often misleading especially when used
on images with complex scenes. As our prime goal is to com-
pare the proposed thresholding methodology to others, we shall
use only qualitative evaluation to judge the performance of edge
extraction by the various techniques.

Gradient magnitude histograms are in general unimodal and
positively (right) skewed in nature. In literature, very few tech-
niques have been proposed to carry out bilevel thresholding in
such histograms. Among these techniques, we consider the fol-
lowing for comparison: (ix) unimodal histogram thresholding
technique by Rosin [6] and (x) the thresholding technique by

Henstock et al. [7]. In addition to the aforesaid techniques, we
also consider here some of the existing thresholding techniques
mentioned previously in this section.

As mentioned earlier in this section and in Section III, two
gray values and are needed as input parameters in order
to use the proposed thresholding methodology. While using the
proposed thresholding methodology on gradient images, and

represent two gradient magnitude values and we consider the
input parameters as and

. The notation denotes the per-
centile of the gradient magnitude in the distribution (gradient
magnitude histogram).

Figs. 7 and 8 give the qualitative evaluation of the edge ex-
traction performance of the various thresholding algorithms. In
Fig. 7, we find that the proposed technique does much better
than the others in determining the valid edges and eliminating
those due to the inherent noise and texture. In Fig. 8, we find
three regions in the gradient image. One (white) represents the
gradient values which surely correspond to valid edges, another
(black) represents those which surely do not correspond to valid
edges and the third region (gray) represents the gradient values
which could possibly correspond to valid edges. Such multilevel
thresholding in gradient magnitude histograms could be used
along with the hysteresis technique suggested in [18] in order to
determine the actual edges. We see from the figure that the pro-
posed techniques perform as good as or better than the others.
Note that, edge thinning has not been done in the results shown
in Figs. 7 and 8, as it is not of much significance with respect to
the intended comparisons.

C. Parameter Dependency of the Proposed Methodology

As given in Section III, the proposed bilevel thresholding
methodology requires two input parameters, namely, and ,
which give the range of element values belonging to the initial
regions. The performance analysis of the proposed methodology
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Fig. 7. Qualitative performance of the various thresholding algorithms applied to mark the edges in a gradient image. (a) Image. (b) Histogram. (c) Edges by (i).
(d) Edges by (ii). (e) Edges by (iii). (f) Edges by (vii). (g) Edges by (ix). (h) Edges by (x).

Fig. 8. Qualitative performance of the various thresholding algorithms applied to obtain the edge, nonedge and possible edge regions in a gradient image. (a) Image.
(b) Histogram. (c) Edges by (i). (d) Edges by (ii). (e) Edges by (iii). (f) Edges by (iv). (g) Edges by (v). (h) Edges by (vi).

TABLE II
PARAMETER DEPENDENCY ANALYSIS OF THE PROPOSED FUZZY (F) AND ROUGH (R) SET THEORY BASED THRESHOLDING METHODS

would be incomplete without assessing the dependency of the
proposed techniques on these input parameters.

In order to assess the dependency of the algorithms on the input
parameters, we consider fifteen different images (I1–I15) and
apply the proposed bilevel histogram thresholding techniques
on them in order to carry out object/background separation. Six-
teen different pairs of input parameters are used to get different
threshold values and the variation in the threshold values is then
analyzed statistically. Table II lists the meanofabsolutedeviation
from the mean (MAD1) and the median of absolute deviation
from the median (MAD2) of the threshold values for each image
I1 to I15 obtained using the sixteen different pairs of parameters
with the proposed technique of thresholding based on fuzzy
(denoted by F) and rough (denoted by R) measure of association
errors. Then we present the 99% confidence interval within
which the MAD1 and MAD2 measure would lie, considering
the MAD1 and MAD2 measures as values of random variables
having normal density functions with their mean and standard
deviation as the sample mean and sample standard deviation of
the MAD1 and MAD2 values, respectively.

We see that the 99% confidence intervals of the MAD1 and
MAD2 measures for the proposed thresholding technique
based on fuzzy measure of association errors are
and , respectively and that of the MAD1 and MAD2
measures for the proposed thresholding technique based on
rough measure of association errors are and

.Therefore,weseethat, ingeneral, thedifferencein
threshold values obtained using the proposed methodology with
different parameters is around 10, and, hence, the dependency of
thetechniquesontheinputparameters isnotofmuchsignificance.

VI. CONCLUSION

In this paper, a novel bilevel histogram thresholding method-
ology has been proposed. Each element of the histogram has
been associated with one of the two regions by comparing the
corresponding errors due to the associations. The errors due to
associations have been obtained using image ambiguity mea-
sures given by the linear index of fuzziness or the rough entropy
measures. The proposed bilevel thresholding methodology has
then been used in a tree structured technique to present a novel
multilevel histogram thresholding algorithm.

The proposed methods of bilevel and multilevel thresholding
do not make any prior assumptions about the histogram unlike
many existing techniques. The proposed methodology has been
used to perform segmentation and edge extraction on grayscale
and gradient magnitude images, respectively. A new quantita-
tive index called the VMAD-index has also been proposed to
evaluate image segmentation performance. The VMAD-index
has been based on the median of absolute deviation from me-
dian measure, which is a well-known robust estimator of scale.

Qualitative and quantitative performance of the proposed
methodology have been studied and compared to that of a few
existing thresholding techniques. The methods based on mea-
sures of association error have been found suitable for images
with different kinds of histograms. Extensive experimental
results have suggested that the proposed techniques perform as
good as or better than the others.
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